Linux-2.6.12-rc2
[linux-2.6/kvm.git] / drivers / ieee1394 / ohci1394.c
blob97ff364c04341ef866ecd4d70e60e0a1e415b743
1 /*
2 * ohci1394.c - driver for OHCI 1394 boards
3 * Copyright (C)1999,2000 Sebastien Rougeaux <sebastien.rougeaux@anu.edu.au>
4 * Gord Peters <GordPeters@smarttech.com>
5 * 2001 Ben Collins <bcollins@debian.org>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software Foundation,
19 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 * Things known to be working:
24 * . Async Request Transmit
25 * . Async Response Receive
26 * . Async Request Receive
27 * . Async Response Transmit
28 * . Iso Receive
29 * . DMA mmap for iso receive
30 * . Config ROM generation
32 * Things implemented, but still in test phase:
33 * . Iso Transmit
34 * . Async Stream Packets Transmit (Receive done via Iso interface)
36 * Things not implemented:
37 * . DMA error recovery
39 * Known bugs:
40 * . devctl BUS_RESET arg confusion (reset type or root holdoff?)
41 * added LONG_RESET_ROOT and SHORT_RESET_ROOT for root holdoff --kk
45 * Acknowledgments:
47 * Adam J Richter <adam@yggdrasil.com>
48 * . Use of pci_class to find device
50 * Emilie Chung <emilie.chung@axis.com>
51 * . Tip on Async Request Filter
53 * Pascal Drolet <pascal.drolet@informission.ca>
54 * . Various tips for optimization and functionnalities
56 * Robert Ficklin <rficklin@westengineering.com>
57 * . Loop in irq_handler
59 * James Goodwin <jamesg@Filanet.com>
60 * . Various tips on initialization, self-id reception, etc.
62 * Albrecht Dress <ad@mpifr-bonn.mpg.de>
63 * . Apple PowerBook detection
65 * Daniel Kobras <daniel.kobras@student.uni-tuebingen.de>
66 * . Reset the board properly before leaving + misc cleanups
68 * Leon van Stuivenberg <leonvs@iae.nl>
69 * . Bug fixes
71 * Ben Collins <bcollins@debian.org>
72 * . Working big-endian support
73 * . Updated to 2.4.x module scheme (PCI aswell)
74 * . Config ROM generation
76 * Manfred Weihs <weihs@ict.tuwien.ac.at>
77 * . Reworked code for initiating bus resets
78 * (long, short, with or without hold-off)
80 * Nandu Santhi <contactnandu@users.sourceforge.net>
81 * . Added support for nVidia nForce2 onboard Firewire chipset
85 #include <linux/config.h>
86 #include <linux/kernel.h>
87 #include <linux/list.h>
88 #include <linux/slab.h>
89 #include <linux/interrupt.h>
90 #include <linux/wait.h>
91 #include <linux/errno.h>
92 #include <linux/module.h>
93 #include <linux/moduleparam.h>
94 #include <linux/pci.h>
95 #include <linux/fs.h>
96 #include <linux/poll.h>
97 #include <asm/byteorder.h>
98 #include <asm/atomic.h>
99 #include <asm/uaccess.h>
100 #include <linux/delay.h>
101 #include <linux/spinlock.h>
103 #include <asm/pgtable.h>
104 #include <asm/page.h>
105 #include <asm/irq.h>
106 #include <linux/sched.h>
107 #include <linux/types.h>
108 #include <linux/vmalloc.h>
109 #include <linux/init.h>
111 #ifdef CONFIG_PPC_PMAC
112 #include <asm/machdep.h>
113 #include <asm/pmac_feature.h>
114 #include <asm/prom.h>
115 #include <asm/pci-bridge.h>
116 #endif
118 #include "csr1212.h"
119 #include "ieee1394.h"
120 #include "ieee1394_types.h"
121 #include "hosts.h"
122 #include "dma.h"
123 #include "iso.h"
124 #include "ieee1394_core.h"
125 #include "highlevel.h"
126 #include "ohci1394.h"
128 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
129 #define OHCI1394_DEBUG
130 #endif
132 #ifdef DBGMSG
133 #undef DBGMSG
134 #endif
136 #ifdef OHCI1394_DEBUG
137 #define DBGMSG(fmt, args...) \
138 printk(KERN_INFO "%s: fw-host%d: " fmt "\n" , OHCI1394_DRIVER_NAME, ohci->host->id , ## args)
139 #else
140 #define DBGMSG(fmt, args...)
141 #endif
143 #ifdef CONFIG_IEEE1394_OHCI_DMA_DEBUG
144 #define OHCI_DMA_ALLOC(fmt, args...) \
145 HPSB_ERR("%s(%s)alloc(%d): "fmt, OHCI1394_DRIVER_NAME, __FUNCTION__, \
146 ++global_outstanding_dmas, ## args)
147 #define OHCI_DMA_FREE(fmt, args...) \
148 HPSB_ERR("%s(%s)free(%d): "fmt, OHCI1394_DRIVER_NAME, __FUNCTION__, \
149 --global_outstanding_dmas, ## args)
150 static int global_outstanding_dmas = 0;
151 #else
152 #define OHCI_DMA_ALLOC(fmt, args...)
153 #define OHCI_DMA_FREE(fmt, args...)
154 #endif
156 /* print general (card independent) information */
157 #define PRINT_G(level, fmt, args...) \
158 printk(level "%s: " fmt "\n" , OHCI1394_DRIVER_NAME , ## args)
160 /* print card specific information */
161 #define PRINT(level, fmt, args...) \
162 printk(level "%s: fw-host%d: " fmt "\n" , OHCI1394_DRIVER_NAME, ohci->host->id , ## args)
164 static char version[] __devinitdata =
165 "$Rev: 1250 $ Ben Collins <bcollins@debian.org>";
167 /* Module Parameters */
168 static int phys_dma = 1;
169 module_param(phys_dma, int, 0644);
170 MODULE_PARM_DESC(phys_dma, "Enable physical dma (default = 1).");
172 static void dma_trm_tasklet(unsigned long data);
173 static void dma_trm_reset(struct dma_trm_ctx *d);
175 static int alloc_dma_rcv_ctx(struct ti_ohci *ohci, struct dma_rcv_ctx *d,
176 enum context_type type, int ctx, int num_desc,
177 int buf_size, int split_buf_size, int context_base);
178 static void stop_dma_rcv_ctx(struct dma_rcv_ctx *d);
179 static void free_dma_rcv_ctx(struct dma_rcv_ctx *d);
181 static int alloc_dma_trm_ctx(struct ti_ohci *ohci, struct dma_trm_ctx *d,
182 enum context_type type, int ctx, int num_desc,
183 int context_base);
185 static void ohci1394_pci_remove(struct pci_dev *pdev);
187 #ifndef __LITTLE_ENDIAN
188 static unsigned hdr_sizes[] =
190 3, /* TCODE_WRITEQ */
191 4, /* TCODE_WRITEB */
192 3, /* TCODE_WRITE_RESPONSE */
193 0, /* ??? */
194 3, /* TCODE_READQ */
195 4, /* TCODE_READB */
196 3, /* TCODE_READQ_RESPONSE */
197 4, /* TCODE_READB_RESPONSE */
198 1, /* TCODE_CYCLE_START (???) */
199 4, /* TCODE_LOCK_REQUEST */
200 2, /* TCODE_ISO_DATA */
201 4, /* TCODE_LOCK_RESPONSE */
204 /* Swap headers */
205 static inline void packet_swab(quadlet_t *data, int tcode)
207 size_t size = hdr_sizes[tcode];
209 if (tcode > TCODE_LOCK_RESPONSE || hdr_sizes[tcode] == 0)
210 return;
212 while (size--)
213 data[size] = swab32(data[size]);
215 #else
216 /* Don't waste cycles on same sex byte swaps */
217 #define packet_swab(w,x)
218 #endif /* !LITTLE_ENDIAN */
220 /***********************************
221 * IEEE-1394 functionality section *
222 ***********************************/
224 static u8 get_phy_reg(struct ti_ohci *ohci, u8 addr)
226 int i;
227 unsigned long flags;
228 quadlet_t r;
230 spin_lock_irqsave (&ohci->phy_reg_lock, flags);
232 reg_write(ohci, OHCI1394_PhyControl, (addr << 8) | 0x00008000);
234 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
235 if (reg_read(ohci, OHCI1394_PhyControl) & 0x80000000)
236 break;
238 mdelay(1);
241 r = reg_read(ohci, OHCI1394_PhyControl);
243 if (i >= OHCI_LOOP_COUNT)
244 PRINT (KERN_ERR, "Get PHY Reg timeout [0x%08x/0x%08x/%d]",
245 r, r & 0x80000000, i);
247 spin_unlock_irqrestore (&ohci->phy_reg_lock, flags);
249 return (r & 0x00ff0000) >> 16;
252 static void set_phy_reg(struct ti_ohci *ohci, u8 addr, u8 data)
254 int i;
255 unsigned long flags;
256 u32 r = 0;
258 spin_lock_irqsave (&ohci->phy_reg_lock, flags);
260 reg_write(ohci, OHCI1394_PhyControl, (addr << 8) | data | 0x00004000);
262 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
263 r = reg_read(ohci, OHCI1394_PhyControl);
264 if (!(r & 0x00004000))
265 break;
267 mdelay(1);
270 if (i == OHCI_LOOP_COUNT)
271 PRINT (KERN_ERR, "Set PHY Reg timeout [0x%08x/0x%08x/%d]",
272 r, r & 0x00004000, i);
274 spin_unlock_irqrestore (&ohci->phy_reg_lock, flags);
276 return;
279 /* Or's our value into the current value */
280 static void set_phy_reg_mask(struct ti_ohci *ohci, u8 addr, u8 data)
282 u8 old;
284 old = get_phy_reg (ohci, addr);
285 old |= data;
286 set_phy_reg (ohci, addr, old);
288 return;
291 static void handle_selfid(struct ti_ohci *ohci, struct hpsb_host *host,
292 int phyid, int isroot)
294 quadlet_t *q = ohci->selfid_buf_cpu;
295 quadlet_t self_id_count=reg_read(ohci, OHCI1394_SelfIDCount);
296 size_t size;
297 quadlet_t q0, q1;
299 /* Check status of self-id reception */
301 if (ohci->selfid_swap)
302 q0 = le32_to_cpu(q[0]);
303 else
304 q0 = q[0];
306 if ((self_id_count & 0x80000000) ||
307 ((self_id_count & 0x00FF0000) != (q0 & 0x00FF0000))) {
308 PRINT(KERN_ERR,
309 "Error in reception of SelfID packets [0x%08x/0x%08x] (count: %d)",
310 self_id_count, q0, ohci->self_id_errors);
312 /* Tip by James Goodwin <jamesg@Filanet.com>:
313 * We had an error, generate another bus reset in response. */
314 if (ohci->self_id_errors<OHCI1394_MAX_SELF_ID_ERRORS) {
315 set_phy_reg_mask (ohci, 1, 0x40);
316 ohci->self_id_errors++;
317 } else {
318 PRINT(KERN_ERR,
319 "Too many errors on SelfID error reception, giving up!");
321 return;
324 /* SelfID Ok, reset error counter. */
325 ohci->self_id_errors = 0;
327 size = ((self_id_count & 0x00001FFC) >> 2) - 1;
328 q++;
330 while (size > 0) {
331 if (ohci->selfid_swap) {
332 q0 = le32_to_cpu(q[0]);
333 q1 = le32_to_cpu(q[1]);
334 } else {
335 q0 = q[0];
336 q1 = q[1];
339 if (q0 == ~q1) {
340 DBGMSG ("SelfID packet 0x%x received", q0);
341 hpsb_selfid_received(host, cpu_to_be32(q0));
342 if (((q0 & 0x3f000000) >> 24) == phyid)
343 DBGMSG ("SelfID for this node is 0x%08x", q0);
344 } else {
345 PRINT(KERN_ERR,
346 "SelfID is inconsistent [0x%08x/0x%08x]", q0, q1);
348 q += 2;
349 size -= 2;
352 DBGMSG("SelfID complete");
354 return;
357 static void ohci_soft_reset(struct ti_ohci *ohci) {
358 int i;
360 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
362 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
363 if (!(reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_softReset))
364 break;
365 mdelay(1);
367 DBGMSG ("Soft reset finished");
371 /* Generate the dma receive prgs and start the context */
372 static void initialize_dma_rcv_ctx(struct dma_rcv_ctx *d, int generate_irq)
374 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
375 int i;
377 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
379 for (i=0; i<d->num_desc; i++) {
380 u32 c;
382 c = DMA_CTL_INPUT_MORE | DMA_CTL_UPDATE | DMA_CTL_BRANCH;
383 if (generate_irq)
384 c |= DMA_CTL_IRQ;
386 d->prg_cpu[i]->control = cpu_to_le32(c | d->buf_size);
388 /* End of descriptor list? */
389 if (i + 1 < d->num_desc) {
390 d->prg_cpu[i]->branchAddress =
391 cpu_to_le32((d->prg_bus[i+1] & 0xfffffff0) | 0x1);
392 } else {
393 d->prg_cpu[i]->branchAddress =
394 cpu_to_le32((d->prg_bus[0] & 0xfffffff0));
397 d->prg_cpu[i]->address = cpu_to_le32(d->buf_bus[i]);
398 d->prg_cpu[i]->status = cpu_to_le32(d->buf_size);
401 d->buf_ind = 0;
402 d->buf_offset = 0;
404 if (d->type == DMA_CTX_ISO) {
405 /* Clear contextControl */
406 reg_write(ohci, d->ctrlClear, 0xffffffff);
408 /* Set bufferFill, isochHeader, multichannel for IR context */
409 reg_write(ohci, d->ctrlSet, 0xd0000000);
411 /* Set the context match register to match on all tags */
412 reg_write(ohci, d->ctxtMatch, 0xf0000000);
414 /* Clear the multi channel mask high and low registers */
415 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, 0xffffffff);
416 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, 0xffffffff);
418 /* Set up isoRecvIntMask to generate interrupts */
419 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << d->ctx);
422 /* Tell the controller where the first AR program is */
423 reg_write(ohci, d->cmdPtr, d->prg_bus[0] | 0x1);
425 /* Run context */
426 reg_write(ohci, d->ctrlSet, 0x00008000);
428 DBGMSG("Receive DMA ctx=%d initialized", d->ctx);
431 /* Initialize the dma transmit context */
432 static void initialize_dma_trm_ctx(struct dma_trm_ctx *d)
434 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
436 /* Stop the context */
437 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
439 d->prg_ind = 0;
440 d->sent_ind = 0;
441 d->free_prgs = d->num_desc;
442 d->branchAddrPtr = NULL;
443 INIT_LIST_HEAD(&d->fifo_list);
444 INIT_LIST_HEAD(&d->pending_list);
446 if (d->type == DMA_CTX_ISO) {
447 /* enable interrupts */
448 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << d->ctx);
451 DBGMSG("Transmit DMA ctx=%d initialized", d->ctx);
454 /* Count the number of available iso contexts */
455 static int get_nb_iso_ctx(struct ti_ohci *ohci, int reg)
457 int i,ctx=0;
458 u32 tmp;
460 reg_write(ohci, reg, 0xffffffff);
461 tmp = reg_read(ohci, reg);
463 DBGMSG("Iso contexts reg: %08x implemented: %08x", reg, tmp);
465 /* Count the number of contexts */
466 for (i=0; i<32; i++) {
467 if (tmp & 1) ctx++;
468 tmp >>= 1;
470 return ctx;
473 /* Global initialization */
474 static void ohci_initialize(struct ti_ohci *ohci)
476 char irq_buf[16];
477 quadlet_t buf;
478 int num_ports, i;
480 spin_lock_init(&ohci->phy_reg_lock);
481 spin_lock_init(&ohci->event_lock);
483 /* Put some defaults to these undefined bus options */
484 buf = reg_read(ohci, OHCI1394_BusOptions);
485 buf |= 0x60000000; /* Enable CMC and ISC */
486 if (!hpsb_disable_irm)
487 buf |= 0x80000000; /* Enable IRMC */
488 buf &= ~0x00ff0000; /* XXX: Set cyc_clk_acc to zero for now */
489 buf &= ~0x18000000; /* Disable PMC and BMC */
490 reg_write(ohci, OHCI1394_BusOptions, buf);
492 /* Set the bus number */
493 reg_write(ohci, OHCI1394_NodeID, 0x0000ffc0);
495 /* Enable posted writes */
496 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_postedWriteEnable);
498 /* Clear link control register */
499 reg_write(ohci, OHCI1394_LinkControlClear, 0xffffffff);
501 /* Enable cycle timer and cycle master and set the IRM
502 * contender bit in our self ID packets if appropriate. */
503 reg_write(ohci, OHCI1394_LinkControlSet,
504 OHCI1394_LinkControl_CycleTimerEnable |
505 OHCI1394_LinkControl_CycleMaster);
506 set_phy_reg_mask(ohci, 4, PHY_04_LCTRL |
507 (hpsb_disable_irm ? 0 : PHY_04_CONTENDER));
509 /* Set up self-id dma buffer */
510 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->selfid_buf_bus);
512 /* enable self-id and phys */
513 reg_write(ohci, OHCI1394_LinkControlSet, OHCI1394_LinkControl_RcvSelfID |
514 OHCI1394_LinkControl_RcvPhyPkt);
516 /* Set the Config ROM mapping register */
517 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->csr_config_rom_bus);
519 /* Now get our max packet size */
520 ohci->max_packet_size =
521 1<<(((reg_read(ohci, OHCI1394_BusOptions)>>12)&0xf)+1);
523 /* Don't accept phy packets into AR request context */
524 reg_write(ohci, OHCI1394_LinkControlClear, 0x00000400);
526 /* Clear the interrupt mask */
527 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 0xffffffff);
528 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 0xffffffff);
530 /* Clear the interrupt mask */
531 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 0xffffffff);
532 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 0xffffffff);
534 /* Initialize AR dma */
535 initialize_dma_rcv_ctx(&ohci->ar_req_context, 0);
536 initialize_dma_rcv_ctx(&ohci->ar_resp_context, 0);
538 /* Initialize AT dma */
539 initialize_dma_trm_ctx(&ohci->at_req_context);
540 initialize_dma_trm_ctx(&ohci->at_resp_context);
542 /* Initialize IR Legacy DMA */
543 ohci->ir_legacy_channels = 0;
544 initialize_dma_rcv_ctx(&ohci->ir_legacy_context, 1);
545 DBGMSG("ISO receive legacy context activated");
548 * Accept AT requests from all nodes. This probably
549 * will have to be controlled from the subsystem
550 * on a per node basis.
552 reg_write(ohci,OHCI1394_AsReqFilterHiSet, 0x80000000);
554 /* Specify AT retries */
555 reg_write(ohci, OHCI1394_ATRetries,
556 OHCI1394_MAX_AT_REQ_RETRIES |
557 (OHCI1394_MAX_AT_RESP_RETRIES<<4) |
558 (OHCI1394_MAX_PHYS_RESP_RETRIES<<8));
560 /* We don't want hardware swapping */
561 reg_write(ohci, OHCI1394_HCControlClear, OHCI1394_HCControl_noByteSwap);
563 /* Enable interrupts */
564 reg_write(ohci, OHCI1394_IntMaskSet,
565 OHCI1394_unrecoverableError |
566 OHCI1394_masterIntEnable |
567 OHCI1394_busReset |
568 OHCI1394_selfIDComplete |
569 OHCI1394_RSPkt |
570 OHCI1394_RQPkt |
571 OHCI1394_respTxComplete |
572 OHCI1394_reqTxComplete |
573 OHCI1394_isochRx |
574 OHCI1394_isochTx |
575 OHCI1394_cycleInconsistent);
577 /* Enable link */
578 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_linkEnable);
580 buf = reg_read(ohci, OHCI1394_Version);
581 #ifndef __sparc__
582 sprintf (irq_buf, "%d", ohci->dev->irq);
583 #else
584 sprintf (irq_buf, "%s", __irq_itoa(ohci->dev->irq));
585 #endif
586 PRINT(KERN_INFO, "OHCI-1394 %d.%d (PCI): IRQ=[%s] "
587 "MMIO=[%lx-%lx] Max Packet=[%d]",
588 ((((buf) >> 16) & 0xf) + (((buf) >> 20) & 0xf) * 10),
589 ((((buf) >> 4) & 0xf) + ((buf) & 0xf) * 10), irq_buf,
590 pci_resource_start(ohci->dev, 0),
591 pci_resource_start(ohci->dev, 0) + OHCI1394_REGISTER_SIZE - 1,
592 ohci->max_packet_size);
594 /* Check all of our ports to make sure that if anything is
595 * connected, we enable that port. */
596 num_ports = get_phy_reg(ohci, 2) & 0xf;
597 for (i = 0; i < num_ports; i++) {
598 unsigned int status;
600 set_phy_reg(ohci, 7, i);
601 status = get_phy_reg(ohci, 8);
603 if (status & 0x20)
604 set_phy_reg(ohci, 8, status & ~1);
607 /* Serial EEPROM Sanity check. */
608 if ((ohci->max_packet_size < 512) ||
609 (ohci->max_packet_size > 4096)) {
610 /* Serial EEPROM contents are suspect, set a sane max packet
611 * size and print the raw contents for bug reports if verbose
612 * debug is enabled. */
613 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
614 int i;
615 #endif
617 PRINT(KERN_DEBUG, "Serial EEPROM has suspicious values, "
618 "attempting to setting max_packet_size to 512 bytes");
619 reg_write(ohci, OHCI1394_BusOptions,
620 (reg_read(ohci, OHCI1394_BusOptions) & 0xf007) | 0x8002);
621 ohci->max_packet_size = 512;
622 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
623 PRINT(KERN_DEBUG, " EEPROM Present: %d",
624 (reg_read(ohci, OHCI1394_Version) >> 24) & 0x1);
625 reg_write(ohci, OHCI1394_GUID_ROM, 0x80000000);
627 for (i = 0;
628 ((i < 1000) &&
629 (reg_read(ohci, OHCI1394_GUID_ROM) & 0x80000000)); i++)
630 udelay(10);
632 for (i = 0; i < 0x20; i++) {
633 reg_write(ohci, OHCI1394_GUID_ROM, 0x02000000);
634 PRINT(KERN_DEBUG, " EEPROM %02x: %02x", i,
635 (reg_read(ohci, OHCI1394_GUID_ROM) >> 16) & 0xff);
637 #endif
642 * Insert a packet in the DMA fifo and generate the DMA prg
643 * FIXME: rewrite the program in order to accept packets crossing
644 * page boundaries.
645 * check also that a single dma descriptor doesn't cross a
646 * page boundary.
648 static void insert_packet(struct ti_ohci *ohci,
649 struct dma_trm_ctx *d, struct hpsb_packet *packet)
651 u32 cycleTimer;
652 int idx = d->prg_ind;
654 DBGMSG("Inserting packet for node " NODE_BUS_FMT
655 ", tlabel=%d, tcode=0x%x, speed=%d",
656 NODE_BUS_ARGS(ohci->host, packet->node_id), packet->tlabel,
657 packet->tcode, packet->speed_code);
659 d->prg_cpu[idx]->begin.address = 0;
660 d->prg_cpu[idx]->begin.branchAddress = 0;
662 if (d->type == DMA_CTX_ASYNC_RESP) {
664 * For response packets, we need to put a timeout value in
665 * the 16 lower bits of the status... let's try 1 sec timeout
667 cycleTimer = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
668 d->prg_cpu[idx]->begin.status = cpu_to_le32(
669 (((((cycleTimer>>25)&0x7)+1)&0x7)<<13) |
670 ((cycleTimer&0x01fff000)>>12));
672 DBGMSG("cycleTimer: %08x timeStamp: %08x",
673 cycleTimer, d->prg_cpu[idx]->begin.status);
674 } else
675 d->prg_cpu[idx]->begin.status = 0;
677 if ( (packet->type == hpsb_async) || (packet->type == hpsb_raw) ) {
679 if (packet->type == hpsb_raw) {
680 d->prg_cpu[idx]->data[0] = cpu_to_le32(OHCI1394_TCODE_PHY<<4);
681 d->prg_cpu[idx]->data[1] = cpu_to_le32(packet->header[0]);
682 d->prg_cpu[idx]->data[2] = cpu_to_le32(packet->header[1]);
683 } else {
684 d->prg_cpu[idx]->data[0] = packet->speed_code<<16 |
685 (packet->header[0] & 0xFFFF);
687 if (packet->tcode == TCODE_ISO_DATA) {
688 /* Sending an async stream packet */
689 d->prg_cpu[idx]->data[1] = packet->header[0] & 0xFFFF0000;
690 } else {
691 /* Sending a normal async request or response */
692 d->prg_cpu[idx]->data[1] =
693 (packet->header[1] & 0xFFFF) |
694 (packet->header[0] & 0xFFFF0000);
695 d->prg_cpu[idx]->data[2] = packet->header[2];
696 d->prg_cpu[idx]->data[3] = packet->header[3];
698 packet_swab(d->prg_cpu[idx]->data, packet->tcode);
701 if (packet->data_size) { /* block transmit */
702 if (packet->tcode == TCODE_STREAM_DATA){
703 d->prg_cpu[idx]->begin.control =
704 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
705 DMA_CTL_IMMEDIATE | 0x8);
706 } else {
707 d->prg_cpu[idx]->begin.control =
708 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
709 DMA_CTL_IMMEDIATE | 0x10);
711 d->prg_cpu[idx]->end.control =
712 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
713 DMA_CTL_IRQ |
714 DMA_CTL_BRANCH |
715 packet->data_size);
717 * Check that the packet data buffer
718 * does not cross a page boundary.
720 * XXX Fix this some day. eth1394 seems to trigger
721 * it, but ignoring it doesn't seem to cause a
722 * problem.
724 #if 0
725 if (cross_bound((unsigned long)packet->data,
726 packet->data_size)>0) {
727 /* FIXME: do something about it */
728 PRINT(KERN_ERR,
729 "%s: packet data addr: %p size %Zd bytes "
730 "cross page boundary", __FUNCTION__,
731 packet->data, packet->data_size);
733 #endif
734 d->prg_cpu[idx]->end.address = cpu_to_le32(
735 pci_map_single(ohci->dev, packet->data,
736 packet->data_size,
737 PCI_DMA_TODEVICE));
738 OHCI_DMA_ALLOC("single, block transmit packet");
740 d->prg_cpu[idx]->end.branchAddress = 0;
741 d->prg_cpu[idx]->end.status = 0;
742 if (d->branchAddrPtr)
743 *(d->branchAddrPtr) =
744 cpu_to_le32(d->prg_bus[idx] | 0x3);
745 d->branchAddrPtr =
746 &(d->prg_cpu[idx]->end.branchAddress);
747 } else { /* quadlet transmit */
748 if (packet->type == hpsb_raw)
749 d->prg_cpu[idx]->begin.control =
750 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
751 DMA_CTL_IMMEDIATE |
752 DMA_CTL_IRQ |
753 DMA_CTL_BRANCH |
754 (packet->header_size + 4));
755 else
756 d->prg_cpu[idx]->begin.control =
757 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
758 DMA_CTL_IMMEDIATE |
759 DMA_CTL_IRQ |
760 DMA_CTL_BRANCH |
761 packet->header_size);
763 if (d->branchAddrPtr)
764 *(d->branchAddrPtr) =
765 cpu_to_le32(d->prg_bus[idx] | 0x2);
766 d->branchAddrPtr =
767 &(d->prg_cpu[idx]->begin.branchAddress);
770 } else { /* iso packet */
771 d->prg_cpu[idx]->data[0] = packet->speed_code<<16 |
772 (packet->header[0] & 0xFFFF);
773 d->prg_cpu[idx]->data[1] = packet->header[0] & 0xFFFF0000;
774 packet_swab(d->prg_cpu[idx]->data, packet->tcode);
776 d->prg_cpu[idx]->begin.control =
777 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
778 DMA_CTL_IMMEDIATE | 0x8);
779 d->prg_cpu[idx]->end.control =
780 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
781 DMA_CTL_UPDATE |
782 DMA_CTL_IRQ |
783 DMA_CTL_BRANCH |
784 packet->data_size);
785 d->prg_cpu[idx]->end.address = cpu_to_le32(
786 pci_map_single(ohci->dev, packet->data,
787 packet->data_size, PCI_DMA_TODEVICE));
788 OHCI_DMA_ALLOC("single, iso transmit packet");
790 d->prg_cpu[idx]->end.branchAddress = 0;
791 d->prg_cpu[idx]->end.status = 0;
792 DBGMSG("Iso xmit context info: header[%08x %08x]\n"
793 " begin=%08x %08x %08x %08x\n"
794 " %08x %08x %08x %08x\n"
795 " end =%08x %08x %08x %08x",
796 d->prg_cpu[idx]->data[0], d->prg_cpu[idx]->data[1],
797 d->prg_cpu[idx]->begin.control,
798 d->prg_cpu[idx]->begin.address,
799 d->prg_cpu[idx]->begin.branchAddress,
800 d->prg_cpu[idx]->begin.status,
801 d->prg_cpu[idx]->data[0],
802 d->prg_cpu[idx]->data[1],
803 d->prg_cpu[idx]->data[2],
804 d->prg_cpu[idx]->data[3],
805 d->prg_cpu[idx]->end.control,
806 d->prg_cpu[idx]->end.address,
807 d->prg_cpu[idx]->end.branchAddress,
808 d->prg_cpu[idx]->end.status);
809 if (d->branchAddrPtr)
810 *(d->branchAddrPtr) = cpu_to_le32(d->prg_bus[idx] | 0x3);
811 d->branchAddrPtr = &(d->prg_cpu[idx]->end.branchAddress);
813 d->free_prgs--;
815 /* queue the packet in the appropriate context queue */
816 list_add_tail(&packet->driver_list, &d->fifo_list);
817 d->prg_ind = (d->prg_ind + 1) % d->num_desc;
821 * This function fills the FIFO with the (eventual) pending packets
822 * and runs or wakes up the DMA prg if necessary.
824 * The function MUST be called with the d->lock held.
826 static void dma_trm_flush(struct ti_ohci *ohci, struct dma_trm_ctx *d)
828 struct hpsb_packet *packet, *ptmp;
829 int idx = d->prg_ind;
830 int z = 0;
832 /* insert the packets into the dma fifo */
833 list_for_each_entry_safe(packet, ptmp, &d->pending_list, driver_list) {
834 if (!d->free_prgs)
835 break;
837 /* For the first packet only */
838 if (!z)
839 z = (packet->data_size) ? 3 : 2;
841 /* Insert the packet */
842 list_del_init(&packet->driver_list);
843 insert_packet(ohci, d, packet);
846 /* Nothing must have been done, either no free_prgs or no packets */
847 if (z == 0)
848 return;
850 /* Is the context running ? (should be unless it is
851 the first packet to be sent in this context) */
852 if (!(reg_read(ohci, d->ctrlSet) & 0x8000)) {
853 u32 nodeId = reg_read(ohci, OHCI1394_NodeID);
855 DBGMSG("Starting transmit DMA ctx=%d",d->ctx);
856 reg_write(ohci, d->cmdPtr, d->prg_bus[idx] | z);
858 /* Check that the node id is valid, and not 63 */
859 if (!(nodeId & 0x80000000) || (nodeId & 0x3f) == 63)
860 PRINT(KERN_ERR, "Running dma failed because Node ID is not valid");
861 else
862 reg_write(ohci, d->ctrlSet, 0x8000);
863 } else {
864 /* Wake up the dma context if necessary */
865 if (!(reg_read(ohci, d->ctrlSet) & 0x400))
866 DBGMSG("Waking transmit DMA ctx=%d",d->ctx);
868 /* do this always, to avoid race condition */
869 reg_write(ohci, d->ctrlSet, 0x1000);
872 return;
875 /* Transmission of an async or iso packet */
876 static int ohci_transmit(struct hpsb_host *host, struct hpsb_packet *packet)
878 struct ti_ohci *ohci = host->hostdata;
879 struct dma_trm_ctx *d;
880 unsigned long flags;
882 if (packet->data_size > ohci->max_packet_size) {
883 PRINT(KERN_ERR,
884 "Transmit packet size %Zd is too big",
885 packet->data_size);
886 return -EOVERFLOW;
889 /* Decide whether we have an iso, a request, or a response packet */
890 if (packet->type == hpsb_raw)
891 d = &ohci->at_req_context;
892 else if ((packet->tcode == TCODE_ISO_DATA) && (packet->type == hpsb_iso)) {
893 /* The legacy IT DMA context is initialized on first
894 * use. However, the alloc cannot be run from
895 * interrupt context, so we bail out if that is the
896 * case. I don't see anyone sending ISO packets from
897 * interrupt context anyway... */
899 if (ohci->it_legacy_context.ohci == NULL) {
900 if (in_interrupt()) {
901 PRINT(KERN_ERR,
902 "legacy IT context cannot be initialized during interrupt");
903 return -EINVAL;
906 if (alloc_dma_trm_ctx(ohci, &ohci->it_legacy_context,
907 DMA_CTX_ISO, 0, IT_NUM_DESC,
908 OHCI1394_IsoXmitContextBase) < 0) {
909 PRINT(KERN_ERR,
910 "error initializing legacy IT context");
911 return -ENOMEM;
914 initialize_dma_trm_ctx(&ohci->it_legacy_context);
917 d = &ohci->it_legacy_context;
918 } else if ((packet->tcode & 0x02) && (packet->tcode != TCODE_ISO_DATA))
919 d = &ohci->at_resp_context;
920 else
921 d = &ohci->at_req_context;
923 spin_lock_irqsave(&d->lock,flags);
925 list_add_tail(&packet->driver_list, &d->pending_list);
927 dma_trm_flush(ohci, d);
929 spin_unlock_irqrestore(&d->lock,flags);
931 return 0;
934 static int ohci_devctl(struct hpsb_host *host, enum devctl_cmd cmd, int arg)
936 struct ti_ohci *ohci = host->hostdata;
937 int retval = 0;
938 unsigned long flags;
939 int phy_reg;
941 switch (cmd) {
942 case RESET_BUS:
943 switch (arg) {
944 case SHORT_RESET:
945 phy_reg = get_phy_reg(ohci, 5);
946 phy_reg |= 0x40;
947 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
948 break;
949 case LONG_RESET:
950 phy_reg = get_phy_reg(ohci, 1);
951 phy_reg |= 0x40;
952 set_phy_reg(ohci, 1, phy_reg); /* set IBR */
953 break;
954 case SHORT_RESET_NO_FORCE_ROOT:
955 phy_reg = get_phy_reg(ohci, 1);
956 if (phy_reg & 0x80) {
957 phy_reg &= ~0x80;
958 set_phy_reg(ohci, 1, phy_reg); /* clear RHB */
961 phy_reg = get_phy_reg(ohci, 5);
962 phy_reg |= 0x40;
963 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
964 break;
965 case LONG_RESET_NO_FORCE_ROOT:
966 phy_reg = get_phy_reg(ohci, 1);
967 phy_reg &= ~0x80;
968 phy_reg |= 0x40;
969 set_phy_reg(ohci, 1, phy_reg); /* clear RHB, set IBR */
970 break;
971 case SHORT_RESET_FORCE_ROOT:
972 phy_reg = get_phy_reg(ohci, 1);
973 if (!(phy_reg & 0x80)) {
974 phy_reg |= 0x80;
975 set_phy_reg(ohci, 1, phy_reg); /* set RHB */
978 phy_reg = get_phy_reg(ohci, 5);
979 phy_reg |= 0x40;
980 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
981 break;
982 case LONG_RESET_FORCE_ROOT:
983 phy_reg = get_phy_reg(ohci, 1);
984 phy_reg |= 0xc0;
985 set_phy_reg(ohci, 1, phy_reg); /* set RHB and IBR */
986 break;
987 default:
988 retval = -1;
990 break;
992 case GET_CYCLE_COUNTER:
993 retval = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
994 break;
996 case SET_CYCLE_COUNTER:
997 reg_write(ohci, OHCI1394_IsochronousCycleTimer, arg);
998 break;
1000 case SET_BUS_ID:
1001 PRINT(KERN_ERR, "devctl command SET_BUS_ID err");
1002 break;
1004 case ACT_CYCLE_MASTER:
1005 if (arg) {
1006 /* check if we are root and other nodes are present */
1007 u32 nodeId = reg_read(ohci, OHCI1394_NodeID);
1008 if ((nodeId & (1<<30)) && (nodeId & 0x3f)) {
1010 * enable cycleTimer, cycleMaster
1012 DBGMSG("Cycle master enabled");
1013 reg_write(ohci, OHCI1394_LinkControlSet,
1014 OHCI1394_LinkControl_CycleTimerEnable |
1015 OHCI1394_LinkControl_CycleMaster);
1017 } else {
1018 /* disable cycleTimer, cycleMaster, cycleSource */
1019 reg_write(ohci, OHCI1394_LinkControlClear,
1020 OHCI1394_LinkControl_CycleTimerEnable |
1021 OHCI1394_LinkControl_CycleMaster |
1022 OHCI1394_LinkControl_CycleSource);
1024 break;
1026 case CANCEL_REQUESTS:
1027 DBGMSG("Cancel request received");
1028 dma_trm_reset(&ohci->at_req_context);
1029 dma_trm_reset(&ohci->at_resp_context);
1030 break;
1032 case ISO_LISTEN_CHANNEL:
1034 u64 mask;
1036 if (arg<0 || arg>63) {
1037 PRINT(KERN_ERR,
1038 "%s: IS0 listen channel %d is out of range",
1039 __FUNCTION__, arg);
1040 return -EFAULT;
1043 mask = (u64)0x1<<arg;
1045 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1047 if (ohci->ISO_channel_usage & mask) {
1048 PRINT(KERN_ERR,
1049 "%s: IS0 listen channel %d is already used",
1050 __FUNCTION__, arg);
1051 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1052 return -EFAULT;
1055 ohci->ISO_channel_usage |= mask;
1056 ohci->ir_legacy_channels |= mask;
1058 if (arg>31)
1059 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet,
1060 1<<(arg-32));
1061 else
1062 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet,
1063 1<<arg);
1065 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1066 DBGMSG("Listening enabled on channel %d", arg);
1067 break;
1069 case ISO_UNLISTEN_CHANNEL:
1071 u64 mask;
1073 if (arg<0 || arg>63) {
1074 PRINT(KERN_ERR,
1075 "%s: IS0 unlisten channel %d is out of range",
1076 __FUNCTION__, arg);
1077 return -EFAULT;
1080 mask = (u64)0x1<<arg;
1082 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1084 if (!(ohci->ISO_channel_usage & mask)) {
1085 PRINT(KERN_ERR,
1086 "%s: IS0 unlisten channel %d is not used",
1087 __FUNCTION__, arg);
1088 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1089 return -EFAULT;
1092 ohci->ISO_channel_usage &= ~mask;
1093 ohci->ir_legacy_channels &= ~mask;
1095 if (arg>31)
1096 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear,
1097 1<<(arg-32));
1098 else
1099 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear,
1100 1<<arg);
1102 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1103 DBGMSG("Listening disabled on channel %d", arg);
1104 break;
1106 default:
1107 PRINT_G(KERN_ERR, "ohci_devctl cmd %d not implemented yet",
1108 cmd);
1109 break;
1111 return retval;
1114 /***********************************
1115 * rawiso ISO reception *
1116 ***********************************/
1119 We use either buffer-fill or packet-per-buffer DMA mode. The DMA
1120 buffer is split into "blocks" (regions described by one DMA
1121 descriptor). Each block must be one page or less in size, and
1122 must not cross a page boundary.
1124 There is one little wrinkle with buffer-fill mode: a packet that
1125 starts in the final block may wrap around into the first block. But
1126 the user API expects all packets to be contiguous. Our solution is
1127 to keep the very last page of the DMA buffer in reserve - if a
1128 packet spans the gap, we copy its tail into this page.
1131 struct ohci_iso_recv {
1132 struct ti_ohci *ohci;
1134 struct ohci1394_iso_tasklet task;
1135 int task_active;
1137 enum { BUFFER_FILL_MODE = 0,
1138 PACKET_PER_BUFFER_MODE = 1 } dma_mode;
1140 /* memory and PCI mapping for the DMA descriptors */
1141 struct dma_prog_region prog;
1142 struct dma_cmd *block; /* = (struct dma_cmd*) prog.virt */
1144 /* how many DMA blocks fit in the buffer */
1145 unsigned int nblocks;
1147 /* stride of DMA blocks */
1148 unsigned int buf_stride;
1150 /* number of blocks to batch between interrupts */
1151 int block_irq_interval;
1153 /* block that DMA will finish next */
1154 int block_dma;
1156 /* (buffer-fill only) block that the reader will release next */
1157 int block_reader;
1159 /* (buffer-fill only) bytes of buffer the reader has released,
1160 less than one block */
1161 int released_bytes;
1163 /* (buffer-fill only) buffer offset at which the next packet will appear */
1164 int dma_offset;
1166 /* OHCI DMA context control registers */
1167 u32 ContextControlSet;
1168 u32 ContextControlClear;
1169 u32 CommandPtr;
1170 u32 ContextMatch;
1173 static void ohci_iso_recv_task(unsigned long data);
1174 static void ohci_iso_recv_stop(struct hpsb_iso *iso);
1175 static void ohci_iso_recv_shutdown(struct hpsb_iso *iso);
1176 static int ohci_iso_recv_start(struct hpsb_iso *iso, int cycle, int tag_mask, int sync);
1177 static void ohci_iso_recv_program(struct hpsb_iso *iso);
1179 static int ohci_iso_recv_init(struct hpsb_iso *iso)
1181 struct ti_ohci *ohci = iso->host->hostdata;
1182 struct ohci_iso_recv *recv;
1183 int ctx;
1184 int ret = -ENOMEM;
1186 recv = kmalloc(sizeof(*recv), SLAB_KERNEL);
1187 if (!recv)
1188 return -ENOMEM;
1190 iso->hostdata = recv;
1191 recv->ohci = ohci;
1192 recv->task_active = 0;
1193 dma_prog_region_init(&recv->prog);
1194 recv->block = NULL;
1196 /* use buffer-fill mode, unless irq_interval is 1
1197 (note: multichannel requires buffer-fill) */
1199 if (((iso->irq_interval == 1 && iso->dma_mode == HPSB_ISO_DMA_OLD_ABI) ||
1200 iso->dma_mode == HPSB_ISO_DMA_PACKET_PER_BUFFER) && iso->channel != -1) {
1201 recv->dma_mode = PACKET_PER_BUFFER_MODE;
1202 } else {
1203 recv->dma_mode = BUFFER_FILL_MODE;
1206 /* set nblocks, buf_stride, block_irq_interval */
1208 if (recv->dma_mode == BUFFER_FILL_MODE) {
1209 recv->buf_stride = PAGE_SIZE;
1211 /* one block per page of data in the DMA buffer, minus the final guard page */
1212 recv->nblocks = iso->buf_size/PAGE_SIZE - 1;
1213 if (recv->nblocks < 3) {
1214 DBGMSG("ohci_iso_recv_init: DMA buffer too small");
1215 goto err;
1218 /* iso->irq_interval is in packets - translate that to blocks */
1219 if (iso->irq_interval == 1)
1220 recv->block_irq_interval = 1;
1221 else
1222 recv->block_irq_interval = iso->irq_interval *
1223 ((recv->nblocks+1)/iso->buf_packets);
1224 if (recv->block_irq_interval*4 > recv->nblocks)
1225 recv->block_irq_interval = recv->nblocks/4;
1226 if (recv->block_irq_interval < 1)
1227 recv->block_irq_interval = 1;
1229 } else {
1230 int max_packet_size;
1232 recv->nblocks = iso->buf_packets;
1233 recv->block_irq_interval = iso->irq_interval;
1234 if (recv->block_irq_interval * 4 > iso->buf_packets)
1235 recv->block_irq_interval = iso->buf_packets / 4;
1236 if (recv->block_irq_interval < 1)
1237 recv->block_irq_interval = 1;
1239 /* choose a buffer stride */
1240 /* must be a power of 2, and <= PAGE_SIZE */
1242 max_packet_size = iso->buf_size / iso->buf_packets;
1244 for (recv->buf_stride = 8; recv->buf_stride < max_packet_size;
1245 recv->buf_stride *= 2);
1247 if (recv->buf_stride*iso->buf_packets > iso->buf_size ||
1248 recv->buf_stride > PAGE_SIZE) {
1249 /* this shouldn't happen, but anyway... */
1250 DBGMSG("ohci_iso_recv_init: problem choosing a buffer stride");
1251 goto err;
1255 recv->block_reader = 0;
1256 recv->released_bytes = 0;
1257 recv->block_dma = 0;
1258 recv->dma_offset = 0;
1260 /* size of DMA program = one descriptor per block */
1261 if (dma_prog_region_alloc(&recv->prog,
1262 sizeof(struct dma_cmd) * recv->nblocks,
1263 recv->ohci->dev))
1264 goto err;
1266 recv->block = (struct dma_cmd*) recv->prog.kvirt;
1268 ohci1394_init_iso_tasklet(&recv->task,
1269 iso->channel == -1 ? OHCI_ISO_MULTICHANNEL_RECEIVE :
1270 OHCI_ISO_RECEIVE,
1271 ohci_iso_recv_task, (unsigned long) iso);
1273 if (ohci1394_register_iso_tasklet(recv->ohci, &recv->task) < 0)
1274 goto err;
1276 recv->task_active = 1;
1278 /* recv context registers are spaced 32 bytes apart */
1279 ctx = recv->task.context;
1280 recv->ContextControlSet = OHCI1394_IsoRcvContextControlSet + 32 * ctx;
1281 recv->ContextControlClear = OHCI1394_IsoRcvContextControlClear + 32 * ctx;
1282 recv->CommandPtr = OHCI1394_IsoRcvCommandPtr + 32 * ctx;
1283 recv->ContextMatch = OHCI1394_IsoRcvContextMatch + 32 * ctx;
1285 if (iso->channel == -1) {
1286 /* clear multi-channel selection mask */
1287 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiClear, 0xFFFFFFFF);
1288 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoClear, 0xFFFFFFFF);
1291 /* write the DMA program */
1292 ohci_iso_recv_program(iso);
1294 DBGMSG("ohci_iso_recv_init: %s mode, DMA buffer is %lu pages"
1295 " (%u bytes), using %u blocks, buf_stride %u, block_irq_interval %d",
1296 recv->dma_mode == BUFFER_FILL_MODE ?
1297 "buffer-fill" : "packet-per-buffer",
1298 iso->buf_size/PAGE_SIZE, iso->buf_size,
1299 recv->nblocks, recv->buf_stride, recv->block_irq_interval);
1301 return 0;
1303 err:
1304 ohci_iso_recv_shutdown(iso);
1305 return ret;
1308 static void ohci_iso_recv_stop(struct hpsb_iso *iso)
1310 struct ohci_iso_recv *recv = iso->hostdata;
1312 /* disable interrupts */
1313 reg_write(recv->ohci, OHCI1394_IsoRecvIntMaskClear, 1 << recv->task.context);
1315 /* halt DMA */
1316 ohci1394_stop_context(recv->ohci, recv->ContextControlClear, NULL);
1319 static void ohci_iso_recv_shutdown(struct hpsb_iso *iso)
1321 struct ohci_iso_recv *recv = iso->hostdata;
1323 if (recv->task_active) {
1324 ohci_iso_recv_stop(iso);
1325 ohci1394_unregister_iso_tasklet(recv->ohci, &recv->task);
1326 recv->task_active = 0;
1329 dma_prog_region_free(&recv->prog);
1330 kfree(recv);
1331 iso->hostdata = NULL;
1334 /* set up a "gapped" ring buffer DMA program */
1335 static void ohci_iso_recv_program(struct hpsb_iso *iso)
1337 struct ohci_iso_recv *recv = iso->hostdata;
1338 int blk;
1340 /* address of 'branch' field in previous DMA descriptor */
1341 u32 *prev_branch = NULL;
1343 for (blk = 0; blk < recv->nblocks; blk++) {
1344 u32 control;
1346 /* the DMA descriptor */
1347 struct dma_cmd *cmd = &recv->block[blk];
1349 /* offset of the DMA descriptor relative to the DMA prog buffer */
1350 unsigned long prog_offset = blk * sizeof(struct dma_cmd);
1352 /* offset of this packet's data within the DMA buffer */
1353 unsigned long buf_offset = blk * recv->buf_stride;
1355 if (recv->dma_mode == BUFFER_FILL_MODE) {
1356 control = 2 << 28; /* INPUT_MORE */
1357 } else {
1358 control = 3 << 28; /* INPUT_LAST */
1361 control |= 8 << 24; /* s = 1, update xferStatus and resCount */
1363 /* interrupt on last block, and at intervals */
1364 if (blk == recv->nblocks-1 || (blk % recv->block_irq_interval) == 0) {
1365 control |= 3 << 20; /* want interrupt */
1368 control |= 3 << 18; /* enable branch to address */
1369 control |= recv->buf_stride;
1371 cmd->control = cpu_to_le32(control);
1372 cmd->address = cpu_to_le32(dma_region_offset_to_bus(&iso->data_buf, buf_offset));
1373 cmd->branchAddress = 0; /* filled in on next loop */
1374 cmd->status = cpu_to_le32(recv->buf_stride);
1376 /* link the previous descriptor to this one */
1377 if (prev_branch) {
1378 *prev_branch = cpu_to_le32(dma_prog_region_offset_to_bus(&recv->prog, prog_offset) | 1);
1381 prev_branch = &cmd->branchAddress;
1384 /* the final descriptor's branch address and Z should be left at 0 */
1387 /* listen or unlisten to a specific channel (multi-channel mode only) */
1388 static void ohci_iso_recv_change_channel(struct hpsb_iso *iso, unsigned char channel, int listen)
1390 struct ohci_iso_recv *recv = iso->hostdata;
1391 int reg, i;
1393 if (channel < 32) {
1394 reg = listen ? OHCI1394_IRMultiChanMaskLoSet : OHCI1394_IRMultiChanMaskLoClear;
1395 i = channel;
1396 } else {
1397 reg = listen ? OHCI1394_IRMultiChanMaskHiSet : OHCI1394_IRMultiChanMaskHiClear;
1398 i = channel - 32;
1401 reg_write(recv->ohci, reg, (1 << i));
1403 /* issue a dummy read to force all PCI writes to be posted immediately */
1404 mb();
1405 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1408 static void ohci_iso_recv_set_channel_mask(struct hpsb_iso *iso, u64 mask)
1410 struct ohci_iso_recv *recv = iso->hostdata;
1411 int i;
1413 for (i = 0; i < 64; i++) {
1414 if (mask & (1ULL << i)) {
1415 if (i < 32)
1416 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoSet, (1 << i));
1417 else
1418 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiSet, (1 << (i-32)));
1419 } else {
1420 if (i < 32)
1421 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoClear, (1 << i));
1422 else
1423 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiClear, (1 << (i-32)));
1427 /* issue a dummy read to force all PCI writes to be posted immediately */
1428 mb();
1429 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1432 static int ohci_iso_recv_start(struct hpsb_iso *iso, int cycle, int tag_mask, int sync)
1434 struct ohci_iso_recv *recv = iso->hostdata;
1435 struct ti_ohci *ohci = recv->ohci;
1436 u32 command, contextMatch;
1438 reg_write(recv->ohci, recv->ContextControlClear, 0xFFFFFFFF);
1439 wmb();
1441 /* always keep ISO headers */
1442 command = (1 << 30);
1444 if (recv->dma_mode == BUFFER_FILL_MODE)
1445 command |= (1 << 31);
1447 reg_write(recv->ohci, recv->ContextControlSet, command);
1449 /* match on specified tags */
1450 contextMatch = tag_mask << 28;
1452 if (iso->channel == -1) {
1453 /* enable multichannel reception */
1454 reg_write(recv->ohci, recv->ContextControlSet, (1 << 28));
1455 } else {
1456 /* listen on channel */
1457 contextMatch |= iso->channel;
1460 if (cycle != -1) {
1461 u32 seconds;
1463 /* enable cycleMatch */
1464 reg_write(recv->ohci, recv->ContextControlSet, (1 << 29));
1466 /* set starting cycle */
1467 cycle &= 0x1FFF;
1469 /* 'cycle' is only mod 8000, but we also need two 'seconds' bits -
1470 just snarf them from the current time */
1471 seconds = reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer) >> 25;
1473 /* advance one second to give some extra time for DMA to start */
1474 seconds += 1;
1476 cycle |= (seconds & 3) << 13;
1478 contextMatch |= cycle << 12;
1481 if (sync != -1) {
1482 /* set sync flag on first DMA descriptor */
1483 struct dma_cmd *cmd = &recv->block[recv->block_dma];
1484 cmd->control |= cpu_to_le32(DMA_CTL_WAIT);
1486 /* match sync field */
1487 contextMatch |= (sync&0xf)<<8;
1490 reg_write(recv->ohci, recv->ContextMatch, contextMatch);
1492 /* address of first descriptor block */
1493 command = dma_prog_region_offset_to_bus(&recv->prog,
1494 recv->block_dma * sizeof(struct dma_cmd));
1495 command |= 1; /* Z=1 */
1497 reg_write(recv->ohci, recv->CommandPtr, command);
1499 /* enable interrupts */
1500 reg_write(recv->ohci, OHCI1394_IsoRecvIntMaskSet, 1 << recv->task.context);
1502 wmb();
1504 /* run */
1505 reg_write(recv->ohci, recv->ContextControlSet, 0x8000);
1507 /* issue a dummy read of the cycle timer register to force
1508 all PCI writes to be posted immediately */
1509 mb();
1510 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1512 /* check RUN */
1513 if (!(reg_read(recv->ohci, recv->ContextControlSet) & 0x8000)) {
1514 PRINT(KERN_ERR,
1515 "Error starting IR DMA (ContextControl 0x%08x)\n",
1516 reg_read(recv->ohci, recv->ContextControlSet));
1517 return -1;
1520 return 0;
1523 static void ohci_iso_recv_release_block(struct ohci_iso_recv *recv, int block)
1525 /* re-use the DMA descriptor for the block */
1526 /* by linking the previous descriptor to it */
1528 int next_i = block;
1529 int prev_i = (next_i == 0) ? (recv->nblocks - 1) : (next_i - 1);
1531 struct dma_cmd *next = &recv->block[next_i];
1532 struct dma_cmd *prev = &recv->block[prev_i];
1534 /* 'next' becomes the new end of the DMA chain,
1535 so disable branch and enable interrupt */
1536 next->branchAddress = 0;
1537 next->control |= cpu_to_le32(3 << 20);
1538 next->status = cpu_to_le32(recv->buf_stride);
1540 /* link prev to next */
1541 prev->branchAddress = cpu_to_le32(dma_prog_region_offset_to_bus(&recv->prog,
1542 sizeof(struct dma_cmd) * next_i)
1543 | 1); /* Z=1 */
1545 /* disable interrupt on previous DMA descriptor, except at intervals */
1546 if ((prev_i % recv->block_irq_interval) == 0) {
1547 prev->control |= cpu_to_le32(3 << 20); /* enable interrupt */
1548 } else {
1549 prev->control &= cpu_to_le32(~(3<<20)); /* disable interrupt */
1551 wmb();
1553 /* wake up DMA in case it fell asleep */
1554 reg_write(recv->ohci, recv->ContextControlSet, (1 << 12));
1557 static void ohci_iso_recv_bufferfill_release(struct ohci_iso_recv *recv,
1558 struct hpsb_iso_packet_info *info)
1560 int len;
1562 /* release the memory where the packet was */
1563 len = info->len;
1565 /* add the wasted space for padding to 4 bytes */
1566 if (len % 4)
1567 len += 4 - (len % 4);
1569 /* add 8 bytes for the OHCI DMA data format overhead */
1570 len += 8;
1572 recv->released_bytes += len;
1574 /* have we released enough memory for one block? */
1575 while (recv->released_bytes > recv->buf_stride) {
1576 ohci_iso_recv_release_block(recv, recv->block_reader);
1577 recv->block_reader = (recv->block_reader + 1) % recv->nblocks;
1578 recv->released_bytes -= recv->buf_stride;
1582 static inline void ohci_iso_recv_release(struct hpsb_iso *iso, struct hpsb_iso_packet_info *info)
1584 struct ohci_iso_recv *recv = iso->hostdata;
1585 if (recv->dma_mode == BUFFER_FILL_MODE) {
1586 ohci_iso_recv_bufferfill_release(recv, info);
1587 } else {
1588 ohci_iso_recv_release_block(recv, info - iso->infos);
1592 /* parse all packets from blocks that have been fully received */
1593 static void ohci_iso_recv_bufferfill_parse(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1595 int wake = 0;
1596 int runaway = 0;
1597 struct ti_ohci *ohci = recv->ohci;
1599 while (1) {
1600 /* we expect the next parsable packet to begin at recv->dma_offset */
1601 /* note: packet layout is as shown in section 10.6.1.1 of the OHCI spec */
1603 unsigned int offset;
1604 unsigned short len, cycle;
1605 unsigned char channel, tag, sy;
1607 unsigned char *p = iso->data_buf.kvirt;
1609 unsigned int this_block = recv->dma_offset/recv->buf_stride;
1611 /* don't loop indefinitely */
1612 if (runaway++ > 100000) {
1613 atomic_inc(&iso->overflows);
1614 PRINT(KERN_ERR,
1615 "IR DMA error - Runaway during buffer parsing!\n");
1616 break;
1619 /* stop parsing once we arrive at block_dma (i.e. don't get ahead of DMA) */
1620 if (this_block == recv->block_dma)
1621 break;
1623 wake = 1;
1625 /* parse data length, tag, channel, and sy */
1627 /* note: we keep our own local copies of 'len' and 'offset'
1628 so the user can't mess with them by poking in the mmap area */
1630 len = p[recv->dma_offset+2] | (p[recv->dma_offset+3] << 8);
1632 if (len > 4096) {
1633 PRINT(KERN_ERR,
1634 "IR DMA error - bogus 'len' value %u\n", len);
1637 channel = p[recv->dma_offset+1] & 0x3F;
1638 tag = p[recv->dma_offset+1] >> 6;
1639 sy = p[recv->dma_offset+0] & 0xF;
1641 /* advance to data payload */
1642 recv->dma_offset += 4;
1644 /* check for wrap-around */
1645 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1646 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1649 /* dma_offset now points to the first byte of the data payload */
1650 offset = recv->dma_offset;
1652 /* advance to xferStatus/timeStamp */
1653 recv->dma_offset += len;
1655 /* payload is padded to 4 bytes */
1656 if (len % 4) {
1657 recv->dma_offset += 4 - (len%4);
1660 /* check for wrap-around */
1661 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1662 /* uh oh, the packet data wraps from the last
1663 to the first DMA block - make the packet
1664 contiguous by copying its "tail" into the
1665 guard page */
1667 int guard_off = recv->buf_stride*recv->nblocks;
1668 int tail_len = len - (guard_off - offset);
1670 if (tail_len > 0 && tail_len < recv->buf_stride) {
1671 memcpy(iso->data_buf.kvirt + guard_off,
1672 iso->data_buf.kvirt,
1673 tail_len);
1676 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1679 /* parse timestamp */
1680 cycle = p[recv->dma_offset+0] | (p[recv->dma_offset+1]<<8);
1681 cycle &= 0x1FFF;
1683 /* advance to next packet */
1684 recv->dma_offset += 4;
1686 /* check for wrap-around */
1687 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1688 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1691 hpsb_iso_packet_received(iso, offset, len, cycle, channel, tag, sy);
1694 if (wake)
1695 hpsb_iso_wake(iso);
1698 static void ohci_iso_recv_bufferfill_task(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1700 int loop;
1701 struct ti_ohci *ohci = recv->ohci;
1703 /* loop over all blocks */
1704 for (loop = 0; loop < recv->nblocks; loop++) {
1706 /* check block_dma to see if it's done */
1707 struct dma_cmd *im = &recv->block[recv->block_dma];
1709 /* check the DMA descriptor for new writes to xferStatus */
1710 u16 xferstatus = le32_to_cpu(im->status) >> 16;
1712 /* rescount is the number of bytes *remaining to be written* in the block */
1713 u16 rescount = le32_to_cpu(im->status) & 0xFFFF;
1715 unsigned char event = xferstatus & 0x1F;
1717 if (!event) {
1718 /* nothing has happened to this block yet */
1719 break;
1722 if (event != 0x11) {
1723 atomic_inc(&iso->overflows);
1724 PRINT(KERN_ERR,
1725 "IR DMA error - OHCI error code 0x%02x\n", event);
1728 if (rescount != 0) {
1729 /* the card is still writing to this block;
1730 we can't touch it until it's done */
1731 break;
1734 /* OK, the block is finished... */
1736 /* sync our view of the block */
1737 dma_region_sync_for_cpu(&iso->data_buf, recv->block_dma*recv->buf_stride, recv->buf_stride);
1739 /* reset the DMA descriptor */
1740 im->status = recv->buf_stride;
1742 /* advance block_dma */
1743 recv->block_dma = (recv->block_dma + 1) % recv->nblocks;
1745 if ((recv->block_dma+1) % recv->nblocks == recv->block_reader) {
1746 atomic_inc(&iso->overflows);
1747 DBGMSG("ISO reception overflow - "
1748 "ran out of DMA blocks");
1752 /* parse any packets that have arrived */
1753 ohci_iso_recv_bufferfill_parse(iso, recv);
1756 static void ohci_iso_recv_packetperbuf_task(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1758 int count;
1759 int wake = 0;
1760 struct ti_ohci *ohci = recv->ohci;
1762 /* loop over the entire buffer */
1763 for (count = 0; count < recv->nblocks; count++) {
1764 u32 packet_len = 0;
1766 /* pointer to the DMA descriptor */
1767 struct dma_cmd *il = ((struct dma_cmd*) recv->prog.kvirt) + iso->pkt_dma;
1769 /* check the DMA descriptor for new writes to xferStatus */
1770 u16 xferstatus = le32_to_cpu(il->status) >> 16;
1771 u16 rescount = le32_to_cpu(il->status) & 0xFFFF;
1773 unsigned char event = xferstatus & 0x1F;
1775 if (!event) {
1776 /* this packet hasn't come in yet; we are done for now */
1777 goto out;
1780 if (event == 0x11) {
1781 /* packet received successfully! */
1783 /* rescount is the number of bytes *remaining* in the packet buffer,
1784 after the packet was written */
1785 packet_len = recv->buf_stride - rescount;
1787 } else if (event == 0x02) {
1788 PRINT(KERN_ERR, "IR DMA error - packet too long for buffer\n");
1789 } else if (event) {
1790 PRINT(KERN_ERR, "IR DMA error - OHCI error code 0x%02x\n", event);
1793 /* sync our view of the buffer */
1794 dma_region_sync_for_cpu(&iso->data_buf, iso->pkt_dma * recv->buf_stride, recv->buf_stride);
1796 /* record the per-packet info */
1798 /* iso header is 8 bytes ahead of the data payload */
1799 unsigned char *hdr;
1801 unsigned int offset;
1802 unsigned short cycle;
1803 unsigned char channel, tag, sy;
1805 offset = iso->pkt_dma * recv->buf_stride;
1806 hdr = iso->data_buf.kvirt + offset;
1808 /* skip iso header */
1809 offset += 8;
1810 packet_len -= 8;
1812 cycle = (hdr[0] | (hdr[1] << 8)) & 0x1FFF;
1813 channel = hdr[5] & 0x3F;
1814 tag = hdr[5] >> 6;
1815 sy = hdr[4] & 0xF;
1817 hpsb_iso_packet_received(iso, offset, packet_len, cycle, channel, tag, sy);
1820 /* reset the DMA descriptor */
1821 il->status = recv->buf_stride;
1823 wake = 1;
1824 recv->block_dma = iso->pkt_dma;
1827 out:
1828 if (wake)
1829 hpsb_iso_wake(iso);
1832 static void ohci_iso_recv_task(unsigned long data)
1834 struct hpsb_iso *iso = (struct hpsb_iso*) data;
1835 struct ohci_iso_recv *recv = iso->hostdata;
1837 if (recv->dma_mode == BUFFER_FILL_MODE)
1838 ohci_iso_recv_bufferfill_task(iso, recv);
1839 else
1840 ohci_iso_recv_packetperbuf_task(iso, recv);
1843 /***********************************
1844 * rawiso ISO transmission *
1845 ***********************************/
1847 struct ohci_iso_xmit {
1848 struct ti_ohci *ohci;
1849 struct dma_prog_region prog;
1850 struct ohci1394_iso_tasklet task;
1851 int task_active;
1853 u32 ContextControlSet;
1854 u32 ContextControlClear;
1855 u32 CommandPtr;
1858 /* transmission DMA program:
1859 one OUTPUT_MORE_IMMEDIATE for the IT header
1860 one OUTPUT_LAST for the buffer data */
1862 struct iso_xmit_cmd {
1863 struct dma_cmd output_more_immediate;
1864 u8 iso_hdr[8];
1865 u32 unused[2];
1866 struct dma_cmd output_last;
1869 static int ohci_iso_xmit_init(struct hpsb_iso *iso);
1870 static int ohci_iso_xmit_start(struct hpsb_iso *iso, int cycle);
1871 static void ohci_iso_xmit_shutdown(struct hpsb_iso *iso);
1872 static void ohci_iso_xmit_task(unsigned long data);
1874 static int ohci_iso_xmit_init(struct hpsb_iso *iso)
1876 struct ohci_iso_xmit *xmit;
1877 unsigned int prog_size;
1878 int ctx;
1879 int ret = -ENOMEM;
1881 xmit = kmalloc(sizeof(*xmit), SLAB_KERNEL);
1882 if (!xmit)
1883 return -ENOMEM;
1885 iso->hostdata = xmit;
1886 xmit->ohci = iso->host->hostdata;
1887 xmit->task_active = 0;
1889 dma_prog_region_init(&xmit->prog);
1891 prog_size = sizeof(struct iso_xmit_cmd) * iso->buf_packets;
1893 if (dma_prog_region_alloc(&xmit->prog, prog_size, xmit->ohci->dev))
1894 goto err;
1896 ohci1394_init_iso_tasklet(&xmit->task, OHCI_ISO_TRANSMIT,
1897 ohci_iso_xmit_task, (unsigned long) iso);
1899 if (ohci1394_register_iso_tasklet(xmit->ohci, &xmit->task) < 0)
1900 goto err;
1902 xmit->task_active = 1;
1904 /* xmit context registers are spaced 16 bytes apart */
1905 ctx = xmit->task.context;
1906 xmit->ContextControlSet = OHCI1394_IsoXmitContextControlSet + 16 * ctx;
1907 xmit->ContextControlClear = OHCI1394_IsoXmitContextControlClear + 16 * ctx;
1908 xmit->CommandPtr = OHCI1394_IsoXmitCommandPtr + 16 * ctx;
1910 return 0;
1912 err:
1913 ohci_iso_xmit_shutdown(iso);
1914 return ret;
1917 static void ohci_iso_xmit_stop(struct hpsb_iso *iso)
1919 struct ohci_iso_xmit *xmit = iso->hostdata;
1920 struct ti_ohci *ohci = xmit->ohci;
1922 /* disable interrupts */
1923 reg_write(xmit->ohci, OHCI1394_IsoXmitIntMaskClear, 1 << xmit->task.context);
1925 /* halt DMA */
1926 if (ohci1394_stop_context(xmit->ohci, xmit->ContextControlClear, NULL)) {
1927 /* XXX the DMA context will lock up if you try to send too much data! */
1928 PRINT(KERN_ERR,
1929 "you probably exceeded the OHCI card's bandwidth limit - "
1930 "reload the module and reduce xmit bandwidth");
1934 static void ohci_iso_xmit_shutdown(struct hpsb_iso *iso)
1936 struct ohci_iso_xmit *xmit = iso->hostdata;
1938 if (xmit->task_active) {
1939 ohci_iso_xmit_stop(iso);
1940 ohci1394_unregister_iso_tasklet(xmit->ohci, &xmit->task);
1941 xmit->task_active = 0;
1944 dma_prog_region_free(&xmit->prog);
1945 kfree(xmit);
1946 iso->hostdata = NULL;
1949 static void ohci_iso_xmit_task(unsigned long data)
1951 struct hpsb_iso *iso = (struct hpsb_iso*) data;
1952 struct ohci_iso_xmit *xmit = iso->hostdata;
1953 struct ti_ohci *ohci = xmit->ohci;
1954 int wake = 0;
1955 int count;
1957 /* check the whole buffer if necessary, starting at pkt_dma */
1958 for (count = 0; count < iso->buf_packets; count++) {
1959 int cycle;
1961 /* DMA descriptor */
1962 struct iso_xmit_cmd *cmd = dma_region_i(&xmit->prog, struct iso_xmit_cmd, iso->pkt_dma);
1964 /* check for new writes to xferStatus */
1965 u16 xferstatus = le32_to_cpu(cmd->output_last.status) >> 16;
1966 u8 event = xferstatus & 0x1F;
1968 if (!event) {
1969 /* packet hasn't been sent yet; we are done for now */
1970 break;
1973 if (event != 0x11)
1974 PRINT(KERN_ERR,
1975 "IT DMA error - OHCI error code 0x%02x\n", event);
1977 /* at least one packet went out, so wake up the writer */
1978 wake = 1;
1980 /* parse cycle */
1981 cycle = le32_to_cpu(cmd->output_last.status) & 0x1FFF;
1983 /* tell the subsystem the packet has gone out */
1984 hpsb_iso_packet_sent(iso, cycle, event != 0x11);
1986 /* reset the DMA descriptor for next time */
1987 cmd->output_last.status = 0;
1990 if (wake)
1991 hpsb_iso_wake(iso);
1994 static int ohci_iso_xmit_queue(struct hpsb_iso *iso, struct hpsb_iso_packet_info *info)
1996 struct ohci_iso_xmit *xmit = iso->hostdata;
1997 struct ti_ohci *ohci = xmit->ohci;
1999 int next_i, prev_i;
2000 struct iso_xmit_cmd *next, *prev;
2002 unsigned int offset;
2003 unsigned short len;
2004 unsigned char tag, sy;
2006 /* check that the packet doesn't cross a page boundary
2007 (we could allow this if we added OUTPUT_MORE descriptor support) */
2008 if (cross_bound(info->offset, info->len)) {
2009 PRINT(KERN_ERR,
2010 "rawiso xmit: packet %u crosses a page boundary",
2011 iso->first_packet);
2012 return -EINVAL;
2015 offset = info->offset;
2016 len = info->len;
2017 tag = info->tag;
2018 sy = info->sy;
2020 /* sync up the card's view of the buffer */
2021 dma_region_sync_for_device(&iso->data_buf, offset, len);
2023 /* append first_packet to the DMA chain */
2024 /* by linking the previous descriptor to it */
2025 /* (next will become the new end of the DMA chain) */
2027 next_i = iso->first_packet;
2028 prev_i = (next_i == 0) ? (iso->buf_packets - 1) : (next_i - 1);
2030 next = dma_region_i(&xmit->prog, struct iso_xmit_cmd, next_i);
2031 prev = dma_region_i(&xmit->prog, struct iso_xmit_cmd, prev_i);
2033 /* set up the OUTPUT_MORE_IMMEDIATE descriptor */
2034 memset(next, 0, sizeof(struct iso_xmit_cmd));
2035 next->output_more_immediate.control = cpu_to_le32(0x02000008);
2037 /* ISO packet header is embedded in the OUTPUT_MORE_IMMEDIATE */
2039 /* tcode = 0xA, and sy */
2040 next->iso_hdr[0] = 0xA0 | (sy & 0xF);
2042 /* tag and channel number */
2043 next->iso_hdr[1] = (tag << 6) | (iso->channel & 0x3F);
2045 /* transmission speed */
2046 next->iso_hdr[2] = iso->speed & 0x7;
2048 /* payload size */
2049 next->iso_hdr[6] = len & 0xFF;
2050 next->iso_hdr[7] = len >> 8;
2052 /* set up the OUTPUT_LAST */
2053 next->output_last.control = cpu_to_le32(1 << 28);
2054 next->output_last.control |= cpu_to_le32(1 << 27); /* update timeStamp */
2055 next->output_last.control |= cpu_to_le32(3 << 20); /* want interrupt */
2056 next->output_last.control |= cpu_to_le32(3 << 18); /* enable branch */
2057 next->output_last.control |= cpu_to_le32(len);
2059 /* payload bus address */
2060 next->output_last.address = cpu_to_le32(dma_region_offset_to_bus(&iso->data_buf, offset));
2062 /* leave branchAddress at zero for now */
2064 /* re-write the previous DMA descriptor to chain to this one */
2066 /* set prev branch address to point to next (Z=3) */
2067 prev->output_last.branchAddress = cpu_to_le32(
2068 dma_prog_region_offset_to_bus(&xmit->prog, sizeof(struct iso_xmit_cmd) * next_i) | 3);
2070 /* disable interrupt, unless required by the IRQ interval */
2071 if (prev_i % iso->irq_interval) {
2072 prev->output_last.control &= cpu_to_le32(~(3 << 20)); /* no interrupt */
2073 } else {
2074 prev->output_last.control |= cpu_to_le32(3 << 20); /* enable interrupt */
2077 wmb();
2079 /* wake DMA in case it is sleeping */
2080 reg_write(xmit->ohci, xmit->ContextControlSet, 1 << 12);
2082 /* issue a dummy read of the cycle timer to force all PCI
2083 writes to be posted immediately */
2084 mb();
2085 reg_read(xmit->ohci, OHCI1394_IsochronousCycleTimer);
2087 return 0;
2090 static int ohci_iso_xmit_start(struct hpsb_iso *iso, int cycle)
2092 struct ohci_iso_xmit *xmit = iso->hostdata;
2093 struct ti_ohci *ohci = xmit->ohci;
2095 /* clear out the control register */
2096 reg_write(xmit->ohci, xmit->ContextControlClear, 0xFFFFFFFF);
2097 wmb();
2099 /* address and length of first descriptor block (Z=3) */
2100 reg_write(xmit->ohci, xmit->CommandPtr,
2101 dma_prog_region_offset_to_bus(&xmit->prog, iso->pkt_dma * sizeof(struct iso_xmit_cmd)) | 3);
2103 /* cycle match */
2104 if (cycle != -1) {
2105 u32 start = cycle & 0x1FFF;
2107 /* 'cycle' is only mod 8000, but we also need two 'seconds' bits -
2108 just snarf them from the current time */
2109 u32 seconds = reg_read(xmit->ohci, OHCI1394_IsochronousCycleTimer) >> 25;
2111 /* advance one second to give some extra time for DMA to start */
2112 seconds += 1;
2114 start |= (seconds & 3) << 13;
2116 reg_write(xmit->ohci, xmit->ContextControlSet, 0x80000000 | (start << 16));
2119 /* enable interrupts */
2120 reg_write(xmit->ohci, OHCI1394_IsoXmitIntMaskSet, 1 << xmit->task.context);
2122 /* run */
2123 reg_write(xmit->ohci, xmit->ContextControlSet, 0x8000);
2124 mb();
2126 /* wait 100 usec to give the card time to go active */
2127 udelay(100);
2129 /* check the RUN bit */
2130 if (!(reg_read(xmit->ohci, xmit->ContextControlSet) & 0x8000)) {
2131 PRINT(KERN_ERR, "Error starting IT DMA (ContextControl 0x%08x)\n",
2132 reg_read(xmit->ohci, xmit->ContextControlSet));
2133 return -1;
2136 return 0;
2139 static int ohci_isoctl(struct hpsb_iso *iso, enum isoctl_cmd cmd, unsigned long arg)
2142 switch(cmd) {
2143 case XMIT_INIT:
2144 return ohci_iso_xmit_init(iso);
2145 case XMIT_START:
2146 return ohci_iso_xmit_start(iso, arg);
2147 case XMIT_STOP:
2148 ohci_iso_xmit_stop(iso);
2149 return 0;
2150 case XMIT_QUEUE:
2151 return ohci_iso_xmit_queue(iso, (struct hpsb_iso_packet_info*) arg);
2152 case XMIT_SHUTDOWN:
2153 ohci_iso_xmit_shutdown(iso);
2154 return 0;
2156 case RECV_INIT:
2157 return ohci_iso_recv_init(iso);
2158 case RECV_START: {
2159 int *args = (int*) arg;
2160 return ohci_iso_recv_start(iso, args[0], args[1], args[2]);
2162 case RECV_STOP:
2163 ohci_iso_recv_stop(iso);
2164 return 0;
2165 case RECV_RELEASE:
2166 ohci_iso_recv_release(iso, (struct hpsb_iso_packet_info*) arg);
2167 return 0;
2168 case RECV_FLUSH:
2169 ohci_iso_recv_task((unsigned long) iso);
2170 return 0;
2171 case RECV_SHUTDOWN:
2172 ohci_iso_recv_shutdown(iso);
2173 return 0;
2174 case RECV_LISTEN_CHANNEL:
2175 ohci_iso_recv_change_channel(iso, arg, 1);
2176 return 0;
2177 case RECV_UNLISTEN_CHANNEL:
2178 ohci_iso_recv_change_channel(iso, arg, 0);
2179 return 0;
2180 case RECV_SET_CHANNEL_MASK:
2181 ohci_iso_recv_set_channel_mask(iso, *((u64*) arg));
2182 return 0;
2184 default:
2185 PRINT_G(KERN_ERR, "ohci_isoctl cmd %d not implemented yet",
2186 cmd);
2187 break;
2189 return -EINVAL;
2192 /***************************************
2193 * IEEE-1394 functionality section END *
2194 ***************************************/
2197 /********************************************************
2198 * Global stuff (interrupt handler, init/shutdown code) *
2199 ********************************************************/
2201 static void dma_trm_reset(struct dma_trm_ctx *d)
2203 unsigned long flags;
2204 LIST_HEAD(packet_list);
2205 struct ti_ohci *ohci = d->ohci;
2206 struct hpsb_packet *packet, *ptmp;
2208 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
2210 /* Lock the context, reset it and release it. Move the packets
2211 * that were pending in the context to packet_list and free
2212 * them after releasing the lock. */
2214 spin_lock_irqsave(&d->lock, flags);
2216 list_splice(&d->fifo_list, &packet_list);
2217 list_splice(&d->pending_list, &packet_list);
2218 INIT_LIST_HEAD(&d->fifo_list);
2219 INIT_LIST_HEAD(&d->pending_list);
2221 d->branchAddrPtr = NULL;
2222 d->sent_ind = d->prg_ind;
2223 d->free_prgs = d->num_desc;
2225 spin_unlock_irqrestore(&d->lock, flags);
2227 if (list_empty(&packet_list))
2228 return;
2230 PRINT(KERN_INFO, "AT dma reset ctx=%d, aborting transmission", d->ctx);
2232 /* Now process subsystem callbacks for the packets from this
2233 * context. */
2234 list_for_each_entry_safe(packet, ptmp, &packet_list, driver_list) {
2235 list_del_init(&packet->driver_list);
2236 hpsb_packet_sent(ohci->host, packet, ACKX_ABORTED);
2240 static void ohci_schedule_iso_tasklets(struct ti_ohci *ohci,
2241 quadlet_t rx_event,
2242 quadlet_t tx_event)
2244 struct ohci1394_iso_tasklet *t;
2245 unsigned long mask;
2247 spin_lock(&ohci->iso_tasklet_list_lock);
2249 list_for_each_entry(t, &ohci->iso_tasklet_list, link) {
2250 mask = 1 << t->context;
2252 if (t->type == OHCI_ISO_TRANSMIT && tx_event & mask)
2253 tasklet_schedule(&t->tasklet);
2254 else if (rx_event & mask)
2255 tasklet_schedule(&t->tasklet);
2258 spin_unlock(&ohci->iso_tasklet_list_lock);
2262 static irqreturn_t ohci_irq_handler(int irq, void *dev_id,
2263 struct pt_regs *regs_are_unused)
2265 quadlet_t event, node_id;
2266 struct ti_ohci *ohci = (struct ti_ohci *)dev_id;
2267 struct hpsb_host *host = ohci->host;
2268 int phyid = -1, isroot = 0;
2269 unsigned long flags;
2271 /* Read and clear the interrupt event register. Don't clear
2272 * the busReset event, though. This is done when we get the
2273 * selfIDComplete interrupt. */
2274 spin_lock_irqsave(&ohci->event_lock, flags);
2275 event = reg_read(ohci, OHCI1394_IntEventClear);
2276 reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
2277 spin_unlock_irqrestore(&ohci->event_lock, flags);
2279 if (!event)
2280 return IRQ_NONE;
2282 /* If event is ~(u32)0 cardbus card was ejected. In this case
2283 * we just return, and clean up in the ohci1394_pci_remove
2284 * function. */
2285 if (event == ~(u32) 0) {
2286 DBGMSG("Device removed.");
2287 return IRQ_NONE;
2290 DBGMSG("IntEvent: %08x", event);
2292 if (event & OHCI1394_unrecoverableError) {
2293 int ctx;
2294 PRINT(KERN_ERR, "Unrecoverable error!");
2296 if (reg_read(ohci, OHCI1394_AsReqTrContextControlSet) & 0x800)
2297 PRINT(KERN_ERR, "Async Req Tx Context died: "
2298 "ctrl[%08x] cmdptr[%08x]",
2299 reg_read(ohci, OHCI1394_AsReqTrContextControlSet),
2300 reg_read(ohci, OHCI1394_AsReqTrCommandPtr));
2302 if (reg_read(ohci, OHCI1394_AsRspTrContextControlSet) & 0x800)
2303 PRINT(KERN_ERR, "Async Rsp Tx Context died: "
2304 "ctrl[%08x] cmdptr[%08x]",
2305 reg_read(ohci, OHCI1394_AsRspTrContextControlSet),
2306 reg_read(ohci, OHCI1394_AsRspTrCommandPtr));
2308 if (reg_read(ohci, OHCI1394_AsReqRcvContextControlSet) & 0x800)
2309 PRINT(KERN_ERR, "Async Req Rcv Context died: "
2310 "ctrl[%08x] cmdptr[%08x]",
2311 reg_read(ohci, OHCI1394_AsReqRcvContextControlSet),
2312 reg_read(ohci, OHCI1394_AsReqRcvCommandPtr));
2314 if (reg_read(ohci, OHCI1394_AsRspRcvContextControlSet) & 0x800)
2315 PRINT(KERN_ERR, "Async Rsp Rcv Context died: "
2316 "ctrl[%08x] cmdptr[%08x]",
2317 reg_read(ohci, OHCI1394_AsRspRcvContextControlSet),
2318 reg_read(ohci, OHCI1394_AsRspRcvCommandPtr));
2320 for (ctx = 0; ctx < ohci->nb_iso_xmit_ctx; ctx++) {
2321 if (reg_read(ohci, OHCI1394_IsoXmitContextControlSet + (16 * ctx)) & 0x800)
2322 PRINT(KERN_ERR, "Iso Xmit %d Context died: "
2323 "ctrl[%08x] cmdptr[%08x]", ctx,
2324 reg_read(ohci, OHCI1394_IsoXmitContextControlSet + (16 * ctx)),
2325 reg_read(ohci, OHCI1394_IsoXmitCommandPtr + (16 * ctx)));
2328 for (ctx = 0; ctx < ohci->nb_iso_rcv_ctx; ctx++) {
2329 if (reg_read(ohci, OHCI1394_IsoRcvContextControlSet + (32 * ctx)) & 0x800)
2330 PRINT(KERN_ERR, "Iso Recv %d Context died: "
2331 "ctrl[%08x] cmdptr[%08x] match[%08x]", ctx,
2332 reg_read(ohci, OHCI1394_IsoRcvContextControlSet + (32 * ctx)),
2333 reg_read(ohci, OHCI1394_IsoRcvCommandPtr + (32 * ctx)),
2334 reg_read(ohci, OHCI1394_IsoRcvContextMatch + (32 * ctx)));
2337 event &= ~OHCI1394_unrecoverableError;
2340 if (event & OHCI1394_cycleInconsistent) {
2341 /* We subscribe to the cycleInconsistent event only to
2342 * clear the corresponding event bit... otherwise,
2343 * isochronous cycleMatch DMA won't work. */
2344 DBGMSG("OHCI1394_cycleInconsistent");
2345 event &= ~OHCI1394_cycleInconsistent;
2348 if (event & OHCI1394_busReset) {
2349 /* The busReset event bit can't be cleared during the
2350 * selfID phase, so we disable busReset interrupts, to
2351 * avoid burying the cpu in interrupt requests. */
2352 spin_lock_irqsave(&ohci->event_lock, flags);
2353 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2355 if (ohci->check_busreset) {
2356 int loop_count = 0;
2358 udelay(10);
2360 while (reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
2361 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2363 spin_unlock_irqrestore(&ohci->event_lock, flags);
2364 udelay(10);
2365 spin_lock_irqsave(&ohci->event_lock, flags);
2367 /* The loop counter check is to prevent the driver
2368 * from remaining in this state forever. For the
2369 * initial bus reset, the loop continues for ever
2370 * and the system hangs, until some device is plugged-in
2371 * or out manually into a port! The forced reset seems
2372 * to solve this problem. This mainly effects nForce2. */
2373 if (loop_count > 10000) {
2374 ohci_devctl(host, RESET_BUS, LONG_RESET);
2375 DBGMSG("Detected bus-reset loop. Forced a bus reset!");
2376 loop_count = 0;
2379 loop_count++;
2382 spin_unlock_irqrestore(&ohci->event_lock, flags);
2383 if (!host->in_bus_reset) {
2384 DBGMSG("irq_handler: Bus reset requested");
2386 /* Subsystem call */
2387 hpsb_bus_reset(ohci->host);
2389 event &= ~OHCI1394_busReset;
2392 if (event & OHCI1394_reqTxComplete) {
2393 struct dma_trm_ctx *d = &ohci->at_req_context;
2394 DBGMSG("Got reqTxComplete interrupt "
2395 "status=0x%08X", reg_read(ohci, d->ctrlSet));
2396 if (reg_read(ohci, d->ctrlSet) & 0x800)
2397 ohci1394_stop_context(ohci, d->ctrlClear,
2398 "reqTxComplete");
2399 else
2400 dma_trm_tasklet((unsigned long)d);
2401 //tasklet_schedule(&d->task);
2402 event &= ~OHCI1394_reqTxComplete;
2404 if (event & OHCI1394_respTxComplete) {
2405 struct dma_trm_ctx *d = &ohci->at_resp_context;
2406 DBGMSG("Got respTxComplete interrupt "
2407 "status=0x%08X", reg_read(ohci, d->ctrlSet));
2408 if (reg_read(ohci, d->ctrlSet) & 0x800)
2409 ohci1394_stop_context(ohci, d->ctrlClear,
2410 "respTxComplete");
2411 else
2412 tasklet_schedule(&d->task);
2413 event &= ~OHCI1394_respTxComplete;
2415 if (event & OHCI1394_RQPkt) {
2416 struct dma_rcv_ctx *d = &ohci->ar_req_context;
2417 DBGMSG("Got RQPkt interrupt status=0x%08X",
2418 reg_read(ohci, d->ctrlSet));
2419 if (reg_read(ohci, d->ctrlSet) & 0x800)
2420 ohci1394_stop_context(ohci, d->ctrlClear, "RQPkt");
2421 else
2422 tasklet_schedule(&d->task);
2423 event &= ~OHCI1394_RQPkt;
2425 if (event & OHCI1394_RSPkt) {
2426 struct dma_rcv_ctx *d = &ohci->ar_resp_context;
2427 DBGMSG("Got RSPkt interrupt status=0x%08X",
2428 reg_read(ohci, d->ctrlSet));
2429 if (reg_read(ohci, d->ctrlSet) & 0x800)
2430 ohci1394_stop_context(ohci, d->ctrlClear, "RSPkt");
2431 else
2432 tasklet_schedule(&d->task);
2433 event &= ~OHCI1394_RSPkt;
2435 if (event & OHCI1394_isochRx) {
2436 quadlet_t rx_event;
2438 rx_event = reg_read(ohci, OHCI1394_IsoRecvIntEventSet);
2439 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, rx_event);
2440 ohci_schedule_iso_tasklets(ohci, rx_event, 0);
2441 event &= ~OHCI1394_isochRx;
2443 if (event & OHCI1394_isochTx) {
2444 quadlet_t tx_event;
2446 tx_event = reg_read(ohci, OHCI1394_IsoXmitIntEventSet);
2447 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, tx_event);
2448 ohci_schedule_iso_tasklets(ohci, 0, tx_event);
2449 event &= ~OHCI1394_isochTx;
2451 if (event & OHCI1394_selfIDComplete) {
2452 if (host->in_bus_reset) {
2453 node_id = reg_read(ohci, OHCI1394_NodeID);
2455 if (!(node_id & 0x80000000)) {
2456 PRINT(KERN_ERR,
2457 "SelfID received, but NodeID invalid "
2458 "(probably new bus reset occurred): %08X",
2459 node_id);
2460 goto selfid_not_valid;
2463 phyid = node_id & 0x0000003f;
2464 isroot = (node_id & 0x40000000) != 0;
2466 DBGMSG("SelfID interrupt received "
2467 "(phyid %d, %s)", phyid,
2468 (isroot ? "root" : "not root"));
2470 handle_selfid(ohci, host, phyid, isroot);
2472 /* Clear the bus reset event and re-enable the
2473 * busReset interrupt. */
2474 spin_lock_irqsave(&ohci->event_lock, flags);
2475 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2476 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2477 spin_unlock_irqrestore(&ohci->event_lock, flags);
2479 /* Accept Physical requests from all nodes. */
2480 reg_write(ohci,OHCI1394_AsReqFilterHiSet, 0xffffffff);
2481 reg_write(ohci,OHCI1394_AsReqFilterLoSet, 0xffffffff);
2483 /* Turn on phys dma reception.
2485 * TODO: Enable some sort of filtering management.
2487 if (phys_dma) {
2488 reg_write(ohci,OHCI1394_PhyReqFilterHiSet, 0xffffffff);
2489 reg_write(ohci,OHCI1394_PhyReqFilterLoSet, 0xffffffff);
2490 reg_write(ohci,OHCI1394_PhyUpperBound, 0xffff0000);
2491 } else {
2492 reg_write(ohci,OHCI1394_PhyReqFilterHiSet, 0x00000000);
2493 reg_write(ohci,OHCI1394_PhyReqFilterLoSet, 0x00000000);
2496 DBGMSG("PhyReqFilter=%08x%08x",
2497 reg_read(ohci,OHCI1394_PhyReqFilterHiSet),
2498 reg_read(ohci,OHCI1394_PhyReqFilterLoSet));
2500 hpsb_selfid_complete(host, phyid, isroot);
2501 } else
2502 PRINT(KERN_ERR,
2503 "SelfID received outside of bus reset sequence");
2505 selfid_not_valid:
2506 event &= ~OHCI1394_selfIDComplete;
2509 /* Make sure we handle everything, just in case we accidentally
2510 * enabled an interrupt that we didn't write a handler for. */
2511 if (event)
2512 PRINT(KERN_ERR, "Unhandled interrupt(s) 0x%08x",
2513 event);
2515 return IRQ_HANDLED;
2518 /* Put the buffer back into the dma context */
2519 static void insert_dma_buffer(struct dma_rcv_ctx *d, int idx)
2521 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2522 DBGMSG("Inserting dma buf ctx=%d idx=%d", d->ctx, idx);
2524 d->prg_cpu[idx]->status = cpu_to_le32(d->buf_size);
2525 d->prg_cpu[idx]->branchAddress &= le32_to_cpu(0xfffffff0);
2526 idx = (idx + d->num_desc - 1 ) % d->num_desc;
2527 d->prg_cpu[idx]->branchAddress |= le32_to_cpu(0x00000001);
2529 /* To avoid a race, ensure 1394 interface hardware sees the inserted
2530 * context program descriptors before it sees the wakeup bit set. */
2531 wmb();
2533 /* wake up the dma context if necessary */
2534 if (!(reg_read(ohci, d->ctrlSet) & 0x400)) {
2535 PRINT(KERN_INFO,
2536 "Waking dma ctx=%d ... processing is probably too slow",
2537 d->ctx);
2540 /* do this always, to avoid race condition */
2541 reg_write(ohci, d->ctrlSet, 0x1000);
2544 #define cond_le32_to_cpu(data, noswap) \
2545 (noswap ? data : le32_to_cpu(data))
2547 static const int TCODE_SIZE[16] = {20, 0, 16, -1, 16, 20, 20, 0,
2548 -1, 0, -1, 0, -1, -1, 16, -1};
2551 * Determine the length of a packet in the buffer
2552 * Optimization suggested by Pascal Drolet <pascal.drolet@informission.ca>
2554 static __inline__ int packet_length(struct dma_rcv_ctx *d, int idx, quadlet_t *buf_ptr,
2555 int offset, unsigned char tcode, int noswap)
2557 int length = -1;
2559 if (d->type == DMA_CTX_ASYNC_REQ || d->type == DMA_CTX_ASYNC_RESP) {
2560 length = TCODE_SIZE[tcode];
2561 if (length == 0) {
2562 if (offset + 12 >= d->buf_size) {
2563 length = (cond_le32_to_cpu(d->buf_cpu[(idx + 1) % d->num_desc]
2564 [3 - ((d->buf_size - offset) >> 2)], noswap) >> 16);
2565 } else {
2566 length = (cond_le32_to_cpu(buf_ptr[3], noswap) >> 16);
2568 length += 20;
2570 } else if (d->type == DMA_CTX_ISO) {
2571 /* Assumption: buffer fill mode with header/trailer */
2572 length = (cond_le32_to_cpu(buf_ptr[0], noswap) >> 16) + 8;
2575 if (length > 0 && length % 4)
2576 length += 4 - (length % 4);
2578 return length;
2581 /* Tasklet that processes dma receive buffers */
2582 static void dma_rcv_tasklet (unsigned long data)
2584 struct dma_rcv_ctx *d = (struct dma_rcv_ctx*)data;
2585 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2586 unsigned int split_left, idx, offset, rescount;
2587 unsigned char tcode;
2588 int length, bytes_left, ack;
2589 unsigned long flags;
2590 quadlet_t *buf_ptr;
2591 char *split_ptr;
2592 char msg[256];
2594 spin_lock_irqsave(&d->lock, flags);
2596 idx = d->buf_ind;
2597 offset = d->buf_offset;
2598 buf_ptr = d->buf_cpu[idx] + offset/4;
2600 rescount = le32_to_cpu(d->prg_cpu[idx]->status) & 0xffff;
2601 bytes_left = d->buf_size - rescount - offset;
2603 while (bytes_left > 0) {
2604 tcode = (cond_le32_to_cpu(buf_ptr[0], ohci->no_swap_incoming) >> 4) & 0xf;
2606 /* packet_length() will return < 4 for an error */
2607 length = packet_length(d, idx, buf_ptr, offset, tcode, ohci->no_swap_incoming);
2609 if (length < 4) { /* something is wrong */
2610 sprintf(msg,"Unexpected tcode 0x%x(0x%08x) in AR ctx=%d, length=%d",
2611 tcode, cond_le32_to_cpu(buf_ptr[0], ohci->no_swap_incoming),
2612 d->ctx, length);
2613 ohci1394_stop_context(ohci, d->ctrlClear, msg);
2614 spin_unlock_irqrestore(&d->lock, flags);
2615 return;
2618 /* The first case is where we have a packet that crosses
2619 * over more than one descriptor. The next case is where
2620 * it's all in the first descriptor. */
2621 if ((offset + length) > d->buf_size) {
2622 DBGMSG("Split packet rcv'd");
2623 if (length > d->split_buf_size) {
2624 ohci1394_stop_context(ohci, d->ctrlClear,
2625 "Split packet size exceeded");
2626 d->buf_ind = idx;
2627 d->buf_offset = offset;
2628 spin_unlock_irqrestore(&d->lock, flags);
2629 return;
2632 if (le32_to_cpu(d->prg_cpu[(idx+1)%d->num_desc]->status)
2633 == d->buf_size) {
2634 /* Other part of packet not written yet.
2635 * this should never happen I think
2636 * anyway we'll get it on the next call. */
2637 PRINT(KERN_INFO,
2638 "Got only half a packet!");
2639 d->buf_ind = idx;
2640 d->buf_offset = offset;
2641 spin_unlock_irqrestore(&d->lock, flags);
2642 return;
2645 split_left = length;
2646 split_ptr = (char *)d->spb;
2647 memcpy(split_ptr,buf_ptr,d->buf_size-offset);
2648 split_left -= d->buf_size-offset;
2649 split_ptr += d->buf_size-offset;
2650 insert_dma_buffer(d, idx);
2651 idx = (idx+1) % d->num_desc;
2652 buf_ptr = d->buf_cpu[idx];
2653 offset=0;
2655 while (split_left >= d->buf_size) {
2656 memcpy(split_ptr,buf_ptr,d->buf_size);
2657 split_ptr += d->buf_size;
2658 split_left -= d->buf_size;
2659 insert_dma_buffer(d, idx);
2660 idx = (idx+1) % d->num_desc;
2661 buf_ptr = d->buf_cpu[idx];
2664 if (split_left > 0) {
2665 memcpy(split_ptr, buf_ptr, split_left);
2666 offset = split_left;
2667 buf_ptr += offset/4;
2669 } else {
2670 DBGMSG("Single packet rcv'd");
2671 memcpy(d->spb, buf_ptr, length);
2672 offset += length;
2673 buf_ptr += length/4;
2674 if (offset==d->buf_size) {
2675 insert_dma_buffer(d, idx);
2676 idx = (idx+1) % d->num_desc;
2677 buf_ptr = d->buf_cpu[idx];
2678 offset=0;
2682 /* We get one phy packet to the async descriptor for each
2683 * bus reset. We always ignore it. */
2684 if (tcode != OHCI1394_TCODE_PHY) {
2685 if (!ohci->no_swap_incoming)
2686 packet_swab(d->spb, tcode);
2687 DBGMSG("Packet received from node"
2688 " %d ack=0x%02X spd=%d tcode=0x%X"
2689 " length=%d ctx=%d tlabel=%d",
2690 (d->spb[1]>>16)&0x3f,
2691 (cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>16)&0x1f,
2692 (cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>21)&0x3,
2693 tcode, length, d->ctx,
2694 (cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>10)&0x3f);
2696 ack = (((cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>16)&0x1f)
2697 == 0x11) ? 1 : 0;
2699 hpsb_packet_received(ohci->host, d->spb,
2700 length-4, ack);
2702 #ifdef OHCI1394_DEBUG
2703 else
2704 PRINT (KERN_DEBUG, "Got phy packet ctx=%d ... discarded",
2705 d->ctx);
2706 #endif
2708 rescount = le32_to_cpu(d->prg_cpu[idx]->status) & 0xffff;
2710 bytes_left = d->buf_size - rescount - offset;
2714 d->buf_ind = idx;
2715 d->buf_offset = offset;
2717 spin_unlock_irqrestore(&d->lock, flags);
2720 /* Bottom half that processes sent packets */
2721 static void dma_trm_tasklet (unsigned long data)
2723 struct dma_trm_ctx *d = (struct dma_trm_ctx*)data;
2724 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2725 struct hpsb_packet *packet, *ptmp;
2726 unsigned long flags;
2727 u32 status, ack;
2728 size_t datasize;
2730 spin_lock_irqsave(&d->lock, flags);
2732 list_for_each_entry_safe(packet, ptmp, &d->fifo_list, driver_list) {
2733 datasize = packet->data_size;
2734 if (datasize && packet->type != hpsb_raw)
2735 status = le32_to_cpu(
2736 d->prg_cpu[d->sent_ind]->end.status) >> 16;
2737 else
2738 status = le32_to_cpu(
2739 d->prg_cpu[d->sent_ind]->begin.status) >> 16;
2741 if (status == 0)
2742 /* this packet hasn't been sent yet*/
2743 break;
2745 #ifdef OHCI1394_DEBUG
2746 if (datasize)
2747 if (((le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf) == 0xa)
2748 DBGMSG("Stream packet sent to channel %d tcode=0x%X "
2749 "ack=0x%X spd=%d dataLength=%d ctx=%d",
2750 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>8)&0x3f,
2751 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf,
2752 status&0x1f, (status>>5)&0x3,
2753 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])>>16,
2754 d->ctx);
2755 else
2756 DBGMSG("Packet sent to node %d tcode=0x%X tLabel="
2757 "0x%02X ack=0x%X spd=%d dataLength=%d ctx=%d",
2758 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])>>16)&0x3f,
2759 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf,
2760 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>10)&0x3f,
2761 status&0x1f, (status>>5)&0x3,
2762 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[3])>>16,
2763 d->ctx);
2764 else
2765 DBGMSG("Packet sent to node %d tcode=0x%X tLabel="
2766 "0x%02X ack=0x%X spd=%d data=0x%08X ctx=%d",
2767 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])
2768 >>16)&0x3f,
2769 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])
2770 >>4)&0xf,
2771 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])
2772 >>10)&0x3f,
2773 status&0x1f, (status>>5)&0x3,
2774 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[3]),
2775 d->ctx);
2776 #endif
2778 if (status & 0x10) {
2779 ack = status & 0xf;
2780 } else {
2781 switch (status & 0x1f) {
2782 case EVT_NO_STATUS: /* that should never happen */
2783 case EVT_RESERVED_A: /* that should never happen */
2784 case EVT_LONG_PACKET: /* that should never happen */
2785 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2786 ack = ACKX_SEND_ERROR;
2787 break;
2788 case EVT_MISSING_ACK:
2789 ack = ACKX_TIMEOUT;
2790 break;
2791 case EVT_UNDERRUN:
2792 ack = ACKX_SEND_ERROR;
2793 break;
2794 case EVT_OVERRUN: /* that should never happen */
2795 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2796 ack = ACKX_SEND_ERROR;
2797 break;
2798 case EVT_DESCRIPTOR_READ:
2799 case EVT_DATA_READ:
2800 case EVT_DATA_WRITE:
2801 ack = ACKX_SEND_ERROR;
2802 break;
2803 case EVT_BUS_RESET: /* that should never happen */
2804 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2805 ack = ACKX_SEND_ERROR;
2806 break;
2807 case EVT_TIMEOUT:
2808 ack = ACKX_TIMEOUT;
2809 break;
2810 case EVT_TCODE_ERR:
2811 ack = ACKX_SEND_ERROR;
2812 break;
2813 case EVT_RESERVED_B: /* that should never happen */
2814 case EVT_RESERVED_C: /* that should never happen */
2815 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2816 ack = ACKX_SEND_ERROR;
2817 break;
2818 case EVT_UNKNOWN:
2819 case EVT_FLUSHED:
2820 ack = ACKX_SEND_ERROR;
2821 break;
2822 default:
2823 PRINT(KERN_ERR, "Unhandled OHCI evt_* error 0x%x", status & 0x1f);
2824 ack = ACKX_SEND_ERROR;
2825 BUG();
2829 list_del_init(&packet->driver_list);
2830 hpsb_packet_sent(ohci->host, packet, ack);
2832 if (datasize) {
2833 pci_unmap_single(ohci->dev,
2834 cpu_to_le32(d->prg_cpu[d->sent_ind]->end.address),
2835 datasize, PCI_DMA_TODEVICE);
2836 OHCI_DMA_FREE("single Xmit data packet");
2839 d->sent_ind = (d->sent_ind+1)%d->num_desc;
2840 d->free_prgs++;
2843 dma_trm_flush(ohci, d);
2845 spin_unlock_irqrestore(&d->lock, flags);
2848 static void stop_dma_rcv_ctx(struct dma_rcv_ctx *d)
2850 if (d->ctrlClear) {
2851 ohci1394_stop_context(d->ohci, d->ctrlClear, NULL);
2853 if (d->type == DMA_CTX_ISO) {
2854 /* disable interrupts */
2855 reg_write(d->ohci, OHCI1394_IsoRecvIntMaskClear, 1 << d->ctx);
2856 ohci1394_unregister_iso_tasklet(d->ohci, &d->ohci->ir_legacy_tasklet);
2857 } else {
2858 tasklet_kill(&d->task);
2864 static void free_dma_rcv_ctx(struct dma_rcv_ctx *d)
2866 int i;
2867 struct ti_ohci *ohci = d->ohci;
2869 if (ohci == NULL)
2870 return;
2872 DBGMSG("Freeing dma_rcv_ctx %d", d->ctx);
2874 if (d->buf_cpu) {
2875 for (i=0; i<d->num_desc; i++)
2876 if (d->buf_cpu[i] && d->buf_bus[i]) {
2877 pci_free_consistent(
2878 ohci->dev, d->buf_size,
2879 d->buf_cpu[i], d->buf_bus[i]);
2880 OHCI_DMA_FREE("consistent dma_rcv buf[%d]", i);
2882 kfree(d->buf_cpu);
2883 kfree(d->buf_bus);
2885 if (d->prg_cpu) {
2886 for (i=0; i<d->num_desc; i++)
2887 if (d->prg_cpu[i] && d->prg_bus[i]) {
2888 pci_pool_free(d->prg_pool, d->prg_cpu[i], d->prg_bus[i]);
2889 OHCI_DMA_FREE("consistent dma_rcv prg[%d]", i);
2891 pci_pool_destroy(d->prg_pool);
2892 OHCI_DMA_FREE("dma_rcv prg pool");
2893 kfree(d->prg_cpu);
2894 kfree(d->prg_bus);
2896 if (d->spb) kfree(d->spb);
2898 /* Mark this context as freed. */
2899 d->ohci = NULL;
2902 static int
2903 alloc_dma_rcv_ctx(struct ti_ohci *ohci, struct dma_rcv_ctx *d,
2904 enum context_type type, int ctx, int num_desc,
2905 int buf_size, int split_buf_size, int context_base)
2907 int i, len;
2908 static int num_allocs;
2909 static char pool_name[20];
2911 d->ohci = ohci;
2912 d->type = type;
2913 d->ctx = ctx;
2915 d->num_desc = num_desc;
2916 d->buf_size = buf_size;
2917 d->split_buf_size = split_buf_size;
2919 d->ctrlSet = 0;
2920 d->ctrlClear = 0;
2921 d->cmdPtr = 0;
2923 d->buf_cpu = kmalloc(d->num_desc * sizeof(quadlet_t*), GFP_ATOMIC);
2924 d->buf_bus = kmalloc(d->num_desc * sizeof(dma_addr_t), GFP_ATOMIC);
2926 if (d->buf_cpu == NULL || d->buf_bus == NULL) {
2927 PRINT(KERN_ERR, "Failed to allocate dma buffer");
2928 free_dma_rcv_ctx(d);
2929 return -ENOMEM;
2931 memset(d->buf_cpu, 0, d->num_desc * sizeof(quadlet_t*));
2932 memset(d->buf_bus, 0, d->num_desc * sizeof(dma_addr_t));
2934 d->prg_cpu = kmalloc(d->num_desc * sizeof(struct dma_cmd*),
2935 GFP_ATOMIC);
2936 d->prg_bus = kmalloc(d->num_desc * sizeof(dma_addr_t), GFP_ATOMIC);
2938 if (d->prg_cpu == NULL || d->prg_bus == NULL) {
2939 PRINT(KERN_ERR, "Failed to allocate dma prg");
2940 free_dma_rcv_ctx(d);
2941 return -ENOMEM;
2943 memset(d->prg_cpu, 0, d->num_desc * sizeof(struct dma_cmd*));
2944 memset(d->prg_bus, 0, d->num_desc * sizeof(dma_addr_t));
2946 d->spb = kmalloc(d->split_buf_size, GFP_ATOMIC);
2948 if (d->spb == NULL) {
2949 PRINT(KERN_ERR, "Failed to allocate split buffer");
2950 free_dma_rcv_ctx(d);
2951 return -ENOMEM;
2954 len = sprintf(pool_name, "ohci1394_rcv_prg");
2955 sprintf(pool_name+len, "%d", num_allocs);
2956 d->prg_pool = pci_pool_create(pool_name, ohci->dev,
2957 sizeof(struct dma_cmd), 4, 0);
2958 if(d->prg_pool == NULL)
2960 PRINT(KERN_ERR, "pci_pool_create failed for %s", pool_name);
2961 free_dma_rcv_ctx(d);
2962 return -ENOMEM;
2964 num_allocs++;
2966 OHCI_DMA_ALLOC("dma_rcv prg pool");
2968 for (i=0; i<d->num_desc; i++) {
2969 d->buf_cpu[i] = pci_alloc_consistent(ohci->dev,
2970 d->buf_size,
2971 d->buf_bus+i);
2972 OHCI_DMA_ALLOC("consistent dma_rcv buf[%d]", i);
2974 if (d->buf_cpu[i] != NULL) {
2975 memset(d->buf_cpu[i], 0, d->buf_size);
2976 } else {
2977 PRINT(KERN_ERR,
2978 "Failed to allocate dma buffer");
2979 free_dma_rcv_ctx(d);
2980 return -ENOMEM;
2983 d->prg_cpu[i] = pci_pool_alloc(d->prg_pool, SLAB_KERNEL, d->prg_bus+i);
2984 OHCI_DMA_ALLOC("pool dma_rcv prg[%d]", i);
2986 if (d->prg_cpu[i] != NULL) {
2987 memset(d->prg_cpu[i], 0, sizeof(struct dma_cmd));
2988 } else {
2989 PRINT(KERN_ERR,
2990 "Failed to allocate dma prg");
2991 free_dma_rcv_ctx(d);
2992 return -ENOMEM;
2996 spin_lock_init(&d->lock);
2998 if (type == DMA_CTX_ISO) {
2999 ohci1394_init_iso_tasklet(&ohci->ir_legacy_tasklet,
3000 OHCI_ISO_MULTICHANNEL_RECEIVE,
3001 dma_rcv_tasklet, (unsigned long) d);
3002 if (ohci1394_register_iso_tasklet(ohci,
3003 &ohci->ir_legacy_tasklet) < 0) {
3004 PRINT(KERN_ERR, "No IR DMA context available");
3005 free_dma_rcv_ctx(d);
3006 return -EBUSY;
3009 /* the IR context can be assigned to any DMA context
3010 * by ohci1394_register_iso_tasklet */
3011 d->ctx = ohci->ir_legacy_tasklet.context;
3012 d->ctrlSet = OHCI1394_IsoRcvContextControlSet + 32*d->ctx;
3013 d->ctrlClear = OHCI1394_IsoRcvContextControlClear + 32*d->ctx;
3014 d->cmdPtr = OHCI1394_IsoRcvCommandPtr + 32*d->ctx;
3015 d->ctxtMatch = OHCI1394_IsoRcvContextMatch + 32*d->ctx;
3016 } else {
3017 d->ctrlSet = context_base + OHCI1394_ContextControlSet;
3018 d->ctrlClear = context_base + OHCI1394_ContextControlClear;
3019 d->cmdPtr = context_base + OHCI1394_ContextCommandPtr;
3021 tasklet_init (&d->task, dma_rcv_tasklet, (unsigned long) d);
3024 return 0;
3027 static void free_dma_trm_ctx(struct dma_trm_ctx *d)
3029 int i;
3030 struct ti_ohci *ohci = d->ohci;
3032 if (ohci == NULL)
3033 return;
3035 DBGMSG("Freeing dma_trm_ctx %d", d->ctx);
3037 if (d->prg_cpu) {
3038 for (i=0; i<d->num_desc; i++)
3039 if (d->prg_cpu[i] && d->prg_bus[i]) {
3040 pci_pool_free(d->prg_pool, d->prg_cpu[i], d->prg_bus[i]);
3041 OHCI_DMA_FREE("pool dma_trm prg[%d]", i);
3043 pci_pool_destroy(d->prg_pool);
3044 OHCI_DMA_FREE("dma_trm prg pool");
3045 kfree(d->prg_cpu);
3046 kfree(d->prg_bus);
3049 /* Mark this context as freed. */
3050 d->ohci = NULL;
3053 static int
3054 alloc_dma_trm_ctx(struct ti_ohci *ohci, struct dma_trm_ctx *d,
3055 enum context_type type, int ctx, int num_desc,
3056 int context_base)
3058 int i, len;
3059 static char pool_name[20];
3060 static int num_allocs=0;
3062 d->ohci = ohci;
3063 d->type = type;
3064 d->ctx = ctx;
3065 d->num_desc = num_desc;
3066 d->ctrlSet = 0;
3067 d->ctrlClear = 0;
3068 d->cmdPtr = 0;
3070 d->prg_cpu = kmalloc(d->num_desc * sizeof(struct at_dma_prg*),
3071 GFP_KERNEL);
3072 d->prg_bus = kmalloc(d->num_desc * sizeof(dma_addr_t), GFP_KERNEL);
3074 if (d->prg_cpu == NULL || d->prg_bus == NULL) {
3075 PRINT(KERN_ERR, "Failed to allocate at dma prg");
3076 free_dma_trm_ctx(d);
3077 return -ENOMEM;
3079 memset(d->prg_cpu, 0, d->num_desc * sizeof(struct at_dma_prg*));
3080 memset(d->prg_bus, 0, d->num_desc * sizeof(dma_addr_t));
3082 len = sprintf(pool_name, "ohci1394_trm_prg");
3083 sprintf(pool_name+len, "%d", num_allocs);
3084 d->prg_pool = pci_pool_create(pool_name, ohci->dev,
3085 sizeof(struct at_dma_prg), 4, 0);
3086 if (d->prg_pool == NULL) {
3087 PRINT(KERN_ERR, "pci_pool_create failed for %s", pool_name);
3088 free_dma_trm_ctx(d);
3089 return -ENOMEM;
3091 num_allocs++;
3093 OHCI_DMA_ALLOC("dma_rcv prg pool");
3095 for (i = 0; i < d->num_desc; i++) {
3096 d->prg_cpu[i] = pci_pool_alloc(d->prg_pool, SLAB_KERNEL, d->prg_bus+i);
3097 OHCI_DMA_ALLOC("pool dma_trm prg[%d]", i);
3099 if (d->prg_cpu[i] != NULL) {
3100 memset(d->prg_cpu[i], 0, sizeof(struct at_dma_prg));
3101 } else {
3102 PRINT(KERN_ERR,
3103 "Failed to allocate at dma prg");
3104 free_dma_trm_ctx(d);
3105 return -ENOMEM;
3109 spin_lock_init(&d->lock);
3111 /* initialize tasklet */
3112 if (type == DMA_CTX_ISO) {
3113 ohci1394_init_iso_tasklet(&ohci->it_legacy_tasklet, OHCI_ISO_TRANSMIT,
3114 dma_trm_tasklet, (unsigned long) d);
3115 if (ohci1394_register_iso_tasklet(ohci,
3116 &ohci->it_legacy_tasklet) < 0) {
3117 PRINT(KERN_ERR, "No IT DMA context available");
3118 free_dma_trm_ctx(d);
3119 return -EBUSY;
3122 /* IT can be assigned to any context by register_iso_tasklet */
3123 d->ctx = ohci->it_legacy_tasklet.context;
3124 d->ctrlSet = OHCI1394_IsoXmitContextControlSet + 16 * d->ctx;
3125 d->ctrlClear = OHCI1394_IsoXmitContextControlClear + 16 * d->ctx;
3126 d->cmdPtr = OHCI1394_IsoXmitCommandPtr + 16 * d->ctx;
3127 } else {
3128 d->ctrlSet = context_base + OHCI1394_ContextControlSet;
3129 d->ctrlClear = context_base + OHCI1394_ContextControlClear;
3130 d->cmdPtr = context_base + OHCI1394_ContextCommandPtr;
3131 tasklet_init (&d->task, dma_trm_tasklet, (unsigned long)d);
3134 return 0;
3137 static void ohci_set_hw_config_rom(struct hpsb_host *host, quadlet_t *config_rom)
3139 struct ti_ohci *ohci = host->hostdata;
3141 reg_write(ohci, OHCI1394_ConfigROMhdr, be32_to_cpu(config_rom[0]));
3142 reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(config_rom[2]));
3144 memcpy(ohci->csr_config_rom_cpu, config_rom, OHCI_CONFIG_ROM_LEN);
3148 static quadlet_t ohci_hw_csr_reg(struct hpsb_host *host, int reg,
3149 quadlet_t data, quadlet_t compare)
3151 struct ti_ohci *ohci = host->hostdata;
3152 int i;
3154 reg_write(ohci, OHCI1394_CSRData, data);
3155 reg_write(ohci, OHCI1394_CSRCompareData, compare);
3156 reg_write(ohci, OHCI1394_CSRControl, reg & 0x3);
3158 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
3159 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
3160 break;
3162 mdelay(1);
3165 return reg_read(ohci, OHCI1394_CSRData);
3168 static struct hpsb_host_driver ohci1394_driver = {
3169 .owner = THIS_MODULE,
3170 .name = OHCI1394_DRIVER_NAME,
3171 .set_hw_config_rom = ohci_set_hw_config_rom,
3172 .transmit_packet = ohci_transmit,
3173 .devctl = ohci_devctl,
3174 .isoctl = ohci_isoctl,
3175 .hw_csr_reg = ohci_hw_csr_reg,
3180 /***********************************
3181 * PCI Driver Interface functions *
3182 ***********************************/
3184 #define FAIL(err, fmt, args...) \
3185 do { \
3186 PRINT_G(KERN_ERR, fmt , ## args); \
3187 ohci1394_pci_remove(dev); \
3188 return err; \
3189 } while (0)
3191 static int __devinit ohci1394_pci_probe(struct pci_dev *dev,
3192 const struct pci_device_id *ent)
3194 static int version_printed = 0;
3196 struct hpsb_host *host;
3197 struct ti_ohci *ohci; /* shortcut to currently handled device */
3198 unsigned long ohci_base;
3200 if (version_printed++ == 0)
3201 PRINT_G(KERN_INFO, "%s", version);
3203 if (pci_enable_device(dev))
3204 FAIL(-ENXIO, "Failed to enable OHCI hardware");
3205 pci_set_master(dev);
3207 host = hpsb_alloc_host(&ohci1394_driver, sizeof(struct ti_ohci), &dev->dev);
3208 if (!host) FAIL(-ENOMEM, "Failed to allocate host structure");
3210 ohci = host->hostdata;
3211 ohci->dev = dev;
3212 ohci->host = host;
3213 ohci->init_state = OHCI_INIT_ALLOC_HOST;
3214 host->pdev = dev;
3215 pci_set_drvdata(dev, ohci);
3217 /* We don't want hardware swapping */
3218 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3220 /* Some oddball Apple controllers do not order the selfid
3221 * properly, so we make up for it here. */
3222 #ifndef __LITTLE_ENDIAN
3223 /* XXX: Need a better way to check this. I'm wondering if we can
3224 * read the values of the OHCI1394_PCI_HCI_Control and the
3225 * noByteSwapData registers to see if they were not cleared to
3226 * zero. Should this work? Obviously it's not defined what these
3227 * registers will read when they aren't supported. Bleh! */
3228 if (dev->vendor == PCI_VENDOR_ID_APPLE &&
3229 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW) {
3230 ohci->no_swap_incoming = 1;
3231 ohci->selfid_swap = 0;
3232 } else
3233 ohci->selfid_swap = 1;
3234 #endif
3237 #ifndef PCI_DEVICE_ID_NVIDIA_NFORCE2_FW
3238 #define PCI_DEVICE_ID_NVIDIA_NFORCE2_FW 0x006e
3239 #endif
3241 /* These chipsets require a bit of extra care when checking after
3242 * a busreset. */
3243 if ((dev->vendor == PCI_VENDOR_ID_APPLE &&
3244 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW) ||
3245 (dev->vendor == PCI_VENDOR_ID_NVIDIA &&
3246 dev->device == PCI_DEVICE_ID_NVIDIA_NFORCE2_FW))
3247 ohci->check_busreset = 1;
3249 /* We hardwire the MMIO length, since some CardBus adaptors
3250 * fail to report the right length. Anyway, the ohci spec
3251 * clearly says it's 2kb, so this shouldn't be a problem. */
3252 ohci_base = pci_resource_start(dev, 0);
3253 if (pci_resource_len(dev, 0) != OHCI1394_REGISTER_SIZE)
3254 PRINT(KERN_WARNING, "Unexpected PCI resource length of %lx!",
3255 pci_resource_len(dev, 0));
3257 /* Seems PCMCIA handles this internally. Not sure why. Seems
3258 * pretty bogus to force a driver to special case this. */
3259 #ifndef PCMCIA
3260 if (!request_mem_region (ohci_base, OHCI1394_REGISTER_SIZE, OHCI1394_DRIVER_NAME))
3261 FAIL(-ENOMEM, "MMIO resource (0x%lx - 0x%lx) unavailable",
3262 ohci_base, ohci_base + OHCI1394_REGISTER_SIZE);
3263 #endif
3264 ohci->init_state = OHCI_INIT_HAVE_MEM_REGION;
3266 ohci->registers = ioremap(ohci_base, OHCI1394_REGISTER_SIZE);
3267 if (ohci->registers == NULL)
3268 FAIL(-ENXIO, "Failed to remap registers - card not accessible");
3269 ohci->init_state = OHCI_INIT_HAVE_IOMAPPING;
3270 DBGMSG("Remapped memory spaces reg 0x%p", ohci->registers);
3272 /* csr_config rom allocation */
3273 ohci->csr_config_rom_cpu =
3274 pci_alloc_consistent(ohci->dev, OHCI_CONFIG_ROM_LEN,
3275 &ohci->csr_config_rom_bus);
3276 OHCI_DMA_ALLOC("consistent csr_config_rom");
3277 if (ohci->csr_config_rom_cpu == NULL)
3278 FAIL(-ENOMEM, "Failed to allocate buffer config rom");
3279 ohci->init_state = OHCI_INIT_HAVE_CONFIG_ROM_BUFFER;
3281 /* self-id dma buffer allocation */
3282 ohci->selfid_buf_cpu =
3283 pci_alloc_consistent(ohci->dev, OHCI1394_SI_DMA_BUF_SIZE,
3284 &ohci->selfid_buf_bus);
3285 OHCI_DMA_ALLOC("consistent selfid_buf");
3287 if (ohci->selfid_buf_cpu == NULL)
3288 FAIL(-ENOMEM, "Failed to allocate DMA buffer for self-id packets");
3289 ohci->init_state = OHCI_INIT_HAVE_SELFID_BUFFER;
3291 if ((unsigned long)ohci->selfid_buf_cpu & 0x1fff)
3292 PRINT(KERN_INFO, "SelfID buffer %p is not aligned on "
3293 "8Kb boundary... may cause problems on some CXD3222 chip",
3294 ohci->selfid_buf_cpu);
3296 /* No self-id errors at startup */
3297 ohci->self_id_errors = 0;
3299 ohci->init_state = OHCI_INIT_HAVE_TXRX_BUFFERS__MAYBE;
3300 /* AR DMA request context allocation */
3301 if (alloc_dma_rcv_ctx(ohci, &ohci->ar_req_context,
3302 DMA_CTX_ASYNC_REQ, 0, AR_REQ_NUM_DESC,
3303 AR_REQ_BUF_SIZE, AR_REQ_SPLIT_BUF_SIZE,
3304 OHCI1394_AsReqRcvContextBase) < 0)
3305 FAIL(-ENOMEM, "Failed to allocate AR Req context");
3307 /* AR DMA response context allocation */
3308 if (alloc_dma_rcv_ctx(ohci, &ohci->ar_resp_context,
3309 DMA_CTX_ASYNC_RESP, 0, AR_RESP_NUM_DESC,
3310 AR_RESP_BUF_SIZE, AR_RESP_SPLIT_BUF_SIZE,
3311 OHCI1394_AsRspRcvContextBase) < 0)
3312 FAIL(-ENOMEM, "Failed to allocate AR Resp context");
3314 /* AT DMA request context */
3315 if (alloc_dma_trm_ctx(ohci, &ohci->at_req_context,
3316 DMA_CTX_ASYNC_REQ, 0, AT_REQ_NUM_DESC,
3317 OHCI1394_AsReqTrContextBase) < 0)
3318 FAIL(-ENOMEM, "Failed to allocate AT Req context");
3320 /* AT DMA response context */
3321 if (alloc_dma_trm_ctx(ohci, &ohci->at_resp_context,
3322 DMA_CTX_ASYNC_RESP, 1, AT_RESP_NUM_DESC,
3323 OHCI1394_AsRspTrContextBase) < 0)
3324 FAIL(-ENOMEM, "Failed to allocate AT Resp context");
3326 /* Start off with a soft reset, to clear everything to a sane
3327 * state. */
3328 ohci_soft_reset(ohci);
3330 /* Now enable LPS, which we need in order to start accessing
3331 * most of the registers. In fact, on some cards (ALI M5251),
3332 * accessing registers in the SClk domain without LPS enabled
3333 * will lock up the machine. Wait 50msec to make sure we have
3334 * full link enabled. */
3335 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_LPS);
3337 /* Disable and clear interrupts */
3338 reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3339 reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3341 mdelay(50);
3343 /* Determine the number of available IR and IT contexts. */
3344 ohci->nb_iso_rcv_ctx =
3345 get_nb_iso_ctx(ohci, OHCI1394_IsoRecvIntMaskSet);
3346 DBGMSG("%d iso receive contexts available",
3347 ohci->nb_iso_rcv_ctx);
3349 ohci->nb_iso_xmit_ctx =
3350 get_nb_iso_ctx(ohci, OHCI1394_IsoXmitIntMaskSet);
3351 DBGMSG("%d iso transmit contexts available",
3352 ohci->nb_iso_xmit_ctx);
3354 /* Set the usage bits for non-existent contexts so they can't
3355 * be allocated */
3356 ohci->ir_ctx_usage = ~0 << ohci->nb_iso_rcv_ctx;
3357 ohci->it_ctx_usage = ~0 << ohci->nb_iso_xmit_ctx;
3359 INIT_LIST_HEAD(&ohci->iso_tasklet_list);
3360 spin_lock_init(&ohci->iso_tasklet_list_lock);
3361 ohci->ISO_channel_usage = 0;
3362 spin_lock_init(&ohci->IR_channel_lock);
3364 /* Allocate the IR DMA context right here so we don't have
3365 * to do it in interrupt path - note that this doesn't
3366 * waste much memory and avoids the jugglery required to
3367 * allocate it in IRQ path. */
3368 if (alloc_dma_rcv_ctx(ohci, &ohci->ir_legacy_context,
3369 DMA_CTX_ISO, 0, IR_NUM_DESC,
3370 IR_BUF_SIZE, IR_SPLIT_BUF_SIZE,
3371 OHCI1394_IsoRcvContextBase) < 0) {
3372 FAIL(-ENOMEM, "Cannot allocate IR Legacy DMA context");
3375 /* We hopefully don't have to pre-allocate IT DMA like we did
3376 * for IR DMA above. Allocate it on-demand and mark inactive. */
3377 ohci->it_legacy_context.ohci = NULL;
3379 if (request_irq(dev->irq, ohci_irq_handler, SA_SHIRQ,
3380 OHCI1394_DRIVER_NAME, ohci))
3381 FAIL(-ENOMEM, "Failed to allocate shared interrupt %d", dev->irq);
3383 ohci->init_state = OHCI_INIT_HAVE_IRQ;
3384 ohci_initialize(ohci);
3386 /* Set certain csr values */
3387 host->csr.guid_hi = reg_read(ohci, OHCI1394_GUIDHi);
3388 host->csr.guid_lo = reg_read(ohci, OHCI1394_GUIDLo);
3389 host->csr.cyc_clk_acc = 100; /* how do we determine clk accuracy? */
3390 host->csr.max_rec = (reg_read(ohci, OHCI1394_BusOptions) >> 12) & 0xf;
3391 host->csr.lnk_spd = reg_read(ohci, OHCI1394_BusOptions) & 0x7;
3393 /* Tell the highlevel this host is ready */
3394 if (hpsb_add_host(host))
3395 FAIL(-ENOMEM, "Failed to register host with highlevel");
3397 ohci->init_state = OHCI_INIT_DONE;
3399 return 0;
3400 #undef FAIL
3403 static void ohci1394_pci_remove(struct pci_dev *pdev)
3405 struct ti_ohci *ohci;
3406 struct device *dev;
3408 ohci = pci_get_drvdata(pdev);
3409 if (!ohci)
3410 return;
3412 dev = get_device(&ohci->host->device);
3414 switch (ohci->init_state) {
3415 case OHCI_INIT_DONE:
3416 stop_dma_rcv_ctx(&ohci->ir_legacy_context);
3417 hpsb_remove_host(ohci->host);
3419 /* Clear out BUS Options */
3420 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
3421 reg_write(ohci, OHCI1394_BusOptions,
3422 (reg_read(ohci, OHCI1394_BusOptions) & 0x0000f007) |
3423 0x00ff0000);
3424 memset(ohci->csr_config_rom_cpu, 0, OHCI_CONFIG_ROM_LEN);
3426 case OHCI_INIT_HAVE_IRQ:
3427 /* Clear interrupt registers */
3428 reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3429 reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3430 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 0xffffffff);
3431 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 0xffffffff);
3432 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 0xffffffff);
3433 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 0xffffffff);
3435 /* Disable IRM Contender */
3436 set_phy_reg(ohci, 4, ~0xc0 & get_phy_reg(ohci, 4));
3438 /* Clear link control register */
3439 reg_write(ohci, OHCI1394_LinkControlClear, 0xffffffff);
3441 /* Let all other nodes know to ignore us */
3442 ohci_devctl(ohci->host, RESET_BUS, LONG_RESET_NO_FORCE_ROOT);
3444 /* Soft reset before we start - this disables
3445 * interrupts and clears linkEnable and LPS. */
3446 ohci_soft_reset(ohci);
3447 free_irq(ohci->dev->irq, ohci);
3449 case OHCI_INIT_HAVE_TXRX_BUFFERS__MAYBE:
3450 /* The ohci_soft_reset() stops all DMA contexts, so we
3451 * dont need to do this. */
3452 /* Free AR dma */
3453 free_dma_rcv_ctx(&ohci->ar_req_context);
3454 free_dma_rcv_ctx(&ohci->ar_resp_context);
3456 /* Free AT dma */
3457 free_dma_trm_ctx(&ohci->at_req_context);
3458 free_dma_trm_ctx(&ohci->at_resp_context);
3460 /* Free IR dma */
3461 free_dma_rcv_ctx(&ohci->ir_legacy_context);
3463 /* Free IT dma */
3464 free_dma_trm_ctx(&ohci->it_legacy_context);
3466 /* Free IR legacy dma */
3467 free_dma_rcv_ctx(&ohci->ir_legacy_context);
3470 case OHCI_INIT_HAVE_SELFID_BUFFER:
3471 pci_free_consistent(ohci->dev, OHCI1394_SI_DMA_BUF_SIZE,
3472 ohci->selfid_buf_cpu,
3473 ohci->selfid_buf_bus);
3474 OHCI_DMA_FREE("consistent selfid_buf");
3476 case OHCI_INIT_HAVE_CONFIG_ROM_BUFFER:
3477 pci_free_consistent(ohci->dev, OHCI_CONFIG_ROM_LEN,
3478 ohci->csr_config_rom_cpu,
3479 ohci->csr_config_rom_bus);
3480 OHCI_DMA_FREE("consistent csr_config_rom");
3482 case OHCI_INIT_HAVE_IOMAPPING:
3483 iounmap(ohci->registers);
3485 case OHCI_INIT_HAVE_MEM_REGION:
3486 #ifndef PCMCIA
3487 release_mem_region(pci_resource_start(ohci->dev, 0),
3488 OHCI1394_REGISTER_SIZE);
3489 #endif
3491 #ifdef CONFIG_PPC_PMAC
3492 /* On UniNorth, power down the cable and turn off the chip
3493 * clock when the module is removed to save power on
3494 * laptops. Turning it back ON is done by the arch code when
3495 * pci_enable_device() is called */
3497 struct device_node* of_node;
3499 of_node = pci_device_to_OF_node(ohci->dev);
3500 if (of_node) {
3501 pmac_call_feature(PMAC_FTR_1394_ENABLE, of_node, 0, 0);
3502 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, of_node, 0, 0);
3505 #endif /* CONFIG_PPC_PMAC */
3507 case OHCI_INIT_ALLOC_HOST:
3508 pci_set_drvdata(ohci->dev, NULL);
3511 if (dev)
3512 put_device(dev);
3516 static int ohci1394_pci_resume (struct pci_dev *pdev)
3518 #ifdef CONFIG_PMAC_PBOOK
3520 struct device_node *of_node;
3522 /* Re-enable 1394 */
3523 of_node = pci_device_to_OF_node (pdev);
3524 if (of_node)
3525 pmac_call_feature (PMAC_FTR_1394_ENABLE, of_node, 0, 1);
3527 #endif
3529 pci_enable_device(pdev);
3531 return 0;
3535 static int ohci1394_pci_suspend (struct pci_dev *pdev, pm_message_t state)
3537 #ifdef CONFIG_PMAC_PBOOK
3539 struct device_node *of_node;
3541 /* Disable 1394 */
3542 of_node = pci_device_to_OF_node (pdev);
3543 if (of_node)
3544 pmac_call_feature(PMAC_FTR_1394_ENABLE, of_node, 0, 0);
3546 #endif
3548 return 0;
3552 #define PCI_CLASS_FIREWIRE_OHCI ((PCI_CLASS_SERIAL_FIREWIRE << 8) | 0x10)
3554 static struct pci_device_id ohci1394_pci_tbl[] = {
3556 .class = PCI_CLASS_FIREWIRE_OHCI,
3557 .class_mask = PCI_ANY_ID,
3558 .vendor = PCI_ANY_ID,
3559 .device = PCI_ANY_ID,
3560 .subvendor = PCI_ANY_ID,
3561 .subdevice = PCI_ANY_ID,
3563 { 0, },
3566 MODULE_DEVICE_TABLE(pci, ohci1394_pci_tbl);
3568 static struct pci_driver ohci1394_pci_driver = {
3569 .name = OHCI1394_DRIVER_NAME,
3570 .id_table = ohci1394_pci_tbl,
3571 .probe = ohci1394_pci_probe,
3572 .remove = ohci1394_pci_remove,
3573 .resume = ohci1394_pci_resume,
3574 .suspend = ohci1394_pci_suspend,
3579 /***********************************
3580 * OHCI1394 Video Interface *
3581 ***********************************/
3583 /* essentially the only purpose of this code is to allow another
3584 module to hook into ohci's interrupt handler */
3586 int ohci1394_stop_context(struct ti_ohci *ohci, int reg, char *msg)
3588 int i=0;
3590 /* stop the channel program if it's still running */
3591 reg_write(ohci, reg, 0x8000);
3593 /* Wait until it effectively stops */
3594 while (reg_read(ohci, reg) & 0x400) {
3595 i++;
3596 if (i>5000) {
3597 PRINT(KERN_ERR,
3598 "Runaway loop while stopping context: %s...", msg ? msg : "");
3599 return 1;
3602 mb();
3603 udelay(10);
3605 if (msg) PRINT(KERN_ERR, "%s: dma prg stopped", msg);
3606 return 0;
3609 void ohci1394_init_iso_tasklet(struct ohci1394_iso_tasklet *tasklet, int type,
3610 void (*func)(unsigned long), unsigned long data)
3612 tasklet_init(&tasklet->tasklet, func, data);
3613 tasklet->type = type;
3614 /* We init the tasklet->link field, so we can list_del() it
3615 * without worrying whether it was added to the list or not. */
3616 INIT_LIST_HEAD(&tasklet->link);
3619 int ohci1394_register_iso_tasklet(struct ti_ohci *ohci,
3620 struct ohci1394_iso_tasklet *tasklet)
3622 unsigned long flags, *usage;
3623 int n, i, r = -EBUSY;
3625 if (tasklet->type == OHCI_ISO_TRANSMIT) {
3626 n = ohci->nb_iso_xmit_ctx;
3627 usage = &ohci->it_ctx_usage;
3629 else {
3630 n = ohci->nb_iso_rcv_ctx;
3631 usage = &ohci->ir_ctx_usage;
3633 /* only one receive context can be multichannel (OHCI sec 10.4.1) */
3634 if (tasklet->type == OHCI_ISO_MULTICHANNEL_RECEIVE) {
3635 if (test_and_set_bit(0, &ohci->ir_multichannel_used)) {
3636 return r;
3641 spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
3643 for (i = 0; i < n; i++)
3644 if (!test_and_set_bit(i, usage)) {
3645 tasklet->context = i;
3646 list_add_tail(&tasklet->link, &ohci->iso_tasklet_list);
3647 r = 0;
3648 break;
3651 spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
3653 return r;
3656 void ohci1394_unregister_iso_tasklet(struct ti_ohci *ohci,
3657 struct ohci1394_iso_tasklet *tasklet)
3659 unsigned long flags;
3661 tasklet_kill(&tasklet->tasklet);
3663 spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
3665 if (tasklet->type == OHCI_ISO_TRANSMIT)
3666 clear_bit(tasklet->context, &ohci->it_ctx_usage);
3667 else {
3668 clear_bit(tasklet->context, &ohci->ir_ctx_usage);
3670 if (tasklet->type == OHCI_ISO_MULTICHANNEL_RECEIVE) {
3671 clear_bit(0, &ohci->ir_multichannel_used);
3675 list_del(&tasklet->link);
3677 spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
3680 EXPORT_SYMBOL(ohci1394_stop_context);
3681 EXPORT_SYMBOL(ohci1394_init_iso_tasklet);
3682 EXPORT_SYMBOL(ohci1394_register_iso_tasklet);
3683 EXPORT_SYMBOL(ohci1394_unregister_iso_tasklet);
3686 /***********************************
3687 * General module initialization *
3688 ***********************************/
3690 MODULE_AUTHOR("Sebastien Rougeaux <sebastien.rougeaux@anu.edu.au>");
3691 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE-1394 controllers");
3692 MODULE_LICENSE("GPL");
3694 static void __exit ohci1394_cleanup (void)
3696 pci_unregister_driver(&ohci1394_pci_driver);
3699 static int __init ohci1394_init(void)
3701 return pci_register_driver(&ohci1394_pci_driver);
3704 module_init(ohci1394_init);
3705 module_exit(ohci1394_cleanup);