2 * Fast Ethernet Controller (FCC) driver for Motorola MPC8260.
3 * Copyright (c) 2000 MontaVista Software, Inc. Dan Malek (dmalek@jlc.net)
5 * This version of the driver is a combination of the 8xx fec and
6 * 8260 SCC Ethernet drivers. This version has some additional
7 * configuration options, which should probably be moved out of
8 * here. This driver currently works for the EST SBC8260,
9 * SBS Diablo/BCM, Embedded Planet RPX6, TQM8260, and others.
11 * Right now, I am very watseful with the buffers. I allocate memory
12 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
16 * small packets. Since this is a cache coherent processor and CPM,
17 * I could also preallocate SKB's and use them directly on the interface.
19 * 2004-12 Leo Li (leoli@freescale.com)
20 * - Rework the FCC clock configuration part, make it easier to configure.
24 #include <linux/config.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/string.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/pci.h>
34 #include <linux/init.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/spinlock.h>
40 #include <linux/mii.h>
41 #include <linux/workqueue.h>
42 #include <linux/bitops.h>
44 #include <asm/immap_cpm2.h>
45 #include <asm/pgtable.h>
46 #include <asm/mpc8260.h>
48 #include <asm/uaccess.h>
49 #include <asm/signal.h>
51 /* We can't use the PHY interrupt if we aren't using MDIO. */
52 #if !defined(CONFIG_USE_MDIO)
56 /* If we have a PHY interrupt, we will advertise both full-duplex and half-
57 * duplex capabilities. If we don't have a PHY interrupt, then we will only
58 * advertise half-duplex capabilities.
60 #define MII_ADVERTISE_HALF (ADVERTISE_100HALF | ADVERTISE_10HALF | \
62 #define MII_ADVERTISE_ALL (ADVERTISE_100FULL | ADVERTISE_10FULL | \
65 #define MII_ADVERTISE_DEFAULT MII_ADVERTISE_ALL
67 #define MII_ADVERTISE_DEFAULT MII_ADVERTISE_HALF
71 /* The transmitter timeout
73 #define TX_TIMEOUT (2*HZ)
75 #ifdef CONFIG_USE_MDIO
76 /* Forward declarations of some structures to support different PHYs */
80 void (*funct
)(uint mii_reg
, struct net_device
*dev
);
87 const phy_cmd_t
*config
;
88 const phy_cmd_t
*startup
;
89 const phy_cmd_t
*ack_int
;
90 const phy_cmd_t
*shutdown
;
93 /* values for phy_status */
95 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
96 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
97 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
98 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
99 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
100 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
101 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
103 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
104 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
105 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
106 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
107 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
108 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
109 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
110 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
111 #endif /* CONFIG_USE_MDIO */
113 /* The number of Tx and Rx buffers. These are allocated from the page
114 * pool. The code may assume these are power of two, so it is best
115 * to keep them that size.
116 * We don't need to allocate pages for the transmitter. We just use
117 * the skbuffer directly.
119 #define FCC_ENET_RX_PAGES 16
120 #define FCC_ENET_RX_FRSIZE 2048
121 #define FCC_ENET_RX_FRPPG (PAGE_SIZE / FCC_ENET_RX_FRSIZE)
122 #define RX_RING_SIZE (FCC_ENET_RX_FRPPG * FCC_ENET_RX_PAGES)
123 #define TX_RING_SIZE 16 /* Must be power of two */
124 #define TX_RING_MOD_MASK 15 /* for this to work */
126 /* The FCC stores dest/src/type, data, and checksum for receive packets.
127 * size includes support for VLAN
129 #define PKT_MAXBUF_SIZE 1522
130 #define PKT_MINBUF_SIZE 64
132 /* Maximum input DMA size. Must be a should(?) be a multiple of 4.
133 * size includes support for VLAN
135 #define PKT_MAXDMA_SIZE 1524
137 /* Maximum input buffer size. Must be a multiple of 32.
139 #define PKT_MAXBLR_SIZE 1536
141 static int fcc_enet_open(struct net_device
*dev
);
142 static int fcc_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
143 static int fcc_enet_rx(struct net_device
*dev
);
144 static irqreturn_t
fcc_enet_interrupt(int irq
, void *dev_id
, struct pt_regs
*);
145 static int fcc_enet_close(struct net_device
*dev
);
146 static struct net_device_stats
*fcc_enet_get_stats(struct net_device
*dev
);
147 /* static void set_multicast_list(struct net_device *dev); */
148 static void fcc_restart(struct net_device
*dev
, int duplex
);
149 static void fcc_stop(struct net_device
*dev
);
150 static int fcc_enet_set_mac_address(struct net_device
*dev
, void *addr
);
152 /* These will be configurable for the FCC choice.
153 * Multiple ports can be configured. There is little choice among the
154 * I/O pins to the PHY, except the clocks. We will need some board
155 * dependent clock selection.
156 * Why in the hell did I put these inside #ifdef's? I dunno, maybe to
157 * help show what pins are used for each device.
160 /* Since the CLK setting changes greatly from board to board, I changed
161 * it to a easy way. You just need to specify which CLK number to use.
162 * Note that only limited choices can be make on each port.
165 /* FCC1 Clock Source Configuration. There are board specific.
166 Can only choose from CLK9-12 */
167 #ifdef CONFIG_SBC82xx
170 #elif defined(CONFIG_ADS8272)
178 /* FCC2 Clock Source Configuration. There are board specific.
179 Can only choose from CLK13-16 */
180 #ifdef CONFIG_ADS8272
188 /* FCC3 Clock Source Configuration. There are board specific.
189 Can only choose from CLK13-16 */
193 /* Automatically generates register configurations */
194 #define PC_CLK(x) ((uint)(1<<(x-1))) /* FCC CLK I/O ports */
196 #define CMXFCR_RF1CS(x) ((uint)((x-5)<<27)) /* FCC1 Receive Clock Source */
197 #define CMXFCR_TF1CS(x) ((uint)((x-5)<<24)) /* FCC1 Transmit Clock Source */
198 #define CMXFCR_RF2CS(x) ((uint)((x-9)<<19)) /* FCC2 Receive Clock Source */
199 #define CMXFCR_TF2CS(x) ((uint)((x-9)<<16)) /* FCC2 Transmit Clock Source */
200 #define CMXFCR_RF3CS(x) ((uint)((x-9)<<11)) /* FCC3 Receive Clock Source */
201 #define CMXFCR_TF3CS(x) ((uint)((x-9)<<8)) /* FCC3 Transmit Clock Source */
203 #define PC_F1RXCLK PC_CLK(F1_RXCLK)
204 #define PC_F1TXCLK PC_CLK(F1_TXCLK)
205 #define CMX1_CLK_ROUTE (CMXFCR_RF1CS(F1_RXCLK) | CMXFCR_TF1CS(F1_TXCLK))
206 #define CMX1_CLK_MASK ((uint)0xff000000)
208 #define PC_F2RXCLK PC_CLK(F2_RXCLK)
209 #define PC_F2TXCLK PC_CLK(F2_TXCLK)
210 #define CMX2_CLK_ROUTE (CMXFCR_RF2CS(F2_RXCLK) | CMXFCR_TF2CS(F2_TXCLK))
211 #define CMX2_CLK_MASK ((uint)0x00ff0000)
213 #define PC_F3RXCLK PC_CLK(F3_RXCLK)
214 #define PC_F3TXCLK PC_CLK(F3_TXCLK)
215 #define CMX3_CLK_ROUTE (CMXFCR_RF3CS(F3_RXCLK) | CMXFCR_TF3CS(F3_TXCLK))
216 #define CMX3_CLK_MASK ((uint)0x0000ff00)
219 /* I/O Pin assignment for FCC1. I don't yet know the best way to do this,
220 * but there is little variation among the choices.
222 #define PA1_COL ((uint)0x00000001)
223 #define PA1_CRS ((uint)0x00000002)
224 #define PA1_TXER ((uint)0x00000004)
225 #define PA1_TXEN ((uint)0x00000008)
226 #define PA1_RXDV ((uint)0x00000010)
227 #define PA1_RXER ((uint)0x00000020)
228 #define PA1_TXDAT ((uint)0x00003c00)
229 #define PA1_RXDAT ((uint)0x0003c000)
230 #define PA1_PSORA_BOUT (PA1_RXDAT | PA1_TXDAT)
231 #define PA1_PSORA_BIN (PA1_COL | PA1_CRS | PA1_TXER | PA1_TXEN | \
233 #define PA1_DIRA_BOUT (PA1_RXDAT | PA1_CRS | PA1_COL | PA1_RXER | PA1_RXDV)
234 #define PA1_DIRA_BIN (PA1_TXDAT | PA1_TXEN | PA1_TXER)
237 /* I/O Pin assignment for FCC2. I don't yet know the best way to do this,
238 * but there is little variation among the choices.
240 #define PB2_TXER ((uint)0x00000001)
241 #define PB2_RXDV ((uint)0x00000002)
242 #define PB2_TXEN ((uint)0x00000004)
243 #define PB2_RXER ((uint)0x00000008)
244 #define PB2_COL ((uint)0x00000010)
245 #define PB2_CRS ((uint)0x00000020)
246 #define PB2_TXDAT ((uint)0x000003c0)
247 #define PB2_RXDAT ((uint)0x00003c00)
248 #define PB2_PSORB_BOUT (PB2_RXDAT | PB2_TXDAT | PB2_CRS | PB2_COL | \
249 PB2_RXER | PB2_RXDV | PB2_TXER)
250 #define PB2_PSORB_BIN (PB2_TXEN)
251 #define PB2_DIRB_BOUT (PB2_RXDAT | PB2_CRS | PB2_COL | PB2_RXER | PB2_RXDV)
252 #define PB2_DIRB_BIN (PB2_TXDAT | PB2_TXEN | PB2_TXER)
255 /* I/O Pin assignment for FCC3. I don't yet know the best way to do this,
256 * but there is little variation among the choices.
258 #define PB3_RXDV ((uint)0x00004000)
259 #define PB3_RXER ((uint)0x00008000)
260 #define PB3_TXER ((uint)0x00010000)
261 #define PB3_TXEN ((uint)0x00020000)
262 #define PB3_COL ((uint)0x00040000)
263 #define PB3_CRS ((uint)0x00080000)
264 #ifndef CONFIG_RPX8260
265 #define PB3_TXDAT ((uint)0x0f000000)
266 #define PC3_TXDAT ((uint)0x00000000)
268 #define PB3_TXDAT ((uint)0x0f000000)
271 #define PB3_RXDAT ((uint)0x00f00000)
272 #define PB3_PSORB_BOUT (PB3_RXDAT | PB3_TXDAT | PB3_CRS | PB3_COL | \
273 PB3_RXER | PB3_RXDV | PB3_TXER | PB3_TXEN)
274 #define PB3_PSORB_BIN (0)
275 #define PB3_DIRB_BOUT (PB3_RXDAT | PB3_CRS | PB3_COL | PB3_RXER | PB3_RXDV)
276 #define PB3_DIRB_BIN (PB3_TXDAT | PB3_TXEN | PB3_TXER)
278 #define PC3_PSORC_BOUT (PC3_TXDAT)
279 #define PC3_PSORC_BIN (0)
280 #define PC3_DIRC_BOUT (0)
281 #define PC3_DIRC_BIN (PC3_TXDAT)
284 /* MII status/control serial interface.
286 #if defined(CONFIG_RPX8260)
287 /* The EP8260 doesn't use Port C for MDIO */
288 #define PC_MDIO ((uint)0x00000000)
289 #define PC_MDCK ((uint)0x00000000)
290 #elif defined(CONFIG_TQM8260)
291 /* TQM8260 has MDIO and MDCK on PC30 and PC31 respectively */
292 #define PC_MDIO ((uint)0x00000002)
293 #define PC_MDCK ((uint)0x00000001)
294 #elif defined(CONFIG_ADS8272)
295 #define PC_MDIO ((uint)0x00002000)
296 #define PC_MDCK ((uint)0x00001000)
297 #elif defined(CONFIG_EST8260) || defined(CONFIG_ADS8260) || defined(CONFIG_PQ2FADS)
298 #define PC_MDIO ((uint)0x00400000)
299 #define PC_MDCK ((uint)0x00200000)
301 #define PC_MDIO ((uint)0x00000004)
302 #define PC_MDCK ((uint)0x00000020)
305 #if defined(CONFIG_USE_MDIO) && (!defined(PC_MDIO) || !defined(PC_MDCK))
306 #error "Must define PC_MDIO and PC_MDCK if using MDIO"
310 /* default to dynamic config of phy addresses */
311 #define FCC1_PHY_ADDR 0
312 #ifdef CONFIG_PQ2FADS
313 #define FCC2_PHY_ADDR 0
315 #define FCC2_PHY_ADDR 2
317 #define FCC3_PHY_ADDR 3
319 /* A table of information for supporting FCCs. This does two things.
320 * First, we know how many FCCs we have and they are always externally
321 * numbered from zero. Second, it holds control register and I/O
322 * information that could be different among board designs.
324 typedef struct fcc_info
{
338 static fcc_info_t fcc_ports
[] = {
339 #ifdef CONFIG_FCC1_ENET
340 { 0, FCC1_PHY_ADDR
, CPM_CR_FCC1_SBLOCK
, CPM_CR_FCC1_PAGE
, PROFF_FCC1
, SIU_INT_FCC1
,
341 (PC_F1RXCLK
| PC_F1TXCLK
), CMX1_CLK_ROUTE
, CMX1_CLK_MASK
,
344 #ifdef CONFIG_FCC2_ENET
345 { 1, FCC2_PHY_ADDR
, CPM_CR_FCC2_SBLOCK
, CPM_CR_FCC2_PAGE
, PROFF_FCC2
, SIU_INT_FCC2
,
346 (PC_F2RXCLK
| PC_F2TXCLK
), CMX2_CLK_ROUTE
, CMX2_CLK_MASK
,
349 #ifdef CONFIG_FCC3_ENET
350 { 2, FCC3_PHY_ADDR
, CPM_CR_FCC3_SBLOCK
, CPM_CR_FCC3_PAGE
, PROFF_FCC3
, SIU_INT_FCC3
,
351 (PC_F3RXCLK
| PC_F3TXCLK
), CMX3_CLK_ROUTE
, CMX3_CLK_MASK
,
356 /* The FCC buffer descriptors track the ring buffers. The rx_bd_base and
357 * tx_bd_base always point to the base of the buffer descriptors. The
358 * cur_rx and cur_tx point to the currently available buffer.
359 * The dirty_tx tracks the current buffer that is being sent by the
360 * controller. The cur_tx and dirty_tx are equal under both completely
361 * empty and completely full conditions. The empty/ready indicator in
362 * the buffer descriptor determines the actual condition.
364 struct fcc_enet_private
{
365 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
366 struct sk_buff
* tx_skbuff
[TX_RING_SIZE
];
370 /* CPM dual port RAM relative addresses.
372 cbd_t
*rx_bd_base
; /* Address of Rx and Tx buffers. */
374 cbd_t
*cur_rx
, *cur_tx
; /* The next free ring entry */
375 cbd_t
*dirty_tx
; /* The ring entries to be free()ed. */
376 volatile fcc_t
*fccp
;
377 volatile fcc_enet_t
*ep
;
378 struct net_device_stats stats
;
382 #ifdef CONFIG_USE_MDIO
387 struct work_struct phy_relink
;
388 struct work_struct phy_display_config
;
393 #endif /* CONFIG_USE_MDIO */
402 static void init_fcc_shutdown(fcc_info_t
*fip
, struct fcc_enet_private
*cep
,
403 volatile cpm2_map_t
*immap
);
404 static void init_fcc_startup(fcc_info_t
*fip
, struct net_device
*dev
);
405 static void init_fcc_ioports(fcc_info_t
*fip
, volatile iop_cpm2_t
*io
,
406 volatile cpm2_map_t
*immap
);
407 static void init_fcc_param(fcc_info_t
*fip
, struct net_device
*dev
,
408 volatile cpm2_map_t
*immap
);
410 #ifdef CONFIG_USE_MDIO
411 static int mii_queue(struct net_device
*dev
, int request
, void (*func
)(uint
, struct net_device
*));
412 static uint
mii_send_receive(fcc_info_t
*fip
, uint cmd
);
413 static void mii_do_cmd(struct net_device
*dev
, const phy_cmd_t
*c
);
415 /* Make MII read/write commands for the FCC.
417 #define mk_mii_read(REG) (0x60020000 | (((REG) & 0x1f) << 18))
418 #define mk_mii_write(REG, VAL) (0x50020000 | (((REG) & 0x1f) << 18) | \
421 #endif /* CONFIG_USE_MDIO */
425 fcc_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
427 struct fcc_enet_private
*cep
= (struct fcc_enet_private
*)dev
->priv
;
430 /* Fill in a Tx ring entry */
433 #ifndef final_version
434 if (!cep
->tx_free
|| (bdp
->cbd_sc
& BD_ENET_TX_READY
)) {
435 /* Ooops. All transmit buffers are full. Bail out.
436 * This should not happen, since the tx queue should be stopped.
438 printk("%s: tx queue full!.\n", dev
->name
);
443 /* Clear all of the status flags. */
444 bdp
->cbd_sc
&= ~BD_ENET_TX_STATS
;
446 /* If the frame is short, tell CPM to pad it. */
447 if (skb
->len
<= ETH_ZLEN
)
448 bdp
->cbd_sc
|= BD_ENET_TX_PAD
;
450 bdp
->cbd_sc
&= ~BD_ENET_TX_PAD
;
452 /* Set buffer length and buffer pointer. */
453 bdp
->cbd_datlen
= skb
->len
;
454 bdp
->cbd_bufaddr
= __pa(skb
->data
);
456 spin_lock_irq(&cep
->lock
);
458 /* Save skb pointer. */
459 cep
->tx_skbuff
[cep
->skb_cur
] = skb
;
461 cep
->stats
.tx_bytes
+= skb
->len
;
462 cep
->skb_cur
= (cep
->skb_cur
+1) & TX_RING_MOD_MASK
;
464 /* Send it on its way. Tell CPM its ready, interrupt when done,
465 * its the last BD of the frame, and to put the CRC on the end.
467 bdp
->cbd_sc
|= (BD_ENET_TX_READY
| BD_ENET_TX_INTR
| BD_ENET_TX_LAST
| BD_ENET_TX_TC
);
470 /* Errata says don't do this. */
471 cep
->fccp
->fcc_ftodr
= 0x8000;
473 dev
->trans_start
= jiffies
;
475 /* If this was the last BD in the ring, start at the beginning again. */
476 if (bdp
->cbd_sc
& BD_ENET_TX_WRAP
)
477 bdp
= cep
->tx_bd_base
;
482 netif_stop_queue(dev
);
484 cep
->cur_tx
= (cbd_t
*)bdp
;
486 spin_unlock_irq(&cep
->lock
);
493 fcc_enet_timeout(struct net_device
*dev
)
495 struct fcc_enet_private
*cep
= (struct fcc_enet_private
*)dev
->priv
;
497 printk("%s: transmit timed out.\n", dev
->name
);
498 cep
->stats
.tx_errors
++;
499 #ifndef final_version
503 printk(" Ring data dump: cur_tx %p tx_free %d cur_rx %p.\n",
504 cep
->cur_tx
, cep
->tx_free
,
506 bdp
= cep
->tx_bd_base
;
507 printk(" Tx @base %p :\n", bdp
);
508 for (i
= 0 ; i
< TX_RING_SIZE
; i
++, bdp
++)
509 printk("%04x %04x %08x\n",
513 bdp
= cep
->rx_bd_base
;
514 printk(" Rx @base %p :\n", bdp
);
515 for (i
= 0 ; i
< RX_RING_SIZE
; i
++, bdp
++)
516 printk("%04x %04x %08x\n",
523 netif_wake_queue(dev
);
526 /* The interrupt handler. */
528 fcc_enet_interrupt(int irq
, void * dev_id
, struct pt_regs
* regs
)
530 struct net_device
*dev
= dev_id
;
531 volatile struct fcc_enet_private
*cep
;
536 cep
= (struct fcc_enet_private
*)dev
->priv
;
538 /* Get the interrupt events that caused us to be here.
540 int_events
= cep
->fccp
->fcc_fcce
;
541 cep
->fccp
->fcc_fcce
= (int_events
& cep
->fccp
->fcc_fccm
);
545 /* We have to be careful here to make sure that we aren't
546 * interrupted by a PHY interrupt.
548 disable_irq_nosync(PHY_INTERRUPT
);
551 /* Handle receive event in its own function.
553 if (int_events
& FCC_ENET_RXF
)
556 /* Check for a transmit error. The manual is a little unclear
557 * about this, so the debug code until I get it figured out. It
558 * appears that if TXE is set, then TXB is not set. However,
559 * if carrier sense is lost during frame transmission, the TXE
560 * bit is set, "and continues the buffer transmission normally."
561 * I don't know if "normally" implies TXB is set when the buffer
562 * descriptor is closed.....trial and error :-).
565 /* Transmit OK, or non-fatal error. Update the buffer descriptors.
567 if (int_events
& (FCC_ENET_TXE
| FCC_ENET_TXB
)) {
568 spin_lock(&cep
->lock
);
570 while ((bdp
->cbd_sc
&BD_ENET_TX_READY
)==0) {
571 if (cep
->tx_free
== TX_RING_SIZE
)
574 if (bdp
->cbd_sc
& BD_ENET_TX_HB
) /* No heartbeat */
575 cep
->stats
.tx_heartbeat_errors
++;
576 if (bdp
->cbd_sc
& BD_ENET_TX_LC
) /* Late collision */
577 cep
->stats
.tx_window_errors
++;
578 if (bdp
->cbd_sc
& BD_ENET_TX_RL
) /* Retrans limit */
579 cep
->stats
.tx_aborted_errors
++;
580 if (bdp
->cbd_sc
& BD_ENET_TX_UN
) /* Underrun */
581 cep
->stats
.tx_fifo_errors
++;
582 if (bdp
->cbd_sc
& BD_ENET_TX_CSL
) /* Carrier lost */
583 cep
->stats
.tx_carrier_errors
++;
586 /* No heartbeat or Lost carrier are not really bad errors.
587 * The others require a restart transmit command.
590 (BD_ENET_TX_LC
| BD_ENET_TX_RL
| BD_ENET_TX_UN
)) {
592 cep
->stats
.tx_errors
++;
595 cep
->stats
.tx_packets
++;
597 /* Deferred means some collisions occurred during transmit,
598 * but we eventually sent the packet OK.
600 if (bdp
->cbd_sc
& BD_ENET_TX_DEF
)
601 cep
->stats
.collisions
++;
603 /* Free the sk buffer associated with this last transmit. */
604 dev_kfree_skb_irq(cep
->tx_skbuff
[cep
->skb_dirty
]);
605 cep
->tx_skbuff
[cep
->skb_dirty
] = NULL
;
606 cep
->skb_dirty
= (cep
->skb_dirty
+ 1) & TX_RING_MOD_MASK
;
608 /* Update pointer to next buffer descriptor to be transmitted. */
609 if (bdp
->cbd_sc
& BD_ENET_TX_WRAP
)
610 bdp
= cep
->tx_bd_base
;
614 /* I don't know if we can be held off from processing these
615 * interrupts for more than one frame time. I really hope
616 * not. In such a case, we would now want to check the
617 * currently available BD (cur_tx) and determine if any
618 * buffers between the dirty_tx and cur_tx have also been
619 * sent. We would want to process anything in between that
620 * does not have BD_ENET_TX_READY set.
623 /* Since we have freed up a buffer, the ring is no longer
626 if (!cep
->tx_free
++) {
627 if (netif_queue_stopped(dev
)) {
628 netif_wake_queue(dev
);
632 cep
->dirty_tx
= (cbd_t
*)bdp
;
636 volatile cpm_cpm2_t
*cp
;
638 /* Some transmit errors cause the transmitter to shut
639 * down. We now issue a restart transmit. Since the
640 * errors close the BD and update the pointers, the restart
641 * _should_ pick up without having to reset any of our
642 * pointers either. Also, To workaround 8260 device erratum
643 * CPM37, we must disable and then re-enable the transmitter
644 * following a Late Collision, Underrun, or Retry Limit error.
646 cep
->fccp
->fcc_gfmr
&= ~FCC_GFMR_ENT
;
647 udelay(10); /* wait a few microseconds just on principle */
648 cep
->fccp
->fcc_gfmr
|= FCC_GFMR_ENT
;
652 mk_cr_cmd(cep
->fip
->fc_cpmpage
, cep
->fip
->fc_cpmblock
,
653 0x0c, CPM_CR_RESTART_TX
) | CPM_CR_FLG
;
654 while (cp
->cp_cpcr
& CPM_CR_FLG
);
656 spin_unlock(&cep
->lock
);
659 /* Check for receive busy, i.e. packets coming but no place to
662 if (int_events
& FCC_ENET_BSY
) {
663 cep
->fccp
->fcc_fcce
= FCC_ENET_BSY
;
664 cep
->stats
.rx_dropped
++;
668 enable_irq(PHY_INTERRUPT
);
673 /* During a receive, the cur_rx points to the current incoming buffer.
674 * When we update through the ring, if the next incoming buffer has
675 * not been given to the system, we just set the empty indicator,
676 * effectively tossing the packet.
679 fcc_enet_rx(struct net_device
*dev
)
681 struct fcc_enet_private
*cep
;
686 cep
= (struct fcc_enet_private
*)dev
->priv
;
688 /* First, grab all of the stats for the incoming packet.
689 * These get messed up if we get called due to a busy condition.
694 if (bdp
->cbd_sc
& BD_ENET_RX_EMPTY
)
697 #ifndef final_version
698 /* Since we have allocated space to hold a complete frame, both
699 * the first and last indicators should be set.
701 if ((bdp
->cbd_sc
& (BD_ENET_RX_FIRST
| BD_ENET_RX_LAST
)) !=
702 (BD_ENET_RX_FIRST
| BD_ENET_RX_LAST
))
703 printk("CPM ENET: rcv is not first+last\n");
706 /* Frame too long or too short. */
707 if (bdp
->cbd_sc
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
))
708 cep
->stats
.rx_length_errors
++;
709 if (bdp
->cbd_sc
& BD_ENET_RX_NO
) /* Frame alignment */
710 cep
->stats
.rx_frame_errors
++;
711 if (bdp
->cbd_sc
& BD_ENET_RX_CR
) /* CRC Error */
712 cep
->stats
.rx_crc_errors
++;
713 if (bdp
->cbd_sc
& BD_ENET_RX_OV
) /* FIFO overrun */
714 cep
->stats
.rx_crc_errors
++;
715 if (bdp
->cbd_sc
& BD_ENET_RX_CL
) /* Late Collision */
716 cep
->stats
.rx_frame_errors
++;
719 (BD_ENET_RX_LG
| BD_ENET_RX_SH
| BD_ENET_RX_NO
| BD_ENET_RX_CR
720 | BD_ENET_RX_OV
| BD_ENET_RX_CL
)))
722 /* Process the incoming frame. */
723 cep
->stats
.rx_packets
++;
725 /* Remove the FCS from the packet length. */
726 pkt_len
= bdp
->cbd_datlen
- 4;
727 cep
->stats
.rx_bytes
+= pkt_len
;
729 /* This does 16 byte alignment, much more than we need. */
730 skb
= dev_alloc_skb(pkt_len
);
733 printk("%s: Memory squeeze, dropping packet.\n", dev
->name
);
734 cep
->stats
.rx_dropped
++;
738 skb_put(skb
,pkt_len
); /* Make room */
739 eth_copy_and_sum(skb
,
740 (unsigned char *)__va(bdp
->cbd_bufaddr
),
742 skb
->protocol
=eth_type_trans(skb
,dev
);
747 /* Clear the status flags for this buffer. */
748 bdp
->cbd_sc
&= ~BD_ENET_RX_STATS
;
750 /* Mark the buffer empty. */
751 bdp
->cbd_sc
|= BD_ENET_RX_EMPTY
;
753 /* Update BD pointer to next entry. */
754 if (bdp
->cbd_sc
& BD_ENET_RX_WRAP
)
755 bdp
= cep
->rx_bd_base
;
760 cep
->cur_rx
= (cbd_t
*)bdp
;
766 fcc_enet_close(struct net_device
*dev
)
768 #ifdef CONFIG_USE_MDIO
769 struct fcc_enet_private
*fep
= dev
->priv
;
772 netif_stop_queue(dev
);
774 #ifdef CONFIG_USE_MDIO
776 mii_do_cmd(dev
, fep
->phy
->shutdown
);
782 static struct net_device_stats
*fcc_enet_get_stats(struct net_device
*dev
)
784 struct fcc_enet_private
*cep
= (struct fcc_enet_private
*)dev
->priv
;
789 #ifdef CONFIG_USE_MDIO
791 /* NOTE: Most of the following comes from the FEC driver for 860. The
792 * overall structure of MII code has been retained (as it's proved stable
793 * and well-tested), but actual transfer requests are processed "at once"
794 * instead of being queued (there's no interrupt-driven MII transfer
795 * mechanism, one has to toggle the data/clock bits manually).
798 mii_queue(struct net_device
*dev
, int regval
, void (*func
)(uint
, struct net_device
*))
800 struct fcc_enet_private
*fep
;
803 /* Add PHY address to register command. */
805 regval
|= fep
->phy_addr
<< 23;
809 tmp
= mii_send_receive(fep
->fip
, regval
);
816 static void mii_do_cmd(struct net_device
*dev
, const phy_cmd_t
*c
)
823 for(k
= 0; (c
+k
)->mii_data
!= mk_mii_end
; k
++)
824 mii_queue(dev
, (c
+k
)->mii_data
, (c
+k
)->funct
);
827 static void mii_parse_sr(uint mii_reg
, struct net_device
*dev
)
829 volatile struct fcc_enet_private
*fep
= dev
->priv
;
830 uint s
= fep
->phy_status
;
832 s
&= ~(PHY_STAT_LINK
| PHY_STAT_FAULT
| PHY_STAT_ANC
);
834 if (mii_reg
& BMSR_LSTATUS
)
836 if (mii_reg
& BMSR_RFAULT
)
838 if (mii_reg
& BMSR_ANEGCOMPLETE
)
844 static void mii_parse_cr(uint mii_reg
, struct net_device
*dev
)
846 volatile struct fcc_enet_private
*fep
= dev
->priv
;
847 uint s
= fep
->phy_status
;
849 s
&= ~(PHY_CONF_ANE
| PHY_CONF_LOOP
);
851 if (mii_reg
& BMCR_ANENABLE
)
853 if (mii_reg
& BMCR_LOOPBACK
)
859 static void mii_parse_anar(uint mii_reg
, struct net_device
*dev
)
861 volatile struct fcc_enet_private
*fep
= dev
->priv
;
862 uint s
= fep
->phy_status
;
864 s
&= ~(PHY_CONF_SPMASK
);
866 if (mii_reg
& ADVERTISE_10HALF
)
868 if (mii_reg
& ADVERTISE_10FULL
)
870 if (mii_reg
& ADVERTISE_100HALF
)
871 s
|= PHY_CONF_100HDX
;
872 if (mii_reg
& ADVERTISE_100FULL
)
873 s
|= PHY_CONF_100FDX
;
878 /* ------------------------------------------------------------------------- */
879 /* Generic PHY support. Should work for all PHYs, but does not support link
882 #ifdef CONFIG_FCC_GENERIC_PHY
884 static phy_info_t phy_info_generic
= {
885 0x00000000, /* 0-->match any PHY */
888 (const phy_cmd_t
[]) { /* config */
889 /* advertise only half-duplex capabilities */
890 { mk_mii_write(MII_ADVERTISE
, MII_ADVERTISE_HALF
),
893 /* enable auto-negotiation */
894 { mk_mii_write(MII_BMCR
, BMCR_ANENABLE
), mii_parse_cr
},
897 (const phy_cmd_t
[]) { /* startup */
898 /* restart auto-negotiation */
899 { mk_mii_write(MII_BMCR
, BMCR_ANENABLE
| BMCR_ANRESTART
),
903 (const phy_cmd_t
[]) { /* ack_int */
904 /* We don't actually use the ack_int table with a generic
905 * PHY, but putting a reference to mii_parse_sr here keeps
906 * us from getting a compiler warning about unused static
907 * functions in the case where we only compile in generic
910 { mk_mii_read(MII_BMSR
), mii_parse_sr
},
913 (const phy_cmd_t
[]) { /* shutdown */
917 #endif /* ifdef CONFIG_FCC_GENERIC_PHY */
919 /* ------------------------------------------------------------------------- */
920 /* The Level one LXT970 is used by many boards */
922 #ifdef CONFIG_FCC_LXT970
924 #define MII_LXT970_MIRROR 16 /* Mirror register */
925 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
926 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
927 #define MII_LXT970_CONFIG 19 /* Configuration Register */
928 #define MII_LXT970_CSR 20 /* Chip Status Register */
930 static void mii_parse_lxt970_csr(uint mii_reg
, struct net_device
*dev
)
932 volatile struct fcc_enet_private
*fep
= dev
->priv
;
933 uint s
= fep
->phy_status
;
935 s
&= ~(PHY_STAT_SPMASK
);
937 if (mii_reg
& 0x0800) {
938 if (mii_reg
& 0x1000)
939 s
|= PHY_STAT_100FDX
;
941 s
|= PHY_STAT_100HDX
;
943 if (mii_reg
& 0x1000)
952 static phy_info_t phy_info_lxt970
= {
956 (const phy_cmd_t
[]) { /* config */
958 // { mk_mii_write(MII_ADVERTISE, 0x0021), NULL },
960 /* Set default operation of 100-TX....for some reason
961 * some of these bits are set on power up, which is wrong.
963 { mk_mii_write(MII_LXT970_CONFIG
, 0), NULL
},
965 { mk_mii_read(MII_BMCR
), mii_parse_cr
},
966 { mk_mii_read(MII_ADVERTISE
), mii_parse_anar
},
969 (const phy_cmd_t
[]) { /* startup - enable interrupts */
970 { mk_mii_write(MII_LXT970_IER
, 0x0002), NULL
},
971 { mk_mii_write(MII_BMCR
, 0x1200), NULL
}, /* autonegotiate */
974 (const phy_cmd_t
[]) { /* ack_int */
975 /* read SR and ISR to acknowledge */
977 { mk_mii_read(MII_BMSR
), mii_parse_sr
},
978 { mk_mii_read(MII_LXT970_ISR
), NULL
},
980 /* find out the current status */
982 { mk_mii_read(MII_LXT970_CSR
), mii_parse_lxt970_csr
},
985 (const phy_cmd_t
[]) { /* shutdown - disable interrupts */
986 { mk_mii_write(MII_LXT970_IER
, 0x0000), NULL
},
991 #endif /* CONFIG_FEC_LXT970 */
993 /* ------------------------------------------------------------------------- */
994 /* The Level one LXT971 is used on some of my custom boards */
996 #ifdef CONFIG_FCC_LXT971
998 /* register definitions for the 971 */
1000 #define MII_LXT971_PCR 16 /* Port Control Register */
1001 #define MII_LXT971_SR2 17 /* Status Register 2 */
1002 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
1003 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
1004 #define MII_LXT971_LCR 20 /* LED Control Register */
1005 #define MII_LXT971_TCR 30 /* Transmit Control Register */
1008 * I had some nice ideas of running the MDIO faster...
1009 * The 971 should support 8MHz and I tried it, but things acted really
1010 * weird, so 2.5 MHz ought to be enough for anyone...
1013 static void mii_parse_lxt971_sr2(uint mii_reg
, struct net_device
*dev
)
1015 volatile struct fcc_enet_private
*fep
= dev
->priv
;
1016 uint s
= fep
->phy_status
;
1018 s
&= ~(PHY_STAT_SPMASK
);
1020 if (mii_reg
& 0x4000) {
1021 if (mii_reg
& 0x0200)
1022 s
|= PHY_STAT_100FDX
;
1024 s
|= PHY_STAT_100HDX
;
1026 if (mii_reg
& 0x0200)
1027 s
|= PHY_STAT_10FDX
;
1029 s
|= PHY_STAT_10HDX
;
1031 if (mii_reg
& 0x0008)
1032 s
|= PHY_STAT_FAULT
;
1034 fep
->phy_status
= s
;
1037 static phy_info_t phy_info_lxt971
= {
1041 (const phy_cmd_t
[]) { /* config */
1042 /* configure link capabilities to advertise */
1043 { mk_mii_write(MII_ADVERTISE
, MII_ADVERTISE_DEFAULT
),
1046 /* enable auto-negotiation */
1047 { mk_mii_write(MII_BMCR
, BMCR_ANENABLE
), mii_parse_cr
},
1050 (const phy_cmd_t
[]) { /* startup - enable interrupts */
1051 { mk_mii_write(MII_LXT971_IER
, 0x00f2), NULL
},
1053 /* restart auto-negotiation */
1054 { mk_mii_write(MII_BMCR
, BMCR_ANENABLE
| BMCR_ANRESTART
),
1058 (const phy_cmd_t
[]) { /* ack_int */
1059 /* find out the current status */
1060 { mk_mii_read(MII_BMSR
), NULL
},
1061 { mk_mii_read(MII_BMSR
), mii_parse_sr
},
1062 { mk_mii_read(MII_LXT971_SR2
), mii_parse_lxt971_sr2
},
1064 /* we only need to read ISR to acknowledge */
1065 { mk_mii_read(MII_LXT971_ISR
), NULL
},
1068 (const phy_cmd_t
[]) { /* shutdown - disable interrupts */
1069 { mk_mii_write(MII_LXT971_IER
, 0x0000), NULL
},
1074 #endif /* CONFIG_FCC_LXT971 */
1076 /* ------------------------------------------------------------------------- */
1077 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
1079 #ifdef CONFIG_FCC_QS6612
1081 /* register definitions */
1083 #define MII_QS6612_MCR 17 /* Mode Control Register */
1084 #define MII_QS6612_FTR 27 /* Factory Test Register */
1085 #define MII_QS6612_MCO 28 /* Misc. Control Register */
1086 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
1087 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
1088 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
1090 static void mii_parse_qs6612_pcr(uint mii_reg
, struct net_device
*dev
)
1092 volatile struct fcc_enet_private
*fep
= dev
->priv
;
1093 uint s
= fep
->phy_status
;
1095 s
&= ~(PHY_STAT_SPMASK
);
1097 switch((mii_reg
>> 2) & 7) {
1098 case 1: s
|= PHY_STAT_10HDX
; break;
1099 case 2: s
|= PHY_STAT_100HDX
; break;
1100 case 5: s
|= PHY_STAT_10FDX
; break;
1101 case 6: s
|= PHY_STAT_100FDX
; break;
1104 fep
->phy_status
= s
;
1107 static phy_info_t phy_info_qs6612
= {
1111 (const phy_cmd_t
[]) { /* config */
1112 // { mk_mii_write(MII_ADVERTISE, 0x061), NULL }, /* 10 Mbps */
1114 /* The PHY powers up isolated on the RPX,
1115 * so send a command to allow operation.
1118 { mk_mii_write(MII_QS6612_PCR
, 0x0dc0), NULL
},
1120 /* parse cr and anar to get some info */
1122 { mk_mii_read(MII_BMCR
), mii_parse_cr
},
1123 { mk_mii_read(MII_ADVERTISE
), mii_parse_anar
},
1126 (const phy_cmd_t
[]) { /* startup - enable interrupts */
1127 { mk_mii_write(MII_QS6612_IMR
, 0x003a), NULL
},
1128 { mk_mii_write(MII_BMCR
, 0x1200), NULL
}, /* autonegotiate */
1131 (const phy_cmd_t
[]) { /* ack_int */
1133 /* we need to read ISR, SR and ANER to acknowledge */
1135 { mk_mii_read(MII_QS6612_ISR
), NULL
},
1136 { mk_mii_read(MII_BMSR
), mii_parse_sr
},
1137 { mk_mii_read(MII_EXPANSION
), NULL
},
1139 /* read pcr to get info */
1141 { mk_mii_read(MII_QS6612_PCR
), mii_parse_qs6612_pcr
},
1144 (const phy_cmd_t
[]) { /* shutdown - disable interrupts */
1145 { mk_mii_write(MII_QS6612_IMR
, 0x0000), NULL
},
1151 #endif /* CONFIG_FEC_QS6612 */
1154 /* ------------------------------------------------------------------------- */
1155 /* The Davicom DM9131 is used on the HYMOD board */
1157 #ifdef CONFIG_FCC_DM9131
1159 /* register definitions */
1161 #define MII_DM9131_ACR 16 /* Aux. Config Register */
1162 #define MII_DM9131_ACSR 17 /* Aux. Config/Status Register */
1163 #define MII_DM9131_10TCSR 18 /* 10BaseT Config/Status Reg. */
1164 #define MII_DM9131_INTR 21 /* Interrupt Register */
1165 #define MII_DM9131_RECR 22 /* Receive Error Counter Reg. */
1166 #define MII_DM9131_DISCR 23 /* Disconnect Counter Register */
1168 static void mii_parse_dm9131_acsr(uint mii_reg
, struct net_device
*dev
)
1170 volatile struct fcc_enet_private
*fep
= dev
->priv
;
1171 uint s
= fep
->phy_status
;
1173 s
&= ~(PHY_STAT_SPMASK
);
1175 switch ((mii_reg
>> 12) & 0xf) {
1176 case 1: s
|= PHY_STAT_10HDX
; break;
1177 case 2: s
|= PHY_STAT_10FDX
; break;
1178 case 4: s
|= PHY_STAT_100HDX
; break;
1179 case 8: s
|= PHY_STAT_100FDX
; break;
1182 fep
->phy_status
= s
;
1185 static phy_info_t phy_info_dm9131
= {
1189 (const phy_cmd_t
[]) { /* config */
1190 /* parse cr and anar to get some info */
1191 { mk_mii_read(MII_BMCR
), mii_parse_cr
},
1192 { mk_mii_read(MII_ADVERTISE
), mii_parse_anar
},
1195 (const phy_cmd_t
[]) { /* startup - enable interrupts */
1196 { mk_mii_write(MII_DM9131_INTR
, 0x0002), NULL
},
1197 { mk_mii_write(MII_BMCR
, 0x1200), NULL
}, /* autonegotiate */
1200 (const phy_cmd_t
[]) { /* ack_int */
1202 /* we need to read INTR, SR and ANER to acknowledge */
1204 { mk_mii_read(MII_DM9131_INTR
), NULL
},
1205 { mk_mii_read(MII_BMSR
), mii_parse_sr
},
1206 { mk_mii_read(MII_EXPANSION
), NULL
},
1208 /* read acsr to get info */
1210 { mk_mii_read(MII_DM9131_ACSR
), mii_parse_dm9131_acsr
},
1213 (const phy_cmd_t
[]) { /* shutdown - disable interrupts */
1214 { mk_mii_write(MII_DM9131_INTR
, 0x0f00), NULL
},
1220 #endif /* CONFIG_FEC_DM9131 */
1221 #ifdef CONFIG_FCC_DM9161
1222 /* ------------------------------------------------------------------------- */
1223 /* DM9161 Control register values */
1224 #define MIIM_DM9161_CR_STOP 0x0400
1225 #define MIIM_DM9161_CR_RSTAN 0x1200
1227 #define MIIM_DM9161_SCR 0x10
1228 #define MIIM_DM9161_SCR_INIT 0x0610
1230 /* DM9161 Specified Configuration and Status Register */
1231 #define MIIM_DM9161_SCSR 0x11
1232 #define MIIM_DM9161_SCSR_100F 0x8000
1233 #define MIIM_DM9161_SCSR_100H 0x4000
1234 #define MIIM_DM9161_SCSR_10F 0x2000
1235 #define MIIM_DM9161_SCSR_10H 0x1000
1236 /* DM9161 10BT register */
1237 #define MIIM_DM9161_10BTCSR 0x12
1238 #define MIIM_DM9161_10BTCSR_INIT 0x7800
1239 /* DM9161 Interrupt Register */
1240 #define MIIM_DM9161_INTR 0x15
1241 #define MIIM_DM9161_INTR_PEND 0x8000
1242 #define MIIM_DM9161_INTR_DPLX_MASK 0x0800
1243 #define MIIM_DM9161_INTR_SPD_MASK 0x0400
1244 #define MIIM_DM9161_INTR_LINK_MASK 0x0200
1245 #define MIIM_DM9161_INTR_MASK 0x0100
1246 #define MIIM_DM9161_INTR_DPLX_CHANGE 0x0010
1247 #define MIIM_DM9161_INTR_SPD_CHANGE 0x0008
1248 #define MIIM_DM9161_INTR_LINK_CHANGE 0x0004
1249 #define MIIM_DM9161_INTR_INIT 0x0000
1250 #define MIIM_DM9161_INTR_STOP \
1251 (MIIM_DM9161_INTR_DPLX_MASK | MIIM_DM9161_INTR_SPD_MASK \
1252 | MIIM_DM9161_INTR_LINK_MASK | MIIM_DM9161_INTR_MASK)
1254 static void mii_parse_dm9161_sr(uint mii_reg
, struct net_device
* dev
)
1256 volatile struct fcc_enet_private
*fep
= dev
->priv
;
1257 uint regstat
, timeout
=0xffff;
1259 while(!(mii_reg
& 0x0020) && timeout
--)
1261 regstat
=mk_mii_read(MII_BMSR
);
1262 regstat
|= fep
->phy_addr
<<23;
1263 mii_reg
= mii_send_receive(fep
->fip
,regstat
);
1266 mii_parse_sr(mii_reg
, dev
);
1269 static void mii_parse_dm9161_scsr(uint mii_reg
, struct net_device
* dev
)
1271 volatile struct fcc_enet_private
*fep
= dev
->priv
;
1272 uint s
= fep
->phy_status
;
1274 s
&= ~(PHY_STAT_SPMASK
);
1275 switch((mii_reg
>>12) & 0xf) {
1278 s
|= PHY_STAT_10HDX
;
1279 printk("10BaseT Half Duplex\n");
1284 s
|= PHY_STAT_10FDX
;
1285 printk("10BaseT Full Duplex\n");
1290 s
|= PHY_STAT_100HDX
;
1291 printk("100BaseT Half Duplex\n");
1296 s
|= PHY_STAT_100FDX
;
1297 printk("100BaseT Full Duplex\n");
1302 fep
->phy_status
= s
;
1306 static void mii_dm9161_wait(uint mii_reg
, struct net_device
*dev
)
1310 /* Davicom takes a bit to come up after a reset,
1311 * so wait here for a bit */
1312 set_current_state(TASK_UNINTERRUPTIBLE
);
1313 schedule_timeout(timeout
);
1316 static phy_info_t phy_info_dm9161
= {
1319 (const phy_cmd_t
[]) { /* config */
1320 { mk_mii_write(MII_BMCR
, MIIM_DM9161_CR_STOP
), NULL
},
1321 /* Do not bypass the scrambler/descrambler */
1322 { mk_mii_write(MIIM_DM9161_SCR
, MIIM_DM9161_SCR_INIT
), NULL
},
1323 /* Configure 10BTCSR register */
1324 { mk_mii_write(MIIM_DM9161_10BTCSR
, MIIM_DM9161_10BTCSR_INIT
),NULL
},
1325 /* Configure some basic stuff */
1326 { mk_mii_write(MII_BMCR
, 0x1000), NULL
},
1327 { mk_mii_read(MII_BMCR
), mii_parse_cr
},
1328 { mk_mii_read(MII_ADVERTISE
), mii_parse_anar
},
1331 (const phy_cmd_t
[]) { /* startup */
1332 /* Restart Auto Negotiation */
1333 { mk_mii_write(MII_BMCR
, MIIM_DM9161_CR_RSTAN
), NULL
},
1334 /* Status is read once to clear old link state */
1335 { mk_mii_read(MII_BMSR
), mii_dm9161_wait
},
1336 /* Auto-negotiate */
1337 { mk_mii_read(MII_BMSR
), mii_parse_dm9161_sr
},
1338 /* Read the status */
1339 { mk_mii_read(MIIM_DM9161_SCSR
), mii_parse_dm9161_scsr
},
1340 /* Clear any pending interrupts */
1341 { mk_mii_read(MIIM_DM9161_INTR
), NULL
},
1342 /* Enable Interrupts */
1343 { mk_mii_write(MIIM_DM9161_INTR
, MIIM_DM9161_INTR_INIT
), NULL
},
1346 (const phy_cmd_t
[]) { /* ack_int */
1347 { mk_mii_read(MIIM_DM9161_INTR
), NULL
},
1349 { mk_mii_read(MII_BMSR
), NULL
},
1350 { mk_mii_read(MII_BMSR
), mii_parse_dm9161_sr
},
1351 { mk_mii_read(MIIM_DM9161_SCSR
), mii_parse_dm9161_scsr
},
1355 (const phy_cmd_t
[]) { /* shutdown */
1356 { mk_mii_read(MIIM_DM9161_INTR
),NULL
},
1357 { mk_mii_write(MIIM_DM9161_INTR
, MIIM_DM9161_INTR_STOP
), NULL
},
1361 #endif /* CONFIG_FCC_DM9161 */
1363 static phy_info_t
*phy_info
[] = {
1365 #ifdef CONFIG_FCC_LXT970
1367 #endif /* CONFIG_FEC_LXT970 */
1369 #ifdef CONFIG_FCC_LXT971
1371 #endif /* CONFIG_FEC_LXT971 */
1373 #ifdef CONFIG_FCC_QS6612
1375 #endif /* CONFIG_FEC_QS6612 */
1377 #ifdef CONFIG_FCC_DM9131
1379 #endif /* CONFIG_FEC_DM9131 */
1381 #ifdef CONFIG_FCC_DM9161
1383 #endif /* CONFIG_FCC_DM9161 */
1385 #ifdef CONFIG_FCC_GENERIC_PHY
1386 /* Generic PHY support. This must be the last PHY in the table.
1387 * It will be used to support any PHY that doesn't match a previous
1388 * entry in the table.
1391 #endif /* CONFIG_FCC_GENERIC_PHY */
1396 static void mii_display_status(void *data
)
1398 struct net_device
*dev
= data
;
1399 volatile struct fcc_enet_private
*fep
= dev
->priv
;
1400 uint s
= fep
->phy_status
;
1402 if (!fep
->link
&& !fep
->old_link
) {
1403 /* Link is still down - don't print anything */
1407 printk("%s: status: ", dev
->name
);
1410 printk("link down");
1414 switch(s
& PHY_STAT_SPMASK
) {
1415 case PHY_STAT_100FDX
: printk(", 100 Mbps Full Duplex"); break;
1416 case PHY_STAT_100HDX
: printk(", 100 Mbps Half Duplex"); break;
1417 case PHY_STAT_10FDX
: printk(", 10 Mbps Full Duplex"); break;
1418 case PHY_STAT_10HDX
: printk(", 10 Mbps Half Duplex"); break;
1420 printk(", Unknown speed/duplex");
1423 if (s
& PHY_STAT_ANC
)
1424 printk(", auto-negotiation complete");
1427 if (s
& PHY_STAT_FAULT
)
1428 printk(", remote fault");
1433 static void mii_display_config(void *data
)
1435 struct net_device
*dev
= data
;
1436 volatile struct fcc_enet_private
*fep
= dev
->priv
;
1437 uint s
= fep
->phy_status
;
1439 printk("%s: config: auto-negotiation ", dev
->name
);
1441 if (s
& PHY_CONF_ANE
)
1446 if (s
& PHY_CONF_100FDX
)
1448 if (s
& PHY_CONF_100HDX
)
1450 if (s
& PHY_CONF_10FDX
)
1452 if (s
& PHY_CONF_10HDX
)
1454 if (!(s
& PHY_CONF_SPMASK
))
1455 printk(", No speed/duplex selected?");
1457 if (s
& PHY_CONF_LOOP
)
1458 printk(", loopback enabled");
1462 fep
->sequence_done
= 1;
1465 static void mii_relink(struct net_device
*dev
)
1467 struct fcc_enet_private
*fep
= dev
->priv
;
1470 fep
->old_link
= fep
->link
;
1471 fep
->link
= (fep
->phy_status
& PHY_STAT_LINK
) ? 1 : 0;
1474 printk(" mii_relink: link=%d\n", fep
->link
);
1479 & (PHY_STAT_100FDX
| PHY_STAT_10FDX
))
1481 fcc_restart(dev
, duplex
);
1483 printk(" mii_relink: duplex=%d\n", duplex
);
1488 static void mii_queue_relink(uint mii_reg
, struct net_device
*dev
)
1490 struct fcc_enet_private
*fep
= dev
->priv
;
1494 schedule_work(&fep
->phy_relink
);
1497 static void mii_queue_config(uint mii_reg
, struct net_device
*dev
)
1499 struct fcc_enet_private
*fep
= dev
->priv
;
1501 schedule_work(&fep
->phy_display_config
);
1504 phy_cmd_t phy_cmd_relink
[] = { { mk_mii_read(MII_BMCR
), mii_queue_relink
},
1506 phy_cmd_t phy_cmd_config
[] = { { mk_mii_read(MII_BMCR
), mii_queue_config
},
1510 /* Read remainder of PHY ID.
1513 mii_discover_phy3(uint mii_reg
, struct net_device
*dev
)
1515 struct fcc_enet_private
*fep
;
1519 printk("mii_reg: %08x\n", mii_reg
);
1520 fep
->phy_id
|= (mii_reg
& 0xffff);
1522 for(i
= 0; phy_info
[i
]; i
++)
1523 if((phy_info
[i
]->id
== (fep
->phy_id
>> 4)) || !phy_info
[i
]->id
)
1527 panic("%s: PHY id 0x%08x is not supported!\n",
1528 dev
->name
, fep
->phy_id
);
1530 fep
->phy
= phy_info
[i
];
1531 fep
->phy_id_done
= 1;
1533 printk("%s: Phy @ 0x%x, type %s (0x%08x)\n",
1534 dev
->name
, fep
->phy_addr
, fep
->phy
->name
, fep
->phy_id
);
1537 /* Scan all of the MII PHY addresses looking for someone to respond
1538 * with a valid ID. This usually happens quickly.
1541 mii_discover_phy(uint mii_reg
, struct net_device
*dev
)
1543 struct fcc_enet_private
*fep
;
1548 if ((phytype
= (mii_reg
& 0xffff)) != 0xffff) {
1550 /* Got first part of ID, now get remainder. */
1551 fep
->phy_id
= phytype
<< 16;
1552 mii_queue(dev
, mk_mii_read(MII_PHYSID2
), mii_discover_phy3
);
1555 if (fep
->phy_addr
< 32) {
1556 mii_queue(dev
, mk_mii_read(MII_PHYSID1
),
1559 printk("fec: No PHY device found.\n");
1563 #endif /* CONFIG_USE_MDIO */
1565 #ifdef PHY_INTERRUPT
1566 /* This interrupt occurs when the PHY detects a link change. */
1568 mii_link_interrupt(int irq
, void * dev_id
, struct pt_regs
* regs
)
1570 struct net_device
*dev
= dev_id
;
1571 struct fcc_enet_private
*fep
= dev
->priv
;
1572 fcc_info_t
*fip
= fep
->fip
;
1575 /* We don't want to be interrupted by an FCC
1578 disable_irq_nosync(fip
->fc_interrupt
);
1580 mii_do_cmd(dev
, fep
->phy
->ack_int
);
1581 /* restart and display status */
1582 mii_do_cmd(dev
, phy_cmd_relink
);
1584 enable_irq(fip
->fc_interrupt
);
1588 #endif /* ifdef PHY_INTERRUPT */
1590 #if 0 /* This should be fixed someday */
1591 /* Set or clear the multicast filter for this adaptor.
1592 * Skeleton taken from sunlance driver.
1593 * The CPM Ethernet implementation allows Multicast as well as individual
1594 * MAC address filtering. Some of the drivers check to make sure it is
1595 * a group multicast address, and discard those that are not. I guess I
1596 * will do the same for now, but just remove the test if you want
1597 * individual filtering as well (do the upper net layers want or support
1598 * this kind of feature?).
1601 set_multicast_list(struct net_device
*dev
)
1603 struct fcc_enet_private
*cep
;
1604 struct dev_mc_list
*dmi
;
1605 u_char
*mcptr
, *tdptr
;
1606 volatile fcc_enet_t
*ep
;
1609 cep
= (struct fcc_enet_private
*)dev
->priv
;
1612 /* Get pointer to FCC area in parameter RAM.
1614 ep
= (fcc_enet_t
*)dev
->base_addr
;
1616 if (dev
->flags
&IFF_PROMISC
) {
1618 /* Log any net taps. */
1619 printk("%s: Promiscuous mode enabled.\n", dev
->name
);
1620 cep
->fccp
->fcc_fpsmr
|= FCC_PSMR_PRO
;
1623 cep
->fccp
->fcc_fpsmr
&= ~FCC_PSMR_PRO
;
1625 if (dev
->flags
& IFF_ALLMULTI
) {
1626 /* Catch all multicast addresses, so set the
1627 * filter to all 1's.
1629 ep
->fen_gaddrh
= 0xffffffff;
1630 ep
->fen_gaddrl
= 0xffffffff;
1633 /* Clear filter and add the addresses in the list.
1640 for (i
=0; i
<dev
->mc_count
; i
++, dmi
= dmi
->next
) {
1642 /* Only support group multicast for now.
1644 if (!(dmi
->dmi_addr
[0] & 1))
1647 /* The address in dmi_addr is LSB first,
1648 * and taddr is MSB first. We have to
1649 * copy bytes MSB first from dmi_addr.
1651 mcptr
= (u_char
*)dmi
->dmi_addr
+ 5;
1652 tdptr
= (u_char
*)&ep
->fen_taddrh
;
1654 *tdptr
++ = *mcptr
--;
1656 /* Ask CPM to run CRC and set bit in
1659 cpmp
->cp_cpcr
= mk_cr_cmd(cep
->fip
->fc_cpmpage
,
1660 cep
->fip
->fc_cpmblock
, 0x0c,
1661 CPM_CR_SET_GADDR
) | CPM_CR_FLG
;
1663 while (cpmp
->cp_cpcr
& CPM_CR_FLG
);
1671 /* Set the individual MAC address.
1673 int fcc_enet_set_mac_address(struct net_device
*dev
, void *p
)
1675 struct sockaddr
*addr
= (struct sockaddr
*) p
;
1676 struct fcc_enet_private
*cep
;
1677 volatile fcc_enet_t
*ep
;
1681 cep
= (struct fcc_enet_private
*)(dev
->priv
);
1684 if (netif_running(dev
))
1687 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
1689 eap
= (unsigned char *) &(ep
->fen_paddrh
);
1690 for (i
=5; i
>=0; i
--)
1691 *eap
++ = addr
->sa_data
[i
];
1697 /* Initialize the CPM Ethernet on FCC.
1699 static int __init
fec_enet_init(void)
1701 struct net_device
*dev
;
1702 struct fcc_enet_private
*cep
;
1705 volatile cpm2_map_t
*immap
;
1706 volatile iop_cpm2_t
*io
;
1708 immap
= (cpm2_map_t
*)CPM_MAP_ADDR
; /* and to internal registers */
1709 io
= &immap
->im_ioport
;
1711 np
= sizeof(fcc_ports
) / sizeof(fcc_info_t
);
1715 /* Create an Ethernet device instance.
1717 dev
= alloc_etherdev(sizeof(*cep
));
1722 spin_lock_init(&cep
->lock
);
1725 init_fcc_shutdown(fip
, cep
, immap
);
1726 init_fcc_ioports(fip
, io
, immap
);
1727 init_fcc_param(fip
, dev
, immap
);
1729 dev
->base_addr
= (unsigned long)(cep
->ep
);
1731 /* The CPM Ethernet specific entries in the device
1734 dev
->open
= fcc_enet_open
;
1735 dev
->hard_start_xmit
= fcc_enet_start_xmit
;
1736 dev
->tx_timeout
= fcc_enet_timeout
;
1737 dev
->watchdog_timeo
= TX_TIMEOUT
;
1738 dev
->stop
= fcc_enet_close
;
1739 dev
->get_stats
= fcc_enet_get_stats
;
1740 /* dev->set_multicast_list = set_multicast_list; */
1741 dev
->set_mac_address
= fcc_enet_set_mac_address
;
1743 init_fcc_startup(fip
, dev
);
1745 err
= register_netdev(dev
);
1751 printk("%s: FCC ENET Version 0.3, ", dev
->name
);
1753 printk("%02x:", dev
->dev_addr
[i
]);
1754 printk("%02x\n", dev
->dev_addr
[5]);
1756 #ifdef CONFIG_USE_MDIO
1757 /* Queue up command to detect the PHY and initialize the
1758 * remainder of the interface.
1760 cep
->phy_id_done
= 0;
1761 cep
->phy_addr
= fip
->fc_phyaddr
;
1762 mii_queue(dev
, mk_mii_read(MII_PHYSID1
), mii_discover_phy
);
1763 INIT_WORK(&cep
->phy_relink
, mii_display_status
, dev
);
1764 INIT_WORK(&cep
->phy_display_config
, mii_display_config
, dev
);
1765 #endif /* CONFIG_USE_MDIO */
1772 module_init(fec_enet_init
);
1774 /* Make sure the device is shut down during initialization.
1777 init_fcc_shutdown(fcc_info_t
*fip
, struct fcc_enet_private
*cep
,
1778 volatile cpm2_map_t
*immap
)
1780 volatile fcc_enet_t
*ep
;
1781 volatile fcc_t
*fccp
;
1783 /* Get pointer to FCC area in parameter RAM.
1785 ep
= (fcc_enet_t
*)(&immap
->im_dprambase
[fip
->fc_proff
]);
1787 /* And another to the FCC register area.
1789 fccp
= (volatile fcc_t
*)(&immap
->im_fcc
[fip
->fc_fccnum
]);
1790 cep
->fccp
= fccp
; /* Keep the pointers handy */
1793 /* Disable receive and transmit in case someone left it running.
1795 fccp
->fcc_gfmr
&= ~(FCC_GFMR_ENR
| FCC_GFMR_ENT
);
1798 /* Initialize the I/O pins for the FCC Ethernet.
1801 init_fcc_ioports(fcc_info_t
*fip
, volatile iop_cpm2_t
*io
,
1802 volatile cpm2_map_t
*immap
)
1805 /* FCC1 pins are on port A/C. FCC2/3 are port B/C.
1807 if (fip
->fc_proff
== PROFF_FCC1
) {
1808 /* Configure port A and C pins for FCC1 Ethernet.
1810 io
->iop_pdira
&= ~PA1_DIRA_BOUT
;
1811 io
->iop_pdira
|= PA1_DIRA_BIN
;
1812 io
->iop_psora
&= ~PA1_PSORA_BOUT
;
1813 io
->iop_psora
|= PA1_PSORA_BIN
;
1814 io
->iop_ppara
|= (PA1_DIRA_BOUT
| PA1_DIRA_BIN
);
1816 if (fip
->fc_proff
== PROFF_FCC2
) {
1817 /* Configure port B and C pins for FCC Ethernet.
1819 io
->iop_pdirb
&= ~PB2_DIRB_BOUT
;
1820 io
->iop_pdirb
|= PB2_DIRB_BIN
;
1821 io
->iop_psorb
&= ~PB2_PSORB_BOUT
;
1822 io
->iop_psorb
|= PB2_PSORB_BIN
;
1823 io
->iop_pparb
|= (PB2_DIRB_BOUT
| PB2_DIRB_BIN
);
1825 if (fip
->fc_proff
== PROFF_FCC3
) {
1826 /* Configure port B and C pins for FCC Ethernet.
1828 io
->iop_pdirb
&= ~PB3_DIRB_BOUT
;
1829 io
->iop_pdirb
|= PB3_DIRB_BIN
;
1830 io
->iop_psorb
&= ~PB3_PSORB_BOUT
;
1831 io
->iop_psorb
|= PB3_PSORB_BIN
;
1832 io
->iop_pparb
|= (PB3_DIRB_BOUT
| PB3_DIRB_BIN
);
1834 io
->iop_pdirc
&= ~PC3_DIRC_BOUT
;
1835 io
->iop_pdirc
|= PC3_DIRC_BIN
;
1836 io
->iop_psorc
&= ~PC3_PSORC_BOUT
;
1837 io
->iop_psorc
|= PC3_PSORC_BIN
;
1838 io
->iop_pparc
|= (PC3_DIRC_BOUT
| PC3_DIRC_BIN
);
1842 /* Port C has clocks......
1844 io
->iop_psorc
&= ~(fip
->fc_trxclocks
);
1845 io
->iop_pdirc
&= ~(fip
->fc_trxclocks
);
1846 io
->iop_pparc
|= fip
->fc_trxclocks
;
1848 #ifdef CONFIG_USE_MDIO
1849 /* ....and the MII serial clock/data.
1851 io
->iop_pdatc
|= (fip
->fc_mdio
| fip
->fc_mdck
);
1852 io
->iop_podrc
&= ~(fip
->fc_mdio
| fip
->fc_mdck
);
1853 io
->iop_pdirc
|= (fip
->fc_mdio
| fip
->fc_mdck
);
1854 io
->iop_pparc
&= ~(fip
->fc_mdio
| fip
->fc_mdck
);
1855 #endif /* CONFIG_USE_MDIO */
1857 /* Configure Serial Interface clock routing.
1858 * First, clear all FCC bits to zero,
1859 * then set the ones we want.
1861 immap
->im_cpmux
.cmx_fcr
&= ~(fip
->fc_clockmask
);
1862 immap
->im_cpmux
.cmx_fcr
|= fip
->fc_clockroute
;
1866 init_fcc_param(fcc_info_t
*fip
, struct net_device
*dev
,
1867 volatile cpm2_map_t
*immap
)
1870 unsigned long mem_addr
;
1873 struct fcc_enet_private
*cep
;
1874 volatile fcc_enet_t
*ep
;
1875 volatile cbd_t
*bdp
;
1876 volatile cpm_cpm2_t
*cp
;
1878 cep
= (struct fcc_enet_private
*)(dev
->priv
);
1884 /* Zero the whole thing.....I must have missed some individually.
1885 * It works when I do this.
1887 memset((char *)ep
, 0, sizeof(fcc_enet_t
));
1889 /* Allocate space for the buffer descriptors from regular memory.
1890 * Initialize base addresses for the buffer descriptors.
1892 cep
->rx_bd_base
= (cbd_t
*)kmalloc(sizeof(cbd_t
) * RX_RING_SIZE
,
1893 GFP_KERNEL
| GFP_DMA
);
1894 ep
->fen_genfcc
.fcc_rbase
= __pa(cep
->rx_bd_base
);
1895 cep
->tx_bd_base
= (cbd_t
*)kmalloc(sizeof(cbd_t
) * TX_RING_SIZE
,
1896 GFP_KERNEL
| GFP_DMA
);
1897 ep
->fen_genfcc
.fcc_tbase
= __pa(cep
->tx_bd_base
);
1899 cep
->dirty_tx
= cep
->cur_tx
= cep
->tx_bd_base
;
1900 cep
->cur_rx
= cep
->rx_bd_base
;
1902 ep
->fen_genfcc
.fcc_rstate
= (CPMFCR_GBL
| CPMFCR_EB
) << 24;
1903 ep
->fen_genfcc
.fcc_tstate
= (CPMFCR_GBL
| CPMFCR_EB
) << 24;
1905 /* Set maximum bytes per receive buffer.
1906 * It must be a multiple of 32.
1908 ep
->fen_genfcc
.fcc_mrblr
= PKT_MAXBLR_SIZE
;
1910 /* Allocate space in the reserved FCC area of DPRAM for the
1911 * internal buffers. No one uses this space (yet), so we
1912 * can do this. Later, we will add resource management for
1915 mem_addr
= CPM_FCC_SPECIAL_BASE
+ (fip
->fc_fccnum
* 128);
1916 ep
->fen_genfcc
.fcc_riptr
= mem_addr
;
1917 ep
->fen_genfcc
.fcc_tiptr
= mem_addr
+32;
1918 ep
->fen_padptr
= mem_addr
+64;
1919 memset((char *)(&(immap
->im_dprambase
[(mem_addr
+64)])), 0x88, 32);
1921 ep
->fen_genfcc
.fcc_rbptr
= 0;
1922 ep
->fen_genfcc
.fcc_tbptr
= 0;
1923 ep
->fen_genfcc
.fcc_rcrc
= 0;
1924 ep
->fen_genfcc
.fcc_tcrc
= 0;
1925 ep
->fen_genfcc
.fcc_res1
= 0;
1926 ep
->fen_genfcc
.fcc_res2
= 0;
1928 ep
->fen_camptr
= 0; /* CAM isn't used in this driver */
1930 /* Set CRC preset and mask.
1932 ep
->fen_cmask
= 0xdebb20e3;
1933 ep
->fen_cpres
= 0xffffffff;
1935 ep
->fen_crcec
= 0; /* CRC Error counter */
1936 ep
->fen_alec
= 0; /* alignment error counter */
1937 ep
->fen_disfc
= 0; /* discard frame counter */
1938 ep
->fen_retlim
= 15; /* Retry limit threshold */
1939 ep
->fen_pper
= 0; /* Normal persistence */
1941 /* Clear hash filter tables.
1948 /* Clear the Out-of-sequence TxBD.
1950 ep
->fen_tfcstat
= 0;
1954 ep
->fen_mflr
= PKT_MAXBUF_SIZE
; /* maximum frame length register */
1955 ep
->fen_minflr
= PKT_MINBUF_SIZE
; /* minimum frame length register */
1957 /* Set Ethernet station address.
1959 * This is supplied in the board information structure, so we
1960 * copy that into the controller.
1961 * So, far we have only been given one Ethernet address. We make
1962 * it unique by setting a few bits in the upper byte of the
1963 * non-static part of the address.
1965 eap
= (unsigned char *)&(ep
->fen_paddrh
);
1966 for (i
=5; i
>=0; i
--) {
1969 * The EP8260 only uses FCC3, so we can safely give it the real
1972 #ifdef CONFIG_SBC82xx
1974 /* bd->bi_enetaddr holds the SCC0 address; the FCC
1975 devices count up from there */
1976 dev
->dev_addr
[i
] = bd
->bi_enetaddr
[i
] & ~3;
1977 dev
->dev_addr
[i
] += 1 + fip
->fc_fccnum
;
1978 *eap
++ = dev
->dev_addr
[i
];
1981 #ifndef CONFIG_RPX8260
1983 dev
->dev_addr
[i
] = bd
->bi_enetaddr
[i
];
1984 dev
->dev_addr
[i
] |= (1 << (7 - fip
->fc_fccnum
));
1985 *eap
++ = dev
->dev_addr
[i
];
1989 *eap
++ = dev
->dev_addr
[i
] = bd
->bi_enetaddr
[i
];
1998 ep
->fen_maxd1
= PKT_MAXDMA_SIZE
; /* maximum DMA1 length */
1999 ep
->fen_maxd2
= PKT_MAXDMA_SIZE
; /* maximum DMA2 length */
2001 /* Clear stat counters, in case we ever enable RMON.
2018 ep
->fen_rfthr
= 0; /* Suggested by manual */
2022 /* Now allocate the host memory pages and initialize the
2023 * buffer descriptors.
2025 bdp
= cep
->tx_bd_base
;
2026 for (i
=0; i
<TX_RING_SIZE
; i
++) {
2028 /* Initialize the BD for every fragment in the page.
2031 bdp
->cbd_datlen
= 0;
2032 bdp
->cbd_bufaddr
= 0;
2036 /* Set the last buffer to wrap.
2039 bdp
->cbd_sc
|= BD_SC_WRAP
;
2041 bdp
= cep
->rx_bd_base
;
2042 for (i
=0; i
<FCC_ENET_RX_PAGES
; i
++) {
2046 mem_addr
= __get_free_page(GFP_KERNEL
);
2048 /* Initialize the BD for every fragment in the page.
2050 for (j
=0; j
<FCC_ENET_RX_FRPPG
; j
++) {
2051 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
| BD_ENET_RX_INTR
;
2052 bdp
->cbd_datlen
= 0;
2053 bdp
->cbd_bufaddr
= __pa(mem_addr
);
2054 mem_addr
+= FCC_ENET_RX_FRSIZE
;
2059 /* Set the last buffer to wrap.
2062 bdp
->cbd_sc
|= BD_SC_WRAP
;
2064 /* Let's re-initialize the channel now. We have to do it later
2065 * than the manual describes because we have just now finished
2066 * the BD initialization.
2068 cp
->cp_cpcr
= mk_cr_cmd(fip
->fc_cpmpage
, fip
->fc_cpmblock
, 0x0c,
2069 CPM_CR_INIT_TRX
) | CPM_CR_FLG
;
2070 while (cp
->cp_cpcr
& CPM_CR_FLG
);
2072 cep
->skb_cur
= cep
->skb_dirty
= 0;
2078 init_fcc_startup(fcc_info_t
*fip
, struct net_device
*dev
)
2080 volatile fcc_t
*fccp
;
2081 struct fcc_enet_private
*cep
;
2083 cep
= (struct fcc_enet_private
*)(dev
->priv
);
2086 #ifdef CONFIG_RPX8260
2087 #ifdef PHY_INTERRUPT
2088 /* Route PHY interrupt to IRQ. The following code only works for
2089 * IRQ1 - IRQ7. It does not work for Port C interrupts.
2091 *((volatile u_char
*) (RPX_CSR_ADDR
+ 13)) &= ~BCSR13_FETH_IRQMASK
;
2092 *((volatile u_char
*) (RPX_CSR_ADDR
+ 13)) |=
2093 ((PHY_INTERRUPT
- SIU_INT_IRQ1
+ 1) << 4);
2095 /* Initialize MDIO pins. */
2096 *((volatile u_char
*) (RPX_CSR_ADDR
+ 4)) &= ~BCSR4_MII_MDC
;
2097 *((volatile u_char
*) (RPX_CSR_ADDR
+ 4)) |=
2098 BCSR4_MII_READ
| BCSR4_MII_MDIO
;
2099 /* Enable external LXT971 PHY. */
2100 *((volatile u_char
*) (RPX_CSR_ADDR
+ 4)) |= BCSR4_EN_PHY
;
2102 *((volatile u_char
*) (RPX_CSR_ADDR
+ 4)) |= BCSR4_EN_MII
;
2104 #endif /* ifdef CONFIG_RPX8260 */
2106 fccp
->fcc_fcce
= 0xffff; /* Clear any pending events */
2108 /* Leave FCC interrupts masked for now. Will be unmasked by
2113 /* Install our interrupt handler.
2115 if (request_irq(fip
->fc_interrupt
, fcc_enet_interrupt
, 0, "fenet",
2117 printk("Can't get FCC IRQ %d\n", fip
->fc_interrupt
);
2119 #ifdef PHY_INTERRUPT
2120 #ifdef CONFIG_ADS8272
2121 if (request_irq(PHY_INTERRUPT
, mii_link_interrupt
, SA_SHIRQ
,
2123 printk(KERN_CRIT
"Can't get MII IRQ %d\n", PHY_INTERRUPT
);
2125 /* Make IRQn edge triggered. This does not work if PHY_INTERRUPT is
2128 ((volatile cpm2_map_t
*) CPM_MAP_ADDR
)->im_intctl
.ic_siexr
|=
2129 (1 << (14 - (PHY_INTERRUPT
- SIU_INT_IRQ1
)));
2131 if (request_irq(PHY_INTERRUPT
, mii_link_interrupt
, 0,
2133 printk(KERN_CRIT
"Can't get MII IRQ %d\n", PHY_INTERRUPT
);
2135 #endif /* PHY_INTERRUPT */
2137 /* Set GFMR to enable Ethernet operating mode.
2139 fccp
->fcc_gfmr
= (FCC_GFMR_TCI
| FCC_GFMR_MODE_ENET
);
2141 /* Set sync/delimiters.
2143 fccp
->fcc_fdsr
= 0xd555;
2145 /* Set protocol specific processing mode for Ethernet.
2146 * This has to be adjusted for Full Duplex operation after we can
2147 * determine how to detect that.
2149 fccp
->fcc_fpsmr
= FCC_PSMR_ENCRC
;
2151 #ifdef CONFIG_PQ2ADS
2152 /* Enable the PHY. */
2153 *(volatile uint
*)(BCSR_ADDR
+ 4) &= ~BCSR1_FETHIEN
;
2154 *(volatile uint
*)(BCSR_ADDR
+ 4) |= BCSR1_FETH_RST
;
2156 #if defined(CONFIG_PQ2ADS) || defined(CONFIG_PQ2FADS)
2157 /* Enable the 2nd PHY. */
2158 *(volatile uint
*)(BCSR_ADDR
+ 12) &= ~BCSR3_FETHIEN2
;
2159 *(volatile uint
*)(BCSR_ADDR
+ 12) |= BCSR3_FETH2_RST
;
2162 #if defined(CONFIG_USE_MDIO) || defined(CONFIG_TQM8260)
2163 /* start in full duplex mode, and negotiate speed
2165 fcc_restart (dev
, 1);
2167 /* start in half duplex mode
2169 fcc_restart (dev
, 0);
2173 #ifdef CONFIG_USE_MDIO
2174 /* MII command/status interface.
2175 * I'm not going to describe all of the details. You can find the
2176 * protocol definition in many other places, including the data sheet
2177 * of most PHY parts.
2178 * I wonder what "they" were thinking (maybe weren't) when they leave
2179 * the I2C in the CPM but I have to toggle these bits......
2181 #ifdef CONFIG_RPX8260
2182 /* The EP8260 has the MDIO pins in a BCSR instead of on Port C
2183 * like most other boards.
2185 #define MDIO_ADDR ((volatile u_char *)(RPX_CSR_ADDR + 4))
2186 #define MAKE_MDIO_OUTPUT *MDIO_ADDR &= ~BCSR4_MII_READ
2187 #define MAKE_MDIO_INPUT *MDIO_ADDR |= BCSR4_MII_READ | BCSR4_MII_MDIO
2188 #define OUT_MDIO(bit) \
2190 *MDIO_ADDR |= BCSR4_MII_MDIO; \
2192 *MDIO_ADDR &= ~BCSR4_MII_MDIO;
2193 #define IN_MDIO (*MDIO_ADDR & BCSR4_MII_MDIO)
2194 #define OUT_MDC(bit) \
2196 *MDIO_ADDR |= BCSR4_MII_MDC; \
2198 *MDIO_ADDR &= ~BCSR4_MII_MDC;
2199 #else /* ifdef CONFIG_RPX8260 */
2200 /* This is for the usual case where the MDIO pins are on Port C.
2202 #define MDIO_ADDR (((volatile cpm2_map_t *)CPM_MAP_ADDR)->im_ioport)
2203 #define MAKE_MDIO_OUTPUT MDIO_ADDR.iop_pdirc |= fip->fc_mdio
2204 #define MAKE_MDIO_INPUT MDIO_ADDR.iop_pdirc &= ~fip->fc_mdio
2205 #define OUT_MDIO(bit) \
2207 MDIO_ADDR.iop_pdatc |= fip->fc_mdio; \
2209 MDIO_ADDR.iop_pdatc &= ~fip->fc_mdio;
2210 #define IN_MDIO ((MDIO_ADDR.iop_pdatc) & fip->fc_mdio)
2211 #define OUT_MDC(bit) \
2213 MDIO_ADDR.iop_pdatc |= fip->fc_mdck; \
2215 MDIO_ADDR.iop_pdatc &= ~fip->fc_mdck;
2216 #endif /* ifdef CONFIG_RPX8260 */
2219 mii_send_receive(fcc_info_t
*fip
, uint cmd
)
2222 int read_op
, i
, off
;
2225 read_op
= ((cmd
& 0xf0000000) == 0x60000000);
2232 for (i
= 0; i
< 32; i
++)
2242 for (i
= 0, off
= 31; i
< (read_op
? 14 : 32); i
++, --off
)
2244 OUT_MDIO((cmd
>> off
) & 0x00000001);
2263 for (i
= 0; i
< 16; i
++)
2283 #endif /* CONFIG_USE_MDIO */
2286 fcc_stop(struct net_device
*dev
)
2288 struct fcc_enet_private
*fep
= (struct fcc_enet_private
*)(dev
->priv
);
2289 volatile fcc_t
*fccp
= fep
->fccp
;
2290 fcc_info_t
*fip
= fep
->fip
;
2291 volatile fcc_enet_t
*ep
= fep
->ep
;
2292 volatile cpm_cpm2_t
*cp
= cpmp
;
2293 volatile cbd_t
*bdp
;
2296 if ((fccp
->fcc_gfmr
& (FCC_GFMR_ENR
| FCC_GFMR_ENT
)) == 0)
2297 return; /* already down */
2301 /* issue the graceful stop tx command */
2302 while (cp
->cp_cpcr
& CPM_CR_FLG
);
2303 cp
->cp_cpcr
= mk_cr_cmd(fip
->fc_cpmpage
, fip
->fc_cpmblock
,
2304 0x0c, CPM_CR_GRA_STOP_TX
) | CPM_CR_FLG
;
2305 while (cp
->cp_cpcr
& CPM_CR_FLG
);
2307 /* Disable transmit/receive */
2308 fccp
->fcc_gfmr
&= ~(FCC_GFMR_ENR
| FCC_GFMR_ENT
);
2310 /* issue the restart tx command */
2311 fccp
->fcc_fcce
= FCC_ENET_GRA
;
2312 while (cp
->cp_cpcr
& CPM_CR_FLG
);
2313 cp
->cp_cpcr
= mk_cr_cmd(fip
->fc_cpmpage
, fip
->fc_cpmblock
,
2314 0x0c, CPM_CR_RESTART_TX
) | CPM_CR_FLG
;
2315 while (cp
->cp_cpcr
& CPM_CR_FLG
);
2317 /* free tx buffers */
2318 fep
->skb_cur
= fep
->skb_dirty
= 0;
2319 for (i
=0; i
<=TX_RING_MOD_MASK
; i
++) {
2320 if (fep
->tx_skbuff
[i
] != NULL
) {
2321 dev_kfree_skb(fep
->tx_skbuff
[i
]);
2322 fep
->tx_skbuff
[i
] = NULL
;
2325 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
2326 fep
->tx_free
= TX_RING_SIZE
;
2327 ep
->fen_genfcc
.fcc_tbptr
= ep
->fen_genfcc
.fcc_tbase
;
2329 /* Initialize the tx buffer descriptors. */
2330 bdp
= fep
->tx_bd_base
;
2331 for (i
=0; i
<TX_RING_SIZE
; i
++) {
2333 bdp
->cbd_datlen
= 0;
2334 bdp
->cbd_bufaddr
= 0;
2337 /* Set the last buffer to wrap. */
2339 bdp
->cbd_sc
|= BD_SC_WRAP
;
2343 fcc_restart(struct net_device
*dev
, int duplex
)
2345 struct fcc_enet_private
*fep
= (struct fcc_enet_private
*)(dev
->priv
);
2346 volatile fcc_t
*fccp
= fep
->fccp
;
2348 /* stop any transmissions in progress */
2352 fccp
->fcc_fpsmr
|= FCC_PSMR_FDE
| FCC_PSMR_LPB
;
2354 fccp
->fcc_fpsmr
&= ~(FCC_PSMR_FDE
| FCC_PSMR_LPB
);
2356 /* Enable interrupts for transmit error, complete frame
2357 * received, and any transmit buffer we have also set the
2360 fccp
->fcc_fccm
= (FCC_ENET_TXE
| FCC_ENET_RXF
| FCC_ENET_TXB
);
2362 /* Enable transmit/receive */
2363 fccp
->fcc_gfmr
|= FCC_GFMR_ENR
| FCC_GFMR_ENT
;
2367 fcc_enet_open(struct net_device
*dev
)
2369 struct fcc_enet_private
*fep
= dev
->priv
;
2371 #ifdef CONFIG_USE_MDIO
2372 fep
->sequence_done
= 0;
2376 fcc_restart(dev
, 0); /* always start in half-duplex */
2377 mii_do_cmd(dev
, fep
->phy
->ack_int
);
2378 mii_do_cmd(dev
, fep
->phy
->config
);
2379 mii_do_cmd(dev
, phy_cmd_config
); /* display configuration */
2380 while(!fep
->sequence_done
)
2383 mii_do_cmd(dev
, fep
->phy
->startup
);
2384 netif_start_queue(dev
);
2385 return 0; /* Success */
2387 return -ENODEV
; /* No PHY we understand */
2390 fcc_restart(dev
, 0); /* always start in half-duplex */
2391 netif_start_queue(dev
);
2392 return 0; /* Always succeed */
2393 #endif /* CONFIG_USE_MDIO */