Linux-2.6.12-rc2
[linux-2.6/kvm.git] / drivers / acpi / processor_idle.c
blob05a17812d5218f3d3810e7d4a7d0ac579a23b50b
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or (at
15 * your option) any later version.
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
22 * You should have received a copy of the GNU General Public License along
23 * with this program; if not, write to the Free Software Foundation, Inc.,
24 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
26 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/init.h>
32 #include <linux/cpufreq.h>
33 #include <linux/proc_fs.h>
34 #include <linux/seq_file.h>
35 #include <linux/acpi.h>
36 #include <linux/dmi.h>
37 #include <linux/moduleparam.h>
39 #include <asm/io.h>
40 #include <asm/uaccess.h>
42 #include <acpi/acpi_bus.h>
43 #include <acpi/processor.h>
45 #define ACPI_PROCESSOR_COMPONENT 0x01000000
46 #define ACPI_PROCESSOR_CLASS "processor"
47 #define ACPI_PROCESSOR_DRIVER_NAME "ACPI Processor Driver"
48 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
49 ACPI_MODULE_NAME ("acpi_processor")
51 #define ACPI_PROCESSOR_FILE_POWER "power"
53 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
54 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
55 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
57 static void (*pm_idle_save)(void);
58 module_param(max_cstate, uint, 0644);
60 static unsigned int nocst = 0;
61 module_param(nocst, uint, 0000);
64 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
65 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
66 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
67 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
68 * reduce history for more aggressive entry into C3
70 static unsigned int bm_history = (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
71 module_param(bm_history, uint, 0644);
72 /* --------------------------------------------------------------------------
73 Power Management
74 -------------------------------------------------------------------------- */
77 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
78 * For now disable this. Probably a bug somewhere else.
80 * To skip this limit, boot/load with a large max_cstate limit.
82 static int no_c2c3(struct dmi_system_id *id)
84 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
85 return 0;
87 printk(KERN_NOTICE PREFIX "%s detected - C2,C3 disabled."
88 " Override with \"processor.max_cstate=%d\"\n", id->ident,
89 ACPI_PROCESSOR_MAX_POWER + 1);
91 max_cstate = 1;
93 return 0;
99 static struct dmi_system_id __initdata processor_power_dmi_table[] = {
100 { no_c2c3, "IBM ThinkPad R40e", {
101 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
102 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }},
103 { no_c2c3, "Medion 41700", {
104 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
105 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J") }},
110 static inline u32
111 ticks_elapsed (
112 u32 t1,
113 u32 t2)
115 if (t2 >= t1)
116 return (t2 - t1);
117 else if (!acpi_fadt.tmr_val_ext)
118 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
119 else
120 return ((0xFFFFFFFF - t1) + t2);
124 static void
125 acpi_processor_power_activate (
126 struct acpi_processor *pr,
127 struct acpi_processor_cx *new)
129 struct acpi_processor_cx *old;
131 if (!pr || !new)
132 return;
134 old = pr->power.state;
136 if (old)
137 old->promotion.count = 0;
138 new->demotion.count = 0;
140 /* Cleanup from old state. */
141 if (old) {
142 switch (old->type) {
143 case ACPI_STATE_C3:
144 /* Disable bus master reload */
145 if (new->type != ACPI_STATE_C3)
146 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0, ACPI_MTX_DO_NOT_LOCK);
147 break;
151 /* Prepare to use new state. */
152 switch (new->type) {
153 case ACPI_STATE_C3:
154 /* Enable bus master reload */
155 if (old->type != ACPI_STATE_C3)
156 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1, ACPI_MTX_DO_NOT_LOCK);
157 break;
160 pr->power.state = new;
162 return;
166 static void acpi_processor_idle (void)
168 struct acpi_processor *pr = NULL;
169 struct acpi_processor_cx *cx = NULL;
170 struct acpi_processor_cx *next_state = NULL;
171 int sleep_ticks = 0;
172 u32 t1, t2 = 0;
174 pr = processors[_smp_processor_id()];
175 if (!pr)
176 return;
179 * Interrupts must be disabled during bus mastering calculations and
180 * for C2/C3 transitions.
182 local_irq_disable();
185 * Check whether we truly need to go idle, or should
186 * reschedule:
188 if (unlikely(need_resched())) {
189 local_irq_enable();
190 return;
193 cx = pr->power.state;
194 if (!cx)
195 goto easy_out;
198 * Check BM Activity
199 * -----------------
200 * Check for bus mastering activity (if required), record, and check
201 * for demotion.
203 if (pr->flags.bm_check) {
204 u32 bm_status = 0;
205 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
207 if (diff > 32)
208 diff = 32;
210 while (diff) {
211 /* if we didn't get called, assume there was busmaster activity */
212 diff--;
213 if (diff)
214 pr->power.bm_activity |= 0x1;
215 pr->power.bm_activity <<= 1;
218 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS,
219 &bm_status, ACPI_MTX_DO_NOT_LOCK);
220 if (bm_status) {
221 pr->power.bm_activity++;
222 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS,
223 1, ACPI_MTX_DO_NOT_LOCK);
226 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
227 * the true state of bus mastering activity; forcing us to
228 * manually check the BMIDEA bit of each IDE channel.
230 else if (errata.piix4.bmisx) {
231 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
232 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
233 pr->power.bm_activity++;
236 pr->power.bm_check_timestamp = jiffies;
239 * Apply bus mastering demotion policy. Automatically demote
240 * to avoid a faulty transition. Note that the processor
241 * won't enter a low-power state during this call (to this
242 * funciton) but should upon the next.
244 * TBD: A better policy might be to fallback to the demotion
245 * state (use it for this quantum only) istead of
246 * demoting -- and rely on duration as our sole demotion
247 * qualification. This may, however, introduce DMA
248 * issues (e.g. floppy DMA transfer overrun/underrun).
250 if (pr->power.bm_activity & cx->demotion.threshold.bm) {
251 local_irq_enable();
252 next_state = cx->demotion.state;
253 goto end;
257 cx->usage++;
260 * Sleep:
261 * ------
262 * Invoke the current Cx state to put the processor to sleep.
264 switch (cx->type) {
266 case ACPI_STATE_C1:
268 * Invoke C1.
269 * Use the appropriate idle routine, the one that would
270 * be used without acpi C-states.
272 if (pm_idle_save)
273 pm_idle_save();
274 else
275 safe_halt();
277 * TBD: Can't get time duration while in C1, as resumes
278 * go to an ISR rather than here. Need to instrument
279 * base interrupt handler.
281 sleep_ticks = 0xFFFFFFFF;
282 break;
284 case ACPI_STATE_C2:
285 /* Get start time (ticks) */
286 t1 = inl(acpi_fadt.xpm_tmr_blk.address);
287 /* Invoke C2 */
288 inb(cx->address);
289 /* Dummy op - must do something useless after P_LVL2 read */
290 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
291 /* Get end time (ticks) */
292 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
293 /* Re-enable interrupts */
294 local_irq_enable();
295 /* Compute time (ticks) that we were actually asleep */
296 sleep_ticks = ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
297 break;
299 case ACPI_STATE_C3:
300 /* Disable bus master arbitration */
301 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1, ACPI_MTX_DO_NOT_LOCK);
302 /* Get start time (ticks) */
303 t1 = inl(acpi_fadt.xpm_tmr_blk.address);
304 /* Invoke C3 */
305 inb(cx->address);
306 /* Dummy op - must do something useless after P_LVL3 read */
307 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
308 /* Get end time (ticks) */
309 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
310 /* Enable bus master arbitration */
311 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0, ACPI_MTX_DO_NOT_LOCK);
312 /* Re-enable interrupts */
313 local_irq_enable();
314 /* Compute time (ticks) that we were actually asleep */
315 sleep_ticks = ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
316 break;
318 default:
319 local_irq_enable();
320 return;
323 next_state = pr->power.state;
326 * Promotion?
327 * ----------
328 * Track the number of longs (time asleep is greater than threshold)
329 * and promote when the count threshold is reached. Note that bus
330 * mastering activity may prevent promotions.
331 * Do not promote above max_cstate.
333 if (cx->promotion.state &&
334 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
335 if (sleep_ticks > cx->promotion.threshold.ticks) {
336 cx->promotion.count++;
337 cx->demotion.count = 0;
338 if (cx->promotion.count >= cx->promotion.threshold.count) {
339 if (pr->flags.bm_check) {
340 if (!(pr->power.bm_activity & cx->promotion.threshold.bm)) {
341 next_state = cx->promotion.state;
342 goto end;
345 else {
346 next_state = cx->promotion.state;
347 goto end;
354 * Demotion?
355 * ---------
356 * Track the number of shorts (time asleep is less than time threshold)
357 * and demote when the usage threshold is reached.
359 if (cx->demotion.state) {
360 if (sleep_ticks < cx->demotion.threshold.ticks) {
361 cx->demotion.count++;
362 cx->promotion.count = 0;
363 if (cx->demotion.count >= cx->demotion.threshold.count) {
364 next_state = cx->demotion.state;
365 goto end;
370 end:
372 * Demote if current state exceeds max_cstate
374 if ((pr->power.state - pr->power.states) > max_cstate) {
375 if (cx->demotion.state)
376 next_state = cx->demotion.state;
380 * New Cx State?
381 * -------------
382 * If we're going to start using a new Cx state we must clean up
383 * from the previous and prepare to use the new.
385 if (next_state != pr->power.state)
386 acpi_processor_power_activate(pr, next_state);
388 return;
390 easy_out:
391 /* do C1 instead of busy loop */
392 if (pm_idle_save)
393 pm_idle_save();
394 else
395 safe_halt();
396 return;
400 static int
401 acpi_processor_set_power_policy (
402 struct acpi_processor *pr)
404 unsigned int i;
405 unsigned int state_is_set = 0;
406 struct acpi_processor_cx *lower = NULL;
407 struct acpi_processor_cx *higher = NULL;
408 struct acpi_processor_cx *cx;
410 ACPI_FUNCTION_TRACE("acpi_processor_set_power_policy");
412 if (!pr)
413 return_VALUE(-EINVAL);
416 * This function sets the default Cx state policy (OS idle handler).
417 * Our scheme is to promote quickly to C2 but more conservatively
418 * to C3. We're favoring C2 for its characteristics of low latency
419 * (quick response), good power savings, and ability to allow bus
420 * mastering activity. Note that the Cx state policy is completely
421 * customizable and can be altered dynamically.
424 /* startup state */
425 for (i=1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
426 cx = &pr->power.states[i];
427 if (!cx->valid)
428 continue;
430 if (!state_is_set)
431 pr->power.state = cx;
432 state_is_set++;
433 break;
436 if (!state_is_set)
437 return_VALUE(-ENODEV);
439 /* demotion */
440 for (i=1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
441 cx = &pr->power.states[i];
442 if (!cx->valid)
443 continue;
445 if (lower) {
446 cx->demotion.state = lower;
447 cx->demotion.threshold.ticks = cx->latency_ticks;
448 cx->demotion.threshold.count = 1;
449 if (cx->type == ACPI_STATE_C3)
450 cx->demotion.threshold.bm = bm_history;
453 lower = cx;
456 /* promotion */
457 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
458 cx = &pr->power.states[i];
459 if (!cx->valid)
460 continue;
462 if (higher) {
463 cx->promotion.state = higher;
464 cx->promotion.threshold.ticks = cx->latency_ticks;
465 if (cx->type >= ACPI_STATE_C2)
466 cx->promotion.threshold.count = 4;
467 else
468 cx->promotion.threshold.count = 10;
469 if (higher->type == ACPI_STATE_C3)
470 cx->promotion.threshold.bm = bm_history;
473 higher = cx;
476 return_VALUE(0);
480 static int acpi_processor_get_power_info_fadt (struct acpi_processor *pr)
482 int i;
484 ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_fadt");
486 if (!pr)
487 return_VALUE(-EINVAL);
489 if (!pr->pblk)
490 return_VALUE(-ENODEV);
492 for (i = 0; i < ACPI_PROCESSOR_MAX_POWER; i++)
493 memset(pr->power.states, 0, sizeof(struct acpi_processor_cx));
495 /* if info is obtained from pblk/fadt, type equals state */
496 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
497 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
498 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
500 /* the C0 state only exists as a filler in our array,
501 * and all processors need to support C1 */
502 pr->power.states[ACPI_STATE_C0].valid = 1;
503 pr->power.states[ACPI_STATE_C1].valid = 1;
505 /* determine C2 and C3 address from pblk */
506 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
507 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
509 /* determine latencies from FADT */
510 pr->power.states[ACPI_STATE_C2].latency = acpi_fadt.plvl2_lat;
511 pr->power.states[ACPI_STATE_C3].latency = acpi_fadt.plvl3_lat;
513 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
514 "lvl2[0x%08x] lvl3[0x%08x]\n",
515 pr->power.states[ACPI_STATE_C2].address,
516 pr->power.states[ACPI_STATE_C3].address));
518 return_VALUE(0);
522 static int acpi_processor_get_power_info_cst (struct acpi_processor *pr)
524 acpi_status status = 0;
525 acpi_integer count;
526 int i;
527 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
528 union acpi_object *cst;
530 ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_cst");
532 if (errata.smp)
533 return_VALUE(-ENODEV);
535 if (nocst)
536 return_VALUE(-ENODEV);
538 pr->power.count = 0;
539 for (i = 0; i < ACPI_PROCESSOR_MAX_POWER; i++)
540 memset(pr->power.states, 0, sizeof(struct acpi_processor_cx));
542 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
543 if (ACPI_FAILURE(status)) {
544 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
545 return_VALUE(-ENODEV);
548 cst = (union acpi_object *) buffer.pointer;
550 /* There must be at least 2 elements */
551 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
552 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "not enough elements in _CST\n"));
553 status = -EFAULT;
554 goto end;
557 count = cst->package.elements[0].integer.value;
559 /* Validate number of power states. */
560 if (count < 1 || count != cst->package.count - 1) {
561 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "count given by _CST is not valid\n"));
562 status = -EFAULT;
563 goto end;
566 /* We support up to ACPI_PROCESSOR_MAX_POWER. */
567 if (count > ACPI_PROCESSOR_MAX_POWER) {
568 printk(KERN_WARNING "Limiting number of power states to max (%d)\n", ACPI_PROCESSOR_MAX_POWER);
569 printk(KERN_WARNING "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
570 count = ACPI_PROCESSOR_MAX_POWER;
573 /* Tell driver that at least _CST is supported. */
574 pr->flags.has_cst = 1;
576 for (i = 1; i <= count; i++) {
577 union acpi_object *element;
578 union acpi_object *obj;
579 struct acpi_power_register *reg;
580 struct acpi_processor_cx cx;
582 memset(&cx, 0, sizeof(cx));
584 element = (union acpi_object *) &(cst->package.elements[i]);
585 if (element->type != ACPI_TYPE_PACKAGE)
586 continue;
588 if (element->package.count != 4)
589 continue;
591 obj = (union acpi_object *) &(element->package.elements[0]);
593 if (obj->type != ACPI_TYPE_BUFFER)
594 continue;
596 reg = (struct acpi_power_register *) obj->buffer.pointer;
598 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
599 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
600 continue;
602 cx.address = (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) ?
603 0 : reg->address;
605 /* There should be an easy way to extract an integer... */
606 obj = (union acpi_object *) &(element->package.elements[1]);
607 if (obj->type != ACPI_TYPE_INTEGER)
608 continue;
610 cx.type = obj->integer.value;
612 if ((cx.type != ACPI_STATE_C1) &&
613 (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO))
614 continue;
616 if ((cx.type < ACPI_STATE_C1) ||
617 (cx.type > ACPI_STATE_C3))
618 continue;
620 obj = (union acpi_object *) &(element->package.elements[2]);
621 if (obj->type != ACPI_TYPE_INTEGER)
622 continue;
624 cx.latency = obj->integer.value;
626 obj = (union acpi_object *) &(element->package.elements[3]);
627 if (obj->type != ACPI_TYPE_INTEGER)
628 continue;
630 cx.power = obj->integer.value;
632 (pr->power.count)++;
633 memcpy(&(pr->power.states[pr->power.count]), &cx, sizeof(cx));
636 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n", pr->power.count));
638 /* Validate number of power states discovered */
639 if (pr->power.count < 2)
640 status = -ENODEV;
642 end:
643 acpi_os_free(buffer.pointer);
645 return_VALUE(status);
649 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
651 ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c2");
653 if (!cx->address)
654 return_VOID;
657 * C2 latency must be less than or equal to 100
658 * microseconds.
660 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
661 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
662 "latency too large [%d]\n",
663 cx->latency));
664 return_VOID;
667 /* We're (currently) only supporting C2 on UP */
668 else if (errata.smp) {
669 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
670 "C2 not supported in SMP mode\n"));
671 return_VOID;
675 * Otherwise we've met all of our C2 requirements.
676 * Normalize the C2 latency to expidite policy
678 cx->valid = 1;
679 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
681 return_VOID;
685 static void acpi_processor_power_verify_c3(
686 struct acpi_processor *pr,
687 struct acpi_processor_cx *cx)
689 ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c3");
691 if (!cx->address)
692 return_VOID;
695 * C3 latency must be less than or equal to 1000
696 * microseconds.
698 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
699 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
700 "latency too large [%d]\n",
701 cx->latency));
702 return_VOID;
705 /* bus mastering control is necessary */
706 else if (!pr->flags.bm_control) {
707 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
708 "C3 support requires bus mastering control\n"));
709 return_VOID;
712 /* We're (currently) only supporting C2 on UP */
713 else if (errata.smp) {
714 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
715 "C3 not supported in SMP mode\n"));
716 return_VOID;
720 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
721 * DMA transfers are used by any ISA device to avoid livelock.
722 * Note that we could disable Type-F DMA (as recommended by
723 * the erratum), but this is known to disrupt certain ISA
724 * devices thus we take the conservative approach.
726 else if (errata.piix4.fdma) {
727 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
728 "C3 not supported on PIIX4 with Type-F DMA\n"));
729 return_VOID;
733 * Otherwise we've met all of our C3 requirements.
734 * Normalize the C3 latency to expidite policy. Enable
735 * checking of bus mastering status (bm_check) so we can
736 * use this in our C3 policy
738 cx->valid = 1;
739 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
740 pr->flags.bm_check = 1;
742 return_VOID;
746 static int acpi_processor_power_verify(struct acpi_processor *pr)
748 unsigned int i;
749 unsigned int working = 0;
751 for (i=1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
752 struct acpi_processor_cx *cx = &pr->power.states[i];
754 switch (cx->type) {
755 case ACPI_STATE_C1:
756 cx->valid = 1;
757 break;
759 case ACPI_STATE_C2:
760 acpi_processor_power_verify_c2(cx);
761 break;
763 case ACPI_STATE_C3:
764 acpi_processor_power_verify_c3(pr, cx);
765 break;
768 if (cx->valid)
769 working++;
772 return (working);
775 static int acpi_processor_get_power_info (
776 struct acpi_processor *pr)
778 unsigned int i;
779 int result;
781 ACPI_FUNCTION_TRACE("acpi_processor_get_power_info");
783 /* NOTE: the idle thread may not be running while calling
784 * this function */
786 result = acpi_processor_get_power_info_cst(pr);
787 if ((result) || (acpi_processor_power_verify(pr) < 2)) {
788 result = acpi_processor_get_power_info_fadt(pr);
789 if (result)
790 return_VALUE(result);
792 if (acpi_processor_power_verify(pr) < 2)
793 return_VALUE(-ENODEV);
797 * Set Default Policy
798 * ------------------
799 * Now that we know which states are supported, set the default
800 * policy. Note that this policy can be changed dynamically
801 * (e.g. encourage deeper sleeps to conserve battery life when
802 * not on AC).
804 result = acpi_processor_set_power_policy(pr);
805 if (result)
806 return_VALUE(result);
809 * if one state of type C2 or C3 is available, mark this
810 * CPU as being "idle manageable"
812 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
813 if (pr->power.states[i].valid)
814 pr->power.count = i;
815 if ((pr->power.states[i].valid) &&
816 (pr->power.states[i].type >= ACPI_STATE_C2))
817 pr->flags.power = 1;
820 return_VALUE(0);
823 int acpi_processor_cst_has_changed (struct acpi_processor *pr)
825 int result = 0;
827 ACPI_FUNCTION_TRACE("acpi_processor_cst_has_changed");
829 if (!pr)
830 return_VALUE(-EINVAL);
832 if (errata.smp || nocst) {
833 return_VALUE(-ENODEV);
836 if (!pr->flags.power_setup_done)
837 return_VALUE(-ENODEV);
839 /* Fall back to the default idle loop */
840 pm_idle = pm_idle_save;
841 synchronize_kernel();
843 pr->flags.power = 0;
844 result = acpi_processor_get_power_info(pr);
845 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
846 pm_idle = acpi_processor_idle;
848 return_VALUE(result);
851 /* proc interface */
853 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
855 struct acpi_processor *pr = (struct acpi_processor *)seq->private;
856 unsigned int i;
858 ACPI_FUNCTION_TRACE("acpi_processor_power_seq_show");
860 if (!pr)
861 goto end;
863 seq_printf(seq, "active state: C%zd\n"
864 "max_cstate: C%d\n"
865 "bus master activity: %08x\n",
866 pr->power.state ? pr->power.state - pr->power.states : 0,
867 max_cstate,
868 (unsigned)pr->power.bm_activity);
870 seq_puts(seq, "states:\n");
872 for (i = 1; i <= pr->power.count; i++) {
873 seq_printf(seq, " %cC%d: ",
874 (&pr->power.states[i] == pr->power.state?'*':' '), i);
876 if (!pr->power.states[i].valid) {
877 seq_puts(seq, "<not supported>\n");
878 continue;
881 switch (pr->power.states[i].type) {
882 case ACPI_STATE_C1:
883 seq_printf(seq, "type[C1] ");
884 break;
885 case ACPI_STATE_C2:
886 seq_printf(seq, "type[C2] ");
887 break;
888 case ACPI_STATE_C3:
889 seq_printf(seq, "type[C3] ");
890 break;
891 default:
892 seq_printf(seq, "type[--] ");
893 break;
896 if (pr->power.states[i].promotion.state)
897 seq_printf(seq, "promotion[C%zd] ",
898 (pr->power.states[i].promotion.state -
899 pr->power.states));
900 else
901 seq_puts(seq, "promotion[--] ");
903 if (pr->power.states[i].demotion.state)
904 seq_printf(seq, "demotion[C%zd] ",
905 (pr->power.states[i].demotion.state -
906 pr->power.states));
907 else
908 seq_puts(seq, "demotion[--] ");
910 seq_printf(seq, "latency[%03d] usage[%08d]\n",
911 pr->power.states[i].latency,
912 pr->power.states[i].usage);
915 end:
916 return_VALUE(0);
919 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
921 return single_open(file, acpi_processor_power_seq_show,
922 PDE(inode)->data);
925 static struct file_operations acpi_processor_power_fops = {
926 .open = acpi_processor_power_open_fs,
927 .read = seq_read,
928 .llseek = seq_lseek,
929 .release = single_release,
933 int acpi_processor_power_init(struct acpi_processor *pr, struct acpi_device *device)
935 acpi_status status = 0;
936 static int first_run = 0;
937 struct proc_dir_entry *entry = NULL;
938 unsigned int i;
940 ACPI_FUNCTION_TRACE("acpi_processor_power_init");
942 if (!first_run) {
943 dmi_check_system(processor_power_dmi_table);
944 if (max_cstate < ACPI_C_STATES_MAX)
945 printk(KERN_NOTICE "ACPI: processor limited to max C-state %d\n", max_cstate);
946 first_run++;
949 if (!errata.smp && (pr->id == 0) && acpi_fadt.cst_cnt && !nocst) {
950 status = acpi_os_write_port(acpi_fadt.smi_cmd, acpi_fadt.cst_cnt, 8);
951 if (ACPI_FAILURE(status)) {
952 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
953 "Notifying BIOS of _CST ability failed\n"));
957 acpi_processor_get_power_info(pr);
960 * Install the idle handler if processor power management is supported.
961 * Note that we use previously set idle handler will be used on
962 * platforms that only support C1.
964 if ((pr->flags.power) && (!boot_option_idle_override)) {
965 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
966 for (i = 1; i <= pr->power.count; i++)
967 if (pr->power.states[i].valid)
968 printk(" C%d[C%d]", i, pr->power.states[i].type);
969 printk(")\n");
971 if (pr->id == 0) {
972 pm_idle_save = pm_idle;
973 pm_idle = acpi_processor_idle;
977 /* 'power' [R] */
978 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
979 S_IRUGO, acpi_device_dir(device));
980 if (!entry)
981 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
982 "Unable to create '%s' fs entry\n",
983 ACPI_PROCESSOR_FILE_POWER));
984 else {
985 entry->proc_fops = &acpi_processor_power_fops;
986 entry->data = acpi_driver_data(device);
987 entry->owner = THIS_MODULE;
990 pr->flags.power_setup_done = 1;
992 return_VALUE(0);
995 int acpi_processor_power_exit(struct acpi_processor *pr, struct acpi_device *device)
997 ACPI_FUNCTION_TRACE("acpi_processor_power_exit");
999 pr->flags.power_setup_done = 0;
1001 if (acpi_device_dir(device))
1002 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,acpi_device_dir(device));
1004 /* Unregister the idle handler when processor #0 is removed. */
1005 if (pr->id == 0) {
1006 pm_idle = pm_idle_save;
1009 * We are about to unload the current idle thread pm callback
1010 * (pm_idle), Wait for all processors to update cached/local
1011 * copies of pm_idle before proceeding.
1013 cpu_idle_wait();
1016 return_VALUE(0);