serial: TTY: new ldiscs for staging
[linux-2.6/kvm.git] / block / elevator.c
blob76e3702d53817e4aee08d092a59f07ca840145cc
1 /*
2 * Block device elevator/IO-scheduler.
4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * 30042000 Jens Axboe <axboe@kernel.dk> :
8 * Split the elevator a bit so that it is possible to choose a different
9 * one or even write a new "plug in". There are three pieces:
10 * - elevator_fn, inserts a new request in the queue list
11 * - elevator_merge_fn, decides whether a new buffer can be merged with
12 * an existing request
13 * - elevator_dequeue_fn, called when a request is taken off the active list
15 * 20082000 Dave Jones <davej@suse.de> :
16 * Removed tests for max-bomb-segments, which was breaking elvtune
17 * when run without -bN
19 * Jens:
20 * - Rework again to work with bio instead of buffer_heads
21 * - loose bi_dev comparisons, partition handling is right now
22 * - completely modularize elevator setup and teardown
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
37 #include <linux/uaccess.h>
39 #include <trace/events/block.h>
41 #include "blk.h"
43 static DEFINE_SPINLOCK(elv_list_lock);
44 static LIST_HEAD(elv_list);
47 * Merge hash stuff.
49 static const int elv_hash_shift = 6;
50 #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
51 #define ELV_HASH_FN(sec) \
52 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
53 #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
54 #define rq_hash_key(rq) (blk_rq_pos(rq) + blk_rq_sectors(rq))
57 * Query io scheduler to see if the current process issuing bio may be
58 * merged with rq.
60 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
62 struct request_queue *q = rq->q;
63 struct elevator_queue *e = q->elevator;
65 if (e->ops->elevator_allow_merge_fn)
66 return e->ops->elevator_allow_merge_fn(q, rq, bio);
68 return 1;
72 * can we safely merge with this request?
74 int elv_rq_merge_ok(struct request *rq, struct bio *bio)
76 if (!rq_mergeable(rq))
77 return 0;
80 * Don't merge file system requests and discard requests
82 if (bio_rw_flagged(bio, BIO_RW_DISCARD) !=
83 bio_rw_flagged(rq->bio, BIO_RW_DISCARD))
84 return 0;
87 * different data direction or already started, don't merge
89 if (bio_data_dir(bio) != rq_data_dir(rq))
90 return 0;
93 * must be same device and not a special request
95 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
96 return 0;
99 * only merge integrity protected bio into ditto rq
101 if (bio_integrity(bio) != blk_integrity_rq(rq))
102 return 0;
104 if (!elv_iosched_allow_merge(rq, bio))
105 return 0;
107 return 1;
109 EXPORT_SYMBOL(elv_rq_merge_ok);
111 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
113 int ret = ELEVATOR_NO_MERGE;
116 * we can merge and sequence is ok, check if it's possible
118 if (elv_rq_merge_ok(__rq, bio)) {
119 if (blk_rq_pos(__rq) + blk_rq_sectors(__rq) == bio->bi_sector)
120 ret = ELEVATOR_BACK_MERGE;
121 else if (blk_rq_pos(__rq) - bio_sectors(bio) == bio->bi_sector)
122 ret = ELEVATOR_FRONT_MERGE;
125 return ret;
128 static struct elevator_type *elevator_find(const char *name)
130 struct elevator_type *e;
132 list_for_each_entry(e, &elv_list, list) {
133 if (!strcmp(e->elevator_name, name))
134 return e;
137 return NULL;
140 static void elevator_put(struct elevator_type *e)
142 module_put(e->elevator_owner);
145 static struct elevator_type *elevator_get(const char *name)
147 struct elevator_type *e;
149 spin_lock(&elv_list_lock);
151 e = elevator_find(name);
152 if (!e) {
153 char elv[ELV_NAME_MAX + strlen("-iosched")];
155 spin_unlock(&elv_list_lock);
157 snprintf(elv, sizeof(elv), "%s-iosched", name);
159 request_module("%s", elv);
160 spin_lock(&elv_list_lock);
161 e = elevator_find(name);
164 if (e && !try_module_get(e->elevator_owner))
165 e = NULL;
167 spin_unlock(&elv_list_lock);
169 return e;
172 static void *elevator_init_queue(struct request_queue *q,
173 struct elevator_queue *eq)
175 return eq->ops->elevator_init_fn(q);
178 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
179 void *data)
181 q->elevator = eq;
182 eq->elevator_data = data;
185 static char chosen_elevator[16];
187 static int __init elevator_setup(char *str)
190 * Be backwards-compatible with previous kernels, so users
191 * won't get the wrong elevator.
193 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
194 return 1;
197 __setup("elevator=", elevator_setup);
199 static struct kobj_type elv_ktype;
201 static struct elevator_queue *elevator_alloc(struct request_queue *q,
202 struct elevator_type *e)
204 struct elevator_queue *eq;
205 int i;
207 eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
208 if (unlikely(!eq))
209 goto err;
211 eq->ops = &e->ops;
212 eq->elevator_type = e;
213 kobject_init(&eq->kobj, &elv_ktype);
214 mutex_init(&eq->sysfs_lock);
216 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
217 GFP_KERNEL, q->node);
218 if (!eq->hash)
219 goto err;
221 for (i = 0; i < ELV_HASH_ENTRIES; i++)
222 INIT_HLIST_HEAD(&eq->hash[i]);
224 return eq;
225 err:
226 kfree(eq);
227 elevator_put(e);
228 return NULL;
231 static void elevator_release(struct kobject *kobj)
233 struct elevator_queue *e;
235 e = container_of(kobj, struct elevator_queue, kobj);
236 elevator_put(e->elevator_type);
237 kfree(e->hash);
238 kfree(e);
241 int elevator_init(struct request_queue *q, char *name)
243 struct elevator_type *e = NULL;
244 struct elevator_queue *eq;
245 int ret = 0;
246 void *data;
248 INIT_LIST_HEAD(&q->queue_head);
249 q->last_merge = NULL;
250 q->end_sector = 0;
251 q->boundary_rq = NULL;
253 if (name) {
254 e = elevator_get(name);
255 if (!e)
256 return -EINVAL;
259 if (!e && *chosen_elevator) {
260 e = elevator_get(chosen_elevator);
261 if (!e)
262 printk(KERN_ERR "I/O scheduler %s not found\n",
263 chosen_elevator);
266 if (!e) {
267 e = elevator_get(CONFIG_DEFAULT_IOSCHED);
268 if (!e) {
269 printk(KERN_ERR
270 "Default I/O scheduler not found. " \
271 "Using noop.\n");
272 e = elevator_get("noop");
276 eq = elevator_alloc(q, e);
277 if (!eq)
278 return -ENOMEM;
280 data = elevator_init_queue(q, eq);
281 if (!data) {
282 kobject_put(&eq->kobj);
283 return -ENOMEM;
286 elevator_attach(q, eq, data);
287 return ret;
289 EXPORT_SYMBOL(elevator_init);
291 void elevator_exit(struct elevator_queue *e)
293 mutex_lock(&e->sysfs_lock);
294 if (e->ops->elevator_exit_fn)
295 e->ops->elevator_exit_fn(e);
296 e->ops = NULL;
297 mutex_unlock(&e->sysfs_lock);
299 kobject_put(&e->kobj);
301 EXPORT_SYMBOL(elevator_exit);
303 static inline void __elv_rqhash_del(struct request *rq)
305 hlist_del_init(&rq->hash);
308 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
310 if (ELV_ON_HASH(rq))
311 __elv_rqhash_del(rq);
314 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
316 struct elevator_queue *e = q->elevator;
318 BUG_ON(ELV_ON_HASH(rq));
319 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
322 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
324 __elv_rqhash_del(rq);
325 elv_rqhash_add(q, rq);
328 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
330 struct elevator_queue *e = q->elevator;
331 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
332 struct hlist_node *entry, *next;
333 struct request *rq;
335 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
336 BUG_ON(!ELV_ON_HASH(rq));
338 if (unlikely(!rq_mergeable(rq))) {
339 __elv_rqhash_del(rq);
340 continue;
343 if (rq_hash_key(rq) == offset)
344 return rq;
347 return NULL;
351 * RB-tree support functions for inserting/lookup/removal of requests
352 * in a sorted RB tree.
354 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
356 struct rb_node **p = &root->rb_node;
357 struct rb_node *parent = NULL;
358 struct request *__rq;
360 while (*p) {
361 parent = *p;
362 __rq = rb_entry(parent, struct request, rb_node);
364 if (blk_rq_pos(rq) < blk_rq_pos(__rq))
365 p = &(*p)->rb_left;
366 else if (blk_rq_pos(rq) > blk_rq_pos(__rq))
367 p = &(*p)->rb_right;
368 else
369 return __rq;
372 rb_link_node(&rq->rb_node, parent, p);
373 rb_insert_color(&rq->rb_node, root);
374 return NULL;
376 EXPORT_SYMBOL(elv_rb_add);
378 void elv_rb_del(struct rb_root *root, struct request *rq)
380 BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
381 rb_erase(&rq->rb_node, root);
382 RB_CLEAR_NODE(&rq->rb_node);
384 EXPORT_SYMBOL(elv_rb_del);
386 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
388 struct rb_node *n = root->rb_node;
389 struct request *rq;
391 while (n) {
392 rq = rb_entry(n, struct request, rb_node);
394 if (sector < blk_rq_pos(rq))
395 n = n->rb_left;
396 else if (sector > blk_rq_pos(rq))
397 n = n->rb_right;
398 else
399 return rq;
402 return NULL;
404 EXPORT_SYMBOL(elv_rb_find);
407 * Insert rq into dispatch queue of q. Queue lock must be held on
408 * entry. rq is sort instead into the dispatch queue. To be used by
409 * specific elevators.
411 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
413 sector_t boundary;
414 struct list_head *entry;
415 int stop_flags;
417 if (q->last_merge == rq)
418 q->last_merge = NULL;
420 elv_rqhash_del(q, rq);
422 q->nr_sorted--;
424 boundary = q->end_sector;
425 stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
426 list_for_each_prev(entry, &q->queue_head) {
427 struct request *pos = list_entry_rq(entry);
429 if (blk_discard_rq(rq) != blk_discard_rq(pos))
430 break;
431 if (rq_data_dir(rq) != rq_data_dir(pos))
432 break;
433 if (pos->cmd_flags & stop_flags)
434 break;
435 if (blk_rq_pos(rq) >= boundary) {
436 if (blk_rq_pos(pos) < boundary)
437 continue;
438 } else {
439 if (blk_rq_pos(pos) >= boundary)
440 break;
442 if (blk_rq_pos(rq) >= blk_rq_pos(pos))
443 break;
446 list_add(&rq->queuelist, entry);
448 EXPORT_SYMBOL(elv_dispatch_sort);
451 * Insert rq into dispatch queue of q. Queue lock must be held on
452 * entry. rq is added to the back of the dispatch queue. To be used by
453 * specific elevators.
455 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
457 if (q->last_merge == rq)
458 q->last_merge = NULL;
460 elv_rqhash_del(q, rq);
462 q->nr_sorted--;
464 q->end_sector = rq_end_sector(rq);
465 q->boundary_rq = rq;
466 list_add_tail(&rq->queuelist, &q->queue_head);
468 EXPORT_SYMBOL(elv_dispatch_add_tail);
470 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
472 struct elevator_queue *e = q->elevator;
473 struct request *__rq;
474 int ret;
477 * Levels of merges:
478 * nomerges: No merges at all attempted
479 * noxmerges: Only simple one-hit cache try
480 * merges: All merge tries attempted
482 if (blk_queue_nomerges(q))
483 return ELEVATOR_NO_MERGE;
486 * First try one-hit cache.
488 if (q->last_merge) {
489 ret = elv_try_merge(q->last_merge, bio);
490 if (ret != ELEVATOR_NO_MERGE) {
491 *req = q->last_merge;
492 return ret;
496 if (blk_queue_noxmerges(q))
497 return ELEVATOR_NO_MERGE;
500 * See if our hash lookup can find a potential backmerge.
502 __rq = elv_rqhash_find(q, bio->bi_sector);
503 if (__rq && elv_rq_merge_ok(__rq, bio)) {
504 *req = __rq;
505 return ELEVATOR_BACK_MERGE;
508 if (e->ops->elevator_merge_fn)
509 return e->ops->elevator_merge_fn(q, req, bio);
511 return ELEVATOR_NO_MERGE;
514 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
516 struct elevator_queue *e = q->elevator;
518 if (e->ops->elevator_merged_fn)
519 e->ops->elevator_merged_fn(q, rq, type);
521 if (type == ELEVATOR_BACK_MERGE)
522 elv_rqhash_reposition(q, rq);
524 q->last_merge = rq;
527 void elv_merge_requests(struct request_queue *q, struct request *rq,
528 struct request *next)
530 struct elevator_queue *e = q->elevator;
532 if (e->ops->elevator_merge_req_fn)
533 e->ops->elevator_merge_req_fn(q, rq, next);
535 elv_rqhash_reposition(q, rq);
536 elv_rqhash_del(q, next);
538 q->nr_sorted--;
539 q->last_merge = rq;
542 void elv_requeue_request(struct request_queue *q, struct request *rq)
545 * it already went through dequeue, we need to decrement the
546 * in_flight count again
548 if (blk_account_rq(rq)) {
549 q->in_flight[rq_is_sync(rq)]--;
550 if (blk_sorted_rq(rq))
551 elv_deactivate_rq(q, rq);
554 rq->cmd_flags &= ~REQ_STARTED;
556 elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
559 void elv_drain_elevator(struct request_queue *q)
561 static int printed;
562 while (q->elevator->ops->elevator_dispatch_fn(q, 1))
564 if (q->nr_sorted == 0)
565 return;
566 if (printed++ < 10) {
567 printk(KERN_ERR "%s: forced dispatching is broken "
568 "(nr_sorted=%u), please report this\n",
569 q->elevator->elevator_type->elevator_name, q->nr_sorted);
574 * Call with queue lock held, interrupts disabled
576 void elv_quiesce_start(struct request_queue *q)
578 if (!q->elevator)
579 return;
581 queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
584 * make sure we don't have any requests in flight
586 elv_drain_elevator(q);
587 while (q->rq.elvpriv) {
588 __blk_run_queue(q);
589 spin_unlock_irq(q->queue_lock);
590 msleep(10);
591 spin_lock_irq(q->queue_lock);
592 elv_drain_elevator(q);
596 void elv_quiesce_end(struct request_queue *q)
598 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
601 void elv_insert(struct request_queue *q, struct request *rq, int where)
603 struct list_head *pos;
604 unsigned ordseq;
605 int unplug_it = 1;
607 trace_block_rq_insert(q, rq);
609 rq->q = q;
611 switch (where) {
612 case ELEVATOR_INSERT_FRONT:
613 rq->cmd_flags |= REQ_SOFTBARRIER;
615 list_add(&rq->queuelist, &q->queue_head);
616 break;
618 case ELEVATOR_INSERT_BACK:
619 rq->cmd_flags |= REQ_SOFTBARRIER;
620 elv_drain_elevator(q);
621 list_add_tail(&rq->queuelist, &q->queue_head);
623 * We kick the queue here for the following reasons.
624 * - The elevator might have returned NULL previously
625 * to delay requests and returned them now. As the
626 * queue wasn't empty before this request, ll_rw_blk
627 * won't run the queue on return, resulting in hang.
628 * - Usually, back inserted requests won't be merged
629 * with anything. There's no point in delaying queue
630 * processing.
632 __blk_run_queue(q);
633 break;
635 case ELEVATOR_INSERT_SORT:
636 BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq));
637 rq->cmd_flags |= REQ_SORTED;
638 q->nr_sorted++;
639 if (rq_mergeable(rq)) {
640 elv_rqhash_add(q, rq);
641 if (!q->last_merge)
642 q->last_merge = rq;
646 * Some ioscheds (cfq) run q->request_fn directly, so
647 * rq cannot be accessed after calling
648 * elevator_add_req_fn.
650 q->elevator->ops->elevator_add_req_fn(q, rq);
651 break;
653 case ELEVATOR_INSERT_REQUEUE:
655 * If ordered flush isn't in progress, we do front
656 * insertion; otherwise, requests should be requeued
657 * in ordseq order.
659 rq->cmd_flags |= REQ_SOFTBARRIER;
662 * Most requeues happen because of a busy condition,
663 * don't force unplug of the queue for that case.
665 unplug_it = 0;
667 if (q->ordseq == 0) {
668 list_add(&rq->queuelist, &q->queue_head);
669 break;
672 ordseq = blk_ordered_req_seq(rq);
674 list_for_each(pos, &q->queue_head) {
675 struct request *pos_rq = list_entry_rq(pos);
676 if (ordseq <= blk_ordered_req_seq(pos_rq))
677 break;
680 list_add_tail(&rq->queuelist, pos);
681 break;
683 default:
684 printk(KERN_ERR "%s: bad insertion point %d\n",
685 __func__, where);
686 BUG();
689 if (unplug_it && blk_queue_plugged(q)) {
690 int nrq = q->rq.count[BLK_RW_SYNC] + q->rq.count[BLK_RW_ASYNC]
691 - queue_in_flight(q);
693 if (nrq >= q->unplug_thresh)
694 __generic_unplug_device(q);
698 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
699 int plug)
701 if (q->ordcolor)
702 rq->cmd_flags |= REQ_ORDERED_COLOR;
704 if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
706 * toggle ordered color
708 if (blk_barrier_rq(rq))
709 q->ordcolor ^= 1;
712 * barriers implicitly indicate back insertion
714 if (where == ELEVATOR_INSERT_SORT)
715 where = ELEVATOR_INSERT_BACK;
718 * this request is scheduling boundary, update
719 * end_sector
721 if (blk_fs_request(rq) || blk_discard_rq(rq)) {
722 q->end_sector = rq_end_sector(rq);
723 q->boundary_rq = rq;
725 } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
726 where == ELEVATOR_INSERT_SORT)
727 where = ELEVATOR_INSERT_BACK;
729 if (plug)
730 blk_plug_device(q);
732 elv_insert(q, rq, where);
734 EXPORT_SYMBOL(__elv_add_request);
736 void elv_add_request(struct request_queue *q, struct request *rq, int where,
737 int plug)
739 unsigned long flags;
741 spin_lock_irqsave(q->queue_lock, flags);
742 __elv_add_request(q, rq, where, plug);
743 spin_unlock_irqrestore(q->queue_lock, flags);
745 EXPORT_SYMBOL(elv_add_request);
747 int elv_queue_empty(struct request_queue *q)
749 struct elevator_queue *e = q->elevator;
751 if (!list_empty(&q->queue_head))
752 return 0;
754 if (e->ops->elevator_queue_empty_fn)
755 return e->ops->elevator_queue_empty_fn(q);
757 return 1;
759 EXPORT_SYMBOL(elv_queue_empty);
761 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
763 struct elevator_queue *e = q->elevator;
765 if (e->ops->elevator_latter_req_fn)
766 return e->ops->elevator_latter_req_fn(q, rq);
767 return NULL;
770 struct request *elv_former_request(struct request_queue *q, struct request *rq)
772 struct elevator_queue *e = q->elevator;
774 if (e->ops->elevator_former_req_fn)
775 return e->ops->elevator_former_req_fn(q, rq);
776 return NULL;
779 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
781 struct elevator_queue *e = q->elevator;
783 if (e->ops->elevator_set_req_fn)
784 return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
786 rq->elevator_private = NULL;
787 return 0;
790 void elv_put_request(struct request_queue *q, struct request *rq)
792 struct elevator_queue *e = q->elevator;
794 if (e->ops->elevator_put_req_fn)
795 e->ops->elevator_put_req_fn(rq);
798 int elv_may_queue(struct request_queue *q, int rw)
800 struct elevator_queue *e = q->elevator;
802 if (e->ops->elevator_may_queue_fn)
803 return e->ops->elevator_may_queue_fn(q, rw);
805 return ELV_MQUEUE_MAY;
808 void elv_abort_queue(struct request_queue *q)
810 struct request *rq;
812 while (!list_empty(&q->queue_head)) {
813 rq = list_entry_rq(q->queue_head.next);
814 rq->cmd_flags |= REQ_QUIET;
815 trace_block_rq_abort(q, rq);
817 * Mark this request as started so we don't trigger
818 * any debug logic in the end I/O path.
820 blk_start_request(rq);
821 __blk_end_request_all(rq, -EIO);
824 EXPORT_SYMBOL(elv_abort_queue);
826 void elv_completed_request(struct request_queue *q, struct request *rq)
828 struct elevator_queue *e = q->elevator;
831 * request is released from the driver, io must be done
833 if (blk_account_rq(rq)) {
834 q->in_flight[rq_is_sync(rq)]--;
835 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
836 e->ops->elevator_completed_req_fn(q, rq);
840 * Check if the queue is waiting for fs requests to be
841 * drained for flush sequence.
843 if (unlikely(q->ordseq)) {
844 struct request *next = NULL;
846 if (!list_empty(&q->queue_head))
847 next = list_entry_rq(q->queue_head.next);
849 if (!queue_in_flight(q) &&
850 blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
851 (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) {
852 blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
853 __blk_run_queue(q);
858 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
860 static ssize_t
861 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
863 struct elv_fs_entry *entry = to_elv(attr);
864 struct elevator_queue *e;
865 ssize_t error;
867 if (!entry->show)
868 return -EIO;
870 e = container_of(kobj, struct elevator_queue, kobj);
871 mutex_lock(&e->sysfs_lock);
872 error = e->ops ? entry->show(e, page) : -ENOENT;
873 mutex_unlock(&e->sysfs_lock);
874 return error;
877 static ssize_t
878 elv_attr_store(struct kobject *kobj, struct attribute *attr,
879 const char *page, size_t length)
881 struct elv_fs_entry *entry = to_elv(attr);
882 struct elevator_queue *e;
883 ssize_t error;
885 if (!entry->store)
886 return -EIO;
888 e = container_of(kobj, struct elevator_queue, kobj);
889 mutex_lock(&e->sysfs_lock);
890 error = e->ops ? entry->store(e, page, length) : -ENOENT;
891 mutex_unlock(&e->sysfs_lock);
892 return error;
895 static const struct sysfs_ops elv_sysfs_ops = {
896 .show = elv_attr_show,
897 .store = elv_attr_store,
900 static struct kobj_type elv_ktype = {
901 .sysfs_ops = &elv_sysfs_ops,
902 .release = elevator_release,
905 int elv_register_queue(struct request_queue *q)
907 struct elevator_queue *e = q->elevator;
908 int error;
910 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
911 if (!error) {
912 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
913 if (attr) {
914 while (attr->attr.name) {
915 if (sysfs_create_file(&e->kobj, &attr->attr))
916 break;
917 attr++;
920 kobject_uevent(&e->kobj, KOBJ_ADD);
922 return error;
925 static void __elv_unregister_queue(struct elevator_queue *e)
927 kobject_uevent(&e->kobj, KOBJ_REMOVE);
928 kobject_del(&e->kobj);
931 void elv_unregister_queue(struct request_queue *q)
933 if (q)
934 __elv_unregister_queue(q->elevator);
937 void elv_register(struct elevator_type *e)
939 char *def = "";
941 spin_lock(&elv_list_lock);
942 BUG_ON(elevator_find(e->elevator_name));
943 list_add_tail(&e->list, &elv_list);
944 spin_unlock(&elv_list_lock);
946 if (!strcmp(e->elevator_name, chosen_elevator) ||
947 (!*chosen_elevator &&
948 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
949 def = " (default)";
951 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
952 def);
954 EXPORT_SYMBOL_GPL(elv_register);
956 void elv_unregister(struct elevator_type *e)
958 struct task_struct *g, *p;
961 * Iterate every thread in the process to remove the io contexts.
963 if (e->ops.trim) {
964 read_lock(&tasklist_lock);
965 do_each_thread(g, p) {
966 task_lock(p);
967 if (p->io_context)
968 e->ops.trim(p->io_context);
969 task_unlock(p);
970 } while_each_thread(g, p);
971 read_unlock(&tasklist_lock);
974 spin_lock(&elv_list_lock);
975 list_del_init(&e->list);
976 spin_unlock(&elv_list_lock);
978 EXPORT_SYMBOL_GPL(elv_unregister);
981 * switch to new_e io scheduler. be careful not to introduce deadlocks -
982 * we don't free the old io scheduler, before we have allocated what we
983 * need for the new one. this way we have a chance of going back to the old
984 * one, if the new one fails init for some reason.
986 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
988 struct elevator_queue *old_elevator, *e;
989 void *data;
992 * Allocate new elevator
994 e = elevator_alloc(q, new_e);
995 if (!e)
996 return 0;
998 data = elevator_init_queue(q, e);
999 if (!data) {
1000 kobject_put(&e->kobj);
1001 return 0;
1005 * Turn on BYPASS and drain all requests w/ elevator private data
1007 spin_lock_irq(q->queue_lock);
1008 elv_quiesce_start(q);
1011 * Remember old elevator.
1013 old_elevator = q->elevator;
1016 * attach and start new elevator
1018 elevator_attach(q, e, data);
1020 spin_unlock_irq(q->queue_lock);
1022 __elv_unregister_queue(old_elevator);
1024 if (elv_register_queue(q))
1025 goto fail_register;
1028 * finally exit old elevator and turn off BYPASS.
1030 elevator_exit(old_elevator);
1031 spin_lock_irq(q->queue_lock);
1032 elv_quiesce_end(q);
1033 spin_unlock_irq(q->queue_lock);
1035 blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
1037 return 1;
1039 fail_register:
1041 * switch failed, exit the new io scheduler and reattach the old
1042 * one again (along with re-adding the sysfs dir)
1044 elevator_exit(e);
1045 q->elevator = old_elevator;
1046 elv_register_queue(q);
1048 spin_lock_irq(q->queue_lock);
1049 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1050 spin_unlock_irq(q->queue_lock);
1052 return 0;
1055 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1056 size_t count)
1058 char elevator_name[ELV_NAME_MAX];
1059 struct elevator_type *e;
1061 if (!q->elevator)
1062 return count;
1064 strlcpy(elevator_name, name, sizeof(elevator_name));
1065 e = elevator_get(strstrip(elevator_name));
1066 if (!e) {
1067 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1068 return -EINVAL;
1071 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1072 elevator_put(e);
1073 return count;
1076 if (!elevator_switch(q, e))
1077 printk(KERN_ERR "elevator: switch to %s failed\n",
1078 elevator_name);
1079 return count;
1082 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1084 struct elevator_queue *e = q->elevator;
1085 struct elevator_type *elv;
1086 struct elevator_type *__e;
1087 int len = 0;
1089 if (!q->elevator)
1090 return sprintf(name, "none\n");
1092 elv = e->elevator_type;
1094 spin_lock(&elv_list_lock);
1095 list_for_each_entry(__e, &elv_list, list) {
1096 if (!strcmp(elv->elevator_name, __e->elevator_name))
1097 len += sprintf(name+len, "[%s] ", elv->elevator_name);
1098 else
1099 len += sprintf(name+len, "%s ", __e->elevator_name);
1101 spin_unlock(&elv_list_lock);
1103 len += sprintf(len+name, "\n");
1104 return len;
1107 struct request *elv_rb_former_request(struct request_queue *q,
1108 struct request *rq)
1110 struct rb_node *rbprev = rb_prev(&rq->rb_node);
1112 if (rbprev)
1113 return rb_entry_rq(rbprev);
1115 return NULL;
1117 EXPORT_SYMBOL(elv_rb_former_request);
1119 struct request *elv_rb_latter_request(struct request_queue *q,
1120 struct request *rq)
1122 struct rb_node *rbnext = rb_next(&rq->rb_node);
1124 if (rbnext)
1125 return rb_entry_rq(rbnext);
1127 return NULL;
1129 EXPORT_SYMBOL(elv_rb_latter_request);