Linux-2.6.12-rc2
[linux-2.6/kvm.git] / arch / arm / vfp / vfpsingle.c
blob6849fe35cb2e7d59d3310d0c95807e3bdd28db08
1 /*
2 * linux/arch/arm/vfp/vfpsingle.c
4 * This code is derived in part from John R. Housers softfloat library, which
5 * carries the following notice:
7 * ===========================================================================
8 * This C source file is part of the SoftFloat IEC/IEEE Floating-point
9 * Arithmetic Package, Release 2.
11 * Written by John R. Hauser. This work was made possible in part by the
12 * International Computer Science Institute, located at Suite 600, 1947 Center
13 * Street, Berkeley, California 94704. Funding was partially provided by the
14 * National Science Foundation under grant MIP-9311980. The original version
15 * of this code was written as part of a project to build a fixed-point vector
16 * processor in collaboration with the University of California at Berkeley,
17 * overseen by Profs. Nelson Morgan and John Wawrzynek. More information
18 * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
19 * arithmetic/softfloat.html'.
21 * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
22 * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
23 * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
24 * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
25 * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
27 * Derivative works are acceptable, even for commercial purposes, so long as
28 * (1) they include prominent notice that the work is derivative, and (2) they
29 * include prominent notice akin to these three paragraphs for those parts of
30 * this code that are retained.
31 * ===========================================================================
33 #include <linux/kernel.h>
34 #include <linux/bitops.h>
35 #include <asm/ptrace.h>
36 #include <asm/vfp.h>
38 #include "vfpinstr.h"
39 #include "vfp.h"
41 static struct vfp_single vfp_single_default_qnan = {
42 .exponent = 255,
43 .sign = 0,
44 .significand = VFP_SINGLE_SIGNIFICAND_QNAN,
47 static void vfp_single_dump(const char *str, struct vfp_single *s)
49 pr_debug("VFP: %s: sign=%d exponent=%d significand=%08x\n",
50 str, s->sign != 0, s->exponent, s->significand);
53 static void vfp_single_normalise_denormal(struct vfp_single *vs)
55 int bits = 31 - fls(vs->significand);
57 vfp_single_dump("normalise_denormal: in", vs);
59 if (bits) {
60 vs->exponent -= bits - 1;
61 vs->significand <<= bits;
64 vfp_single_dump("normalise_denormal: out", vs);
67 #ifndef DEBUG
68 #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
69 u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions)
70 #else
71 u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func)
72 #endif
74 u32 significand, incr, rmode;
75 int exponent, shift, underflow;
77 vfp_single_dump("pack: in", vs);
80 * Infinities and NaNs are a special case.
82 if (vs->exponent == 255 && (vs->significand == 0 || exceptions))
83 goto pack;
86 * Special-case zero.
88 if (vs->significand == 0) {
89 vs->exponent = 0;
90 goto pack;
93 exponent = vs->exponent;
94 significand = vs->significand;
97 * Normalise first. Note that we shift the significand up to
98 * bit 31, so we have VFP_SINGLE_LOW_BITS + 1 below the least
99 * significant bit.
101 shift = 32 - fls(significand);
102 if (shift < 32 && shift) {
103 exponent -= shift;
104 significand <<= shift;
107 #ifdef DEBUG
108 vs->exponent = exponent;
109 vs->significand = significand;
110 vfp_single_dump("pack: normalised", vs);
111 #endif
114 * Tiny number?
116 underflow = exponent < 0;
117 if (underflow) {
118 significand = vfp_shiftright32jamming(significand, -exponent);
119 exponent = 0;
120 #ifdef DEBUG
121 vs->exponent = exponent;
122 vs->significand = significand;
123 vfp_single_dump("pack: tiny number", vs);
124 #endif
125 if (!(significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1)))
126 underflow = 0;
130 * Select rounding increment.
132 incr = 0;
133 rmode = fpscr & FPSCR_RMODE_MASK;
135 if (rmode == FPSCR_ROUND_NEAREST) {
136 incr = 1 << VFP_SINGLE_LOW_BITS;
137 if ((significand & (1 << (VFP_SINGLE_LOW_BITS + 1))) == 0)
138 incr -= 1;
139 } else if (rmode == FPSCR_ROUND_TOZERO) {
140 incr = 0;
141 } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vs->sign != 0))
142 incr = (1 << (VFP_SINGLE_LOW_BITS + 1)) - 1;
144 pr_debug("VFP: rounding increment = 0x%08x\n", incr);
147 * Is our rounding going to overflow?
149 if ((significand + incr) < significand) {
150 exponent += 1;
151 significand = (significand >> 1) | (significand & 1);
152 incr >>= 1;
153 #ifdef DEBUG
154 vs->exponent = exponent;
155 vs->significand = significand;
156 vfp_single_dump("pack: overflow", vs);
157 #endif
161 * If any of the low bits (which will be shifted out of the
162 * number) are non-zero, the result is inexact.
164 if (significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1))
165 exceptions |= FPSCR_IXC;
168 * Do our rounding.
170 significand += incr;
173 * Infinity?
175 if (exponent >= 254) {
176 exceptions |= FPSCR_OFC | FPSCR_IXC;
177 if (incr == 0) {
178 vs->exponent = 253;
179 vs->significand = 0x7fffffff;
180 } else {
181 vs->exponent = 255; /* infinity */
182 vs->significand = 0;
184 } else {
185 if (significand >> (VFP_SINGLE_LOW_BITS + 1) == 0)
186 exponent = 0;
187 if (exponent || significand > 0x80000000)
188 underflow = 0;
189 if (underflow)
190 exceptions |= FPSCR_UFC;
191 vs->exponent = exponent;
192 vs->significand = significand >> 1;
195 pack:
196 vfp_single_dump("pack: final", vs);
198 s32 d = vfp_single_pack(vs);
199 pr_debug("VFP: %s: d(s%d)=%08x exceptions=%08x\n", func,
200 sd, d, exceptions);
201 vfp_put_float(sd, d);
204 return exceptions & ~VFP_NAN_FLAG;
208 * Propagate the NaN, setting exceptions if it is signalling.
209 * 'n' is always a NaN. 'm' may be a number, NaN or infinity.
211 static u32
212 vfp_propagate_nan(struct vfp_single *vsd, struct vfp_single *vsn,
213 struct vfp_single *vsm, u32 fpscr)
215 struct vfp_single *nan;
216 int tn, tm = 0;
218 tn = vfp_single_type(vsn);
220 if (vsm)
221 tm = vfp_single_type(vsm);
223 if (fpscr & FPSCR_DEFAULT_NAN)
225 * Default NaN mode - always returns a quiet NaN
227 nan = &vfp_single_default_qnan;
228 else {
230 * Contemporary mode - select the first signalling
231 * NAN, or if neither are signalling, the first
232 * quiet NAN.
234 if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
235 nan = vsn;
236 else
237 nan = vsm;
239 * Make the NaN quiet.
241 nan->significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
244 *vsd = *nan;
247 * If one was a signalling NAN, raise invalid operation.
249 return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
254 * Extended operations
256 static u32 vfp_single_fabs(int sd, int unused, s32 m, u32 fpscr)
258 vfp_put_float(sd, vfp_single_packed_abs(m));
259 return 0;
262 static u32 vfp_single_fcpy(int sd, int unused, s32 m, u32 fpscr)
264 vfp_put_float(sd, m);
265 return 0;
268 static u32 vfp_single_fneg(int sd, int unused, s32 m, u32 fpscr)
270 vfp_put_float(sd, vfp_single_packed_negate(m));
271 return 0;
274 static const u16 sqrt_oddadjust[] = {
275 0x0004, 0x0022, 0x005d, 0x00b1, 0x011d, 0x019f, 0x0236, 0x02e0,
276 0x039c, 0x0468, 0x0545, 0x0631, 0x072b, 0x0832, 0x0946, 0x0a67
279 static const u16 sqrt_evenadjust[] = {
280 0x0a2d, 0x08af, 0x075a, 0x0629, 0x051a, 0x0429, 0x0356, 0x029e,
281 0x0200, 0x0179, 0x0109, 0x00af, 0x0068, 0x0034, 0x0012, 0x0002
284 u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand)
286 int index;
287 u32 z, a;
289 if ((significand & 0xc0000000) != 0x40000000) {
290 printk(KERN_WARNING "VFP: estimate_sqrt: invalid significand\n");
293 a = significand << 1;
294 index = (a >> 27) & 15;
295 if (exponent & 1) {
296 z = 0x4000 + (a >> 17) - sqrt_oddadjust[index];
297 z = ((a / z) << 14) + (z << 15);
298 a >>= 1;
299 } else {
300 z = 0x8000 + (a >> 17) - sqrt_evenadjust[index];
301 z = a / z + z;
302 z = (z >= 0x20000) ? 0xffff8000 : (z << 15);
303 if (z <= a)
304 return (s32)a >> 1;
306 return (u32)(((u64)a << 31) / z) + (z >> 1);
309 static u32 vfp_single_fsqrt(int sd, int unused, s32 m, u32 fpscr)
311 struct vfp_single vsm, vsd;
312 int ret, tm;
314 vfp_single_unpack(&vsm, m);
315 tm = vfp_single_type(&vsm);
316 if (tm & (VFP_NAN|VFP_INFINITY)) {
317 struct vfp_single *vsp = &vsd;
319 if (tm & VFP_NAN)
320 ret = vfp_propagate_nan(vsp, &vsm, NULL, fpscr);
321 else if (vsm.sign == 0) {
322 sqrt_copy:
323 vsp = &vsm;
324 ret = 0;
325 } else {
326 sqrt_invalid:
327 vsp = &vfp_single_default_qnan;
328 ret = FPSCR_IOC;
330 vfp_put_float(sd, vfp_single_pack(vsp));
331 return ret;
335 * sqrt(+/- 0) == +/- 0
337 if (tm & VFP_ZERO)
338 goto sqrt_copy;
341 * Normalise a denormalised number
343 if (tm & VFP_DENORMAL)
344 vfp_single_normalise_denormal(&vsm);
347 * sqrt(<0) = invalid
349 if (vsm.sign)
350 goto sqrt_invalid;
352 vfp_single_dump("sqrt", &vsm);
355 * Estimate the square root.
357 vsd.sign = 0;
358 vsd.exponent = ((vsm.exponent - 127) >> 1) + 127;
359 vsd.significand = vfp_estimate_sqrt_significand(vsm.exponent, vsm.significand) + 2;
361 vfp_single_dump("sqrt estimate", &vsd);
364 * And now adjust.
366 if ((vsd.significand & VFP_SINGLE_LOW_BITS_MASK) <= 5) {
367 if (vsd.significand < 2) {
368 vsd.significand = 0xffffffff;
369 } else {
370 u64 term;
371 s64 rem;
372 vsm.significand <<= !(vsm.exponent & 1);
373 term = (u64)vsd.significand * vsd.significand;
374 rem = ((u64)vsm.significand << 32) - term;
376 pr_debug("VFP: term=%016llx rem=%016llx\n", term, rem);
378 while (rem < 0) {
379 vsd.significand -= 1;
380 rem += ((u64)vsd.significand << 1) | 1;
382 vsd.significand |= rem != 0;
385 vsd.significand = vfp_shiftright32jamming(vsd.significand, 1);
387 return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fsqrt");
391 * Equal := ZC
392 * Less than := N
393 * Greater than := C
394 * Unordered := CV
396 static u32 vfp_compare(int sd, int signal_on_qnan, s32 m, u32 fpscr)
398 s32 d;
399 u32 ret = 0;
401 d = vfp_get_float(sd);
402 if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) {
403 ret |= FPSCR_C | FPSCR_V;
404 if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
406 * Signalling NaN, or signalling on quiet NaN
408 ret |= FPSCR_IOC;
411 if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) {
412 ret |= FPSCR_C | FPSCR_V;
413 if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
415 * Signalling NaN, or signalling on quiet NaN
417 ret |= FPSCR_IOC;
420 if (ret == 0) {
421 if (d == m || vfp_single_packed_abs(d | m) == 0) {
423 * equal
425 ret |= FPSCR_Z | FPSCR_C;
426 } else if (vfp_single_packed_sign(d ^ m)) {
428 * different signs
430 if (vfp_single_packed_sign(d))
432 * d is negative, so d < m
434 ret |= FPSCR_N;
435 else
437 * d is positive, so d > m
439 ret |= FPSCR_C;
440 } else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) {
442 * d < m
444 ret |= FPSCR_N;
445 } else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) {
447 * d > m
449 ret |= FPSCR_C;
452 return ret;
455 static u32 vfp_single_fcmp(int sd, int unused, s32 m, u32 fpscr)
457 return vfp_compare(sd, 0, m, fpscr);
460 static u32 vfp_single_fcmpe(int sd, int unused, s32 m, u32 fpscr)
462 return vfp_compare(sd, 1, m, fpscr);
465 static u32 vfp_single_fcmpz(int sd, int unused, s32 m, u32 fpscr)
467 return vfp_compare(sd, 0, 0, fpscr);
470 static u32 vfp_single_fcmpez(int sd, int unused, s32 m, u32 fpscr)
472 return vfp_compare(sd, 1, 0, fpscr);
475 static u32 vfp_single_fcvtd(int dd, int unused, s32 m, u32 fpscr)
477 struct vfp_single vsm;
478 struct vfp_double vdd;
479 int tm;
480 u32 exceptions = 0;
482 vfp_single_unpack(&vsm, m);
484 tm = vfp_single_type(&vsm);
487 * If we have a signalling NaN, signal invalid operation.
489 if (tm == VFP_SNAN)
490 exceptions = FPSCR_IOC;
492 if (tm & VFP_DENORMAL)
493 vfp_single_normalise_denormal(&vsm);
495 vdd.sign = vsm.sign;
496 vdd.significand = (u64)vsm.significand << 32;
499 * If we have an infinity or NaN, the exponent must be 2047.
501 if (tm & (VFP_INFINITY|VFP_NAN)) {
502 vdd.exponent = 2047;
503 if (tm & VFP_NAN)
504 vdd.significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
505 goto pack_nan;
506 } else if (tm & VFP_ZERO)
507 vdd.exponent = 0;
508 else
509 vdd.exponent = vsm.exponent + (1023 - 127);
512 * Technically, if bit 0 of dd is set, this is an invalid
513 * instruction. However, we ignore this for efficiency.
515 return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fcvtd");
517 pack_nan:
518 vfp_put_double(dd, vfp_double_pack(&vdd));
519 return exceptions;
522 static u32 vfp_single_fuito(int sd, int unused, s32 m, u32 fpscr)
524 struct vfp_single vs;
526 vs.sign = 0;
527 vs.exponent = 127 + 31 - 1;
528 vs.significand = (u32)m;
530 return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fuito");
533 static u32 vfp_single_fsito(int sd, int unused, s32 m, u32 fpscr)
535 struct vfp_single vs;
537 vs.sign = (m & 0x80000000) >> 16;
538 vs.exponent = 127 + 31 - 1;
539 vs.significand = vs.sign ? -m : m;
541 return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fsito");
544 static u32 vfp_single_ftoui(int sd, int unused, s32 m, u32 fpscr)
546 struct vfp_single vsm;
547 u32 d, exceptions = 0;
548 int rmode = fpscr & FPSCR_RMODE_MASK;
549 int tm;
551 vfp_single_unpack(&vsm, m);
552 vfp_single_dump("VSM", &vsm);
555 * Do we have a denormalised number?
557 tm = vfp_single_type(&vsm);
558 if (tm & VFP_DENORMAL)
559 exceptions |= FPSCR_IDC;
561 if (tm & VFP_NAN)
562 vsm.sign = 0;
564 if (vsm.exponent >= 127 + 32) {
565 d = vsm.sign ? 0 : 0xffffffff;
566 exceptions = FPSCR_IOC;
567 } else if (vsm.exponent >= 127 - 1) {
568 int shift = 127 + 31 - vsm.exponent;
569 u32 rem, incr = 0;
572 * 2^0 <= m < 2^32-2^8
574 d = (vsm.significand << 1) >> shift;
575 rem = vsm.significand << (33 - shift);
577 if (rmode == FPSCR_ROUND_NEAREST) {
578 incr = 0x80000000;
579 if ((d & 1) == 0)
580 incr -= 1;
581 } else if (rmode == FPSCR_ROUND_TOZERO) {
582 incr = 0;
583 } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
584 incr = ~0;
587 if ((rem + incr) < rem) {
588 if (d < 0xffffffff)
589 d += 1;
590 else
591 exceptions |= FPSCR_IOC;
594 if (d && vsm.sign) {
595 d = 0;
596 exceptions |= FPSCR_IOC;
597 } else if (rem)
598 exceptions |= FPSCR_IXC;
599 } else {
600 d = 0;
601 if (vsm.exponent | vsm.significand) {
602 exceptions |= FPSCR_IXC;
603 if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
604 d = 1;
605 else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) {
606 d = 0;
607 exceptions |= FPSCR_IOC;
612 pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
614 vfp_put_float(sd, d);
616 return exceptions;
619 static u32 vfp_single_ftouiz(int sd, int unused, s32 m, u32 fpscr)
621 return vfp_single_ftoui(sd, unused, m, FPSCR_ROUND_TOZERO);
624 static u32 vfp_single_ftosi(int sd, int unused, s32 m, u32 fpscr)
626 struct vfp_single vsm;
627 u32 d, exceptions = 0;
628 int rmode = fpscr & FPSCR_RMODE_MASK;
630 vfp_single_unpack(&vsm, m);
631 vfp_single_dump("VSM", &vsm);
634 * Do we have a denormalised number?
636 if (vfp_single_type(&vsm) & VFP_DENORMAL)
637 exceptions |= FPSCR_IDC;
639 if (vsm.exponent >= 127 + 32) {
641 * m >= 2^31-2^7: invalid
643 d = 0x7fffffff;
644 if (vsm.sign)
645 d = ~d;
646 exceptions |= FPSCR_IOC;
647 } else if (vsm.exponent >= 127 - 1) {
648 int shift = 127 + 31 - vsm.exponent;
649 u32 rem, incr = 0;
651 /* 2^0 <= m <= 2^31-2^7 */
652 d = (vsm.significand << 1) >> shift;
653 rem = vsm.significand << (33 - shift);
655 if (rmode == FPSCR_ROUND_NEAREST) {
656 incr = 0x80000000;
657 if ((d & 1) == 0)
658 incr -= 1;
659 } else if (rmode == FPSCR_ROUND_TOZERO) {
660 incr = 0;
661 } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
662 incr = ~0;
665 if ((rem + incr) < rem && d < 0xffffffff)
666 d += 1;
667 if (d > 0x7fffffff + (vsm.sign != 0)) {
668 d = 0x7fffffff + (vsm.sign != 0);
669 exceptions |= FPSCR_IOC;
670 } else if (rem)
671 exceptions |= FPSCR_IXC;
673 if (vsm.sign)
674 d = -d;
675 } else {
676 d = 0;
677 if (vsm.exponent | vsm.significand) {
678 exceptions |= FPSCR_IXC;
679 if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
680 d = 1;
681 else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign)
682 d = -1;
686 pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
688 vfp_put_float(sd, (s32)d);
690 return exceptions;
693 static u32 vfp_single_ftosiz(int sd, int unused, s32 m, u32 fpscr)
695 return vfp_single_ftosi(sd, unused, m, FPSCR_ROUND_TOZERO);
698 static u32 (* const fop_extfns[32])(int sd, int unused, s32 m, u32 fpscr) = {
699 [FEXT_TO_IDX(FEXT_FCPY)] = vfp_single_fcpy,
700 [FEXT_TO_IDX(FEXT_FABS)] = vfp_single_fabs,
701 [FEXT_TO_IDX(FEXT_FNEG)] = vfp_single_fneg,
702 [FEXT_TO_IDX(FEXT_FSQRT)] = vfp_single_fsqrt,
703 [FEXT_TO_IDX(FEXT_FCMP)] = vfp_single_fcmp,
704 [FEXT_TO_IDX(FEXT_FCMPE)] = vfp_single_fcmpe,
705 [FEXT_TO_IDX(FEXT_FCMPZ)] = vfp_single_fcmpz,
706 [FEXT_TO_IDX(FEXT_FCMPEZ)] = vfp_single_fcmpez,
707 [FEXT_TO_IDX(FEXT_FCVT)] = vfp_single_fcvtd,
708 [FEXT_TO_IDX(FEXT_FUITO)] = vfp_single_fuito,
709 [FEXT_TO_IDX(FEXT_FSITO)] = vfp_single_fsito,
710 [FEXT_TO_IDX(FEXT_FTOUI)] = vfp_single_ftoui,
711 [FEXT_TO_IDX(FEXT_FTOUIZ)] = vfp_single_ftouiz,
712 [FEXT_TO_IDX(FEXT_FTOSI)] = vfp_single_ftosi,
713 [FEXT_TO_IDX(FEXT_FTOSIZ)] = vfp_single_ftosiz,
720 static u32
721 vfp_single_fadd_nonnumber(struct vfp_single *vsd, struct vfp_single *vsn,
722 struct vfp_single *vsm, u32 fpscr)
724 struct vfp_single *vsp;
725 u32 exceptions = 0;
726 int tn, tm;
728 tn = vfp_single_type(vsn);
729 tm = vfp_single_type(vsm);
731 if (tn & tm & VFP_INFINITY) {
733 * Two infinities. Are they different signs?
735 if (vsn->sign ^ vsm->sign) {
737 * different signs -> invalid
739 exceptions = FPSCR_IOC;
740 vsp = &vfp_single_default_qnan;
741 } else {
743 * same signs -> valid
745 vsp = vsn;
747 } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {
749 * One infinity and one number -> infinity
751 vsp = vsn;
752 } else {
754 * 'n' is a NaN of some type
756 return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
758 *vsd = *vsp;
759 return exceptions;
762 static u32
763 vfp_single_add(struct vfp_single *vsd, struct vfp_single *vsn,
764 struct vfp_single *vsm, u32 fpscr)
766 u32 exp_diff, m_sig;
768 if (vsn->significand & 0x80000000 ||
769 vsm->significand & 0x80000000) {
770 pr_info("VFP: bad FP values in %s\n", __func__);
771 vfp_single_dump("VSN", vsn);
772 vfp_single_dump("VSM", vsm);
776 * Ensure that 'n' is the largest magnitude number. Note that
777 * if 'n' and 'm' have equal exponents, we do not swap them.
778 * This ensures that NaN propagation works correctly.
780 if (vsn->exponent < vsm->exponent) {
781 struct vfp_single *t = vsn;
782 vsn = vsm;
783 vsm = t;
787 * Is 'n' an infinity or a NaN? Note that 'm' may be a number,
788 * infinity or a NaN here.
790 if (vsn->exponent == 255)
791 return vfp_single_fadd_nonnumber(vsd, vsn, vsm, fpscr);
794 * We have two proper numbers, where 'vsn' is the larger magnitude.
796 * Copy 'n' to 'd' before doing the arithmetic.
798 *vsd = *vsn;
801 * Align both numbers.
803 exp_diff = vsn->exponent - vsm->exponent;
804 m_sig = vfp_shiftright32jamming(vsm->significand, exp_diff);
807 * If the signs are different, we are really subtracting.
809 if (vsn->sign ^ vsm->sign) {
810 m_sig = vsn->significand - m_sig;
811 if ((s32)m_sig < 0) {
812 vsd->sign = vfp_sign_negate(vsd->sign);
813 m_sig = -m_sig;
814 } else if (m_sig == 0) {
815 vsd->sign = (fpscr & FPSCR_RMODE_MASK) ==
816 FPSCR_ROUND_MINUSINF ? 0x8000 : 0;
818 } else {
819 m_sig = vsn->significand + m_sig;
821 vsd->significand = m_sig;
823 return 0;
826 static u32
827 vfp_single_multiply(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr)
829 vfp_single_dump("VSN", vsn);
830 vfp_single_dump("VSM", vsm);
833 * Ensure that 'n' is the largest magnitude number. Note that
834 * if 'n' and 'm' have equal exponents, we do not swap them.
835 * This ensures that NaN propagation works correctly.
837 if (vsn->exponent < vsm->exponent) {
838 struct vfp_single *t = vsn;
839 vsn = vsm;
840 vsm = t;
841 pr_debug("VFP: swapping M <-> N\n");
844 vsd->sign = vsn->sign ^ vsm->sign;
847 * If 'n' is an infinity or NaN, handle it. 'm' may be anything.
849 if (vsn->exponent == 255) {
850 if (vsn->significand || (vsm->exponent == 255 && vsm->significand))
851 return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
852 if ((vsm->exponent | vsm->significand) == 0) {
853 *vsd = vfp_single_default_qnan;
854 return FPSCR_IOC;
856 vsd->exponent = vsn->exponent;
857 vsd->significand = 0;
858 return 0;
862 * If 'm' is zero, the result is always zero. In this case,
863 * 'n' may be zero or a number, but it doesn't matter which.
865 if ((vsm->exponent | vsm->significand) == 0) {
866 vsd->exponent = 0;
867 vsd->significand = 0;
868 return 0;
872 * We add 2 to the destination exponent for the same reason as
873 * the addition case - though this time we have +1 from each
874 * input operand.
876 vsd->exponent = vsn->exponent + vsm->exponent - 127 + 2;
877 vsd->significand = vfp_hi64to32jamming((u64)vsn->significand * vsm->significand);
879 vfp_single_dump("VSD", vsd);
880 return 0;
883 #define NEG_MULTIPLY (1 << 0)
884 #define NEG_SUBTRACT (1 << 1)
886 static u32
887 vfp_single_multiply_accumulate(int sd, int sn, s32 m, u32 fpscr, u32 negate, char *func)
889 struct vfp_single vsd, vsp, vsn, vsm;
890 u32 exceptions;
891 s32 v;
893 v = vfp_get_float(sn);
894 pr_debug("VFP: s%u = %08x\n", sn, v);
895 vfp_single_unpack(&vsn, v);
896 if (vsn.exponent == 0 && vsn.significand)
897 vfp_single_normalise_denormal(&vsn);
899 vfp_single_unpack(&vsm, m);
900 if (vsm.exponent == 0 && vsm.significand)
901 vfp_single_normalise_denormal(&vsm);
903 exceptions = vfp_single_multiply(&vsp, &vsn, &vsm, fpscr);
904 if (negate & NEG_MULTIPLY)
905 vsp.sign = vfp_sign_negate(vsp.sign);
907 v = vfp_get_float(sd);
908 pr_debug("VFP: s%u = %08x\n", sd, v);
909 vfp_single_unpack(&vsn, v);
910 if (negate & NEG_SUBTRACT)
911 vsn.sign = vfp_sign_negate(vsn.sign);
913 exceptions |= vfp_single_add(&vsd, &vsn, &vsp, fpscr);
915 return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, func);
919 * Standard operations
923 * sd = sd + (sn * sm)
925 static u32 vfp_single_fmac(int sd, int sn, s32 m, u32 fpscr)
927 return vfp_single_multiply_accumulate(sd, sn, m, fpscr, 0, "fmac");
931 * sd = sd - (sn * sm)
933 static u32 vfp_single_fnmac(int sd, int sn, s32 m, u32 fpscr)
935 return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_MULTIPLY, "fnmac");
939 * sd = -sd + (sn * sm)
941 static u32 vfp_single_fmsc(int sd, int sn, s32 m, u32 fpscr)
943 return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT, "fmsc");
947 * sd = -sd - (sn * sm)
949 static u32 vfp_single_fnmsc(int sd, int sn, s32 m, u32 fpscr)
951 return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc");
955 * sd = sn * sm
957 static u32 vfp_single_fmul(int sd, int sn, s32 m, u32 fpscr)
959 struct vfp_single vsd, vsn, vsm;
960 u32 exceptions;
961 s32 n = vfp_get_float(sn);
963 pr_debug("VFP: s%u = %08x\n", sn, n);
965 vfp_single_unpack(&vsn, n);
966 if (vsn.exponent == 0 && vsn.significand)
967 vfp_single_normalise_denormal(&vsn);
969 vfp_single_unpack(&vsm, m);
970 if (vsm.exponent == 0 && vsm.significand)
971 vfp_single_normalise_denormal(&vsm);
973 exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
974 return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fmul");
978 * sd = -(sn * sm)
980 static u32 vfp_single_fnmul(int sd, int sn, s32 m, u32 fpscr)
982 struct vfp_single vsd, vsn, vsm;
983 u32 exceptions;
984 s32 n = vfp_get_float(sn);
986 pr_debug("VFP: s%u = %08x\n", sn, n);
988 vfp_single_unpack(&vsn, n);
989 if (vsn.exponent == 0 && vsn.significand)
990 vfp_single_normalise_denormal(&vsn);
992 vfp_single_unpack(&vsm, m);
993 if (vsm.exponent == 0 && vsm.significand)
994 vfp_single_normalise_denormal(&vsm);
996 exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
997 vsd.sign = vfp_sign_negate(vsd.sign);
998 return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fnmul");
1002 * sd = sn + sm
1004 static u32 vfp_single_fadd(int sd, int sn, s32 m, u32 fpscr)
1006 struct vfp_single vsd, vsn, vsm;
1007 u32 exceptions;
1008 s32 n = vfp_get_float(sn);
1010 pr_debug("VFP: s%u = %08x\n", sn, n);
1013 * Unpack and normalise denormals.
1015 vfp_single_unpack(&vsn, n);
1016 if (vsn.exponent == 0 && vsn.significand)
1017 vfp_single_normalise_denormal(&vsn);
1019 vfp_single_unpack(&vsm, m);
1020 if (vsm.exponent == 0 && vsm.significand)
1021 vfp_single_normalise_denormal(&vsm);
1023 exceptions = vfp_single_add(&vsd, &vsn, &vsm, fpscr);
1025 return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fadd");
1029 * sd = sn - sm
1031 static u32 vfp_single_fsub(int sd, int sn, s32 m, u32 fpscr)
1034 * Subtraction is addition with one sign inverted.
1036 return vfp_single_fadd(sd, sn, vfp_single_packed_negate(m), fpscr);
1040 * sd = sn / sm
1042 static u32 vfp_single_fdiv(int sd, int sn, s32 m, u32 fpscr)
1044 struct vfp_single vsd, vsn, vsm;
1045 u32 exceptions = 0;
1046 s32 n = vfp_get_float(sn);
1047 int tm, tn;
1049 pr_debug("VFP: s%u = %08x\n", sn, n);
1051 vfp_single_unpack(&vsn, n);
1052 vfp_single_unpack(&vsm, m);
1054 vsd.sign = vsn.sign ^ vsm.sign;
1056 tn = vfp_single_type(&vsn);
1057 tm = vfp_single_type(&vsm);
1060 * Is n a NAN?
1062 if (tn & VFP_NAN)
1063 goto vsn_nan;
1066 * Is m a NAN?
1068 if (tm & VFP_NAN)
1069 goto vsm_nan;
1072 * If n and m are infinity, the result is invalid
1073 * If n and m are zero, the result is invalid
1075 if (tm & tn & (VFP_INFINITY|VFP_ZERO))
1076 goto invalid;
1079 * If n is infinity, the result is infinity
1081 if (tn & VFP_INFINITY)
1082 goto infinity;
1085 * If m is zero, raise div0 exception
1087 if (tm & VFP_ZERO)
1088 goto divzero;
1091 * If m is infinity, or n is zero, the result is zero
1093 if (tm & VFP_INFINITY || tn & VFP_ZERO)
1094 goto zero;
1096 if (tn & VFP_DENORMAL)
1097 vfp_single_normalise_denormal(&vsn);
1098 if (tm & VFP_DENORMAL)
1099 vfp_single_normalise_denormal(&vsm);
1102 * Ok, we have two numbers, we can perform division.
1104 vsd.exponent = vsn.exponent - vsm.exponent + 127 - 1;
1105 vsm.significand <<= 1;
1106 if (vsm.significand <= (2 * vsn.significand)) {
1107 vsn.significand >>= 1;
1108 vsd.exponent++;
1110 vsd.significand = ((u64)vsn.significand << 32) / vsm.significand;
1111 if ((vsd.significand & 0x3f) == 0)
1112 vsd.significand |= ((u64)vsm.significand * vsd.significand != (u64)vsn.significand << 32);
1114 return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fdiv");
1116 vsn_nan:
1117 exceptions = vfp_propagate_nan(&vsd, &vsn, &vsm, fpscr);
1118 pack:
1119 vfp_put_float(sd, vfp_single_pack(&vsd));
1120 return exceptions;
1122 vsm_nan:
1123 exceptions = vfp_propagate_nan(&vsd, &vsm, &vsn, fpscr);
1124 goto pack;
1126 zero:
1127 vsd.exponent = 0;
1128 vsd.significand = 0;
1129 goto pack;
1131 divzero:
1132 exceptions = FPSCR_DZC;
1133 infinity:
1134 vsd.exponent = 255;
1135 vsd.significand = 0;
1136 goto pack;
1138 invalid:
1139 vfp_put_float(sd, vfp_single_pack(&vfp_single_default_qnan));
1140 return FPSCR_IOC;
1143 static u32 (* const fop_fns[16])(int sd, int sn, s32 m, u32 fpscr) = {
1144 [FOP_TO_IDX(FOP_FMAC)] = vfp_single_fmac,
1145 [FOP_TO_IDX(FOP_FNMAC)] = vfp_single_fnmac,
1146 [FOP_TO_IDX(FOP_FMSC)] = vfp_single_fmsc,
1147 [FOP_TO_IDX(FOP_FNMSC)] = vfp_single_fnmsc,
1148 [FOP_TO_IDX(FOP_FMUL)] = vfp_single_fmul,
1149 [FOP_TO_IDX(FOP_FNMUL)] = vfp_single_fnmul,
1150 [FOP_TO_IDX(FOP_FADD)] = vfp_single_fadd,
1151 [FOP_TO_IDX(FOP_FSUB)] = vfp_single_fsub,
1152 [FOP_TO_IDX(FOP_FDIV)] = vfp_single_fdiv,
1155 #define FREG_BANK(x) ((x) & 0x18)
1156 #define FREG_IDX(x) ((x) & 7)
1158 u32 vfp_single_cpdo(u32 inst, u32 fpscr)
1160 u32 op = inst & FOP_MASK;
1161 u32 exceptions = 0;
1162 unsigned int sd = vfp_get_sd(inst);
1163 unsigned int sn = vfp_get_sn(inst);
1164 unsigned int sm = vfp_get_sm(inst);
1165 unsigned int vecitr, veclen, vecstride;
1166 u32 (*fop)(int, int, s32, u32);
1168 veclen = fpscr & FPSCR_LENGTH_MASK;
1169 vecstride = 1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK);
1172 * If destination bank is zero, vector length is always '1'.
1173 * ARM DDI0100F C5.1.3, C5.3.2.
1175 if (FREG_BANK(sd) == 0)
1176 veclen = 0;
1178 pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride,
1179 (veclen >> FPSCR_LENGTH_BIT) + 1);
1181 fop = (op == FOP_EXT) ? fop_extfns[sn] : fop_fns[FOP_TO_IDX(op)];
1182 if (!fop)
1183 goto invalid;
1185 for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {
1186 s32 m = vfp_get_float(sm);
1187 u32 except;
1189 if (op == FOP_EXT)
1190 pr_debug("VFP: itr%d (s%u) = op[%u] (s%u=%08x)\n",
1191 vecitr >> FPSCR_LENGTH_BIT, sd, sn, sm, m);
1192 else
1193 pr_debug("VFP: itr%d (s%u) = (s%u) op[%u] (s%u=%08x)\n",
1194 vecitr >> FPSCR_LENGTH_BIT, sd, sn,
1195 FOP_TO_IDX(op), sm, m);
1197 except = fop(sd, sn, m, fpscr);
1198 pr_debug("VFP: itr%d: exceptions=%08x\n",
1199 vecitr >> FPSCR_LENGTH_BIT, except);
1201 exceptions |= except;
1204 * This ensures that comparisons only operate on scalars;
1205 * comparisons always return with one FPSCR status bit set.
1207 if (except & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
1208 break;
1211 * CHECK: It appears to be undefined whether we stop when
1212 * we encounter an exception. We continue.
1215 sd = FREG_BANK(sd) + ((FREG_IDX(sd) + vecstride) & 7);
1216 sn = FREG_BANK(sn) + ((FREG_IDX(sn) + vecstride) & 7);
1217 if (FREG_BANK(sm) != 0)
1218 sm = FREG_BANK(sm) + ((FREG_IDX(sm) + vecstride) & 7);
1220 return exceptions;
1222 invalid:
1223 return (u32)-1;