2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1994 - 1999, 2000, 01 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004 Maciej W. Rozycki
14 #include <linux/config.h>
15 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/sched.h>
19 #include <linux/smp.h>
20 #include <linux/smp_lock.h>
21 #include <linux/spinlock.h>
22 #include <linux/kallsyms.h>
24 #include <asm/bootinfo.h>
25 #include <asm/branch.h>
26 #include <asm/break.h>
29 #include <asm/module.h>
30 #include <asm/pgtable.h>
31 #include <asm/ptrace.h>
32 #include <asm/sections.h>
33 #include <asm/system.h>
34 #include <asm/tlbdebug.h>
35 #include <asm/traps.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 #include <asm/watch.h>
39 #include <asm/types.h>
41 extern asmlinkage
void handle_tlbm(void);
42 extern asmlinkage
void handle_tlbl(void);
43 extern asmlinkage
void handle_tlbs(void);
44 extern asmlinkage
void handle_adel(void);
45 extern asmlinkage
void handle_ades(void);
46 extern asmlinkage
void handle_ibe(void);
47 extern asmlinkage
void handle_dbe(void);
48 extern asmlinkage
void handle_sys(void);
49 extern asmlinkage
void handle_bp(void);
50 extern asmlinkage
void handle_ri(void);
51 extern asmlinkage
void handle_cpu(void);
52 extern asmlinkage
void handle_ov(void);
53 extern asmlinkage
void handle_tr(void);
54 extern asmlinkage
void handle_fpe(void);
55 extern asmlinkage
void handle_mdmx(void);
56 extern asmlinkage
void handle_watch(void);
57 extern asmlinkage
void handle_mcheck(void);
58 extern asmlinkage
void handle_reserved(void);
60 extern int fpu_emulator_cop1Handler(int xcptno
, struct pt_regs
*xcp
,
61 struct mips_fpu_soft_struct
*ctx
);
63 void (*board_be_init
)(void);
64 int (*board_be_handler
)(struct pt_regs
*regs
, int is_fixup
);
67 * These constant is for searching for possible module text segments.
68 * MODULE_RANGE is a guess of how much space is likely to be vmalloced.
70 #define MODULE_RANGE (8*1024*1024)
73 * This routine abuses get_user()/put_user() to reference pointers
74 * with at least a bit of error checking ...
76 void show_stack(struct task_struct
*task
, unsigned long *sp
)
78 const int field
= 2 * sizeof(unsigned long);
83 if (task
&& task
!= current
)
84 sp
= (unsigned long *) task
->thread
.reg29
;
86 sp
= (unsigned long *) &sp
;
91 while ((unsigned long) sp
& (PAGE_SIZE
- 1)) {
92 if (i
&& ((i
% (64 / field
)) == 0))
99 if (__get_user(stackdata
, sp
++)) {
100 printk(" (Bad stack address)");
104 printk(" %0*lx", field
, stackdata
);
110 void show_trace(struct task_struct
*task
, unsigned long *stack
)
112 const int field
= 2 * sizeof(unsigned long);
116 if (task
&& task
!= current
)
117 stack
= (unsigned long *) task
->thread
.reg29
;
119 stack
= (unsigned long *) &stack
;
122 printk("Call Trace:");
123 #ifdef CONFIG_KALLSYMS
126 while (!kstack_end(stack
)) {
128 if (__kernel_text_address(addr
)) {
129 printk(" [<%0*lx>] ", field
, addr
);
130 print_symbol("%s\n", addr
);
137 * The architecture-independent dump_stack generator
139 void dump_stack(void)
143 show_trace(current
, &stack
);
146 EXPORT_SYMBOL(dump_stack
);
148 void show_code(unsigned int *pc
)
154 for(i
= -3 ; i
< 6 ; i
++) {
156 if (__get_user(insn
, pc
+ i
)) {
157 printk(" (Bad address in epc)\n");
160 printk("%c%08x%c", (i
?' ':'<'), insn
, (i
?' ':'>'));
164 void show_regs(struct pt_regs
*regs
)
166 const int field
= 2 * sizeof(unsigned long);
167 unsigned int cause
= regs
->cp0_cause
;
170 printk("Cpu %d\n", smp_processor_id());
173 * Saved main processor registers
175 for (i
= 0; i
< 32; ) {
179 printk(" %0*lx", field
, 0UL);
180 else if (i
== 26 || i
== 27)
181 printk(" %*s", field
, "");
183 printk(" %0*lx", field
, regs
->regs
[i
]);
190 printk("Hi : %0*lx\n", field
, regs
->hi
);
191 printk("Lo : %0*lx\n", field
, regs
->lo
);
194 * Saved cp0 registers
196 printk("epc : %0*lx ", field
, regs
->cp0_epc
);
197 print_symbol("%s ", regs
->cp0_epc
);
198 printk(" %s\n", print_tainted());
199 printk("ra : %0*lx ", field
, regs
->regs
[31]);
200 print_symbol("%s\n", regs
->regs
[31]);
202 printk("Status: %08x ", (uint32_t) regs
->cp0_status
);
204 if (regs
->cp0_status
& ST0_KX
)
206 if (regs
->cp0_status
& ST0_SX
)
208 if (regs
->cp0_status
& ST0_UX
)
210 switch (regs
->cp0_status
& ST0_KSU
) {
215 printk("SUPERVISOR ");
224 if (regs
->cp0_status
& ST0_ERL
)
226 if (regs
->cp0_status
& ST0_EXL
)
228 if (regs
->cp0_status
& ST0_IE
)
232 printk("Cause : %08x\n", cause
);
234 cause
= (cause
& CAUSEF_EXCCODE
) >> CAUSEB_EXCCODE
;
235 if (1 <= cause
&& cause
<= 5)
236 printk("BadVA : %0*lx\n", field
, regs
->cp0_badvaddr
);
238 printk("PrId : %08x\n", read_c0_prid());
241 void show_registers(struct pt_regs
*regs
)
245 printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n",
246 current
->comm
, current
->pid
, current_thread_info(), current
);
247 show_stack(current
, (long *) regs
->regs
[29]);
248 show_trace(current
, (long *) regs
->regs
[29]);
249 show_code((unsigned int *) regs
->cp0_epc
);
253 static DEFINE_SPINLOCK(die_lock
);
255 NORET_TYPE
void __die(const char * str
, struct pt_regs
* regs
,
256 const char * file
, const char * func
, unsigned long line
)
258 static int die_counter
;
261 spin_lock_irq(&die_lock
);
264 printk(" in %s:%s, line %ld", file
, func
, line
);
265 printk("[#%d]:\n", ++die_counter
);
266 show_registers(regs
);
267 spin_unlock_irq(&die_lock
);
271 void __die_if_kernel(const char * str
, struct pt_regs
* regs
,
272 const char * file
, const char * func
, unsigned long line
)
274 if (!user_mode(regs
))
275 __die(str
, regs
, file
, func
, line
);
278 extern const struct exception_table_entry __start___dbe_table
[];
279 extern const struct exception_table_entry __stop___dbe_table
[];
281 void __declare_dbe_table(void)
283 __asm__
__volatile__(
284 ".section\t__dbe_table,\"a\"\n\t"
289 /* Given an address, look for it in the exception tables. */
290 static const struct exception_table_entry
*search_dbe_tables(unsigned long addr
)
292 const struct exception_table_entry
*e
;
294 e
= search_extable(__start___dbe_table
, __stop___dbe_table
- 1, addr
);
296 e
= search_module_dbetables(addr
);
300 asmlinkage
void do_be(struct pt_regs
*regs
)
302 const int field
= 2 * sizeof(unsigned long);
303 const struct exception_table_entry
*fixup
= NULL
;
304 int data
= regs
->cp0_cause
& 4;
305 int action
= MIPS_BE_FATAL
;
307 /* XXX For now. Fixme, this searches the wrong table ... */
308 if (data
&& !user_mode(regs
))
309 fixup
= search_dbe_tables(exception_epc(regs
));
312 action
= MIPS_BE_FIXUP
;
314 if (board_be_handler
)
315 action
= board_be_handler(regs
, fixup
!= 0);
318 case MIPS_BE_DISCARD
:
322 regs
->cp0_epc
= fixup
->nextinsn
;
331 * Assume it would be too dangerous to continue ...
333 printk(KERN_ALERT
"%s bus error, epc == %0*lx, ra == %0*lx\n",
334 data
? "Data" : "Instruction",
335 field
, regs
->cp0_epc
, field
, regs
->regs
[31]);
336 die_if_kernel("Oops", regs
);
337 force_sig(SIGBUS
, current
);
340 static inline int get_insn_opcode(struct pt_regs
*regs
, unsigned int *opcode
)
344 epc
= (unsigned int *) regs
->cp0_epc
+
345 ((regs
->cp0_cause
& CAUSEF_BD
) != 0);
346 if (!get_user(*opcode
, epc
))
349 force_sig(SIGSEGV
, current
);
357 #define OPCODE 0xfc000000
358 #define BASE 0x03e00000
359 #define RT 0x001f0000
360 #define OFFSET 0x0000ffff
361 #define LL 0xc0000000
362 #define SC 0xe0000000
365 * The ll_bit is cleared by r*_switch.S
368 unsigned long ll_bit
;
370 static struct task_struct
*ll_task
= NULL
;
372 static inline void simulate_ll(struct pt_regs
*regs
, unsigned int opcode
)
374 unsigned long value
, *vaddr
;
379 * analyse the ll instruction that just caused a ri exception
380 * and put the referenced address to addr.
383 /* sign extend offset */
384 offset
= opcode
& OFFSET
;
388 vaddr
= (unsigned long *)((long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
390 if ((unsigned long)vaddr
& 3) {
394 if (get_user(value
, vaddr
)) {
401 if (ll_task
== NULL
|| ll_task
== current
) {
410 regs
->regs
[(opcode
& RT
) >> 16] = value
;
412 compute_return_epc(regs
);
416 force_sig(signal
, current
);
419 static inline void simulate_sc(struct pt_regs
*regs
, unsigned int opcode
)
421 unsigned long *vaddr
, reg
;
426 * analyse the sc instruction that just caused a ri exception
427 * and put the referenced address to addr.
430 /* sign extend offset */
431 offset
= opcode
& OFFSET
;
435 vaddr
= (unsigned long *)((long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
436 reg
= (opcode
& RT
) >> 16;
438 if ((unsigned long)vaddr
& 3) {
445 if (ll_bit
== 0 || ll_task
!= current
) {
448 compute_return_epc(regs
);
454 if (put_user(regs
->regs
[reg
], vaddr
)) {
461 compute_return_epc(regs
);
465 force_sig(signal
, current
);
469 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
470 * opcodes are supposed to result in coprocessor unusable exceptions if
471 * executed on ll/sc-less processors. That's the theory. In practice a
472 * few processors such as NEC's VR4100 throw reserved instruction exceptions
473 * instead, so we're doing the emulation thing in both exception handlers.
475 static inline int simulate_llsc(struct pt_regs
*regs
)
479 if (unlikely(get_insn_opcode(regs
, &opcode
)))
482 if ((opcode
& OPCODE
) == LL
) {
483 simulate_ll(regs
, opcode
);
486 if ((opcode
& OPCODE
) == SC
) {
487 simulate_sc(regs
, opcode
);
491 return -EFAULT
; /* Strange things going on ... */
494 asmlinkage
void do_ov(struct pt_regs
*regs
)
498 info
.si_code
= FPE_INTOVF
;
499 info
.si_signo
= SIGFPE
;
501 info
.si_addr
= (void *)regs
->cp0_epc
;
502 force_sig_info(SIGFPE
, &info
, current
);
506 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
508 asmlinkage
void do_fpe(struct pt_regs
*regs
, unsigned long fcr31
)
510 if (fcr31
& FPU_CSR_UNI_X
) {
516 * Unimplemented operation exception. If we've got the full
517 * software emulator on-board, let's use it...
519 * Force FPU to dump state into task/thread context. We're
520 * moving a lot of data here for what is probably a single
521 * instruction, but the alternative is to pre-decode the FP
522 * register operands before invoking the emulator, which seems
523 * a bit extreme for what should be an infrequent event.
527 /* Run the emulator */
528 sig
= fpu_emulator_cop1Handler (0, regs
,
529 ¤t
->thread
.fpu
.soft
);
532 * We can't allow the emulated instruction to leave any of
533 * the cause bit set in $fcr31.
535 current
->thread
.fpu
.soft
.fcr31
&= ~FPU_CSR_ALL_X
;
537 /* Restore the hardware register state */
542 /* If something went wrong, signal */
544 force_sig(sig
, current
);
549 force_sig(SIGFPE
, current
);
552 asmlinkage
void do_bp(struct pt_regs
*regs
)
554 unsigned int opcode
, bcode
;
557 die_if_kernel("Break instruction in kernel code", regs
);
559 if (get_insn_opcode(regs
, &opcode
))
563 * There is the ancient bug in the MIPS assemblers that the break
564 * code starts left to bit 16 instead to bit 6 in the opcode.
565 * Gas is bug-compatible, but not always, grrr...
566 * We handle both cases with a simple heuristics. --macro
568 bcode
= ((opcode
>> 6) & ((1 << 20) - 1));
569 if (bcode
< (1 << 10))
573 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
574 * insns, even for break codes that indicate arithmetic failures.
576 * But should we continue the brokenness??? --macro
579 case BRK_OVERFLOW
<< 10:
580 case BRK_DIVZERO
<< 10:
581 if (bcode
== (BRK_DIVZERO
<< 10))
582 info
.si_code
= FPE_INTDIV
;
584 info
.si_code
= FPE_INTOVF
;
585 info
.si_signo
= SIGFPE
;
587 info
.si_addr
= (void *)regs
->cp0_epc
;
588 force_sig_info(SIGFPE
, &info
, current
);
591 force_sig(SIGTRAP
, current
);
595 asmlinkage
void do_tr(struct pt_regs
*regs
)
597 unsigned int opcode
, tcode
= 0;
600 die_if_kernel("Trap instruction in kernel code", regs
);
602 if (get_insn_opcode(regs
, &opcode
))
605 /* Immediate versions don't provide a code. */
606 if (!(opcode
& OPCODE
))
607 tcode
= ((opcode
>> 6) & ((1 << 10) - 1));
610 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
611 * insns, even for trap codes that indicate arithmetic failures.
613 * But should we continue the brokenness??? --macro
618 if (tcode
== BRK_DIVZERO
)
619 info
.si_code
= FPE_INTDIV
;
621 info
.si_code
= FPE_INTOVF
;
622 info
.si_signo
= SIGFPE
;
624 info
.si_addr
= (void *)regs
->cp0_epc
;
625 force_sig_info(SIGFPE
, &info
, current
);
628 force_sig(SIGTRAP
, current
);
632 asmlinkage
void do_ri(struct pt_regs
*regs
)
634 die_if_kernel("Reserved instruction in kernel code", regs
);
637 if (!simulate_llsc(regs
))
640 force_sig(SIGILL
, current
);
643 asmlinkage
void do_cpu(struct pt_regs
*regs
)
647 die_if_kernel("do_cpu invoked from kernel context!", regs
);
649 cpid
= (regs
->cp0_cause
>> CAUSEB_CE
) & 3;
656 if (!simulate_llsc(regs
))
664 if (used_math()) { /* Using the FPU again. */
666 } else { /* First time FPU user. */
672 int sig
= fpu_emulator_cop1Handler(0, regs
,
673 ¤t
->thread
.fpu
.soft
);
675 force_sig(sig
, current
);
687 force_sig(SIGILL
, current
);
690 asmlinkage
void do_mdmx(struct pt_regs
*regs
)
692 force_sig(SIGILL
, current
);
695 asmlinkage
void do_watch(struct pt_regs
*regs
)
698 * We use the watch exception where available to detect stack
703 panic("Caught WATCH exception - probably caused by stack overflow.");
706 asmlinkage
void do_mcheck(struct pt_regs
*regs
)
711 * Some chips may have other causes of machine check (e.g. SB1
714 panic("Caught Machine Check exception - %scaused by multiple "
715 "matching entries in the TLB.",
716 (regs
->cp0_status
& ST0_TS
) ? "" : "not ");
719 asmlinkage
void do_reserved(struct pt_regs
*regs
)
722 * Game over - no way to handle this if it ever occurs. Most probably
723 * caused by a new unknown cpu type or after another deadly
724 * hard/software error.
727 panic("Caught reserved exception %ld - should not happen.",
728 (regs
->cp0_cause
& 0x7f) >> 2);
732 * Some MIPS CPUs can enable/disable for cache parity detection, but do
735 static inline void parity_protection_init(void)
737 switch (current_cpu_data
.cputype
) {
739 /* 24K cache parity not currently implemented in FPGA */
740 printk(KERN_INFO
"Disable cache parity protection for "
742 write_c0_ecc(read_c0_ecc() & ~0x80000000);
745 /* Set the PE bit (bit 31) in the c0_ecc register. */
746 printk(KERN_INFO
"Enable cache parity protection for "
747 "MIPS 5KC/24K CPUs.\n");
748 write_c0_ecc(read_c0_ecc() | 0x80000000);
752 /* Clear the DE bit (bit 16) in the c0_status register. */
753 printk(KERN_INFO
"Enable cache parity protection for "
754 "MIPS 20KC/25KF CPUs.\n");
755 clear_c0_status(ST0_DE
);
762 asmlinkage
void cache_parity_error(void)
764 const int field
= 2 * sizeof(unsigned long);
765 unsigned int reg_val
;
767 /* For the moment, report the problem and hang. */
768 printk("Cache error exception:\n");
769 printk("cp0_errorepc == %0*lx\n", field
, read_c0_errorepc());
770 reg_val
= read_c0_cacheerr();
771 printk("c0_cacheerr == %08x\n", reg_val
);
773 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
774 reg_val
& (1<<30) ? "secondary" : "primary",
775 reg_val
& (1<<31) ? "data" : "insn");
776 printk("Error bits: %s%s%s%s%s%s%s\n",
777 reg_val
& (1<<29) ? "ED " : "",
778 reg_val
& (1<<28) ? "ET " : "",
779 reg_val
& (1<<26) ? "EE " : "",
780 reg_val
& (1<<25) ? "EB " : "",
781 reg_val
& (1<<24) ? "EI " : "",
782 reg_val
& (1<<23) ? "E1 " : "",
783 reg_val
& (1<<22) ? "E0 " : "");
784 printk("IDX: 0x%08x\n", reg_val
& ((1<<22)-1));
786 #if defined(CONFIG_CPU_MIPS32) || defined (CONFIG_CPU_MIPS64)
787 if (reg_val
& (1<<22))
788 printk("DErrAddr0: 0x%0*lx\n", field
, read_c0_derraddr0());
790 if (reg_val
& (1<<23))
791 printk("DErrAddr1: 0x%0*lx\n", field
, read_c0_derraddr1());
794 panic("Can't handle the cache error!");
798 * SDBBP EJTAG debug exception handler.
799 * We skip the instruction and return to the next instruction.
801 void ejtag_exception_handler(struct pt_regs
*regs
)
803 const int field
= 2 * sizeof(unsigned long);
804 unsigned long depc
, old_epc
;
807 printk("SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
808 depc
= read_c0_depc();
809 debug
= read_c0_debug();
810 printk("c0_depc = %0*lx, DEBUG = %08x\n", field
, depc
, debug
);
811 if (debug
& 0x80000000) {
813 * In branch delay slot.
814 * We cheat a little bit here and use EPC to calculate the
815 * debug return address (DEPC). EPC is restored after the
818 old_epc
= regs
->cp0_epc
;
819 regs
->cp0_epc
= depc
;
820 __compute_return_epc(regs
);
821 depc
= regs
->cp0_epc
;
822 regs
->cp0_epc
= old_epc
;
828 printk("\n\n----- Enable EJTAG single stepping ----\n\n");
829 write_c0_debug(debug
| 0x100);
834 * NMI exception handler.
836 void nmi_exception_handler(struct pt_regs
*regs
)
838 printk("NMI taken!!!!\n");
843 unsigned long exception_handlers
[32];
846 * As a side effect of the way this is implemented we're limited
847 * to interrupt handlers in the address range from
848 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
850 void *set_except_vector(int n
, void *addr
)
852 unsigned long handler
= (unsigned long) addr
;
853 unsigned long old_handler
= exception_handlers
[n
];
855 exception_handlers
[n
] = handler
;
856 if (n
== 0 && cpu_has_divec
) {
857 *(volatile u32
*)(CAC_BASE
+ 0x200) = 0x08000000 |
858 (0x03ffffff & (handler
>> 2));
859 flush_icache_range(CAC_BASE
+ 0x200, CAC_BASE
+ 0x204);
861 return (void *)old_handler
;
865 * This is used by native signal handling
867 asmlinkage
int (*save_fp_context
)(struct sigcontext
*sc
);
868 asmlinkage
int (*restore_fp_context
)(struct sigcontext
*sc
);
870 extern asmlinkage
int _save_fp_context(struct sigcontext
*sc
);
871 extern asmlinkage
int _restore_fp_context(struct sigcontext
*sc
);
873 extern asmlinkage
int fpu_emulator_save_context(struct sigcontext
*sc
);
874 extern asmlinkage
int fpu_emulator_restore_context(struct sigcontext
*sc
);
876 static inline void signal_init(void)
879 save_fp_context
= _save_fp_context
;
880 restore_fp_context
= _restore_fp_context
;
882 save_fp_context
= fpu_emulator_save_context
;
883 restore_fp_context
= fpu_emulator_restore_context
;
887 #ifdef CONFIG_MIPS32_COMPAT
890 * This is used by 32-bit signal stuff on the 64-bit kernel
892 asmlinkage
int (*save_fp_context32
)(struct sigcontext32
*sc
);
893 asmlinkage
int (*restore_fp_context32
)(struct sigcontext32
*sc
);
895 extern asmlinkage
int _save_fp_context32(struct sigcontext32
*sc
);
896 extern asmlinkage
int _restore_fp_context32(struct sigcontext32
*sc
);
898 extern asmlinkage
int fpu_emulator_save_context32(struct sigcontext32
*sc
);
899 extern asmlinkage
int fpu_emulator_restore_context32(struct sigcontext32
*sc
);
901 static inline void signal32_init(void)
904 save_fp_context32
= _save_fp_context32
;
905 restore_fp_context32
= _restore_fp_context32
;
907 save_fp_context32
= fpu_emulator_save_context32
;
908 restore_fp_context32
= fpu_emulator_restore_context32
;
913 extern void cpu_cache_init(void);
914 extern void tlb_init(void);
916 void __init
per_cpu_trap_init(void)
918 unsigned int cpu
= smp_processor_id();
919 unsigned int status_set
= ST0_CU0
;
922 * Disable coprocessors and select 32-bit or 64-bit addressing
923 * and the 16/32 or 32/32 FPR register model. Reset the BEV
924 * flag that some firmware may have left set and the TS bit (for
925 * IP27). Set XX for ISA IV code to work.
928 status_set
|= ST0_FR
|ST0_KX
|ST0_SX
|ST0_UX
;
930 if (current_cpu_data
.isa_level
== MIPS_CPU_ISA_IV
)
931 status_set
|= ST0_XX
;
932 change_c0_status(ST0_CU
|ST0_FR
|ST0_BEV
|ST0_TS
|ST0_KX
|ST0_SX
|ST0_UX
,
936 * Some MIPS CPUs have a dedicated interrupt vector which reduces the
937 * interrupt processing overhead. Use it where available.
940 set_c0_cause(CAUSEF_IV
);
942 cpu_data
[cpu
].asid_cache
= ASID_FIRST_VERSION
;
943 TLBMISS_HANDLER_SETUP();
945 atomic_inc(&init_mm
.mm_count
);
946 current
->active_mm
= &init_mm
;
948 enter_lazy_tlb(&init_mm
, current
);
954 void __init
trap_init(void)
956 extern char except_vec3_generic
, except_vec3_r4000
;
957 extern char except_vec_ejtag_debug
;
958 extern char except_vec4
;
964 * Copy the generic exception handlers to their final destination.
965 * This will be overriden later as suitable for a particular
968 memcpy((void *)(CAC_BASE
+ 0x180), &except_vec3_generic
, 0x80);
971 * Setup default vectors
973 for (i
= 0; i
<= 31; i
++)
974 set_except_vector(i
, handle_reserved
);
977 * Copy the EJTAG debug exception vector handler code to it's final
981 memcpy((void *)(CAC_BASE
+ 0x300), &except_vec_ejtag_debug
, 0x80);
984 * Only some CPUs have the watch exceptions.
987 set_except_vector(23, handle_watch
);
990 * Some MIPS CPUs have a dedicated interrupt vector which reduces the
991 * interrupt processing overhead. Use it where available.
994 memcpy((void *)(CAC_BASE
+ 0x200), &except_vec4
, 0x8);
997 * Some CPUs can enable/disable for cache parity detection, but does
1000 parity_protection_init();
1003 * The Data Bus Errors / Instruction Bus Errors are signaled
1004 * by external hardware. Therefore these two exceptions
1005 * may have board specific handlers.
1010 set_except_vector(1, handle_tlbm
);
1011 set_except_vector(2, handle_tlbl
);
1012 set_except_vector(3, handle_tlbs
);
1014 set_except_vector(4, handle_adel
);
1015 set_except_vector(5, handle_ades
);
1017 set_except_vector(6, handle_ibe
);
1018 set_except_vector(7, handle_dbe
);
1020 set_except_vector(8, handle_sys
);
1021 set_except_vector(9, handle_bp
);
1022 set_except_vector(10, handle_ri
);
1023 set_except_vector(11, handle_cpu
);
1024 set_except_vector(12, handle_ov
);
1025 set_except_vector(13, handle_tr
);
1026 set_except_vector(22, handle_mdmx
);
1028 if (cpu_has_fpu
&& !cpu_has_nofpuex
)
1029 set_except_vector(15, handle_fpe
);
1032 set_except_vector(24, handle_mcheck
);
1035 /* Special exception: R4[04]00 uses also the divec space. */
1036 memcpy((void *)(CAC_BASE
+ 0x180), &except_vec3_r4000
, 0x100);
1037 else if (cpu_has_4kex
)
1038 memcpy((void *)(CAC_BASE
+ 0x180), &except_vec3_generic
, 0x80);
1040 memcpy((void *)(CAC_BASE
+ 0x080), &except_vec3_generic
, 0x80);
1042 if (current_cpu_data
.cputype
== CPU_R6000
||
1043 current_cpu_data
.cputype
== CPU_R6000A
) {
1045 * The R6000 is the only R-series CPU that features a machine
1046 * check exception (similar to the R4000 cache error) and
1047 * unaligned ldc1/sdc1 exception. The handlers have not been
1048 * written yet. Well, anyway there is no R6000 machine on the
1049 * current list of targets for Linux/MIPS.
1050 * (Duh, crap, there is someone with a triple R6k machine)
1052 //set_except_vector(14, handle_mc);
1053 //set_except_vector(15, handle_ndc);
1057 #ifdef CONFIG_MIPS32_COMPAT
1061 flush_icache_range(CAC_BASE
, CAC_BASE
+ 0x400);