Linux-2.6.12-rc2
[linux-2.6/kvm.git] / arch / ppc / platforms / pmac_smp.c
blob2b88745576a0dc2ca59790966dbaea431466ed07
1 /*
2 * SMP support for power macintosh.
4 * We support both the old "powersurge" SMP architecture
5 * and the current Core99 (G4 PowerMac) machines.
7 * Note that we don't support the very first rev. of
8 * Apple/DayStar 2 CPUs board, the one with the funky
9 * watchdog. Hopefully, none of these should be there except
10 * maybe internally to Apple. I should probably still add some
11 * code to detect this card though and disable SMP. --BenH.
13 * Support Macintosh G4 SMP by Troy Benjegerdes (hozer@drgw.net)
14 * and Ben Herrenschmidt <benh@kernel.crashing.org>.
16 * Support for DayStar quad CPU cards
17 * Copyright (C) XLR8, Inc. 1994-2000
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version
22 * 2 of the License, or (at your option) any later version.
24 #include <linux/config.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/smp.h>
28 #include <linux/smp_lock.h>
29 #include <linux/interrupt.h>
30 #include <linux/kernel_stat.h>
31 #include <linux/delay.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/errno.h>
35 #include <linux/hardirq.h>
37 #include <asm/ptrace.h>
38 #include <asm/atomic.h>
39 #include <asm/irq.h>
40 #include <asm/page.h>
41 #include <asm/pgtable.h>
42 #include <asm/sections.h>
43 #include <asm/io.h>
44 #include <asm/prom.h>
45 #include <asm/smp.h>
46 #include <asm/residual.h>
47 #include <asm/machdep.h>
48 #include <asm/pmac_feature.h>
49 #include <asm/time.h>
50 #include <asm/open_pic.h>
51 #include <asm/cacheflush.h>
52 #include <asm/keylargo.h>
55 * Powersurge (old powermac SMP) support.
58 extern void __secondary_start_psurge(void);
59 extern void __secondary_start_psurge2(void); /* Temporary horrible hack */
60 extern void __secondary_start_psurge3(void); /* Temporary horrible hack */
62 /* Addresses for powersurge registers */
63 #define HAMMERHEAD_BASE 0xf8000000
64 #define HHEAD_CONFIG 0x90
65 #define HHEAD_SEC_INTR 0xc0
67 /* register for interrupting the primary processor on the powersurge */
68 /* N.B. this is actually the ethernet ROM! */
69 #define PSURGE_PRI_INTR 0xf3019000
71 /* register for storing the start address for the secondary processor */
72 /* N.B. this is the PCI config space address register for the 1st bridge */
73 #define PSURGE_START 0xf2800000
75 /* Daystar/XLR8 4-CPU card */
76 #define PSURGE_QUAD_REG_ADDR 0xf8800000
78 #define PSURGE_QUAD_IRQ_SET 0
79 #define PSURGE_QUAD_IRQ_CLR 1
80 #define PSURGE_QUAD_IRQ_PRIMARY 2
81 #define PSURGE_QUAD_CKSTOP_CTL 3
82 #define PSURGE_QUAD_PRIMARY_ARB 4
83 #define PSURGE_QUAD_BOARD_ID 6
84 #define PSURGE_QUAD_WHICH_CPU 7
85 #define PSURGE_QUAD_CKSTOP_RDBK 8
86 #define PSURGE_QUAD_RESET_CTL 11
88 #define PSURGE_QUAD_OUT(r, v) (out_8(quad_base + ((r) << 4) + 4, (v)))
89 #define PSURGE_QUAD_IN(r) (in_8(quad_base + ((r) << 4) + 4) & 0x0f)
90 #define PSURGE_QUAD_BIS(r, v) (PSURGE_QUAD_OUT((r), PSURGE_QUAD_IN(r) | (v)))
91 #define PSURGE_QUAD_BIC(r, v) (PSURGE_QUAD_OUT((r), PSURGE_QUAD_IN(r) & ~(v)))
93 /* virtual addresses for the above */
94 static volatile u8 *hhead_base;
95 static volatile u8 *quad_base;
96 static volatile u32 *psurge_pri_intr;
97 static volatile u8 *psurge_sec_intr;
98 static volatile u32 *psurge_start;
100 /* values for psurge_type */
101 #define PSURGE_NONE -1
102 #define PSURGE_DUAL 0
103 #define PSURGE_QUAD_OKEE 1
104 #define PSURGE_QUAD_COTTON 2
105 #define PSURGE_QUAD_ICEGRASS 3
107 /* what sort of powersurge board we have */
108 static int psurge_type = PSURGE_NONE;
110 /* L2 and L3 cache settings to pass from CPU0 to CPU1 */
111 volatile static long int core99_l2_cache;
112 volatile static long int core99_l3_cache;
114 /* Timebase freeze GPIO */
115 static unsigned int core99_tb_gpio;
117 /* Sync flag for HW tb sync */
118 static volatile int sec_tb_reset = 0;
120 static void __init core99_init_caches(int cpu)
122 if (!cpu_has_feature(CPU_FTR_L2CR))
123 return;
125 if (cpu == 0) {
126 core99_l2_cache = _get_L2CR();
127 printk("CPU0: L2CR is %lx\n", core99_l2_cache);
128 } else {
129 printk("CPU%d: L2CR was %lx\n", cpu, _get_L2CR());
130 _set_L2CR(0);
131 _set_L2CR(core99_l2_cache);
132 printk("CPU%d: L2CR set to %lx\n", cpu, core99_l2_cache);
135 if (!cpu_has_feature(CPU_FTR_L3CR))
136 return;
138 if (cpu == 0){
139 core99_l3_cache = _get_L3CR();
140 printk("CPU0: L3CR is %lx\n", core99_l3_cache);
141 } else {
142 printk("CPU%d: L3CR was %lx\n", cpu, _get_L3CR());
143 _set_L3CR(0);
144 _set_L3CR(core99_l3_cache);
145 printk("CPU%d: L3CR set to %lx\n", cpu, core99_l3_cache);
150 * Set and clear IPIs for powersurge.
152 static inline void psurge_set_ipi(int cpu)
154 if (psurge_type == PSURGE_NONE)
155 return;
156 if (cpu == 0)
157 in_be32(psurge_pri_intr);
158 else if (psurge_type == PSURGE_DUAL)
159 out_8(psurge_sec_intr, 0);
160 else
161 PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_SET, 1 << cpu);
164 static inline void psurge_clr_ipi(int cpu)
166 if (cpu > 0) {
167 switch(psurge_type) {
168 case PSURGE_DUAL:
169 out_8(psurge_sec_intr, ~0);
170 case PSURGE_NONE:
171 break;
172 default:
173 PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_CLR, 1 << cpu);
179 * On powersurge (old SMP powermac architecture) we don't have
180 * separate IPIs for separate messages like openpic does. Instead
181 * we have a bitmap for each processor, where a 1 bit means that
182 * the corresponding message is pending for that processor.
183 * Ideally each cpu's entry would be in a different cache line.
184 * -- paulus.
186 static unsigned long psurge_smp_message[NR_CPUS];
188 void __pmac psurge_smp_message_recv(struct pt_regs *regs)
190 int cpu = smp_processor_id();
191 int msg;
193 /* clear interrupt */
194 psurge_clr_ipi(cpu);
196 if (num_online_cpus() < 2)
197 return;
199 /* make sure there is a message there */
200 for (msg = 0; msg < 4; msg++)
201 if (test_and_clear_bit(msg, &psurge_smp_message[cpu]))
202 smp_message_recv(msg, regs);
205 irqreturn_t __pmac psurge_primary_intr(int irq, void *d, struct pt_regs *regs)
207 psurge_smp_message_recv(regs);
208 return IRQ_HANDLED;
211 static void __pmac smp_psurge_message_pass(int target, int msg, unsigned long data,
212 int wait)
214 int i;
216 if (num_online_cpus() < 2)
217 return;
219 for (i = 0; i < NR_CPUS; i++) {
220 if (!cpu_online(i))
221 continue;
222 if (target == MSG_ALL
223 || (target == MSG_ALL_BUT_SELF && i != smp_processor_id())
224 || target == i) {
225 set_bit(msg, &psurge_smp_message[i]);
226 psurge_set_ipi(i);
232 * Determine a quad card presence. We read the board ID register, we
233 * force the data bus to change to something else, and we read it again.
234 * It it's stable, then the register probably exist (ugh !)
236 static int __init psurge_quad_probe(void)
238 int type;
239 unsigned int i;
241 type = PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID);
242 if (type < PSURGE_QUAD_OKEE || type > PSURGE_QUAD_ICEGRASS
243 || type != PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID))
244 return PSURGE_DUAL;
246 /* looks OK, try a slightly more rigorous test */
247 /* bogus is not necessarily cacheline-aligned,
248 though I don't suppose that really matters. -- paulus */
249 for (i = 0; i < 100; i++) {
250 volatile u32 bogus[8];
251 bogus[(0+i)%8] = 0x00000000;
252 bogus[(1+i)%8] = 0x55555555;
253 bogus[(2+i)%8] = 0xFFFFFFFF;
254 bogus[(3+i)%8] = 0xAAAAAAAA;
255 bogus[(4+i)%8] = 0x33333333;
256 bogus[(5+i)%8] = 0xCCCCCCCC;
257 bogus[(6+i)%8] = 0xCCCCCCCC;
258 bogus[(7+i)%8] = 0x33333333;
259 wmb();
260 asm volatile("dcbf 0,%0" : : "r" (bogus) : "memory");
261 mb();
262 if (type != PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID))
263 return PSURGE_DUAL;
265 return type;
268 static void __init psurge_quad_init(void)
270 int procbits;
272 if (ppc_md.progress) ppc_md.progress("psurge_quad_init", 0x351);
273 procbits = ~PSURGE_QUAD_IN(PSURGE_QUAD_WHICH_CPU);
274 if (psurge_type == PSURGE_QUAD_ICEGRASS)
275 PSURGE_QUAD_BIS(PSURGE_QUAD_RESET_CTL, procbits);
276 else
277 PSURGE_QUAD_BIC(PSURGE_QUAD_CKSTOP_CTL, procbits);
278 mdelay(33);
279 out_8(psurge_sec_intr, ~0);
280 PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_CLR, procbits);
281 PSURGE_QUAD_BIS(PSURGE_QUAD_RESET_CTL, procbits);
282 if (psurge_type != PSURGE_QUAD_ICEGRASS)
283 PSURGE_QUAD_BIS(PSURGE_QUAD_CKSTOP_CTL, procbits);
284 PSURGE_QUAD_BIC(PSURGE_QUAD_PRIMARY_ARB, procbits);
285 mdelay(33);
286 PSURGE_QUAD_BIC(PSURGE_QUAD_RESET_CTL, procbits);
287 mdelay(33);
288 PSURGE_QUAD_BIS(PSURGE_QUAD_PRIMARY_ARB, procbits);
289 mdelay(33);
292 static int __init smp_psurge_probe(void)
294 int i, ncpus;
296 /* We don't do SMP on the PPC601 -- paulus */
297 if (PVR_VER(mfspr(SPRN_PVR)) == 1)
298 return 1;
301 * The powersurge cpu board can be used in the generation
302 * of powermacs that have a socket for an upgradeable cpu card,
303 * including the 7500, 8500, 9500, 9600.
304 * The device tree doesn't tell you if you have 2 cpus because
305 * OF doesn't know anything about the 2nd processor.
306 * Instead we look for magic bits in magic registers,
307 * in the hammerhead memory controller in the case of the
308 * dual-cpu powersurge board. -- paulus.
310 if (find_devices("hammerhead") == NULL)
311 return 1;
313 hhead_base = ioremap(HAMMERHEAD_BASE, 0x800);
314 quad_base = ioremap(PSURGE_QUAD_REG_ADDR, 1024);
315 psurge_sec_intr = hhead_base + HHEAD_SEC_INTR;
317 psurge_type = psurge_quad_probe();
318 if (psurge_type != PSURGE_DUAL) {
319 psurge_quad_init();
320 /* All released cards using this HW design have 4 CPUs */
321 ncpus = 4;
322 } else {
323 iounmap((void *) quad_base);
324 if ((in_8(hhead_base + HHEAD_CONFIG) & 0x02) == 0) {
325 /* not a dual-cpu card */
326 iounmap((void *) hhead_base);
327 psurge_type = PSURGE_NONE;
328 return 1;
330 ncpus = 2;
333 psurge_start = ioremap(PSURGE_START, 4);
334 psurge_pri_intr = ioremap(PSURGE_PRI_INTR, 4);
336 /* this is not actually strictly necessary -- paulus. */
337 for (i = 1; i < ncpus; ++i)
338 smp_hw_index[i] = i;
340 if (ppc_md.progress) ppc_md.progress("smp_psurge_probe - done", 0x352);
342 return ncpus;
345 static void __init smp_psurge_kick_cpu(int nr)
347 void (*start)(void) = __secondary_start_psurge;
348 unsigned long a;
350 /* may need to flush here if secondary bats aren't setup */
351 for (a = KERNELBASE; a < KERNELBASE + 0x800000; a += 32)
352 asm volatile("dcbf 0,%0" : : "r" (a) : "memory");
353 asm volatile("sync");
355 if (ppc_md.progress) ppc_md.progress("smp_psurge_kick_cpu", 0x353);
357 /* setup entry point of secondary processor */
358 switch (nr) {
359 case 2:
360 start = __secondary_start_psurge2;
361 break;
362 case 3:
363 start = __secondary_start_psurge3;
364 break;
367 out_be32(psurge_start, __pa(start));
368 mb();
370 psurge_set_ipi(nr);
371 udelay(10);
372 psurge_clr_ipi(nr);
374 if (ppc_md.progress) ppc_md.progress("smp_psurge_kick_cpu - done", 0x354);
378 * With the dual-cpu powersurge board, the decrementers and timebases
379 * of both cpus are frozen after the secondary cpu is started up,
380 * until we give the secondary cpu another interrupt. This routine
381 * uses this to get the timebases synchronized.
382 * -- paulus.
384 static void __init psurge_dual_sync_tb(int cpu_nr)
386 int t;
388 set_dec(tb_ticks_per_jiffy);
389 set_tb(0, 0);
390 last_jiffy_stamp(cpu_nr) = 0;
392 if (cpu_nr > 0) {
393 mb();
394 sec_tb_reset = 1;
395 return;
398 /* wait for the secondary to have reset its TB before proceeding */
399 for (t = 10000000; t > 0 && !sec_tb_reset; --t)
402 /* now interrupt the secondary, starting both TBs */
403 psurge_set_ipi(1);
405 smp_tb_synchronized = 1;
408 static struct irqaction psurge_irqaction = {
409 .handler = psurge_primary_intr,
410 .flags = SA_INTERRUPT,
411 .mask = CPU_MASK_NONE,
412 .name = "primary IPI",
415 static void __init smp_psurge_setup_cpu(int cpu_nr)
418 if (cpu_nr == 0) {
419 /* If we failed to start the second CPU, we should still
420 * send it an IPI to start the timebase & DEC or we might
421 * have them stuck.
423 if (num_online_cpus() < 2) {
424 if (psurge_type == PSURGE_DUAL)
425 psurge_set_ipi(1);
426 return;
428 /* reset the entry point so if we get another intr we won't
429 * try to startup again */
430 out_be32(psurge_start, 0x100);
431 if (setup_irq(30, &psurge_irqaction))
432 printk(KERN_ERR "Couldn't get primary IPI interrupt");
435 if (psurge_type == PSURGE_DUAL)
436 psurge_dual_sync_tb(cpu_nr);
439 void __init smp_psurge_take_timebase(void)
441 /* Dummy implementation */
444 void __init smp_psurge_give_timebase(void)
446 /* Dummy implementation */
449 static int __init smp_core99_probe(void)
451 #ifdef CONFIG_6xx
452 extern int powersave_nap;
453 #endif
454 struct device_node *cpus, *firstcpu;
455 int i, ncpus = 0, boot_cpu = -1;
456 u32 *tbprop;
458 if (ppc_md.progress) ppc_md.progress("smp_core99_probe", 0x345);
459 cpus = firstcpu = find_type_devices("cpu");
460 while(cpus != NULL) {
461 u32 *regprop = (u32 *)get_property(cpus, "reg", NULL);
462 char *stateprop = (char *)get_property(cpus, "state", NULL);
463 if (regprop != NULL && stateprop != NULL &&
464 !strncmp(stateprop, "running", 7))
465 boot_cpu = *regprop;
466 ++ncpus;
467 cpus = cpus->next;
469 if (boot_cpu == -1)
470 printk(KERN_WARNING "Couldn't detect boot CPU !\n");
471 if (boot_cpu != 0)
472 printk(KERN_WARNING "Boot CPU is %d, unsupported setup !\n", boot_cpu);
474 if (machine_is_compatible("MacRISC4")) {
475 extern struct smp_ops_t core99_smp_ops;
477 core99_smp_ops.take_timebase = smp_generic_take_timebase;
478 core99_smp_ops.give_timebase = smp_generic_give_timebase;
479 } else {
480 if (firstcpu != NULL)
481 tbprop = (u32 *)get_property(firstcpu, "timebase-enable", NULL);
482 if (tbprop)
483 core99_tb_gpio = *tbprop;
484 else
485 core99_tb_gpio = KL_GPIO_TB_ENABLE;
488 if (ncpus > 1) {
489 openpic_request_IPIs();
490 for (i = 1; i < ncpus; ++i)
491 smp_hw_index[i] = i;
492 #ifdef CONFIG_6xx
493 powersave_nap = 0;
494 #endif
495 core99_init_caches(0);
498 return ncpus;
501 static void __init smp_core99_kick_cpu(int nr)
503 unsigned long save_vector, new_vector;
504 unsigned long flags;
506 volatile unsigned long *vector
507 = ((volatile unsigned long *)(KERNELBASE+0x100));
508 if (nr < 1 || nr > 3)
509 return;
510 if (ppc_md.progress) ppc_md.progress("smp_core99_kick_cpu", 0x346);
512 local_irq_save(flags);
513 local_irq_disable();
515 /* Save reset vector */
516 save_vector = *vector;
518 /* Setup fake reset vector that does
519 * b __secondary_start_psurge - KERNELBASE
521 switch(nr) {
522 case 1:
523 new_vector = (unsigned long)__secondary_start_psurge;
524 break;
525 case 2:
526 new_vector = (unsigned long)__secondary_start_psurge2;
527 break;
528 case 3:
529 new_vector = (unsigned long)__secondary_start_psurge3;
530 break;
532 *vector = 0x48000002 + new_vector - KERNELBASE;
534 /* flush data cache and inval instruction cache */
535 flush_icache_range((unsigned long) vector, (unsigned long) vector + 4);
537 /* Put some life in our friend */
538 pmac_call_feature(PMAC_FTR_RESET_CPU, NULL, nr, 0);
540 /* FIXME: We wait a bit for the CPU to take the exception, I should
541 * instead wait for the entry code to set something for me. Well,
542 * ideally, all that crap will be done in prom.c and the CPU left
543 * in a RAM-based wait loop like CHRP.
545 mdelay(1);
547 /* Restore our exception vector */
548 *vector = save_vector;
549 flush_icache_range((unsigned long) vector, (unsigned long) vector + 4);
551 local_irq_restore(flags);
552 if (ppc_md.progress) ppc_md.progress("smp_core99_kick_cpu done", 0x347);
555 static void __init smp_core99_setup_cpu(int cpu_nr)
557 /* Setup L2/L3 */
558 if (cpu_nr != 0)
559 core99_init_caches(cpu_nr);
561 /* Setup openpic */
562 do_openpic_setup_cpu();
564 if (cpu_nr == 0) {
565 #ifdef CONFIG_POWER4
566 extern void g5_phy_disable_cpu1(void);
568 /* If we didn't start the second CPU, we must take
569 * it off the bus
571 if (machine_is_compatible("MacRISC4") &&
572 num_online_cpus() < 2)
573 g5_phy_disable_cpu1();
574 #endif /* CONFIG_POWER4 */
575 if (ppc_md.progress) ppc_md.progress("core99_setup_cpu 0 done", 0x349);
579 void __init smp_core99_take_timebase(void)
581 /* Secondary processor "takes" the timebase by freezing
582 * it, resetting its local TB and telling CPU 0 to go on
584 pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, core99_tb_gpio, 4);
585 pmac_call_feature(PMAC_FTR_READ_GPIO, NULL, core99_tb_gpio, 0);
586 mb();
588 set_dec(tb_ticks_per_jiffy);
589 set_tb(0, 0);
590 last_jiffy_stamp(smp_processor_id()) = 0;
592 mb();
593 sec_tb_reset = 1;
596 void __init smp_core99_give_timebase(void)
598 unsigned int t;
600 /* Primary processor waits for secondary to have frozen
601 * the timebase, resets local TB, and kick timebase again
603 /* wait for the secondary to have reset its TB before proceeding */
604 for (t = 1000; t > 0 && !sec_tb_reset; --t)
605 udelay(1000);
606 if (t == 0)
607 printk(KERN_WARNING "Timeout waiting sync on second CPU\n");
609 set_dec(tb_ticks_per_jiffy);
610 set_tb(0, 0);
611 last_jiffy_stamp(smp_processor_id()) = 0;
612 mb();
614 /* Now, restart the timebase by leaving the GPIO to an open collector */
615 pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, core99_tb_gpio, 0);
616 pmac_call_feature(PMAC_FTR_READ_GPIO, NULL, core99_tb_gpio, 0);
618 smp_tb_synchronized = 1;
622 /* PowerSurge-style Macs */
623 struct smp_ops_t psurge_smp_ops __pmacdata = {
624 .message_pass = smp_psurge_message_pass,
625 .probe = smp_psurge_probe,
626 .kick_cpu = smp_psurge_kick_cpu,
627 .setup_cpu = smp_psurge_setup_cpu,
628 .give_timebase = smp_psurge_give_timebase,
629 .take_timebase = smp_psurge_take_timebase,
632 /* Core99 Macs (dual G4s) */
633 struct smp_ops_t core99_smp_ops __pmacdata = {
634 .message_pass = smp_openpic_message_pass,
635 .probe = smp_core99_probe,
636 .kick_cpu = smp_core99_kick_cpu,
637 .setup_cpu = smp_core99_setup_cpu,
638 .give_timebase = smp_core99_give_timebase,
639 .take_timebase = smp_core99_take_timebase,