Linux-2.6.12-rc2
[linux-2.6/kvm.git] / mm / rmap.c
blob884d6d1928bce0b438ec7d43d7b33918e690be9c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_sem (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem
26 * When a page fault occurs in writing from user to file, down_read
27 * of mmap_sem nests within i_sem; in sys_msync, i_sem nests within
28 * down_read of mmap_sem; i_sem and down_write of mmap_sem are never
29 * taken together; in truncation, i_sem is taken outermost.
31 * mm->mmap_sem
32 * page->flags PG_locked (lock_page)
33 * mapping->i_mmap_lock
34 * anon_vma->lock
35 * mm->page_table_lock
36 * zone->lru_lock (in mark_page_accessed)
37 * swap_list_lock (in swap_free etc's swap_info_get)
38 * mmlist_lock (in mmput, drain_mmlist and others)
39 * swap_device_lock (in swap_duplicate, swap_info_get)
40 * mapping->private_lock (in __set_page_dirty_buffers)
41 * inode_lock (in set_page_dirty's __mark_inode_dirty)
42 * sb_lock (within inode_lock in fs/fs-writeback.c)
43 * mapping->tree_lock (widely used, in set_page_dirty,
44 * in arch-dependent flush_dcache_mmap_lock,
45 * within inode_lock in __sync_single_inode)
48 #include <linux/mm.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/slab.h>
53 #include <linux/init.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
57 #include <asm/tlbflush.h>
59 //#define RMAP_DEBUG /* can be enabled only for debugging */
61 kmem_cache_t *anon_vma_cachep;
63 static inline void validate_anon_vma(struct vm_area_struct *find_vma)
65 #ifdef RMAP_DEBUG
66 struct anon_vma *anon_vma = find_vma->anon_vma;
67 struct vm_area_struct *vma;
68 unsigned int mapcount = 0;
69 int found = 0;
71 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
72 mapcount++;
73 BUG_ON(mapcount > 100000);
74 if (vma == find_vma)
75 found = 1;
77 BUG_ON(!found);
78 #endif
81 /* This must be called under the mmap_sem. */
82 int anon_vma_prepare(struct vm_area_struct *vma)
84 struct anon_vma *anon_vma = vma->anon_vma;
86 might_sleep();
87 if (unlikely(!anon_vma)) {
88 struct mm_struct *mm = vma->vm_mm;
89 struct anon_vma *allocated, *locked;
91 anon_vma = find_mergeable_anon_vma(vma);
92 if (anon_vma) {
93 allocated = NULL;
94 locked = anon_vma;
95 spin_lock(&locked->lock);
96 } else {
97 anon_vma = anon_vma_alloc();
98 if (unlikely(!anon_vma))
99 return -ENOMEM;
100 allocated = anon_vma;
101 locked = NULL;
104 /* page_table_lock to protect against threads */
105 spin_lock(&mm->page_table_lock);
106 if (likely(!vma->anon_vma)) {
107 vma->anon_vma = anon_vma;
108 list_add(&vma->anon_vma_node, &anon_vma->head);
109 allocated = NULL;
111 spin_unlock(&mm->page_table_lock);
113 if (locked)
114 spin_unlock(&locked->lock);
115 if (unlikely(allocated))
116 anon_vma_free(allocated);
118 return 0;
121 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
123 BUG_ON(vma->anon_vma != next->anon_vma);
124 list_del(&next->anon_vma_node);
127 void __anon_vma_link(struct vm_area_struct *vma)
129 struct anon_vma *anon_vma = vma->anon_vma;
131 if (anon_vma) {
132 list_add(&vma->anon_vma_node, &anon_vma->head);
133 validate_anon_vma(vma);
137 void anon_vma_link(struct vm_area_struct *vma)
139 struct anon_vma *anon_vma = vma->anon_vma;
141 if (anon_vma) {
142 spin_lock(&anon_vma->lock);
143 list_add(&vma->anon_vma_node, &anon_vma->head);
144 validate_anon_vma(vma);
145 spin_unlock(&anon_vma->lock);
149 void anon_vma_unlink(struct vm_area_struct *vma)
151 struct anon_vma *anon_vma = vma->anon_vma;
152 int empty;
154 if (!anon_vma)
155 return;
157 spin_lock(&anon_vma->lock);
158 validate_anon_vma(vma);
159 list_del(&vma->anon_vma_node);
161 /* We must garbage collect the anon_vma if it's empty */
162 empty = list_empty(&anon_vma->head);
163 spin_unlock(&anon_vma->lock);
165 if (empty)
166 anon_vma_free(anon_vma);
169 static void anon_vma_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
171 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
172 SLAB_CTOR_CONSTRUCTOR) {
173 struct anon_vma *anon_vma = data;
175 spin_lock_init(&anon_vma->lock);
176 INIT_LIST_HEAD(&anon_vma->head);
180 void __init anon_vma_init(void)
182 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
183 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
187 * Getting a lock on a stable anon_vma from a page off the LRU is
188 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
190 static struct anon_vma *page_lock_anon_vma(struct page *page)
192 struct anon_vma *anon_vma = NULL;
193 unsigned long anon_mapping;
195 rcu_read_lock();
196 anon_mapping = (unsigned long) page->mapping;
197 if (!(anon_mapping & PAGE_MAPPING_ANON))
198 goto out;
199 if (!page_mapped(page))
200 goto out;
202 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
203 spin_lock(&anon_vma->lock);
204 out:
205 rcu_read_unlock();
206 return anon_vma;
210 * At what user virtual address is page expected in vma?
212 static inline unsigned long
213 vma_address(struct page *page, struct vm_area_struct *vma)
215 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
216 unsigned long address;
218 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
219 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
220 /* page should be within any vma from prio_tree_next */
221 BUG_ON(!PageAnon(page));
222 return -EFAULT;
224 return address;
228 * At what user virtual address is page expected in vma? checking that the
229 * page matches the vma: currently only used by unuse_process, on anon pages.
231 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
233 if (PageAnon(page)) {
234 if ((void *)vma->anon_vma !=
235 (void *)page->mapping - PAGE_MAPPING_ANON)
236 return -EFAULT;
237 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
238 if (vma->vm_file->f_mapping != page->mapping)
239 return -EFAULT;
240 } else
241 return -EFAULT;
242 return vma_address(page, vma);
246 * Subfunctions of page_referenced: page_referenced_one called
247 * repeatedly from either page_referenced_anon or page_referenced_file.
249 static int page_referenced_one(struct page *page,
250 struct vm_area_struct *vma, unsigned int *mapcount, int ignore_token)
252 struct mm_struct *mm = vma->vm_mm;
253 unsigned long address;
254 pgd_t *pgd;
255 pud_t *pud;
256 pmd_t *pmd;
257 pte_t *pte;
258 int referenced = 0;
260 if (!get_mm_counter(mm, rss))
261 goto out;
262 address = vma_address(page, vma);
263 if (address == -EFAULT)
264 goto out;
266 spin_lock(&mm->page_table_lock);
268 pgd = pgd_offset(mm, address);
269 if (!pgd_present(*pgd))
270 goto out_unlock;
272 pud = pud_offset(pgd, address);
273 if (!pud_present(*pud))
274 goto out_unlock;
276 pmd = pmd_offset(pud, address);
277 if (!pmd_present(*pmd))
278 goto out_unlock;
280 pte = pte_offset_map(pmd, address);
281 if (!pte_present(*pte))
282 goto out_unmap;
284 if (page_to_pfn(page) != pte_pfn(*pte))
285 goto out_unmap;
287 if (ptep_clear_flush_young(vma, address, pte))
288 referenced++;
290 if (mm != current->mm && !ignore_token && has_swap_token(mm))
291 referenced++;
293 (*mapcount)--;
295 out_unmap:
296 pte_unmap(pte);
297 out_unlock:
298 spin_unlock(&mm->page_table_lock);
299 out:
300 return referenced;
303 static int page_referenced_anon(struct page *page, int ignore_token)
305 unsigned int mapcount;
306 struct anon_vma *anon_vma;
307 struct vm_area_struct *vma;
308 int referenced = 0;
310 anon_vma = page_lock_anon_vma(page);
311 if (!anon_vma)
312 return referenced;
314 mapcount = page_mapcount(page);
315 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
316 referenced += page_referenced_one(page, vma, &mapcount,
317 ignore_token);
318 if (!mapcount)
319 break;
321 spin_unlock(&anon_vma->lock);
322 return referenced;
326 * page_referenced_file - referenced check for object-based rmap
327 * @page: the page we're checking references on.
329 * For an object-based mapped page, find all the places it is mapped and
330 * check/clear the referenced flag. This is done by following the page->mapping
331 * pointer, then walking the chain of vmas it holds. It returns the number
332 * of references it found.
334 * This function is only called from page_referenced for object-based pages.
336 static int page_referenced_file(struct page *page, int ignore_token)
338 unsigned int mapcount;
339 struct address_space *mapping = page->mapping;
340 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
341 struct vm_area_struct *vma;
342 struct prio_tree_iter iter;
343 int referenced = 0;
346 * The caller's checks on page->mapping and !PageAnon have made
347 * sure that this is a file page: the check for page->mapping
348 * excludes the case just before it gets set on an anon page.
350 BUG_ON(PageAnon(page));
353 * The page lock not only makes sure that page->mapping cannot
354 * suddenly be NULLified by truncation, it makes sure that the
355 * structure at mapping cannot be freed and reused yet,
356 * so we can safely take mapping->i_mmap_lock.
358 BUG_ON(!PageLocked(page));
360 spin_lock(&mapping->i_mmap_lock);
363 * i_mmap_lock does not stabilize mapcount at all, but mapcount
364 * is more likely to be accurate if we note it after spinning.
366 mapcount = page_mapcount(page);
368 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
369 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
370 == (VM_LOCKED|VM_MAYSHARE)) {
371 referenced++;
372 break;
374 referenced += page_referenced_one(page, vma, &mapcount,
375 ignore_token);
376 if (!mapcount)
377 break;
380 spin_unlock(&mapping->i_mmap_lock);
381 return referenced;
385 * page_referenced - test if the page was referenced
386 * @page: the page to test
387 * @is_locked: caller holds lock on the page
389 * Quick test_and_clear_referenced for all mappings to a page,
390 * returns the number of ptes which referenced the page.
392 int page_referenced(struct page *page, int is_locked, int ignore_token)
394 int referenced = 0;
396 if (!swap_token_default_timeout)
397 ignore_token = 1;
399 if (page_test_and_clear_young(page))
400 referenced++;
402 if (TestClearPageReferenced(page))
403 referenced++;
405 if (page_mapped(page) && page->mapping) {
406 if (PageAnon(page))
407 referenced += page_referenced_anon(page, ignore_token);
408 else if (is_locked)
409 referenced += page_referenced_file(page, ignore_token);
410 else if (TestSetPageLocked(page))
411 referenced++;
412 else {
413 if (page->mapping)
414 referenced += page_referenced_file(page,
415 ignore_token);
416 unlock_page(page);
419 return referenced;
423 * page_add_anon_rmap - add pte mapping to an anonymous page
424 * @page: the page to add the mapping to
425 * @vma: the vm area in which the mapping is added
426 * @address: the user virtual address mapped
428 * The caller needs to hold the mm->page_table_lock.
430 void page_add_anon_rmap(struct page *page,
431 struct vm_area_struct *vma, unsigned long address)
433 struct anon_vma *anon_vma = vma->anon_vma;
434 pgoff_t index;
436 BUG_ON(PageReserved(page));
437 BUG_ON(!anon_vma);
439 inc_mm_counter(vma->vm_mm, anon_rss);
441 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
442 index = (address - vma->vm_start) >> PAGE_SHIFT;
443 index += vma->vm_pgoff;
444 index >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
446 if (atomic_inc_and_test(&page->_mapcount)) {
447 page->index = index;
448 page->mapping = (struct address_space *) anon_vma;
449 inc_page_state(nr_mapped);
451 /* else checking page index and mapping is racy */
455 * page_add_file_rmap - add pte mapping to a file page
456 * @page: the page to add the mapping to
458 * The caller needs to hold the mm->page_table_lock.
460 void page_add_file_rmap(struct page *page)
462 BUG_ON(PageAnon(page));
463 if (!pfn_valid(page_to_pfn(page)) || PageReserved(page))
464 return;
466 if (atomic_inc_and_test(&page->_mapcount))
467 inc_page_state(nr_mapped);
471 * page_remove_rmap - take down pte mapping from a page
472 * @page: page to remove mapping from
474 * Caller needs to hold the mm->page_table_lock.
476 void page_remove_rmap(struct page *page)
478 BUG_ON(PageReserved(page));
480 if (atomic_add_negative(-1, &page->_mapcount)) {
481 BUG_ON(page_mapcount(page) < 0);
483 * It would be tidy to reset the PageAnon mapping here,
484 * but that might overwrite a racing page_add_anon_rmap
485 * which increments mapcount after us but sets mapping
486 * before us: so leave the reset to free_hot_cold_page,
487 * and remember that it's only reliable while mapped.
488 * Leaving it set also helps swapoff to reinstate ptes
489 * faster for those pages still in swapcache.
491 if (page_test_and_clear_dirty(page))
492 set_page_dirty(page);
493 dec_page_state(nr_mapped);
498 * Subfunctions of try_to_unmap: try_to_unmap_one called
499 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
501 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma)
503 struct mm_struct *mm = vma->vm_mm;
504 unsigned long address;
505 pgd_t *pgd;
506 pud_t *pud;
507 pmd_t *pmd;
508 pte_t *pte;
509 pte_t pteval;
510 int ret = SWAP_AGAIN;
512 if (!get_mm_counter(mm, rss))
513 goto out;
514 address = vma_address(page, vma);
515 if (address == -EFAULT)
516 goto out;
519 * We need the page_table_lock to protect us from page faults,
520 * munmap, fork, etc...
522 spin_lock(&mm->page_table_lock);
524 pgd = pgd_offset(mm, address);
525 if (!pgd_present(*pgd))
526 goto out_unlock;
528 pud = pud_offset(pgd, address);
529 if (!pud_present(*pud))
530 goto out_unlock;
532 pmd = pmd_offset(pud, address);
533 if (!pmd_present(*pmd))
534 goto out_unlock;
536 pte = pte_offset_map(pmd, address);
537 if (!pte_present(*pte))
538 goto out_unmap;
540 if (page_to_pfn(page) != pte_pfn(*pte))
541 goto out_unmap;
544 * If the page is mlock()d, we cannot swap it out.
545 * If it's recently referenced (perhaps page_referenced
546 * skipped over this mm) then we should reactivate it.
548 if ((vma->vm_flags & (VM_LOCKED|VM_RESERVED)) ||
549 ptep_clear_flush_young(vma, address, pte)) {
550 ret = SWAP_FAIL;
551 goto out_unmap;
555 * Don't pull an anonymous page out from under get_user_pages.
556 * GUP carefully breaks COW and raises page count (while holding
557 * page_table_lock, as we have here) to make sure that the page
558 * cannot be freed. If we unmap that page here, a user write
559 * access to the virtual address will bring back the page, but
560 * its raised count will (ironically) be taken to mean it's not
561 * an exclusive swap page, do_wp_page will replace it by a copy
562 * page, and the user never get to see the data GUP was holding
563 * the original page for.
565 * This test is also useful for when swapoff (unuse_process) has
566 * to drop page lock: its reference to the page stops existing
567 * ptes from being unmapped, so swapoff can make progress.
569 if (PageSwapCache(page) &&
570 page_count(page) != page_mapcount(page) + 2) {
571 ret = SWAP_FAIL;
572 goto out_unmap;
575 /* Nuke the page table entry. */
576 flush_cache_page(vma, address, page_to_pfn(page));
577 pteval = ptep_clear_flush(vma, address, pte);
579 /* Move the dirty bit to the physical page now the pte is gone. */
580 if (pte_dirty(pteval))
581 set_page_dirty(page);
583 if (PageAnon(page)) {
584 swp_entry_t entry = { .val = page->private };
586 * Store the swap location in the pte.
587 * See handle_pte_fault() ...
589 BUG_ON(!PageSwapCache(page));
590 swap_duplicate(entry);
591 if (list_empty(&mm->mmlist)) {
592 spin_lock(&mmlist_lock);
593 list_add(&mm->mmlist, &init_mm.mmlist);
594 spin_unlock(&mmlist_lock);
596 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
597 BUG_ON(pte_file(*pte));
598 dec_mm_counter(mm, anon_rss);
601 inc_mm_counter(mm, rss);
602 page_remove_rmap(page);
603 page_cache_release(page);
605 out_unmap:
606 pte_unmap(pte);
607 out_unlock:
608 spin_unlock(&mm->page_table_lock);
609 out:
610 return ret;
614 * objrmap doesn't work for nonlinear VMAs because the assumption that
615 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
616 * Consequently, given a particular page and its ->index, we cannot locate the
617 * ptes which are mapping that page without an exhaustive linear search.
619 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
620 * maps the file to which the target page belongs. The ->vm_private_data field
621 * holds the current cursor into that scan. Successive searches will circulate
622 * around the vma's virtual address space.
624 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
625 * more scanning pressure is placed against them as well. Eventually pages
626 * will become fully unmapped and are eligible for eviction.
628 * For very sparsely populated VMAs this is a little inefficient - chances are
629 * there there won't be many ptes located within the scan cluster. In this case
630 * maybe we could scan further - to the end of the pte page, perhaps.
632 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
633 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
635 static void try_to_unmap_cluster(unsigned long cursor,
636 unsigned int *mapcount, struct vm_area_struct *vma)
638 struct mm_struct *mm = vma->vm_mm;
639 pgd_t *pgd;
640 pud_t *pud;
641 pmd_t *pmd;
642 pte_t *pte;
643 pte_t pteval;
644 struct page *page;
645 unsigned long address;
646 unsigned long end;
647 unsigned long pfn;
650 * We need the page_table_lock to protect us from page faults,
651 * munmap, fork, etc...
653 spin_lock(&mm->page_table_lock);
655 address = (vma->vm_start + cursor) & CLUSTER_MASK;
656 end = address + CLUSTER_SIZE;
657 if (address < vma->vm_start)
658 address = vma->vm_start;
659 if (end > vma->vm_end)
660 end = vma->vm_end;
662 pgd = pgd_offset(mm, address);
663 if (!pgd_present(*pgd))
664 goto out_unlock;
666 pud = pud_offset(pgd, address);
667 if (!pud_present(*pud))
668 goto out_unlock;
670 pmd = pmd_offset(pud, address);
671 if (!pmd_present(*pmd))
672 goto out_unlock;
674 for (pte = pte_offset_map(pmd, address);
675 address < end; pte++, address += PAGE_SIZE) {
677 if (!pte_present(*pte))
678 continue;
680 pfn = pte_pfn(*pte);
681 if (!pfn_valid(pfn))
682 continue;
684 page = pfn_to_page(pfn);
685 BUG_ON(PageAnon(page));
686 if (PageReserved(page))
687 continue;
689 if (ptep_clear_flush_young(vma, address, pte))
690 continue;
692 /* Nuke the page table entry. */
693 flush_cache_page(vma, address, pfn);
694 pteval = ptep_clear_flush(vma, address, pte);
696 /* If nonlinear, store the file page offset in the pte. */
697 if (page->index != linear_page_index(vma, address))
698 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
700 /* Move the dirty bit to the physical page now the pte is gone. */
701 if (pte_dirty(pteval))
702 set_page_dirty(page);
704 page_remove_rmap(page);
705 page_cache_release(page);
706 dec_mm_counter(mm, rss);
707 (*mapcount)--;
710 pte_unmap(pte);
712 out_unlock:
713 spin_unlock(&mm->page_table_lock);
716 static int try_to_unmap_anon(struct page *page)
718 struct anon_vma *anon_vma;
719 struct vm_area_struct *vma;
720 int ret = SWAP_AGAIN;
722 anon_vma = page_lock_anon_vma(page);
723 if (!anon_vma)
724 return ret;
726 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
727 ret = try_to_unmap_one(page, vma);
728 if (ret == SWAP_FAIL || !page_mapped(page))
729 break;
731 spin_unlock(&anon_vma->lock);
732 return ret;
736 * try_to_unmap_file - unmap file page using the object-based rmap method
737 * @page: the page to unmap
739 * Find all the mappings of a page using the mapping pointer and the vma chains
740 * contained in the address_space struct it points to.
742 * This function is only called from try_to_unmap for object-based pages.
744 static int try_to_unmap_file(struct page *page)
746 struct address_space *mapping = page->mapping;
747 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
748 struct vm_area_struct *vma;
749 struct prio_tree_iter iter;
750 int ret = SWAP_AGAIN;
751 unsigned long cursor;
752 unsigned long max_nl_cursor = 0;
753 unsigned long max_nl_size = 0;
754 unsigned int mapcount;
756 spin_lock(&mapping->i_mmap_lock);
757 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
758 ret = try_to_unmap_one(page, vma);
759 if (ret == SWAP_FAIL || !page_mapped(page))
760 goto out;
763 if (list_empty(&mapping->i_mmap_nonlinear))
764 goto out;
766 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
767 shared.vm_set.list) {
768 if (vma->vm_flags & (VM_LOCKED|VM_RESERVED))
769 continue;
770 cursor = (unsigned long) vma->vm_private_data;
771 if (cursor > max_nl_cursor)
772 max_nl_cursor = cursor;
773 cursor = vma->vm_end - vma->vm_start;
774 if (cursor > max_nl_size)
775 max_nl_size = cursor;
778 if (max_nl_size == 0) { /* any nonlinears locked or reserved */
779 ret = SWAP_FAIL;
780 goto out;
784 * We don't try to search for this page in the nonlinear vmas,
785 * and page_referenced wouldn't have found it anyway. Instead
786 * just walk the nonlinear vmas trying to age and unmap some.
787 * The mapcount of the page we came in with is irrelevant,
788 * but even so use it as a guide to how hard we should try?
790 mapcount = page_mapcount(page);
791 if (!mapcount)
792 goto out;
793 cond_resched_lock(&mapping->i_mmap_lock);
795 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
796 if (max_nl_cursor == 0)
797 max_nl_cursor = CLUSTER_SIZE;
799 do {
800 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
801 shared.vm_set.list) {
802 if (vma->vm_flags & (VM_LOCKED|VM_RESERVED))
803 continue;
804 cursor = (unsigned long) vma->vm_private_data;
805 while (get_mm_counter(vma->vm_mm, rss) &&
806 cursor < max_nl_cursor &&
807 cursor < vma->vm_end - vma->vm_start) {
808 try_to_unmap_cluster(cursor, &mapcount, vma);
809 cursor += CLUSTER_SIZE;
810 vma->vm_private_data = (void *) cursor;
811 if ((int)mapcount <= 0)
812 goto out;
814 vma->vm_private_data = (void *) max_nl_cursor;
816 cond_resched_lock(&mapping->i_mmap_lock);
817 max_nl_cursor += CLUSTER_SIZE;
818 } while (max_nl_cursor <= max_nl_size);
821 * Don't loop forever (perhaps all the remaining pages are
822 * in locked vmas). Reset cursor on all unreserved nonlinear
823 * vmas, now forgetting on which ones it had fallen behind.
825 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
826 shared.vm_set.list) {
827 if (!(vma->vm_flags & VM_RESERVED))
828 vma->vm_private_data = NULL;
830 out:
831 spin_unlock(&mapping->i_mmap_lock);
832 return ret;
836 * try_to_unmap - try to remove all page table mappings to a page
837 * @page: the page to get unmapped
839 * Tries to remove all the page table entries which are mapping this
840 * page, used in the pageout path. Caller must hold the page lock.
841 * Return values are:
843 * SWAP_SUCCESS - we succeeded in removing all mappings
844 * SWAP_AGAIN - we missed a mapping, try again later
845 * SWAP_FAIL - the page is unswappable
847 int try_to_unmap(struct page *page)
849 int ret;
851 BUG_ON(PageReserved(page));
852 BUG_ON(!PageLocked(page));
854 if (PageAnon(page))
855 ret = try_to_unmap_anon(page);
856 else
857 ret = try_to_unmap_file(page);
859 if (!page_mapped(page))
860 ret = SWAP_SUCCESS;
861 return ret;