spelling fixes: arch/i386/
[linux-2.6/kvm.git] / arch / x86 / kernel / hpet.c
blob772afab8f1960a9356ad8d8b383bf0c6c6e53bc9
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/delay.h>
4 #include <linux/errno.h>
5 #include <linux/hpet.h>
6 #include <linux/init.h>
7 #include <linux/sysdev.h>
8 #include <linux/pm.h>
9 #include <linux/delay.h>
11 #include <asm/fixmap.h>
12 #include <asm/hpet.h>
13 #include <asm/i8253.h>
14 #include <asm/io.h>
16 #define HPET_MASK CLOCKSOURCE_MASK(32)
17 #define HPET_SHIFT 22
19 /* FSEC = 10^-15 NSEC = 10^-9 */
20 #define FSEC_PER_NSEC 1000000
23 * HPET address is set in acpi/boot.c, when an ACPI entry exists
25 unsigned long hpet_address;
26 static void __iomem *hpet_virt_address;
28 unsigned long hpet_readl(unsigned long a)
30 return readl(hpet_virt_address + a);
33 static inline void hpet_writel(unsigned long d, unsigned long a)
35 writel(d, hpet_virt_address + a);
38 #ifdef CONFIG_X86_64
40 #include <asm/pgtable.h>
42 static inline void hpet_set_mapping(void)
44 set_fixmap_nocache(FIX_HPET_BASE, hpet_address);
45 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
46 hpet_virt_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
49 static inline void hpet_clear_mapping(void)
51 hpet_virt_address = NULL;
54 #else
56 static inline void hpet_set_mapping(void)
58 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
61 static inline void hpet_clear_mapping(void)
63 iounmap(hpet_virt_address);
64 hpet_virt_address = NULL;
66 #endif
69 * HPET command line enable / disable
71 static int boot_hpet_disable;
73 static int __init hpet_setup(char* str)
75 if (str) {
76 if (!strncmp("disable", str, 7))
77 boot_hpet_disable = 1;
79 return 1;
81 __setup("hpet=", hpet_setup);
83 static int __init disable_hpet(char *str)
85 boot_hpet_disable = 1;
86 return 1;
88 __setup("nohpet", disable_hpet);
90 static inline int is_hpet_capable(void)
92 return (!boot_hpet_disable && hpet_address);
96 * HPET timer interrupt enable / disable
98 static int hpet_legacy_int_enabled;
101 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
103 int is_hpet_enabled(void)
105 return is_hpet_capable() && hpet_legacy_int_enabled;
109 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
110 * timer 0 and timer 1 in case of RTC emulation.
112 #ifdef CONFIG_HPET
113 static void hpet_reserve_platform_timers(unsigned long id)
115 struct hpet __iomem *hpet = hpet_virt_address;
116 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
117 unsigned int nrtimers, i;
118 struct hpet_data hd;
120 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
122 memset(&hd, 0, sizeof (hd));
123 hd.hd_phys_address = hpet_address;
124 hd.hd_address = hpet;
125 hd.hd_nirqs = nrtimers;
126 hd.hd_flags = HPET_DATA_PLATFORM;
127 hpet_reserve_timer(&hd, 0);
129 #ifdef CONFIG_HPET_EMULATE_RTC
130 hpet_reserve_timer(&hd, 1);
131 #endif
133 hd.hd_irq[0] = HPET_LEGACY_8254;
134 hd.hd_irq[1] = HPET_LEGACY_RTC;
136 for (i = 2; i < nrtimers; timer++, i++)
137 hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >>
138 Tn_INT_ROUTE_CNF_SHIFT;
140 hpet_alloc(&hd);
143 #else
144 static void hpet_reserve_platform_timers(unsigned long id) { }
145 #endif
148 * Common hpet info
150 static unsigned long hpet_period;
152 static void hpet_legacy_set_mode(enum clock_event_mode mode,
153 struct clock_event_device *evt);
154 static int hpet_legacy_next_event(unsigned long delta,
155 struct clock_event_device *evt);
158 * The hpet clock event device
160 static struct clock_event_device hpet_clockevent = {
161 .name = "hpet",
162 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
163 .set_mode = hpet_legacy_set_mode,
164 .set_next_event = hpet_legacy_next_event,
165 .shift = 32,
166 .irq = 0,
167 .rating = 50,
170 static void hpet_start_counter(void)
172 unsigned long cfg = hpet_readl(HPET_CFG);
174 cfg &= ~HPET_CFG_ENABLE;
175 hpet_writel(cfg, HPET_CFG);
176 hpet_writel(0, HPET_COUNTER);
177 hpet_writel(0, HPET_COUNTER + 4);
178 cfg |= HPET_CFG_ENABLE;
179 hpet_writel(cfg, HPET_CFG);
182 static void hpet_resume_device(void)
184 force_hpet_resume();
187 static void hpet_restart_counter(void)
189 hpet_resume_device();
190 hpet_start_counter();
193 static void hpet_enable_legacy_int(void)
195 unsigned long cfg = hpet_readl(HPET_CFG);
197 cfg |= HPET_CFG_LEGACY;
198 hpet_writel(cfg, HPET_CFG);
199 hpet_legacy_int_enabled = 1;
202 static void hpet_legacy_clockevent_register(void)
204 uint64_t hpet_freq;
206 /* Start HPET legacy interrupts */
207 hpet_enable_legacy_int();
210 * The period is a femto seconds value. We need to calculate the
211 * scaled math multiplication factor for nanosecond to hpet tick
212 * conversion.
214 hpet_freq = 1000000000000000ULL;
215 do_div(hpet_freq, hpet_period);
216 hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
217 NSEC_PER_SEC, 32);
218 /* Calculate the min / max delta */
219 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
220 &hpet_clockevent);
221 hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
222 &hpet_clockevent);
225 * Start hpet with the boot cpu mask and make it
226 * global after the IO_APIC has been initialized.
228 hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
229 clockevents_register_device(&hpet_clockevent);
230 global_clock_event = &hpet_clockevent;
231 printk(KERN_DEBUG "hpet clockevent registered\n");
234 static void hpet_legacy_set_mode(enum clock_event_mode mode,
235 struct clock_event_device *evt)
237 unsigned long cfg, cmp, now;
238 uint64_t delta;
240 switch(mode) {
241 case CLOCK_EVT_MODE_PERIODIC:
242 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
243 delta >>= hpet_clockevent.shift;
244 now = hpet_readl(HPET_COUNTER);
245 cmp = now + (unsigned long) delta;
246 cfg = hpet_readl(HPET_T0_CFG);
247 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
248 HPET_TN_SETVAL | HPET_TN_32BIT;
249 hpet_writel(cfg, HPET_T0_CFG);
251 * The first write after writing TN_SETVAL to the
252 * config register sets the counter value, the second
253 * write sets the period.
255 hpet_writel(cmp, HPET_T0_CMP);
256 udelay(1);
257 hpet_writel((unsigned long) delta, HPET_T0_CMP);
258 break;
260 case CLOCK_EVT_MODE_ONESHOT:
261 cfg = hpet_readl(HPET_T0_CFG);
262 cfg &= ~HPET_TN_PERIODIC;
263 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
264 hpet_writel(cfg, HPET_T0_CFG);
265 break;
267 case CLOCK_EVT_MODE_UNUSED:
268 case CLOCK_EVT_MODE_SHUTDOWN:
269 cfg = hpet_readl(HPET_T0_CFG);
270 cfg &= ~HPET_TN_ENABLE;
271 hpet_writel(cfg, HPET_T0_CFG);
272 break;
274 case CLOCK_EVT_MODE_RESUME:
275 hpet_enable_legacy_int();
276 break;
280 static int hpet_legacy_next_event(unsigned long delta,
281 struct clock_event_device *evt)
283 unsigned long cnt;
285 cnt = hpet_readl(HPET_COUNTER);
286 cnt += delta;
287 hpet_writel(cnt, HPET_T0_CMP);
289 return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
293 * Clock source related code
295 static cycle_t read_hpet(void)
297 return (cycle_t)hpet_readl(HPET_COUNTER);
300 #ifdef CONFIG_X86_64
301 static cycle_t __vsyscall_fn vread_hpet(void)
303 return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
305 #endif
307 static struct clocksource clocksource_hpet = {
308 .name = "hpet",
309 .rating = 250,
310 .read = read_hpet,
311 .mask = HPET_MASK,
312 .shift = HPET_SHIFT,
313 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
314 .resume = hpet_restart_counter,
315 #ifdef CONFIG_X86_64
316 .vread = vread_hpet,
317 #endif
320 static int hpet_clocksource_register(void)
322 u64 tmp, start, now;
323 cycle_t t1;
325 /* Start the counter */
326 hpet_start_counter();
328 /* Verify whether hpet counter works */
329 t1 = read_hpet();
330 rdtscll(start);
333 * We don't know the TSC frequency yet, but waiting for
334 * 200000 TSC cycles is safe:
335 * 4 GHz == 50us
336 * 1 GHz == 200us
338 do {
339 rep_nop();
340 rdtscll(now);
341 } while ((now - start) < 200000UL);
343 if (t1 == read_hpet()) {
344 printk(KERN_WARNING
345 "HPET counter not counting. HPET disabled\n");
346 return -ENODEV;
349 /* Initialize and register HPET clocksource
351 * hpet period is in femto seconds per cycle
352 * so we need to convert this to ns/cyc units
353 * approximated by mult/2^shift
355 * fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
356 * fsec/cyc * 1ns/1000000fsec * 2^shift = mult
357 * fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
358 * (fsec/cyc << shift)/1000000 = mult
359 * (hpet_period << shift)/FSEC_PER_NSEC = mult
361 tmp = (u64)hpet_period << HPET_SHIFT;
362 do_div(tmp, FSEC_PER_NSEC);
363 clocksource_hpet.mult = (u32)tmp;
365 clocksource_register(&clocksource_hpet);
367 return 0;
371 * Try to setup the HPET timer
373 int __init hpet_enable(void)
375 unsigned long id;
377 if (!is_hpet_capable())
378 return 0;
380 hpet_set_mapping();
383 * Read the period and check for a sane value:
385 hpet_period = hpet_readl(HPET_PERIOD);
386 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
387 goto out_nohpet;
390 * Read the HPET ID register to retrieve the IRQ routing
391 * information and the number of channels
393 id = hpet_readl(HPET_ID);
395 #ifdef CONFIG_HPET_EMULATE_RTC
397 * The legacy routing mode needs at least two channels, tick timer
398 * and the rtc emulation channel.
400 if (!(id & HPET_ID_NUMBER))
401 goto out_nohpet;
402 #endif
404 if (hpet_clocksource_register())
405 goto out_nohpet;
407 if (id & HPET_ID_LEGSUP) {
408 hpet_legacy_clockevent_register();
409 return 1;
411 return 0;
413 out_nohpet:
414 hpet_clear_mapping();
415 boot_hpet_disable = 1;
416 return 0;
420 * Needs to be late, as the reserve_timer code calls kalloc !
422 * Not a problem on i386 as hpet_enable is called from late_time_init,
423 * but on x86_64 it is necessary !
425 static __init int hpet_late_init(void)
427 if (boot_hpet_disable)
428 return -ENODEV;
430 if (!hpet_address) {
431 if (!force_hpet_address)
432 return -ENODEV;
434 hpet_address = force_hpet_address;
435 hpet_enable();
436 if (!hpet_virt_address)
437 return -ENODEV;
440 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
442 return 0;
444 fs_initcall(hpet_late_init);
446 #ifdef CONFIG_HPET_EMULATE_RTC
448 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
449 * is enabled, we support RTC interrupt functionality in software.
450 * RTC has 3 kinds of interrupts:
451 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
452 * is updated
453 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
454 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
455 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
456 * (1) and (2) above are implemented using polling at a frequency of
457 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
458 * overhead. (DEFAULT_RTC_INT_FREQ)
459 * For (3), we use interrupts at 64Hz or user specified periodic
460 * frequency, whichever is higher.
462 #include <linux/mc146818rtc.h>
463 #include <linux/rtc.h>
465 #define DEFAULT_RTC_INT_FREQ 64
466 #define DEFAULT_RTC_SHIFT 6
467 #define RTC_NUM_INTS 1
469 static unsigned long hpet_rtc_flags;
470 static unsigned long hpet_prev_update_sec;
471 static struct rtc_time hpet_alarm_time;
472 static unsigned long hpet_pie_count;
473 static unsigned long hpet_t1_cmp;
474 static unsigned long hpet_default_delta;
475 static unsigned long hpet_pie_delta;
476 static unsigned long hpet_pie_limit;
479 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
480 * is not supported by all HPET implementations for timer 1.
482 * hpet_rtc_timer_init() is called when the rtc is initialized.
484 int hpet_rtc_timer_init(void)
486 unsigned long cfg, cnt, delta, flags;
488 if (!is_hpet_enabled())
489 return 0;
491 if (!hpet_default_delta) {
492 uint64_t clc;
494 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
495 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
496 hpet_default_delta = (unsigned long) clc;
499 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
500 delta = hpet_default_delta;
501 else
502 delta = hpet_pie_delta;
504 local_irq_save(flags);
506 cnt = delta + hpet_readl(HPET_COUNTER);
507 hpet_writel(cnt, HPET_T1_CMP);
508 hpet_t1_cmp = cnt;
510 cfg = hpet_readl(HPET_T1_CFG);
511 cfg &= ~HPET_TN_PERIODIC;
512 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
513 hpet_writel(cfg, HPET_T1_CFG);
515 local_irq_restore(flags);
517 return 1;
521 * The functions below are called from rtc driver.
522 * Return 0 if HPET is not being used.
523 * Otherwise do the necessary changes and return 1.
525 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
527 if (!is_hpet_enabled())
528 return 0;
530 hpet_rtc_flags &= ~bit_mask;
531 return 1;
534 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
536 unsigned long oldbits = hpet_rtc_flags;
538 if (!is_hpet_enabled())
539 return 0;
541 hpet_rtc_flags |= bit_mask;
543 if (!oldbits)
544 hpet_rtc_timer_init();
546 return 1;
549 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
550 unsigned char sec)
552 if (!is_hpet_enabled())
553 return 0;
555 hpet_alarm_time.tm_hour = hrs;
556 hpet_alarm_time.tm_min = min;
557 hpet_alarm_time.tm_sec = sec;
559 return 1;
562 int hpet_set_periodic_freq(unsigned long freq)
564 uint64_t clc;
566 if (!is_hpet_enabled())
567 return 0;
569 if (freq <= DEFAULT_RTC_INT_FREQ)
570 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
571 else {
572 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
573 do_div(clc, freq);
574 clc >>= hpet_clockevent.shift;
575 hpet_pie_delta = (unsigned long) clc;
577 return 1;
580 int hpet_rtc_dropped_irq(void)
582 return is_hpet_enabled();
585 static void hpet_rtc_timer_reinit(void)
587 unsigned long cfg, delta;
588 int lost_ints = -1;
590 if (unlikely(!hpet_rtc_flags)) {
591 cfg = hpet_readl(HPET_T1_CFG);
592 cfg &= ~HPET_TN_ENABLE;
593 hpet_writel(cfg, HPET_T1_CFG);
594 return;
597 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
598 delta = hpet_default_delta;
599 else
600 delta = hpet_pie_delta;
603 * Increment the comparator value until we are ahead of the
604 * current count.
606 do {
607 hpet_t1_cmp += delta;
608 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
609 lost_ints++;
610 } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
612 if (lost_ints) {
613 if (hpet_rtc_flags & RTC_PIE)
614 hpet_pie_count += lost_ints;
615 if (printk_ratelimit())
616 printk(KERN_WARNING "rtc: lost %d interrupts\n",
617 lost_ints);
621 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
623 struct rtc_time curr_time;
624 unsigned long rtc_int_flag = 0;
626 hpet_rtc_timer_reinit();
628 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
629 rtc_get_rtc_time(&curr_time);
631 if (hpet_rtc_flags & RTC_UIE &&
632 curr_time.tm_sec != hpet_prev_update_sec) {
633 rtc_int_flag = RTC_UF;
634 hpet_prev_update_sec = curr_time.tm_sec;
637 if (hpet_rtc_flags & RTC_PIE &&
638 ++hpet_pie_count >= hpet_pie_limit) {
639 rtc_int_flag |= RTC_PF;
640 hpet_pie_count = 0;
643 if (hpet_rtc_flags & RTC_PIE &&
644 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
645 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
646 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
647 rtc_int_flag |= RTC_AF;
649 if (rtc_int_flag) {
650 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
651 rtc_interrupt(rtc_int_flag, dev_id);
653 return IRQ_HANDLED;
655 #endif