2 * NAND flash simulator.
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
6 * Copyright (C) 2004 Nokia Corporation
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
25 * $Id: nandsim.c,v 1.7 2004/12/06 11:53:06 dedekind Exp $
28 #include <linux/config.h>
29 #include <linux/init.h>
30 #include <linux/types.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/vmalloc.h>
34 #include <linux/slab.h>
35 #include <linux/errno.h>
36 #include <linux/string.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/nand.h>
39 #include <linux/mtd/partitions.h>
40 #include <linux/delay.h>
41 #ifdef CONFIG_NS_ABS_POS
46 /* Default simulator parameters values */
47 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
48 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
49 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
50 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
51 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
52 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
53 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
54 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
57 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
58 #define CONFIG_NANDSIM_ACCESS_DELAY 25
60 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
61 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
63 #ifndef CONFIG_NANDSIM_ERASE_DELAY
64 #define CONFIG_NANDSIM_ERASE_DELAY 2
66 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
67 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
69 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
70 #define CONFIG_NANDSIM_INPUT_CYCLE 50
72 #ifndef CONFIG_NANDSIM_BUS_WIDTH
73 #define CONFIG_NANDSIM_BUS_WIDTH 8
75 #ifndef CONFIG_NANDSIM_DO_DELAYS
76 #define CONFIG_NANDSIM_DO_DELAYS 0
78 #ifndef CONFIG_NANDSIM_LOG
79 #define CONFIG_NANDSIM_LOG 0
81 #ifndef CONFIG_NANDSIM_DBG
82 #define CONFIG_NANDSIM_DBG 0
85 static uint first_id_byte
= CONFIG_NANDSIM_FIRST_ID_BYTE
;
86 static uint second_id_byte
= CONFIG_NANDSIM_SECOND_ID_BYTE
;
87 static uint third_id_byte
= CONFIG_NANDSIM_THIRD_ID_BYTE
;
88 static uint fourth_id_byte
= CONFIG_NANDSIM_FOURTH_ID_BYTE
;
89 static uint access_delay
= CONFIG_NANDSIM_ACCESS_DELAY
;
90 static uint programm_delay
= CONFIG_NANDSIM_PROGRAMM_DELAY
;
91 static uint erase_delay
= CONFIG_NANDSIM_ERASE_DELAY
;
92 static uint output_cycle
= CONFIG_NANDSIM_OUTPUT_CYCLE
;
93 static uint input_cycle
= CONFIG_NANDSIM_INPUT_CYCLE
;
94 static uint bus_width
= CONFIG_NANDSIM_BUS_WIDTH
;
95 static uint do_delays
= CONFIG_NANDSIM_DO_DELAYS
;
96 static uint log
= CONFIG_NANDSIM_LOG
;
97 static uint dbg
= CONFIG_NANDSIM_DBG
;
99 module_param(first_id_byte
, uint
, 0400);
100 module_param(second_id_byte
, uint
, 0400);
101 module_param(third_id_byte
, uint
, 0400);
102 module_param(fourth_id_byte
, uint
, 0400);
103 module_param(access_delay
, uint
, 0400);
104 module_param(programm_delay
, uint
, 0400);
105 module_param(erase_delay
, uint
, 0400);
106 module_param(output_cycle
, uint
, 0400);
107 module_param(input_cycle
, uint
, 0400);
108 module_param(bus_width
, uint
, 0400);
109 module_param(do_delays
, uint
, 0400);
110 module_param(log
, uint
, 0400);
111 module_param(dbg
, uint
, 0400);
113 MODULE_PARM_DESC(first_id_byte
, "The fist byte returned by NAND Flash 'read ID' command (manufaturer ID)");
114 MODULE_PARM_DESC(second_id_byte
, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
115 MODULE_PARM_DESC(third_id_byte
, "The third byte returned by NAND Flash 'read ID' command");
116 MODULE_PARM_DESC(fourth_id_byte
, "The fourth byte returned by NAND Flash 'read ID' command");
117 MODULE_PARM_DESC(access_delay
, "Initial page access delay (microiseconds)");
118 MODULE_PARM_DESC(programm_delay
, "Page programm delay (microseconds");
119 MODULE_PARM_DESC(erase_delay
, "Sector erase delay (milliseconds)");
120 MODULE_PARM_DESC(output_cycle
, "Word output (from flash) time (nanodeconds)");
121 MODULE_PARM_DESC(input_cycle
, "Word input (to flash) time (nanodeconds)");
122 MODULE_PARM_DESC(bus_width
, "Chip's bus width (8- or 16-bit)");
123 MODULE_PARM_DESC(do_delays
, "Simulate NAND delays using busy-waits if not zero");
124 MODULE_PARM_DESC(log
, "Perform logging if not zero");
125 MODULE_PARM_DESC(dbg
, "Output debug information if not zero");
127 /* The largest possible page size */
128 #define NS_LARGEST_PAGE_SIZE 2048
130 /* The prefix for simulator output */
131 #define NS_OUTPUT_PREFIX "[nandsim]"
133 /* Simulator's output macros (logging, debugging, warning, error) */
134 #define NS_LOG(args...) \
135 do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
136 #define NS_DBG(args...) \
137 do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
138 #define NS_WARN(args...) \
139 do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warnig: " args); } while(0)
140 #define NS_ERR(args...) \
141 do { printk(KERN_ERR NS_OUTPUT_PREFIX " errorr: " args); } while(0)
143 /* Busy-wait delay macros (microseconds, milliseconds) */
144 #define NS_UDELAY(us) \
145 do { if (do_delays) udelay(us); } while(0)
146 #define NS_MDELAY(us) \
147 do { if (do_delays) mdelay(us); } while(0)
149 /* Is the nandsim structure initialized ? */
150 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
152 /* Good operation completion status */
153 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
155 /* Operation failed completion status */
156 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
158 /* Calculate the page offset in flash RAM image by (row, column) address */
159 #define NS_RAW_OFFSET(ns) \
160 (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
162 /* Calculate the OOB offset in flash RAM image by (row, column) address */
163 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
165 /* After a command is input, the simulator goes to one of the following states */
166 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
167 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
168 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
169 #define STATE_CMD_PAGEPROG 0x00000004 /* start page programm */
170 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */
171 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
172 #define STATE_CMD_STATUS 0x00000007 /* read status */
173 #define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */
174 #define STATE_CMD_SEQIN 0x00000009 /* sequential data imput */
175 #define STATE_CMD_READID 0x0000000A /* read ID */
176 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
177 #define STATE_CMD_RESET 0x0000000C /* reset */
178 #define STATE_CMD_MASK 0x0000000F /* command states mask */
180 /* After an addres is input, the simulator goes to one of these states */
181 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
182 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
183 #define STATE_ADDR_ZERO 0x00000030 /* one byte zero address was accepted */
184 #define STATE_ADDR_MASK 0x00000030 /* address states mask */
186 /* Durind data input/output the simulator is in these states */
187 #define STATE_DATAIN 0x00000100 /* waiting for data input */
188 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
190 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */
191 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
192 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
193 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
194 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
196 /* Previous operation is done, ready to accept new requests */
197 #define STATE_READY 0x00000000
199 /* This state is used to mark that the next state isn't known yet */
200 #define STATE_UNKNOWN 0x10000000
202 /* Simulator's actions bit masks */
203 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
204 #define ACTION_PRGPAGE 0x00200000 /* programm the internal buffer to flash */
205 #define ACTION_SECERASE 0x00300000 /* erase sector */
206 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
207 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */
208 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
209 #define ACTION_MASK 0x00700000 /* action mask */
211 #define NS_OPER_NUM 12 /* Number of operations supported by the simulator */
212 #define NS_OPER_STATES 6 /* Maximum number of states in operation */
214 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
215 #define OPT_PAGE256 0x00000001 /* 256-byte page chips */
216 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */
217 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
218 #define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
219 #define OPT_AUTOINCR 0x00000020 /* page number auto inctimentation is possible */
220 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
221 #define OPT_LARGEPAGE (OPT_PAGE2048) /* 2048-byte page chips */
222 #define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
224 /* Remove action bits ftom state */
225 #define NS_STATE(x) ((x) & ~ACTION_MASK)
228 * Maximum previous states which need to be saved. Currently saving is
229 * only needed for page programm operation with preceeded read command
230 * (which is only valid for 512-byte pages).
232 #define NS_MAX_PREVSTATES 1
235 * The structure which describes all the internal simulator data.
238 struct mtd_partition part
;
240 uint busw
; /* flash chip bus width (8 or 16) */
241 u_char ids
[4]; /* chip's ID bytes */
242 uint32_t options
; /* chip's characteristic bits */
243 uint32_t state
; /* current chip state */
244 uint32_t nxstate
; /* next expected state */
246 uint32_t *op
; /* current operation, NULL operations isn't known yet */
247 uint32_t pstates
[NS_MAX_PREVSTATES
]; /* previous states */
248 uint16_t npstates
; /* number of previous states saved */
249 uint16_t stateidx
; /* current state index */
251 /* The simulated NAND flash image */
257 /* Internal buffer of page + OOB size bytes */
258 union internal_buffer
{
259 u_char
*byte
; /* for byte access */
260 uint16_t *word
; /* for 16-bit word access */
263 /* NAND flash "geometry" */
264 struct nandsin_geometry
{
265 uint32_t totsz
; /* total flash size, bytes */
266 uint32_t secsz
; /* flash sector (erase block) size, bytes */
267 uint pgsz
; /* NAND flash page size, bytes */
268 uint oobsz
; /* page OOB area size, bytes */
269 uint32_t totszoob
; /* total flash size including OOB, bytes */
270 uint pgszoob
; /* page size including OOB , bytes*/
271 uint secszoob
; /* sector size including OOB, bytes */
272 uint pgnum
; /* total number of pages */
273 uint pgsec
; /* number of pages per sector */
274 uint secshift
; /* bits number in sector size */
275 uint pgshift
; /* bits number in page size */
276 uint oobshift
; /* bits number in OOB size */
277 uint pgaddrbytes
; /* bytes per page address */
278 uint secaddrbytes
; /* bytes per sector address */
279 uint idbytes
; /* the number ID bytes that this chip outputs */
282 /* NAND flash internal registers */
283 struct nandsim_regs
{
284 unsigned command
; /* the command register */
285 u_char status
; /* the status register */
286 uint row
; /* the page number */
287 uint column
; /* the offset within page */
288 uint count
; /* internal counter */
289 uint num
; /* number of bytes which must be processed */
290 uint off
; /* fixed page offset */
293 /* NAND flash lines state */
294 struct ns_lines_status
{
295 int ce
; /* chip Enable */
296 int cle
; /* command Latch Enable */
297 int ale
; /* address Latch Enable */
298 int wp
; /* write Protect */
303 * Operations array. To perform any operation the simulator must pass
304 * through the correspondent states chain.
306 static struct nandsim_operations
{
307 uint32_t reqopts
; /* options which are required to perform the operation */
308 uint32_t states
[NS_OPER_STATES
]; /* operation's states */
309 } ops
[NS_OPER_NUM
] = {
310 /* Read page + OOB from the beginning */
311 {OPT_SMALLPAGE
, {STATE_CMD_READ0
| ACTION_ZEROOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
312 STATE_DATAOUT
, STATE_READY
}},
313 /* Read page + OOB from the second half */
314 {OPT_PAGE512_8BIT
, {STATE_CMD_READ1
| ACTION_HALFOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
315 STATE_DATAOUT
, STATE_READY
}},
317 {OPT_SMALLPAGE
, {STATE_CMD_READOOB
| ACTION_OOBOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
318 STATE_DATAOUT
, STATE_READY
}},
319 /* Programm page starting from the beginning */
320 {OPT_ANY
, {STATE_CMD_SEQIN
, STATE_ADDR_PAGE
, STATE_DATAIN
,
321 STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
322 /* Programm page starting from the beginning */
323 {OPT_SMALLPAGE
, {STATE_CMD_READ0
, STATE_CMD_SEQIN
| ACTION_ZEROOFF
, STATE_ADDR_PAGE
,
324 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
325 /* Programm page starting from the second half */
326 {OPT_PAGE512
, {STATE_CMD_READ1
, STATE_CMD_SEQIN
| ACTION_HALFOFF
, STATE_ADDR_PAGE
,
327 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
329 {OPT_SMALLPAGE
, {STATE_CMD_READOOB
, STATE_CMD_SEQIN
| ACTION_OOBOFF
, STATE_ADDR_PAGE
,
330 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
332 {OPT_ANY
, {STATE_CMD_ERASE1
, STATE_ADDR_SEC
, STATE_CMD_ERASE2
| ACTION_SECERASE
, STATE_READY
}},
334 {OPT_ANY
, {STATE_CMD_STATUS
, STATE_DATAOUT_STATUS
, STATE_READY
}},
335 /* Read multi-plane status */
336 {OPT_SMARTMEDIA
, {STATE_CMD_STATUS_M
, STATE_DATAOUT_STATUS_M
, STATE_READY
}},
338 {OPT_ANY
, {STATE_CMD_READID
, STATE_ADDR_ZERO
, STATE_DATAOUT_ID
, STATE_READY
}},
339 /* Large page devices read page */
340 {OPT_LARGEPAGE
, {STATE_CMD_READ0
, STATE_ADDR_PAGE
, STATE_CMD_READSTART
| ACTION_CPY
,
341 STATE_DATAOUT
, STATE_READY
}}
344 /* MTD structure for NAND controller */
345 static struct mtd_info
*nsmtd
;
347 static u_char ns_verify_buf
[NS_LARGEST_PAGE_SIZE
];
350 * Initialize the nandsim structure.
352 * RETURNS: 0 if success, -ERRNO if failure.
355 init_nandsim(struct mtd_info
*mtd
)
357 struct nand_chip
*chip
= (struct nand_chip
*)mtd
->priv
;
358 struct nandsim
*ns
= (struct nandsim
*)(chip
->priv
);
361 if (NS_IS_INITIALIZED(ns
)) {
362 NS_ERR("init_nandsim: nandsim is already initialized\n");
366 /* Force mtd to not do delays */
367 chip
->chip_delay
= 0;
369 /* Initialize the NAND flash parameters */
370 ns
->busw
= chip
->options
& NAND_BUSWIDTH_16
? 16 : 8;
371 ns
->geom
.totsz
= mtd
->size
;
372 ns
->geom
.pgsz
= mtd
->oobblock
;
373 ns
->geom
.oobsz
= mtd
->oobsize
;
374 ns
->geom
.secsz
= mtd
->erasesize
;
375 ns
->geom
.pgszoob
= ns
->geom
.pgsz
+ ns
->geom
.oobsz
;
376 ns
->geom
.pgnum
= ns
->geom
.totsz
/ ns
->geom
.pgsz
;
377 ns
->geom
.totszoob
= ns
->geom
.totsz
+ ns
->geom
.pgnum
* ns
->geom
.oobsz
;
378 ns
->geom
.secshift
= ffs(ns
->geom
.secsz
) - 1;
379 ns
->geom
.pgshift
= chip
->page_shift
;
380 ns
->geom
.oobshift
= ffs(ns
->geom
.oobsz
) - 1;
381 ns
->geom
.pgsec
= ns
->geom
.secsz
/ ns
->geom
.pgsz
;
382 ns
->geom
.secszoob
= ns
->geom
.secsz
+ ns
->geom
.oobsz
* ns
->geom
.pgsec
;
385 if (ns
->geom
.pgsz
== 256) {
386 ns
->options
|= OPT_PAGE256
;
388 else if (ns
->geom
.pgsz
== 512) {
389 ns
->options
|= (OPT_PAGE512
| OPT_AUTOINCR
);
391 ns
->options
|= OPT_PAGE512_8BIT
;
392 } else if (ns
->geom
.pgsz
== 2048) {
393 ns
->options
|= OPT_PAGE2048
;
395 NS_ERR("init_nandsim: unknown page size %u\n", ns
->geom
.pgsz
);
399 if (ns
->options
& OPT_SMALLPAGE
) {
400 if (ns
->geom
.totsz
< (64 << 20)) {
401 ns
->geom
.pgaddrbytes
= 3;
402 ns
->geom
.secaddrbytes
= 2;
404 ns
->geom
.pgaddrbytes
= 4;
405 ns
->geom
.secaddrbytes
= 3;
408 if (ns
->geom
.totsz
<= (128 << 20)) {
409 ns
->geom
.pgaddrbytes
= 5;
410 ns
->geom
.secaddrbytes
= 2;
412 ns
->geom
.pgaddrbytes
= 5;
413 ns
->geom
.secaddrbytes
= 3;
417 /* Detect how many ID bytes the NAND chip outputs */
418 for (i
= 0; nand_flash_ids
[i
].name
!= NULL
; i
++) {
419 if (second_id_byte
!= nand_flash_ids
[i
].id
)
421 if (!(nand_flash_ids
[i
].options
& NAND_NO_AUTOINCR
))
422 ns
->options
|= OPT_AUTOINCR
;
426 NS_WARN("16-bit flashes support wasn't tested\n");
428 printk("flash size: %u MiB\n", ns
->geom
.totsz
>> 20);
429 printk("page size: %u bytes\n", ns
->geom
.pgsz
);
430 printk("OOB area size: %u bytes\n", ns
->geom
.oobsz
);
431 printk("sector size: %u KiB\n", ns
->geom
.secsz
>> 10);
432 printk("pages number: %u\n", ns
->geom
.pgnum
);
433 printk("pages per sector: %u\n", ns
->geom
.pgsec
);
434 printk("bus width: %u\n", ns
->busw
);
435 printk("bits in sector size: %u\n", ns
->geom
.secshift
);
436 printk("bits in page size: %u\n", ns
->geom
.pgshift
);
437 printk("bits in OOB size: %u\n", ns
->geom
.oobshift
);
438 printk("flash size with OOB: %u KiB\n", ns
->geom
.totszoob
>> 10);
439 printk("page address bytes: %u\n", ns
->geom
.pgaddrbytes
);
440 printk("sector address bytes: %u\n", ns
->geom
.secaddrbytes
);
441 printk("options: %#x\n", ns
->options
);
443 /* Map / allocate and initialize the flash image */
444 #ifdef CONFIG_NS_ABS_POS
445 ns
->mem
.byte
= ioremap(CONFIG_NS_ABS_POS
, ns
->geom
.totszoob
);
447 NS_ERR("init_nandsim: failed to map the NAND flash image at address %p\n",
448 (void *)CONFIG_NS_ABS_POS
);
452 ns
->mem
.byte
= vmalloc(ns
->geom
.totszoob
);
454 NS_ERR("init_nandsim: unable to allocate %u bytes for flash image\n",
458 memset(ns
->mem
.byte
, 0xFF, ns
->geom
.totszoob
);
461 /* Allocate / initialize the internal buffer */
462 ns
->buf
.byte
= kmalloc(ns
->geom
.pgszoob
, GFP_KERNEL
);
464 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
468 memset(ns
->buf
.byte
, 0xFF, ns
->geom
.pgszoob
);
470 /* Fill the partition_info structure */
471 ns
->part
.name
= "NAND simulator partition";
473 ns
->part
.size
= ns
->geom
.totsz
;
478 #ifdef CONFIG_NS_ABS_POS
479 iounmap(ns
->mem
.byte
);
488 * Free the nandsim structure.
491 free_nandsim(struct nandsim
*ns
)
495 #ifdef CONFIG_NS_ABS_POS
496 iounmap(ns
->mem
.byte
);
505 * Returns the string representation of 'state' state.
508 get_state_name(uint32_t state
)
510 switch (NS_STATE(state
)) {
511 case STATE_CMD_READ0
:
512 return "STATE_CMD_READ0";
513 case STATE_CMD_READ1
:
514 return "STATE_CMD_READ1";
515 case STATE_CMD_PAGEPROG
:
516 return "STATE_CMD_PAGEPROG";
517 case STATE_CMD_READOOB
:
518 return "STATE_CMD_READOOB";
519 case STATE_CMD_READSTART
:
520 return "STATE_CMD_READSTART";
521 case STATE_CMD_ERASE1
:
522 return "STATE_CMD_ERASE1";
523 case STATE_CMD_STATUS
:
524 return "STATE_CMD_STATUS";
525 case STATE_CMD_STATUS_M
:
526 return "STATE_CMD_STATUS_M";
527 case STATE_CMD_SEQIN
:
528 return "STATE_CMD_SEQIN";
529 case STATE_CMD_READID
:
530 return "STATE_CMD_READID";
531 case STATE_CMD_ERASE2
:
532 return "STATE_CMD_ERASE2";
533 case STATE_CMD_RESET
:
534 return "STATE_CMD_RESET";
535 case STATE_ADDR_PAGE
:
536 return "STATE_ADDR_PAGE";
538 return "STATE_ADDR_SEC";
539 case STATE_ADDR_ZERO
:
540 return "STATE_ADDR_ZERO";
542 return "STATE_DATAIN";
544 return "STATE_DATAOUT";
545 case STATE_DATAOUT_ID
:
546 return "STATE_DATAOUT_ID";
547 case STATE_DATAOUT_STATUS
:
548 return "STATE_DATAOUT_STATUS";
549 case STATE_DATAOUT_STATUS_M
:
550 return "STATE_DATAOUT_STATUS_M";
552 return "STATE_READY";
554 return "STATE_UNKNOWN";
557 NS_ERR("get_state_name: unknown state, BUG\n");
562 * Check if command is valid.
564 * RETURNS: 1 if wrong command, 0 if right.
567 check_command(int cmd
)
572 case NAND_CMD_READSTART
:
573 case NAND_CMD_PAGEPROG
:
574 case NAND_CMD_READOOB
:
575 case NAND_CMD_ERASE1
:
576 case NAND_CMD_STATUS
:
578 case NAND_CMD_READID
:
579 case NAND_CMD_ERASE2
:
584 case NAND_CMD_STATUS_MULTI
:
591 * Returns state after command is accepted by command number.
594 get_state_by_command(unsigned command
)
598 return STATE_CMD_READ0
;
600 return STATE_CMD_READ1
;
601 case NAND_CMD_PAGEPROG
:
602 return STATE_CMD_PAGEPROG
;
603 case NAND_CMD_READSTART
:
604 return STATE_CMD_READSTART
;
605 case NAND_CMD_READOOB
:
606 return STATE_CMD_READOOB
;
607 case NAND_CMD_ERASE1
:
608 return STATE_CMD_ERASE1
;
609 case NAND_CMD_STATUS
:
610 return STATE_CMD_STATUS
;
611 case NAND_CMD_STATUS_MULTI
:
612 return STATE_CMD_STATUS_M
;
614 return STATE_CMD_SEQIN
;
615 case NAND_CMD_READID
:
616 return STATE_CMD_READID
;
617 case NAND_CMD_ERASE2
:
618 return STATE_CMD_ERASE2
;
620 return STATE_CMD_RESET
;
623 NS_ERR("get_state_by_command: unknown command, BUG\n");
628 * Move an address byte to the correspondent internal register.
631 accept_addr_byte(struct nandsim
*ns
, u_char bt
)
633 uint byte
= (uint
)bt
;
635 if (ns
->regs
.count
< (ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
))
636 ns
->regs
.column
|= (byte
<< 8 * ns
->regs
.count
);
638 ns
->regs
.row
|= (byte
<< 8 * (ns
->regs
.count
-
639 ns
->geom
.pgaddrbytes
+
640 ns
->geom
.secaddrbytes
));
647 * Switch to STATE_READY state.
650 switch_to_ready_state(struct nandsim
*ns
, u_char status
)
652 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY
));
654 ns
->state
= STATE_READY
;
655 ns
->nxstate
= STATE_UNKNOWN
;
664 ns
->regs
.status
= status
;
668 * If the operation isn't known yet, try to find it in the global array
669 * of supported operations.
671 * Operation can be unknown because of the following.
672 * 1. New command was accepted and this is the firs call to find the
673 * correspondent states chain. In this case ns->npstates = 0;
674 * 2. There is several operations which begin with the same command(s)
675 * (for example program from the second half and read from the
676 * second half operations both begin with the READ1 command). In this
677 * case the ns->pstates[] array contains previous states.
679 * Thus, the function tries to find operation containing the following
680 * states (if the 'flag' parameter is 0):
681 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
683 * If (one and only one) matching operation is found, it is accepted (
684 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
687 * If there are several maches, the current state is pushed to the
690 * The operation can be unknown only while commands are input to the chip.
691 * As soon as address command is accepted, the operation must be known.
692 * In such situation the function is called with 'flag' != 0, and the
693 * operation is searched using the following pattern:
694 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
696 * It is supposed that this pattern must either match one operation on
697 * none. There can't be ambiguity in that case.
699 * If no matches found, the functions does the following:
700 * 1. if there are saved states present, try to ignore them and search
701 * again only using the last command. If nothing was found, switch
702 * to the STATE_READY state.
703 * 2. if there are no saved states, switch to the STATE_READY state.
705 * RETURNS: -2 - no matched operations found.
706 * -1 - several matches.
707 * 0 - operation is found.
710 find_operation(struct nandsim
*ns
, uint32_t flag
)
715 for (i
= 0; i
< NS_OPER_NUM
; i
++) {
719 if (!(ns
->options
& ops
[i
].reqopts
))
720 /* Ignore operations we can't perform */
724 if (!(ops
[i
].states
[ns
->npstates
] & STATE_ADDR_MASK
))
727 if (NS_STATE(ns
->state
) != NS_STATE(ops
[i
].states
[ns
->npstates
]))
731 for (j
= 0; j
< ns
->npstates
; j
++)
732 if (NS_STATE(ops
[i
].states
[j
]) != NS_STATE(ns
->pstates
[j
])
733 && (ns
->options
& ops
[idx
].reqopts
)) {
746 ns
->op
= &ops
[idx
].states
[0];
749 * In this case the find_operation function was
750 * called when address has just began input. But it isn't
751 * yet fully input and the current state must
752 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
753 * state must be the next state (ns->nxstate).
755 ns
->stateidx
= ns
->npstates
- 1;
757 ns
->stateidx
= ns
->npstates
;
760 ns
->state
= ns
->op
[ns
->stateidx
];
761 ns
->nxstate
= ns
->op
[ns
->stateidx
+ 1];
762 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
763 idx
, get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
768 /* Nothing was found. Try to ignore previous commands (if any) and search again */
769 if (ns
->npstates
!= 0) {
770 NS_DBG("find_operation: no operation found, try again with state %s\n",
771 get_state_name(ns
->state
));
773 return find_operation(ns
, 0);
776 NS_DBG("find_operation: no operations found\n");
777 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
782 /* This shouldn't happen */
783 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
787 NS_DBG("find_operation: there is still ambiguity\n");
789 ns
->pstates
[ns
->npstates
++] = ns
->state
;
795 * If state has any action bit, perform this action.
797 * RETURNS: 0 if success, -1 if error.
800 do_state_action(struct nandsim
*ns
, uint32_t action
)
803 int busdiv
= ns
->busw
== 8 ? 1 : 2;
805 action
&= ACTION_MASK
;
807 /* Check that page address input is correct */
808 if (action
!= ACTION_SECERASE
&& ns
->regs
.row
>= ns
->geom
.pgnum
) {
809 NS_WARN("do_state_action: wrong page number (%#x)\n", ns
->regs
.row
);
817 * Copy page data to the internal buffer.
820 /* Column shouldn't be very large */
821 if (ns
->regs
.column
>= (ns
->geom
.pgszoob
- ns
->regs
.off
)) {
822 NS_ERR("do_state_action: column number is too large\n");
825 num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
826 memcpy(ns
->buf
.byte
, ns
->mem
.byte
+ NS_RAW_OFFSET(ns
) + ns
->regs
.off
, num
);
828 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
829 num
, NS_RAW_OFFSET(ns
) + ns
->regs
.off
);
831 if (ns
->regs
.off
== 0)
832 NS_LOG("read page %d\n", ns
->regs
.row
);
833 else if (ns
->regs
.off
< ns
->geom
.pgsz
)
834 NS_LOG("read page %d (second half)\n", ns
->regs
.row
);
836 NS_LOG("read OOB of page %d\n", ns
->regs
.row
);
838 NS_UDELAY(access_delay
);
839 NS_UDELAY(input_cycle
* ns
->geom
.pgsz
/ 1000 / busdiv
);
843 case ACTION_SECERASE
:
849 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
853 if (ns
->regs
.row
>= ns
->geom
.pgnum
- ns
->geom
.pgsec
854 || (ns
->regs
.row
& ~(ns
->geom
.secsz
- 1))) {
855 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns
->regs
.row
);
859 ns
->regs
.row
= (ns
->regs
.row
<<
860 8 * (ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
)) | ns
->regs
.column
;
863 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
864 ns
->regs
.row
, NS_RAW_OFFSET(ns
));
865 NS_LOG("erase sector %d\n", ns
->regs
.row
>> (ns
->geom
.secshift
- ns
->geom
.pgshift
));
867 memset(ns
->mem
.byte
+ NS_RAW_OFFSET(ns
), 0xFF, ns
->geom
.secszoob
);
869 NS_MDELAY(erase_delay
);
875 * Programm page - move internal buffer data to the page.
879 NS_WARN("do_state_action: device is write-protected, programm\n");
883 num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
884 if (num
!= ns
->regs
.count
) {
885 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
886 ns
->regs
.count
, num
);
890 for (i
= 0; i
< num
; i
++)
891 ns
->mem
.byte
[NS_RAW_OFFSET(ns
) + ns
->regs
.off
+ i
] &= ns
->buf
.byte
[i
];
893 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
894 num
, ns
->regs
.row
, ns
->regs
.column
, NS_RAW_OFFSET(ns
) + ns
->regs
.off
);
895 NS_LOG("programm page %d\n", ns
->regs
.row
);
897 NS_UDELAY(programm_delay
);
898 NS_UDELAY(output_cycle
* ns
->geom
.pgsz
/ 1000 / busdiv
);
903 NS_DBG("do_state_action: set internal offset to 0\n");
908 if (!(ns
->options
& OPT_PAGE512_8BIT
)) {
909 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
910 "byte page size 8x chips\n");
913 NS_DBG("do_state_action: set internal offset to %d\n", ns
->geom
.pgsz
/2);
914 ns
->regs
.off
= ns
->geom
.pgsz
/2;
918 NS_DBG("do_state_action: set internal offset to %d\n", ns
->geom
.pgsz
);
919 ns
->regs
.off
= ns
->geom
.pgsz
;
923 NS_DBG("do_state_action: BUG! unknown action\n");
930 * Switch simulator's state.
933 switch_state(struct nandsim
*ns
)
937 * The current operation have already been identified.
938 * Just follow the states chain.
942 ns
->state
= ns
->nxstate
;
943 ns
->nxstate
= ns
->op
[ns
->stateidx
+ 1];
945 NS_DBG("switch_state: operation is known, switch to the next state, "
946 "state: %s, nxstate: %s\n",
947 get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
949 /* See, whether we need to do some action */
950 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
951 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
957 * We don't yet know which operation we perform.
958 * Try to identify it.
962 * The only event causing the switch_state function to
963 * be called with yet unknown operation is new command.
965 ns
->state
= get_state_by_command(ns
->regs
.command
);
967 NS_DBG("switch_state: operation is unknown, try to find it\n");
969 if (find_operation(ns
, 0) != 0)
972 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
973 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
978 /* For 16x devices column means the page offset in words */
979 if ((ns
->nxstate
& STATE_ADDR_MASK
) && ns
->busw
== 16) {
980 NS_DBG("switch_state: double the column number for 16x device\n");
981 ns
->regs
.column
<<= 1;
984 if (NS_STATE(ns
->nxstate
) == STATE_READY
) {
986 * The current state is the last. Return to STATE_READY
989 u_char status
= NS_STATUS_OK(ns
);
991 /* In case of data states, see if all bytes were input/output */
992 if ((ns
->state
& (STATE_DATAIN_MASK
| STATE_DATAOUT_MASK
))
993 && ns
->regs
.count
!= ns
->regs
.num
) {
994 NS_WARN("switch_state: not all bytes were processed, %d left\n",
995 ns
->regs
.num
- ns
->regs
.count
);
996 status
= NS_STATUS_FAILED(ns
);
999 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1001 switch_to_ready_state(ns
, status
);
1004 } else if (ns
->nxstate
& (STATE_DATAIN_MASK
| STATE_DATAOUT_MASK
)) {
1006 * If the next state is data input/output, switch to it now
1009 ns
->state
= ns
->nxstate
;
1010 ns
->nxstate
= ns
->op
[++ns
->stateidx
+ 1];
1011 ns
->regs
.num
= ns
->regs
.count
= 0;
1013 NS_DBG("switch_state: the next state is data I/O, switch, "
1014 "state: %s, nxstate: %s\n",
1015 get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
1018 * Set the internal register to the count of bytes which
1019 * are expected to be input or output
1021 switch (NS_STATE(ns
->state
)) {
1024 ns
->regs
.num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
1027 case STATE_DATAOUT_ID
:
1028 ns
->regs
.num
= ns
->geom
.idbytes
;
1031 case STATE_DATAOUT_STATUS
:
1032 case STATE_DATAOUT_STATUS_M
:
1033 ns
->regs
.count
= ns
->regs
.num
= 0;
1037 NS_ERR("switch_state: BUG! unknown data state\n");
1040 } else if (ns
->nxstate
& STATE_ADDR_MASK
) {
1042 * If the next state is address input, set the internal
1043 * register to the number of expected address bytes
1048 switch (NS_STATE(ns
->nxstate
)) {
1049 case STATE_ADDR_PAGE
:
1050 ns
->regs
.num
= ns
->geom
.pgaddrbytes
;
1053 case STATE_ADDR_SEC
:
1054 ns
->regs
.num
= ns
->geom
.secaddrbytes
;
1057 case STATE_ADDR_ZERO
:
1062 NS_ERR("switch_state: BUG! unknown address state\n");
1066 * Just reset internal counters.
1075 ns_hwcontrol(struct mtd_info
*mtd
, int cmd
)
1077 struct nandsim
*ns
= (struct nandsim
*)((struct nand_chip
*)mtd
->priv
)->priv
;
1081 /* set CLE line high */
1082 case NAND_CTL_SETCLE
:
1083 NS_DBG("ns_hwcontrol: start command latch cycles\n");
1087 /* set CLE line low */
1088 case NAND_CTL_CLRCLE
:
1089 NS_DBG("ns_hwcontrol: stop command latch cycles\n");
1093 /* set ALE line high */
1094 case NAND_CTL_SETALE
:
1095 NS_DBG("ns_hwcontrol: start address latch cycles\n");
1099 /* set ALE line low */
1100 case NAND_CTL_CLRALE
:
1101 NS_DBG("ns_hwcontrol: stop address latch cycles\n");
1105 /* set WP line high */
1106 case NAND_CTL_SETWP
:
1107 NS_DBG("ns_hwcontrol: enable write protection\n");
1111 /* set WP line low */
1112 case NAND_CTL_CLRWP
:
1113 NS_DBG("ns_hwcontrol: disable write protection\n");
1117 /* set CE line low */
1118 case NAND_CTL_SETNCE
:
1119 NS_DBG("ns_hwcontrol: enable chip\n");
1123 /* set CE line high */
1124 case NAND_CTL_CLRNCE
:
1125 NS_DBG("ns_hwcontrol: disable chip\n");
1130 NS_ERR("hwcontrol: unknown command\n");
1137 ns_nand_read_byte(struct mtd_info
*mtd
)
1139 struct nandsim
*ns
= (struct nandsim
*)((struct nand_chip
*)mtd
->priv
)->priv
;
1142 /* Sanity and correctness checks */
1143 if (!ns
->lines
.ce
) {
1144 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint
)outb
);
1147 if (ns
->lines
.ale
|| ns
->lines
.cle
) {
1148 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint
)outb
);
1151 if (!(ns
->state
& STATE_DATAOUT_MASK
)) {
1152 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1153 "return %#x\n", get_state_name(ns
->state
), (uint
)outb
);
1157 /* Status register may be read as many times as it is wanted */
1158 if (NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS
) {
1159 NS_DBG("read_byte: return %#x status\n", ns
->regs
.status
);
1160 return ns
->regs
.status
;
1163 /* Check if there is any data in the internal buffer which may be read */
1164 if (ns
->regs
.count
== ns
->regs
.num
) {
1165 NS_WARN("read_byte: no more data to output, return %#x\n", (uint
)outb
);
1169 switch (NS_STATE(ns
->state
)) {
1171 if (ns
->busw
== 8) {
1172 outb
= ns
->buf
.byte
[ns
->regs
.count
];
1173 ns
->regs
.count
+= 1;
1175 outb
= (u_char
)cpu_to_le16(ns
->buf
.word
[ns
->regs
.count
>> 1]);
1176 ns
->regs
.count
+= 2;
1179 case STATE_DATAOUT_ID
:
1180 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns
->regs
.count
, ns
->regs
.num
);
1181 outb
= ns
->ids
[ns
->regs
.count
];
1182 ns
->regs
.count
+= 1;
1188 if (ns
->regs
.count
== ns
->regs
.num
) {
1189 NS_DBG("read_byte: all bytes were read\n");
1192 * The OPT_AUTOINCR allows to read next conseqitive pages without
1193 * new read operation cycle.
1195 if ((ns
->options
& OPT_AUTOINCR
) && NS_STATE(ns
->state
) == STATE_DATAOUT
) {
1197 if (ns
->regs
.row
+ 1 < ns
->geom
.pgnum
)
1199 NS_DBG("read_byte: switch to the next page (%#x)\n", ns
->regs
.row
);
1200 do_state_action(ns
, ACTION_CPY
);
1202 else if (NS_STATE(ns
->nxstate
) == STATE_READY
)
1211 ns_nand_write_byte(struct mtd_info
*mtd
, u_char byte
)
1213 struct nandsim
*ns
= (struct nandsim
*)((struct nand_chip
*)mtd
->priv
)->priv
;
1215 /* Sanity and correctness checks */
1216 if (!ns
->lines
.ce
) {
1217 NS_ERR("write_byte: chip is disabled, ignore write\n");
1220 if (ns
->lines
.ale
&& ns
->lines
.cle
) {
1221 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1225 if (ns
->lines
.cle
== 1) {
1227 * The byte written is a command.
1230 if (byte
== NAND_CMD_RESET
) {
1231 NS_LOG("reset chip\n");
1232 switch_to_ready_state(ns
, NS_STATUS_OK(ns
));
1237 * Chip might still be in STATE_DATAOUT
1238 * (if OPT_AUTOINCR feature is supported), STATE_DATAOUT_STATUS or
1239 * STATE_DATAOUT_STATUS_M state. If so, switch state.
1241 if (NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS
1242 || NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS_M
1243 || ((ns
->options
& OPT_AUTOINCR
) && NS_STATE(ns
->state
) == STATE_DATAOUT
))
1246 /* Check if chip is expecting command */
1247 if (NS_STATE(ns
->nxstate
) != STATE_UNKNOWN
&& !(ns
->nxstate
& STATE_CMD_MASK
)) {
1249 * We are in situation when something else (not command)
1250 * was expected but command was input. In this case ignore
1251 * previous command(s)/state(s) and accept the last one.
1253 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1254 "ignore previous states\n", (uint
)byte
, get_state_name(ns
->nxstate
));
1255 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1258 /* Check that the command byte is correct */
1259 if (check_command(byte
)) {
1260 NS_ERR("write_byte: unknown command %#x\n", (uint
)byte
);
1264 NS_DBG("command byte corresponding to %s state accepted\n",
1265 get_state_name(get_state_by_command(byte
)));
1266 ns
->regs
.command
= byte
;
1269 } else if (ns
->lines
.ale
== 1) {
1271 * The byte written is an address.
1274 if (NS_STATE(ns
->nxstate
) == STATE_UNKNOWN
) {
1276 NS_DBG("write_byte: operation isn't known yet, identify it\n");
1278 if (find_operation(ns
, 1) < 0)
1281 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
1282 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1287 switch (NS_STATE(ns
->nxstate
)) {
1288 case STATE_ADDR_PAGE
:
1289 ns
->regs
.num
= ns
->geom
.pgaddrbytes
;
1291 case STATE_ADDR_SEC
:
1292 ns
->regs
.num
= ns
->geom
.secaddrbytes
;
1294 case STATE_ADDR_ZERO
:
1302 /* Check that chip is expecting address */
1303 if (!(ns
->nxstate
& STATE_ADDR_MASK
)) {
1304 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
1305 "switch to STATE_READY\n", (uint
)byte
, get_state_name(ns
->nxstate
));
1306 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1310 /* Check if this is expected byte */
1311 if (ns
->regs
.count
== ns
->regs
.num
) {
1312 NS_ERR("write_byte: no more address bytes expected\n");
1313 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1317 accept_addr_byte(ns
, byte
);
1319 ns
->regs
.count
+= 1;
1321 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
1322 (uint
)byte
, ns
->regs
.count
, ns
->regs
.num
);
1324 if (ns
->regs
.count
== ns
->regs
.num
) {
1325 NS_DBG("address (%#x, %#x) is accepted\n", ns
->regs
.row
, ns
->regs
.column
);
1331 * The byte written is an input data.
1334 /* Check that chip is expecting data input */
1335 if (!(ns
->state
& STATE_DATAIN_MASK
)) {
1336 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
1337 "switch to %s\n", (uint
)byte
,
1338 get_state_name(ns
->state
), get_state_name(STATE_READY
));
1339 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1343 /* Check if this is expected byte */
1344 if (ns
->regs
.count
== ns
->regs
.num
) {
1345 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
1350 if (ns
->busw
== 8) {
1351 ns
->buf
.byte
[ns
->regs
.count
] = byte
;
1352 ns
->regs
.count
+= 1;
1354 ns
->buf
.word
[ns
->regs
.count
>> 1] = cpu_to_le16((uint16_t)byte
);
1355 ns
->regs
.count
+= 2;
1363 ns_device_ready(struct mtd_info
*mtd
)
1365 NS_DBG("device_ready\n");
1370 ns_nand_read_word(struct mtd_info
*mtd
)
1372 struct nand_chip
*chip
= (struct nand_chip
*)mtd
->priv
;
1374 NS_DBG("read_word\n");
1376 return chip
->read_byte(mtd
) | (chip
->read_byte(mtd
) << 8);
1380 ns_nand_write_word(struct mtd_info
*mtd
, uint16_t word
)
1382 struct nand_chip
*chip
= (struct nand_chip
*)mtd
->priv
;
1384 NS_DBG("write_word\n");
1386 chip
->write_byte(mtd
, word
& 0xFF);
1387 chip
->write_byte(mtd
, word
>> 8);
1391 ns_nand_write_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
1393 struct nandsim
*ns
= (struct nandsim
*)((struct nand_chip
*)mtd
->priv
)->priv
;
1395 /* Check that chip is expecting data input */
1396 if (!(ns
->state
& STATE_DATAIN_MASK
)) {
1397 NS_ERR("write_buf: data input isn't expected, state is %s, "
1398 "switch to STATE_READY\n", get_state_name(ns
->state
));
1399 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1403 /* Check if these are expected bytes */
1404 if (ns
->regs
.count
+ len
> ns
->regs
.num
) {
1405 NS_ERR("write_buf: too many input bytes\n");
1406 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1410 memcpy(ns
->buf
.byte
+ ns
->regs
.count
, buf
, len
);
1411 ns
->regs
.count
+= len
;
1413 if (ns
->regs
.count
== ns
->regs
.num
) {
1414 NS_DBG("write_buf: %d bytes were written\n", ns
->regs
.count
);
1419 ns_nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
1421 struct nandsim
*ns
= (struct nandsim
*)((struct nand_chip
*)mtd
->priv
)->priv
;
1423 /* Sanity and correctness checks */
1424 if (!ns
->lines
.ce
) {
1425 NS_ERR("read_buf: chip is disabled\n");
1428 if (ns
->lines
.ale
|| ns
->lines
.cle
) {
1429 NS_ERR("read_buf: ALE or CLE pin is high\n");
1432 if (!(ns
->state
& STATE_DATAOUT_MASK
)) {
1433 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
1434 get_state_name(ns
->state
));
1438 if (NS_STATE(ns
->state
) != STATE_DATAOUT
) {
1441 for (i
= 0; i
< len
; i
++)
1442 buf
[i
] = ((struct nand_chip
*)mtd
->priv
)->read_byte(mtd
);
1447 /* Check if these are expected bytes */
1448 if (ns
->regs
.count
+ len
> ns
->regs
.num
) {
1449 NS_ERR("read_buf: too many bytes to read\n");
1450 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1454 memcpy(buf
, ns
->buf
.byte
+ ns
->regs
.count
, len
);
1455 ns
->regs
.count
+= len
;
1457 if (ns
->regs
.count
== ns
->regs
.num
) {
1458 if ((ns
->options
& OPT_AUTOINCR
) && NS_STATE(ns
->state
) == STATE_DATAOUT
) {
1460 if (ns
->regs
.row
+ 1 < ns
->geom
.pgnum
)
1462 NS_DBG("read_buf: switch to the next page (%#x)\n", ns
->regs
.row
);
1463 do_state_action(ns
, ACTION_CPY
);
1465 else if (NS_STATE(ns
->nxstate
) == STATE_READY
)
1473 ns_nand_verify_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
1475 ns_nand_read_buf(mtd
, (u_char
*)&ns_verify_buf
[0], len
);
1477 if (!memcmp(buf
, &ns_verify_buf
[0], len
)) {
1478 NS_DBG("verify_buf: the buffer is OK\n");
1481 NS_DBG("verify_buf: the buffer is wrong\n");
1487 * Having only NAND chip IDs we call nand_scan which detects NAND flash
1488 * parameters and then calls scan_bbt in order to scan/find/build the
1489 * NAND flash bad block table. But since at that moment the NAND flash
1490 * image isn't allocated in the simulator, errors arise. To avoid this
1491 * we redefine the scan_bbt callback and initialize the nandsim structure
1492 * before the flash media scanning.
1494 int ns_scan_bbt(struct mtd_info
*mtd
)
1496 struct nand_chip
*chip
= (struct nand_chip
*)mtd
->priv
;
1497 struct nandsim
*ns
= (struct nandsim
*)(chip
->priv
);
1500 if (!NS_IS_INITIALIZED(ns
))
1501 if ((retval
= init_nandsim(mtd
)) != 0) {
1502 NS_ERR("scan_bbt: can't initialize the nandsim structure\n");
1505 if ((retval
= nand_default_bbt(mtd
)) != 0) {
1514 * Module initialization function
1516 int __init
ns_init_module(void)
1518 struct nand_chip
*chip
;
1519 struct nandsim
*nand
;
1520 int retval
= -ENOMEM
;
1522 if (bus_width
!= 8 && bus_width
!= 16) {
1523 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width
);
1527 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
1528 nsmtd
= kmalloc(sizeof(struct mtd_info
) + sizeof(struct nand_chip
)
1529 + sizeof(struct nandsim
), GFP_KERNEL
);
1531 NS_ERR("unable to allocate core structures.\n");
1534 memset(nsmtd
, 0, sizeof(struct mtd_info
) + sizeof(struct nand_chip
) +
1535 sizeof(struct nandsim
));
1536 chip
= (struct nand_chip
*)(nsmtd
+ 1);
1537 nsmtd
->priv
= (void *)chip
;
1538 nand
= (struct nandsim
*)(chip
+ 1);
1539 chip
->priv
= (void *)nand
;
1542 * Register simulator's callbacks.
1544 chip
->hwcontrol
= ns_hwcontrol
;
1545 chip
->read_byte
= ns_nand_read_byte
;
1546 chip
->dev_ready
= ns_device_ready
;
1547 chip
->scan_bbt
= ns_scan_bbt
;
1548 chip
->write_byte
= ns_nand_write_byte
;
1549 chip
->write_buf
= ns_nand_write_buf
;
1550 chip
->read_buf
= ns_nand_read_buf
;
1551 chip
->verify_buf
= ns_nand_verify_buf
;
1552 chip
->write_word
= ns_nand_write_word
;
1553 chip
->read_word
= ns_nand_read_word
;
1554 chip
->eccmode
= NAND_ECC_SOFT
;
1557 * Perform minimum nandsim structure initialization to handle
1558 * the initial ID read command correctly
1560 if (third_id_byte
!= 0xFF || fourth_id_byte
!= 0xFF)
1561 nand
->geom
.idbytes
= 4;
1563 nand
->geom
.idbytes
= 2;
1564 nand
->regs
.status
= NS_STATUS_OK(nand
);
1565 nand
->nxstate
= STATE_UNKNOWN
;
1566 nand
->options
|= OPT_PAGE256
; /* temporary value */
1567 nand
->ids
[0] = first_id_byte
;
1568 nand
->ids
[1] = second_id_byte
;
1569 nand
->ids
[2] = third_id_byte
;
1570 nand
->ids
[3] = fourth_id_byte
;
1571 if (bus_width
== 16) {
1573 chip
->options
|= NAND_BUSWIDTH_16
;
1576 if ((retval
= nand_scan(nsmtd
, 1)) != 0) {
1577 NS_ERR("can't register NAND Simulator\n");
1583 /* Register NAND as one big partition */
1584 add_mtd_partitions(nsmtd
, &nand
->part
, 1);
1594 module_init(ns_init_module
);
1597 * Module clean-up function
1599 static void __exit
ns_cleanup_module(void)
1601 struct nandsim
*ns
= (struct nandsim
*)(((struct nand_chip
*)nsmtd
->priv
)->priv
);
1603 free_nandsim(ns
); /* Free nandsim private resources */
1604 nand_release(nsmtd
); /* Unregisterd drived */
1605 kfree(nsmtd
); /* Free other structures */
1608 module_exit(ns_cleanup_module
);
1610 MODULE_LICENSE ("GPL");
1611 MODULE_AUTHOR ("Artem B. Bityuckiy");
1612 MODULE_DESCRIPTION ("The NAND flash simulator");