V4L/DVB (4744): The Samsung TCPN2121P30A does not have a tda9887
[linux-2.6/kvm.git] / drivers / char / epca.c
blobc3f95583a120ca1ca89ebd7d3d4259f024255df7
1 /*
4 Copyright (C) 1996 Digi International.
6 For technical support please email digiLinux@dgii.com or
7 call Digi tech support at (612) 912-3456
9 ** This driver is no longer supported by Digi **
11 Much of this design and code came from epca.c which was
12 copyright (C) 1994, 1995 Troy De Jongh, and subsquently
13 modified by David Nugent, Christoph Lameter, Mike McLagan.
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 2 of the License, or
18 (at your option) any later version.
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
29 --------------------------------------------------------------------------- */
30 /* See README.epca for change history --DAT*/
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/types.h>
36 #include <linux/init.h>
37 #include <linux/serial.h>
38 #include <linux/delay.h>
39 #include <linux/ctype.h>
40 #include <linux/tty.h>
41 #include <linux/tty_flip.h>
42 #include <linux/slab.h>
43 #include <linux/ioport.h>
44 #include <linux/interrupt.h>
45 #include <asm/uaccess.h>
46 #include <asm/io.h>
47 #include <linux/spinlock.h>
48 #include <linux/pci.h>
49 #include "digiPCI.h"
52 #include "digi1.h"
53 #include "digiFep1.h"
54 #include "epca.h"
55 #include "epcaconfig.h"
57 /* ---------------------- Begin defines ------------------------ */
59 #define VERSION "1.3.0.1-LK2.6"
61 /* This major needs to be submitted to Linux to join the majors list */
63 #define DIGIINFOMAJOR 35 /* For Digi specific ioctl */
66 #define MAXCARDS 7
67 #define epcaassert(x, msg) if (!(x)) epca_error(__LINE__, msg)
69 #define PFX "epca: "
71 /* ----------------- Begin global definitions ------------------- */
73 static int nbdevs, num_cards, liloconfig;
74 static int digi_poller_inhibited = 1 ;
76 static int setup_error_code;
77 static int invalid_lilo_config;
79 /* The ISA boards do window flipping into the same spaces so its only sane
80 with a single lock. It's still pretty efficient */
82 static DEFINE_SPINLOCK(epca_lock);
84 /* -----------------------------------------------------------------------
85 MAXBOARDS is typically 12, but ISA and EISA cards are restricted to
86 7 below.
87 --------------------------------------------------------------------------*/
88 static struct board_info boards[MAXBOARDS];
91 /* ------------- Begin structures used for driver registeration ---------- */
93 static struct tty_driver *pc_driver;
94 static struct tty_driver *pc_info;
96 /* ------------------ Begin Digi specific structures -------------------- */
98 /* ------------------------------------------------------------------------
99 digi_channels represents an array of structures that keep track of
100 each channel of the Digi product. Information such as transmit and
101 receive pointers, termio data, and signal definitions (DTR, CTS, etc ...)
102 are stored here. This structure is NOT used to overlay the cards
103 physical channel structure.
104 -------------------------------------------------------------------------- */
106 static struct channel digi_channels[MAX_ALLOC];
108 /* ------------------------------------------------------------------------
109 card_ptr is an array used to hold the address of the
110 first channel structure of each card. This array will hold
111 the addresses of various channels located in digi_channels.
112 -------------------------------------------------------------------------- */
113 static struct channel *card_ptr[MAXCARDS];
115 static struct timer_list epca_timer;
117 /* ---------------------- Begin function prototypes --------------------- */
119 /* ----------------------------------------------------------------------
120 Begin generic memory functions. These functions will be alias
121 (point at) more specific functions dependent on the board being
122 configured.
123 ----------------------------------------------------------------------- */
125 static void memwinon(struct board_info *b, unsigned int win);
126 static void memwinoff(struct board_info *b, unsigned int win);
127 static void globalwinon(struct channel *ch);
128 static void rxwinon(struct channel *ch);
129 static void txwinon(struct channel *ch);
130 static void memoff(struct channel *ch);
131 static void assertgwinon(struct channel *ch);
132 static void assertmemoff(struct channel *ch);
134 /* ---- Begin more 'specific' memory functions for cx_like products --- */
136 static void pcxem_memwinon(struct board_info *b, unsigned int win);
137 static void pcxem_memwinoff(struct board_info *b, unsigned int win);
138 static void pcxem_globalwinon(struct channel *ch);
139 static void pcxem_rxwinon(struct channel *ch);
140 static void pcxem_txwinon(struct channel *ch);
141 static void pcxem_memoff(struct channel *ch);
143 /* ------ Begin more 'specific' memory functions for the pcxe ------- */
145 static void pcxe_memwinon(struct board_info *b, unsigned int win);
146 static void pcxe_memwinoff(struct board_info *b, unsigned int win);
147 static void pcxe_globalwinon(struct channel *ch);
148 static void pcxe_rxwinon(struct channel *ch);
149 static void pcxe_txwinon(struct channel *ch);
150 static void pcxe_memoff(struct channel *ch);
152 /* ---- Begin more 'specific' memory functions for the pc64xe and pcxi ---- */
153 /* Note : pc64xe and pcxi share the same windowing routines */
155 static void pcxi_memwinon(struct board_info *b, unsigned int win);
156 static void pcxi_memwinoff(struct board_info *b, unsigned int win);
157 static void pcxi_globalwinon(struct channel *ch);
158 static void pcxi_rxwinon(struct channel *ch);
159 static void pcxi_txwinon(struct channel *ch);
160 static void pcxi_memoff(struct channel *ch);
162 /* - Begin 'specific' do nothing memory functions needed for some cards - */
164 static void dummy_memwinon(struct board_info *b, unsigned int win);
165 static void dummy_memwinoff(struct board_info *b, unsigned int win);
166 static void dummy_globalwinon(struct channel *ch);
167 static void dummy_rxwinon(struct channel *ch);
168 static void dummy_txwinon(struct channel *ch);
169 static void dummy_memoff(struct channel *ch);
170 static void dummy_assertgwinon(struct channel *ch);
171 static void dummy_assertmemoff(struct channel *ch);
173 /* ------------------- Begin declare functions ----------------------- */
175 static struct channel *verifyChannel(struct tty_struct *);
176 static void pc_sched_event(struct channel *, int);
177 static void epca_error(int, char *);
178 static void pc_close(struct tty_struct *, struct file *);
179 static void shutdown(struct channel *);
180 static void pc_hangup(struct tty_struct *);
181 static void pc_put_char(struct tty_struct *, unsigned char);
182 static int pc_write_room(struct tty_struct *);
183 static int pc_chars_in_buffer(struct tty_struct *);
184 static void pc_flush_buffer(struct tty_struct *);
185 static void pc_flush_chars(struct tty_struct *);
186 static int block_til_ready(struct tty_struct *, struct file *,
187 struct channel *);
188 static int pc_open(struct tty_struct *, struct file *);
189 static void post_fep_init(unsigned int crd);
190 static void epcapoll(unsigned long);
191 static void doevent(int);
192 static void fepcmd(struct channel *, int, int, int, int, int);
193 static unsigned termios2digi_h(struct channel *ch, unsigned);
194 static unsigned termios2digi_i(struct channel *ch, unsigned);
195 static unsigned termios2digi_c(struct channel *ch, unsigned);
196 static void epcaparam(struct tty_struct *, struct channel *);
197 static void receive_data(struct channel *);
198 static int pc_ioctl(struct tty_struct *, struct file *,
199 unsigned int, unsigned long);
200 static int info_ioctl(struct tty_struct *, struct file *,
201 unsigned int, unsigned long);
202 static void pc_set_termios(struct tty_struct *, struct termios *);
203 static void do_softint(void *);
204 static void pc_stop(struct tty_struct *);
205 static void pc_start(struct tty_struct *);
206 static void pc_throttle(struct tty_struct * tty);
207 static void pc_unthrottle(struct tty_struct *tty);
208 static void digi_send_break(struct channel *ch, int msec);
209 static void setup_empty_event(struct tty_struct *tty, struct channel *ch);
210 void epca_setup(char *, int *);
212 static int get_termio(struct tty_struct *, struct termio __user *);
213 static int pc_write(struct tty_struct *, const unsigned char *, int);
214 static int pc_init(void);
215 static int init_PCI(void);
218 /* ------------------------------------------------------------------
219 Table of functions for each board to handle memory. Mantaining
220 parallelism is a *very* good idea here. The idea is for the
221 runtime code to blindly call these functions, not knowing/caring
222 about the underlying hardware. This stuff should contain no
223 conditionals; if more functionality is needed a different entry
224 should be established. These calls are the interface calls and
225 are the only functions that should be accessed. Anyone caught
226 making direct calls deserves what they get.
227 -------------------------------------------------------------------- */
229 static void memwinon(struct board_info *b, unsigned int win)
231 (b->memwinon)(b, win);
234 static void memwinoff(struct board_info *b, unsigned int win)
236 (b->memwinoff)(b, win);
239 static void globalwinon(struct channel *ch)
241 (ch->board->globalwinon)(ch);
244 static void rxwinon(struct channel *ch)
246 (ch->board->rxwinon)(ch);
249 static void txwinon(struct channel *ch)
251 (ch->board->txwinon)(ch);
254 static void memoff(struct channel *ch)
256 (ch->board->memoff)(ch);
258 static void assertgwinon(struct channel *ch)
260 (ch->board->assertgwinon)(ch);
263 static void assertmemoff(struct channel *ch)
265 (ch->board->assertmemoff)(ch);
268 /* ---------------------------------------------------------
269 PCXEM windowing is the same as that used in the PCXR
270 and CX series cards.
271 ------------------------------------------------------------ */
273 static void pcxem_memwinon(struct board_info *b, unsigned int win)
275 outb_p(FEPWIN|win, b->port + 1);
278 static void pcxem_memwinoff(struct board_info *b, unsigned int win)
280 outb_p(0, b->port + 1);
283 static void pcxem_globalwinon(struct channel *ch)
285 outb_p( FEPWIN, (int)ch->board->port + 1);
288 static void pcxem_rxwinon(struct channel *ch)
290 outb_p(ch->rxwin, (int)ch->board->port + 1);
293 static void pcxem_txwinon(struct channel *ch)
295 outb_p(ch->txwin, (int)ch->board->port + 1);
298 static void pcxem_memoff(struct channel *ch)
300 outb_p(0, (int)ch->board->port + 1);
303 /* ----------------- Begin pcxe memory window stuff ------------------ */
305 static void pcxe_memwinon(struct board_info *b, unsigned int win)
307 outb_p(FEPWIN | win, b->port + 1);
310 static void pcxe_memwinoff(struct board_info *b, unsigned int win)
312 outb_p(inb(b->port) & ~FEPMEM,
313 b->port + 1);
314 outb_p(0, b->port + 1);
317 static void pcxe_globalwinon(struct channel *ch)
319 outb_p( FEPWIN, (int)ch->board->port + 1);
322 static void pcxe_rxwinon(struct channel *ch)
324 outb_p(ch->rxwin, (int)ch->board->port + 1);
327 static void pcxe_txwinon(struct channel *ch)
329 outb_p(ch->txwin, (int)ch->board->port + 1);
332 static void pcxe_memoff(struct channel *ch)
334 outb_p(0, (int)ch->board->port);
335 outb_p(0, (int)ch->board->port + 1);
338 /* ------------- Begin pc64xe and pcxi memory window stuff -------------- */
340 static void pcxi_memwinon(struct board_info *b, unsigned int win)
342 outb_p(inb(b->port) | FEPMEM, b->port);
345 static void pcxi_memwinoff(struct board_info *b, unsigned int win)
347 outb_p(inb(b->port) & ~FEPMEM, b->port);
350 static void pcxi_globalwinon(struct channel *ch)
352 outb_p(FEPMEM, ch->board->port);
355 static void pcxi_rxwinon(struct channel *ch)
357 outb_p(FEPMEM, ch->board->port);
360 static void pcxi_txwinon(struct channel *ch)
362 outb_p(FEPMEM, ch->board->port);
365 static void pcxi_memoff(struct channel *ch)
367 outb_p(0, ch->board->port);
370 static void pcxi_assertgwinon(struct channel *ch)
372 epcaassert(inb(ch->board->port) & FEPMEM, "Global memory off");
375 static void pcxi_assertmemoff(struct channel *ch)
377 epcaassert(!(inb(ch->board->port) & FEPMEM), "Memory on");
381 /* ----------------------------------------------------------------------
382 Not all of the cards need specific memory windowing routines. Some
383 cards (Such as PCI) needs no windowing routines at all. We provide
384 these do nothing routines so that the same code base can be used.
385 The driver will ALWAYS call a windowing routine if it thinks it needs
386 to; regardless of the card. However, dependent on the card the routine
387 may or may not do anything.
388 ---------------------------------------------------------------------------*/
390 static void dummy_memwinon(struct board_info *b, unsigned int win)
394 static void dummy_memwinoff(struct board_info *b, unsigned int win)
398 static void dummy_globalwinon(struct channel *ch)
402 static void dummy_rxwinon(struct channel *ch)
406 static void dummy_txwinon(struct channel *ch)
410 static void dummy_memoff(struct channel *ch)
414 static void dummy_assertgwinon(struct channel *ch)
418 static void dummy_assertmemoff(struct channel *ch)
422 /* ----------------- Begin verifyChannel function ----------------------- */
423 static struct channel *verifyChannel(struct tty_struct *tty)
424 { /* Begin verifyChannel */
425 /* --------------------------------------------------------------------
426 This routine basically provides a sanity check. It insures that
427 the channel returned is within the proper range of addresses as
428 well as properly initialized. If some bogus info gets passed in
429 through tty->driver_data this should catch it.
430 --------------------------------------------------------------------- */
431 if (tty) {
432 struct channel *ch = (struct channel *)tty->driver_data;
433 if ((ch >= &digi_channels[0]) && (ch < &digi_channels[nbdevs])) {
434 if (ch->magic == EPCA_MAGIC)
435 return ch;
438 return NULL;
440 } /* End verifyChannel */
442 /* ------------------ Begin pc_sched_event ------------------------- */
444 static void pc_sched_event(struct channel *ch, int event)
446 /* ----------------------------------------------------------------------
447 We call this to schedule interrupt processing on some event. The
448 kernel sees our request and calls the related routine in OUR driver.
449 -------------------------------------------------------------------------*/
450 ch->event |= 1 << event;
451 schedule_work(&ch->tqueue);
452 } /* End pc_sched_event */
454 /* ------------------ Begin epca_error ------------------------- */
456 static void epca_error(int line, char *msg)
458 printk(KERN_ERR "epca_error (Digi): line = %d %s\n",line,msg);
461 /* ------------------ Begin pc_close ------------------------- */
462 static void pc_close(struct tty_struct * tty, struct file * filp)
464 struct channel *ch;
465 unsigned long flags;
466 /* ---------------------------------------------------------
467 verifyChannel returns the channel from the tty struct
468 if it is valid. This serves as a sanity check.
469 ------------------------------------------------------------- */
470 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if ch != NULL */
471 spin_lock_irqsave(&epca_lock, flags);
472 if (tty_hung_up_p(filp)) {
473 spin_unlock_irqrestore(&epca_lock, flags);
474 return;
476 /* Check to see if the channel is open more than once */
477 if (ch->count-- > 1) {
478 /* Begin channel is open more than once */
479 /* -------------------------------------------------------------
480 Return without doing anything. Someone might still be using
481 the channel.
482 ---------------------------------------------------------------- */
483 spin_unlock_irqrestore(&epca_lock, flags);
484 return;
485 } /* End channel is open more than once */
487 /* Port open only once go ahead with shutdown & reset */
488 BUG_ON(ch->count < 0);
490 /* ---------------------------------------------------------------
491 Let the rest of the driver know the channel is being closed.
492 This becomes important if an open is attempted before close
493 is finished.
494 ------------------------------------------------------------------ */
495 ch->asyncflags |= ASYNC_CLOSING;
496 tty->closing = 1;
498 spin_unlock_irqrestore(&epca_lock, flags);
500 if (ch->asyncflags & ASYNC_INITIALIZED) {
501 /* Setup an event to indicate when the transmit buffer empties */
502 setup_empty_event(tty, ch);
503 tty_wait_until_sent(tty, 3000); /* 30 seconds timeout */
505 if (tty->driver->flush_buffer)
506 tty->driver->flush_buffer(tty);
508 tty_ldisc_flush(tty);
509 shutdown(ch);
511 spin_lock_irqsave(&epca_lock, flags);
512 tty->closing = 0;
513 ch->event = 0;
514 ch->tty = NULL;
515 spin_unlock_irqrestore(&epca_lock, flags);
517 if (ch->blocked_open) { /* Begin if blocked_open */
518 if (ch->close_delay)
519 msleep_interruptible(jiffies_to_msecs(ch->close_delay));
520 wake_up_interruptible(&ch->open_wait);
521 } /* End if blocked_open */
522 ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED |
523 ASYNC_CLOSING);
524 wake_up_interruptible(&ch->close_wait);
525 } /* End if ch != NULL */
526 } /* End pc_close */
528 /* ------------------ Begin shutdown ------------------------- */
530 static void shutdown(struct channel *ch)
531 { /* Begin shutdown */
533 unsigned long flags;
534 struct tty_struct *tty;
535 struct board_chan __iomem *bc;
537 if (!(ch->asyncflags & ASYNC_INITIALIZED))
538 return;
540 spin_lock_irqsave(&epca_lock, flags);
542 globalwinon(ch);
543 bc = ch->brdchan;
545 /* ------------------------------------------------------------------
546 In order for an event to be generated on the receipt of data the
547 idata flag must be set. Since we are shutting down, this is not
548 necessary clear this flag.
549 --------------------------------------------------------------------- */
551 if (bc)
552 writeb(0, &bc->idata);
553 tty = ch->tty;
555 /* ----------------------------------------------------------------
556 If we're a modem control device and HUPCL is on, drop RTS & DTR.
557 ------------------------------------------------------------------ */
559 if (tty->termios->c_cflag & HUPCL) {
560 ch->omodem &= ~(ch->m_rts | ch->m_dtr);
561 fepcmd(ch, SETMODEM, 0, ch->m_dtr | ch->m_rts, 10, 1);
563 memoff(ch);
565 /* ------------------------------------------------------------------
566 The channel has officialy been closed. The next time it is opened
567 it will have to reinitialized. Set a flag to indicate this.
568 ---------------------------------------------------------------------- */
570 /* Prevent future Digi programmed interrupts from coming active */
572 ch->asyncflags &= ~ASYNC_INITIALIZED;
573 spin_unlock_irqrestore(&epca_lock, flags);
575 } /* End shutdown */
577 /* ------------------ Begin pc_hangup ------------------------- */
579 static void pc_hangup(struct tty_struct *tty)
580 { /* Begin pc_hangup */
581 struct channel *ch;
583 /* ---------------------------------------------------------
584 verifyChannel returns the channel from the tty struct
585 if it is valid. This serves as a sanity check.
586 ------------------------------------------------------------- */
588 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if ch != NULL */
589 unsigned long flags;
591 if (tty->driver->flush_buffer)
592 tty->driver->flush_buffer(tty);
593 tty_ldisc_flush(tty);
594 shutdown(ch);
596 spin_lock_irqsave(&epca_lock, flags);
597 ch->tty = NULL;
598 ch->event = 0;
599 ch->count = 0;
600 ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED);
601 spin_unlock_irqrestore(&epca_lock, flags);
602 wake_up_interruptible(&ch->open_wait);
603 } /* End if ch != NULL */
605 } /* End pc_hangup */
607 /* ------------------ Begin pc_write ------------------------- */
609 static int pc_write(struct tty_struct * tty,
610 const unsigned char *buf, int bytesAvailable)
611 { /* Begin pc_write */
612 unsigned int head, tail;
613 int dataLen;
614 int size;
615 int amountCopied;
616 struct channel *ch;
617 unsigned long flags;
618 int remain;
619 struct board_chan __iomem *bc;
621 /* ----------------------------------------------------------------
622 pc_write is primarily called directly by the kernel routine
623 tty_write (Though it can also be called by put_char) found in
624 tty_io.c. pc_write is passed a line discipline buffer where
625 the data to be written out is stored. The line discipline
626 implementation itself is done at the kernel level and is not
627 brought into the driver.
628 ------------------------------------------------------------------- */
630 /* ---------------------------------------------------------
631 verifyChannel returns the channel from the tty struct
632 if it is valid. This serves as a sanity check.
633 ------------------------------------------------------------- */
635 if ((ch = verifyChannel(tty)) == NULL)
636 return 0;
638 /* Make a pointer to the channel data structure found on the board. */
640 bc = ch->brdchan;
641 size = ch->txbufsize;
642 amountCopied = 0;
644 spin_lock_irqsave(&epca_lock, flags);
645 globalwinon(ch);
647 head = readw(&bc->tin) & (size - 1);
648 tail = readw(&bc->tout);
650 if (tail != readw(&bc->tout))
651 tail = readw(&bc->tout);
652 tail &= (size - 1);
654 /* If head >= tail, head has not wrapped around. */
655 if (head >= tail) { /* Begin head has not wrapped */
656 /* ---------------------------------------------------------------
657 remain (much like dataLen above) represents the total amount of
658 space available on the card for data. Here dataLen represents
659 the space existing between the head pointer and the end of
660 buffer. This is important because a memcpy cannot be told to
661 automatically wrap around when it hits the buffer end.
662 ------------------------------------------------------------------ */
663 dataLen = size - head;
664 remain = size - (head - tail) - 1;
665 } else { /* Begin head has wrapped around */
667 remain = tail - head - 1;
668 dataLen = remain;
670 } /* End head has wrapped around */
671 /* -------------------------------------------------------------------
672 Check the space on the card. If we have more data than
673 space; reduce the amount of data to fit the space.
674 ---------------------------------------------------------------------- */
675 bytesAvailable = min(remain, bytesAvailable);
676 txwinon(ch);
677 while (bytesAvailable > 0)
678 { /* Begin while there is data to copy onto card */
680 /* -----------------------------------------------------------------
681 If head is not wrapped, the below will make sure the first
682 data copy fills to the end of card buffer.
683 ------------------------------------------------------------------- */
685 dataLen = min(bytesAvailable, dataLen);
686 memcpy_toio(ch->txptr + head, buf, dataLen);
687 buf += dataLen;
688 head += dataLen;
689 amountCopied += dataLen;
690 bytesAvailable -= dataLen;
692 if (head >= size) {
693 head = 0;
694 dataLen = tail;
696 } /* End while there is data to copy onto card */
697 ch->statusflags |= TXBUSY;
698 globalwinon(ch);
699 writew(head, &bc->tin);
701 if ((ch->statusflags & LOWWAIT) == 0) {
702 ch->statusflags |= LOWWAIT;
703 writeb(1, &bc->ilow);
705 memoff(ch);
706 spin_unlock_irqrestore(&epca_lock, flags);
707 return(amountCopied);
709 } /* End pc_write */
711 /* ------------------ Begin pc_put_char ------------------------- */
713 static void pc_put_char(struct tty_struct *tty, unsigned char c)
714 { /* Begin pc_put_char */
715 pc_write(tty, &c, 1);
716 } /* End pc_put_char */
718 /* ------------------ Begin pc_write_room ------------------------- */
720 static int pc_write_room(struct tty_struct *tty)
721 { /* Begin pc_write_room */
723 int remain;
724 struct channel *ch;
725 unsigned long flags;
726 unsigned int head, tail;
727 struct board_chan __iomem *bc;
729 remain = 0;
731 /* ---------------------------------------------------------
732 verifyChannel returns the channel from the tty struct
733 if it is valid. This serves as a sanity check.
734 ------------------------------------------------------------- */
736 if ((ch = verifyChannel(tty)) != NULL) {
737 spin_lock_irqsave(&epca_lock, flags);
738 globalwinon(ch);
740 bc = ch->brdchan;
741 head = readw(&bc->tin) & (ch->txbufsize - 1);
742 tail = readw(&bc->tout);
744 if (tail != readw(&bc->tout))
745 tail = readw(&bc->tout);
746 /* Wrap tail if necessary */
747 tail &= (ch->txbufsize - 1);
749 if ((remain = tail - head - 1) < 0 )
750 remain += ch->txbufsize;
752 if (remain && (ch->statusflags & LOWWAIT) == 0) {
753 ch->statusflags |= LOWWAIT;
754 writeb(1, &bc->ilow);
756 memoff(ch);
757 spin_unlock_irqrestore(&epca_lock, flags);
759 /* Return how much room is left on card */
760 return remain;
762 } /* End pc_write_room */
764 /* ------------------ Begin pc_chars_in_buffer ---------------------- */
766 static int pc_chars_in_buffer(struct tty_struct *tty)
767 { /* Begin pc_chars_in_buffer */
769 int chars;
770 unsigned int ctail, head, tail;
771 int remain;
772 unsigned long flags;
773 struct channel *ch;
774 struct board_chan __iomem *bc;
776 /* ---------------------------------------------------------
777 verifyChannel returns the channel from the tty struct
778 if it is valid. This serves as a sanity check.
779 ------------------------------------------------------------- */
781 if ((ch = verifyChannel(tty)) == NULL)
782 return(0);
784 spin_lock_irqsave(&epca_lock, flags);
785 globalwinon(ch);
787 bc = ch->brdchan;
788 tail = readw(&bc->tout);
789 head = readw(&bc->tin);
790 ctail = readw(&ch->mailbox->cout);
792 if (tail == head && readw(&ch->mailbox->cin) == ctail && readb(&bc->tbusy) == 0)
793 chars = 0;
794 else { /* Begin if some space on the card has been used */
795 head = readw(&bc->tin) & (ch->txbufsize - 1);
796 tail &= (ch->txbufsize - 1);
797 /* --------------------------------------------------------------
798 The logic here is basically opposite of the above pc_write_room
799 here we are finding the amount of bytes in the buffer filled.
800 Not the amount of bytes empty.
801 ------------------------------------------------------------------- */
802 if ((remain = tail - head - 1) < 0 )
803 remain += ch->txbufsize;
804 chars = (int)(ch->txbufsize - remain);
805 /* -------------------------------------------------------------
806 Make it possible to wakeup anything waiting for output
807 in tty_ioctl.c, etc.
809 If not already set. Setup an event to indicate when the
810 transmit buffer empties
811 ----------------------------------------------------------------- */
812 if (!(ch->statusflags & EMPTYWAIT))
813 setup_empty_event(tty,ch);
815 } /* End if some space on the card has been used */
816 memoff(ch);
817 spin_unlock_irqrestore(&epca_lock, flags);
818 /* Return number of characters residing on card. */
819 return(chars);
821 } /* End pc_chars_in_buffer */
823 /* ------------------ Begin pc_flush_buffer ---------------------- */
825 static void pc_flush_buffer(struct tty_struct *tty)
826 { /* Begin pc_flush_buffer */
828 unsigned int tail;
829 unsigned long flags;
830 struct channel *ch;
831 struct board_chan __iomem *bc;
832 /* ---------------------------------------------------------
833 verifyChannel returns the channel from the tty struct
834 if it is valid. This serves as a sanity check.
835 ------------------------------------------------------------- */
836 if ((ch = verifyChannel(tty)) == NULL)
837 return;
839 spin_lock_irqsave(&epca_lock, flags);
840 globalwinon(ch);
841 bc = ch->brdchan;
842 tail = readw(&bc->tout);
843 /* Have FEP move tout pointer; effectively flushing transmit buffer */
844 fepcmd(ch, STOUT, (unsigned) tail, 0, 0, 0);
845 memoff(ch);
846 spin_unlock_irqrestore(&epca_lock, flags);
847 wake_up_interruptible(&tty->write_wait);
848 tty_wakeup(tty);
849 } /* End pc_flush_buffer */
851 /* ------------------ Begin pc_flush_chars ---------------------- */
853 static void pc_flush_chars(struct tty_struct *tty)
854 { /* Begin pc_flush_chars */
855 struct channel * ch;
856 /* ---------------------------------------------------------
857 verifyChannel returns the channel from the tty struct
858 if it is valid. This serves as a sanity check.
859 ------------------------------------------------------------- */
860 if ((ch = verifyChannel(tty)) != NULL) {
861 unsigned long flags;
862 spin_lock_irqsave(&epca_lock, flags);
863 /* ----------------------------------------------------------------
864 If not already set and the transmitter is busy setup an event
865 to indicate when the transmit empties.
866 ------------------------------------------------------------------- */
867 if ((ch->statusflags & TXBUSY) && !(ch->statusflags & EMPTYWAIT))
868 setup_empty_event(tty,ch);
869 spin_unlock_irqrestore(&epca_lock, flags);
871 } /* End pc_flush_chars */
873 /* ------------------ Begin block_til_ready ---------------------- */
875 static int block_til_ready(struct tty_struct *tty,
876 struct file *filp, struct channel *ch)
877 { /* Begin block_til_ready */
878 DECLARE_WAITQUEUE(wait,current);
879 int retval, do_clocal = 0;
880 unsigned long flags;
882 if (tty_hung_up_p(filp)) {
883 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
884 retval = -EAGAIN;
885 else
886 retval = -ERESTARTSYS;
887 return(retval);
890 /* -----------------------------------------------------------------
891 If the device is in the middle of being closed, then block
892 until it's done, and then try again.
893 -------------------------------------------------------------------- */
894 if (ch->asyncflags & ASYNC_CLOSING) {
895 interruptible_sleep_on(&ch->close_wait);
897 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
898 return -EAGAIN;
899 else
900 return -ERESTARTSYS;
903 if (filp->f_flags & O_NONBLOCK) {
904 /* -----------------------------------------------------------------
905 If non-blocking mode is set, then make the check up front
906 and then exit.
907 -------------------------------------------------------------------- */
908 ch->asyncflags |= ASYNC_NORMAL_ACTIVE;
909 return 0;
911 if (tty->termios->c_cflag & CLOCAL)
912 do_clocal = 1;
913 /* Block waiting for the carrier detect and the line to become free */
915 retval = 0;
916 add_wait_queue(&ch->open_wait, &wait);
918 spin_lock_irqsave(&epca_lock, flags);
919 /* We dec count so that pc_close will know when to free things */
920 if (!tty_hung_up_p(filp))
921 ch->count--;
922 ch->blocked_open++;
923 while(1)
924 { /* Begin forever while */
925 set_current_state(TASK_INTERRUPTIBLE);
926 if (tty_hung_up_p(filp) ||
927 !(ch->asyncflags & ASYNC_INITIALIZED))
929 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
930 retval = -EAGAIN;
931 else
932 retval = -ERESTARTSYS;
933 break;
935 if (!(ch->asyncflags & ASYNC_CLOSING) &&
936 (do_clocal || (ch->imodem & ch->dcd)))
937 break;
938 if (signal_pending(current)) {
939 retval = -ERESTARTSYS;
940 break;
942 spin_unlock_irqrestore(&epca_lock, flags);
943 /* ---------------------------------------------------------------
944 Allow someone else to be scheduled. We will occasionally go
945 through this loop until one of the above conditions change.
946 The below schedule call will allow other processes to enter and
947 prevent this loop from hogging the cpu.
948 ------------------------------------------------------------------ */
949 schedule();
950 spin_lock_irqsave(&epca_lock, flags);
952 } /* End forever while */
954 current->state = TASK_RUNNING;
955 remove_wait_queue(&ch->open_wait, &wait);
956 if (!tty_hung_up_p(filp))
957 ch->count++;
958 ch->blocked_open--;
960 spin_unlock_irqrestore(&epca_lock, flags);
962 if (retval)
963 return retval;
965 ch->asyncflags |= ASYNC_NORMAL_ACTIVE;
966 return 0;
967 } /* End block_til_ready */
969 /* ------------------ Begin pc_open ---------------------- */
971 static int pc_open(struct tty_struct *tty, struct file * filp)
972 { /* Begin pc_open */
974 struct channel *ch;
975 unsigned long flags;
976 int line, retval, boardnum;
977 struct board_chan __iomem *bc;
978 unsigned int head;
980 line = tty->index;
981 if (line < 0 || line >= nbdevs)
982 return -ENODEV;
984 ch = &digi_channels[line];
985 boardnum = ch->boardnum;
987 /* Check status of board configured in system. */
989 /* -----------------------------------------------------------------
990 I check to see if the epca_setup routine detected an user error.
991 It might be better to put this in pc_init, but for the moment it
992 goes here.
993 ---------------------------------------------------------------------- */
995 if (invalid_lilo_config) {
996 if (setup_error_code & INVALID_BOARD_TYPE)
997 printk(KERN_ERR "epca: pc_open: Invalid board type specified in kernel options.\n");
998 if (setup_error_code & INVALID_NUM_PORTS)
999 printk(KERN_ERR "epca: pc_open: Invalid number of ports specified in kernel options.\n");
1000 if (setup_error_code & INVALID_MEM_BASE)
1001 printk(KERN_ERR "epca: pc_open: Invalid board memory address specified in kernel options.\n");
1002 if (setup_error_code & INVALID_PORT_BASE)
1003 printk(KERN_ERR "epca; pc_open: Invalid board port address specified in kernel options.\n");
1004 if (setup_error_code & INVALID_BOARD_STATUS)
1005 printk(KERN_ERR "epca: pc_open: Invalid board status specified in kernel options.\n");
1006 if (setup_error_code & INVALID_ALTPIN)
1007 printk(KERN_ERR "epca: pc_open: Invalid board altpin specified in kernel options;\n");
1008 tty->driver_data = NULL; /* Mark this device as 'down' */
1009 return -ENODEV;
1011 if (boardnum >= num_cards || boards[boardnum].status == DISABLED) {
1012 tty->driver_data = NULL; /* Mark this device as 'down' */
1013 return(-ENODEV);
1016 if ((bc = ch->brdchan) == 0) {
1017 tty->driver_data = NULL;
1018 return -ENODEV;
1021 spin_lock_irqsave(&epca_lock, flags);
1022 /* ------------------------------------------------------------------
1023 Every time a channel is opened, increment a counter. This is
1024 necessary because we do not wish to flush and shutdown the channel
1025 until the last app holding the channel open, closes it.
1026 --------------------------------------------------------------------- */
1027 ch->count++;
1028 /* ----------------------------------------------------------------
1029 Set a kernel structures pointer to our local channel
1030 structure. This way we can get to it when passed only
1031 a tty struct.
1032 ------------------------------------------------------------------ */
1033 tty->driver_data = ch;
1034 /* ----------------------------------------------------------------
1035 If this is the first time the channel has been opened, initialize
1036 the tty->termios struct otherwise let pc_close handle it.
1037 -------------------------------------------------------------------- */
1038 globalwinon(ch);
1039 ch->statusflags = 0;
1041 /* Save boards current modem status */
1042 ch->imodem = readb(&bc->mstat);
1044 /* ----------------------------------------------------------------
1045 Set receive head and tail ptrs to each other. This indicates
1046 no data available to read.
1047 ----------------------------------------------------------------- */
1048 head = readw(&bc->rin);
1049 writew(head, &bc->rout);
1051 /* Set the channels associated tty structure */
1052 ch->tty = tty;
1054 /* -----------------------------------------------------------------
1055 The below routine generally sets up parity, baud, flow control
1056 issues, etc.... It effect both control flags and input flags.
1057 -------------------------------------------------------------------- */
1058 epcaparam(tty,ch);
1059 ch->asyncflags |= ASYNC_INITIALIZED;
1060 memoff(ch);
1061 spin_unlock_irqrestore(&epca_lock, flags);
1063 retval = block_til_ready(tty, filp, ch);
1064 if (retval)
1065 return retval;
1066 /* -------------------------------------------------------------
1067 Set this again in case a hangup set it to zero while this
1068 open() was waiting for the line...
1069 --------------------------------------------------------------- */
1070 spin_lock_irqsave(&epca_lock, flags);
1071 ch->tty = tty;
1072 globalwinon(ch);
1073 /* Enable Digi Data events */
1074 writeb(1, &bc->idata);
1075 memoff(ch);
1076 spin_unlock_irqrestore(&epca_lock, flags);
1077 return 0;
1078 } /* End pc_open */
1080 static int __init epca_module_init(void)
1081 { /* Begin init_module */
1082 return pc_init();
1085 module_init(epca_module_init);
1087 static struct pci_driver epca_driver;
1089 static void __exit epca_module_exit(void)
1091 int count, crd;
1092 struct board_info *bd;
1093 struct channel *ch;
1095 del_timer_sync(&epca_timer);
1097 if ((tty_unregister_driver(pc_driver)) ||
1098 (tty_unregister_driver(pc_info)))
1100 printk(KERN_WARNING "epca: cleanup_module failed to un-register tty driver\n");
1101 return;
1103 put_tty_driver(pc_driver);
1104 put_tty_driver(pc_info);
1106 for (crd = 0; crd < num_cards; crd++) { /* Begin for each card */
1107 bd = &boards[crd];
1108 if (!bd)
1109 { /* Begin sanity check */
1110 printk(KERN_ERR "<Error> - Digi : cleanup_module failed\n");
1111 return;
1112 } /* End sanity check */
1113 ch = card_ptr[crd];
1114 for (count = 0; count < bd->numports; count++, ch++)
1115 { /* Begin for each port */
1116 if (ch && ch->tty)
1117 tty_hangup(ch->tty);
1118 } /* End for each port */
1119 } /* End for each card */
1120 pci_unregister_driver (&epca_driver);
1123 module_exit(epca_module_exit);
1125 static const struct tty_operations pc_ops = {
1126 .open = pc_open,
1127 .close = pc_close,
1128 .write = pc_write,
1129 .write_room = pc_write_room,
1130 .flush_buffer = pc_flush_buffer,
1131 .chars_in_buffer = pc_chars_in_buffer,
1132 .flush_chars = pc_flush_chars,
1133 .put_char = pc_put_char,
1134 .ioctl = pc_ioctl,
1135 .set_termios = pc_set_termios,
1136 .stop = pc_stop,
1137 .start = pc_start,
1138 .throttle = pc_throttle,
1139 .unthrottle = pc_unthrottle,
1140 .hangup = pc_hangup,
1143 static int info_open(struct tty_struct *tty, struct file * filp)
1145 return 0;
1148 static struct tty_operations info_ops = {
1149 .open = info_open,
1150 .ioctl = info_ioctl,
1153 /* ------------------ Begin pc_init ---------------------- */
1155 static int __init pc_init(void)
1156 { /* Begin pc_init */
1157 int crd;
1158 struct board_info *bd;
1159 unsigned char board_id = 0;
1161 int pci_boards_found, pci_count;
1163 pci_count = 0;
1165 pc_driver = alloc_tty_driver(MAX_ALLOC);
1166 if (!pc_driver)
1167 return -ENOMEM;
1169 pc_info = alloc_tty_driver(MAX_ALLOC);
1170 if (!pc_info) {
1171 put_tty_driver(pc_driver);
1172 return -ENOMEM;
1175 /* -----------------------------------------------------------------------
1176 If epca_setup has not been ran by LILO set num_cards to defaults; copy
1177 board structure defined by digiConfig into drivers board structure.
1178 Note : If LILO has ran epca_setup then epca_setup will handle defining
1179 num_cards as well as copying the data into the board structure.
1180 -------------------------------------------------------------------------- */
1181 if (!liloconfig) { /* Begin driver has been configured via. epcaconfig */
1183 nbdevs = NBDEVS;
1184 num_cards = NUMCARDS;
1185 memcpy((void *)&boards, (void *)&static_boards,
1186 (sizeof(struct board_info) * NUMCARDS));
1187 } /* End driver has been configured via. epcaconfig */
1189 /* -----------------------------------------------------------------
1190 Note : If lilo was used to configure the driver and the
1191 ignore epcaconfig option was choosen (digiepca=2) then
1192 nbdevs and num_cards will equal 0 at this point. This is
1193 okay; PCI cards will still be picked up if detected.
1194 --------------------------------------------------------------------- */
1196 /* -----------------------------------------------------------
1197 Set up interrupt, we will worry about memory allocation in
1198 post_fep_init.
1199 --------------------------------------------------------------- */
1202 printk(KERN_INFO "DIGI epca driver version %s loaded.\n",VERSION);
1204 /* ------------------------------------------------------------------
1205 NOTE : This code assumes that the number of ports found in
1206 the boards array is correct. This could be wrong if
1207 the card in question is PCI (And therefore has no ports
1208 entry in the boards structure.) The rest of the
1209 information will be valid for PCI because the beginning
1210 of pc_init scans for PCI and determines i/o and base
1211 memory addresses. I am not sure if it is possible to
1212 read the number of ports supported by the card prior to
1213 it being booted (Since that is the state it is in when
1214 pc_init is run). Because it is not possible to query the
1215 number of supported ports until after the card has booted;
1216 we are required to calculate the card_ptrs as the card is
1217 is initialized (Inside post_fep_init). The negative thing
1218 about this approach is that digiDload's call to GET_INFO
1219 will have a bad port value. (Since this is called prior
1220 to post_fep_init.)
1222 --------------------------------------------------------------------- */
1224 pci_boards_found = 0;
1225 if(num_cards < MAXBOARDS)
1226 pci_boards_found += init_PCI();
1227 num_cards += pci_boards_found;
1229 pc_driver->owner = THIS_MODULE;
1230 pc_driver->name = "ttyD";
1231 pc_driver->major = DIGI_MAJOR;
1232 pc_driver->minor_start = 0;
1233 pc_driver->type = TTY_DRIVER_TYPE_SERIAL;
1234 pc_driver->subtype = SERIAL_TYPE_NORMAL;
1235 pc_driver->init_termios = tty_std_termios;
1236 pc_driver->init_termios.c_iflag = 0;
1237 pc_driver->init_termios.c_oflag = 0;
1238 pc_driver->init_termios.c_cflag = B9600 | CS8 | CREAD | CLOCAL | HUPCL;
1239 pc_driver->init_termios.c_lflag = 0;
1240 pc_driver->flags = TTY_DRIVER_REAL_RAW;
1241 tty_set_operations(pc_driver, &pc_ops);
1243 pc_info->owner = THIS_MODULE;
1244 pc_info->name = "digi_ctl";
1245 pc_info->major = DIGIINFOMAJOR;
1246 pc_info->minor_start = 0;
1247 pc_info->type = TTY_DRIVER_TYPE_SERIAL;
1248 pc_info->subtype = SERIAL_TYPE_INFO;
1249 pc_info->init_termios = tty_std_termios;
1250 pc_info->init_termios.c_iflag = 0;
1251 pc_info->init_termios.c_oflag = 0;
1252 pc_info->init_termios.c_lflag = 0;
1253 pc_info->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL;
1254 pc_info->flags = TTY_DRIVER_REAL_RAW;
1255 tty_set_operations(pc_info, &info_ops);
1258 for (crd = 0; crd < num_cards; crd++)
1259 { /* Begin for each card */
1261 /* ------------------------------------------------------------------
1262 This is where the appropriate memory handlers for the hardware is
1263 set. Everything at runtime blindly jumps through these vectors.
1264 ---------------------------------------------------------------------- */
1266 /* defined in epcaconfig.h */
1267 bd = &boards[crd];
1269 switch (bd->type)
1270 { /* Begin switch on bd->type {board type} */
1271 case PCXEM:
1272 case EISAXEM:
1273 bd->memwinon = pcxem_memwinon ;
1274 bd->memwinoff = pcxem_memwinoff ;
1275 bd->globalwinon = pcxem_globalwinon ;
1276 bd->txwinon = pcxem_txwinon ;
1277 bd->rxwinon = pcxem_rxwinon ;
1278 bd->memoff = pcxem_memoff ;
1279 bd->assertgwinon = dummy_assertgwinon;
1280 bd->assertmemoff = dummy_assertmemoff;
1281 break;
1283 case PCIXEM:
1284 case PCIXRJ:
1285 case PCIXR:
1286 bd->memwinon = dummy_memwinon;
1287 bd->memwinoff = dummy_memwinoff;
1288 bd->globalwinon = dummy_globalwinon;
1289 bd->txwinon = dummy_txwinon;
1290 bd->rxwinon = dummy_rxwinon;
1291 bd->memoff = dummy_memoff;
1292 bd->assertgwinon = dummy_assertgwinon;
1293 bd->assertmemoff = dummy_assertmemoff;
1294 break;
1296 case PCXE:
1297 case PCXEVE:
1299 bd->memwinon = pcxe_memwinon;
1300 bd->memwinoff = pcxe_memwinoff;
1301 bd->globalwinon = pcxe_globalwinon;
1302 bd->txwinon = pcxe_txwinon;
1303 bd->rxwinon = pcxe_rxwinon;
1304 bd->memoff = pcxe_memoff;
1305 bd->assertgwinon = dummy_assertgwinon;
1306 bd->assertmemoff = dummy_assertmemoff;
1307 break;
1309 case PCXI:
1310 case PC64XE:
1312 bd->memwinon = pcxi_memwinon;
1313 bd->memwinoff = pcxi_memwinoff;
1314 bd->globalwinon = pcxi_globalwinon;
1315 bd->txwinon = pcxi_txwinon;
1316 bd->rxwinon = pcxi_rxwinon;
1317 bd->memoff = pcxi_memoff;
1318 bd->assertgwinon = pcxi_assertgwinon;
1319 bd->assertmemoff = pcxi_assertmemoff;
1320 break;
1322 default:
1323 break;
1325 } /* End switch on bd->type */
1327 /* ---------------------------------------------------------------
1328 Some cards need a memory segment to be defined for use in
1329 transmit and receive windowing operations. These boards
1330 are listed in the below switch. In the case of the XI the
1331 amount of memory on the board is variable so the memory_seg
1332 is also variable. This code determines what they segment
1333 should be.
1334 ----------------------------------------------------------------- */
1336 switch (bd->type)
1337 { /* Begin switch on bd->type {board type} */
1339 case PCXE:
1340 case PCXEVE:
1341 case PC64XE:
1342 bd->memory_seg = 0xf000;
1343 break;
1345 case PCXI:
1346 board_id = inb((int)bd->port);
1347 if ((board_id & 0x1) == 0x1)
1348 { /* Begin it's an XI card */
1350 /* Is it a 64K board */
1351 if ((board_id & 0x30) == 0)
1352 bd->memory_seg = 0xf000;
1354 /* Is it a 128K board */
1355 if ((board_id & 0x30) == 0x10)
1356 bd->memory_seg = 0xe000;
1358 /* Is is a 256K board */
1359 if ((board_id & 0x30) == 0x20)
1360 bd->memory_seg = 0xc000;
1362 /* Is it a 512K board */
1363 if ((board_id & 0x30) == 0x30)
1364 bd->memory_seg = 0x8000;
1366 } else printk(KERN_ERR "epca: Board at 0x%x doesn't appear to be an XI\n",(int)bd->port);
1367 break;
1369 } /* End switch on bd->type */
1371 } /* End for each card */
1373 if (tty_register_driver(pc_driver))
1374 panic("Couldn't register Digi PC/ driver");
1376 if (tty_register_driver(pc_info))
1377 panic("Couldn't register Digi PC/ info ");
1379 /* -------------------------------------------------------------------
1380 Start up the poller to check for events on all enabled boards
1381 ---------------------------------------------------------------------- */
1383 init_timer(&epca_timer);
1384 epca_timer.function = epcapoll;
1385 mod_timer(&epca_timer, jiffies + HZ/25);
1386 return 0;
1388 } /* End pc_init */
1390 /* ------------------ Begin post_fep_init ---------------------- */
1392 static void post_fep_init(unsigned int crd)
1393 { /* Begin post_fep_init */
1395 int i;
1396 void __iomem *memaddr;
1397 struct global_data __iomem *gd;
1398 struct board_info *bd;
1399 struct board_chan __iomem *bc;
1400 struct channel *ch;
1401 int shrinkmem = 0, lowwater ;
1403 /* -------------------------------------------------------------
1404 This call is made by the user via. the ioctl call DIGI_INIT.
1405 It is responsible for setting up all the card specific stuff.
1406 ---------------------------------------------------------------- */
1407 bd = &boards[crd];
1409 /* -----------------------------------------------------------------
1410 If this is a PCI board, get the port info. Remember PCI cards
1411 do not have entries into the epcaconfig.h file, so we can't get
1412 the number of ports from it. Unfortunetly, this means that anyone
1413 doing a DIGI_GETINFO before the board has booted will get an invalid
1414 number of ports returned (It should return 0). Calls to DIGI_GETINFO
1415 after DIGI_INIT has been called will return the proper values.
1416 ------------------------------------------------------------------- */
1418 if (bd->type >= PCIXEM) { /* Begin get PCI number of ports */
1419 /* --------------------------------------------------------------------
1420 Below we use XEMPORTS as a memory offset regardless of which PCI
1421 card it is. This is because all of the supported PCI cards have
1422 the same memory offset for the channel data. This will have to be
1423 changed if we ever develop a PCI/XE card. NOTE : The FEP manual
1424 states that the port offset is 0xC22 as opposed to 0xC02. This is
1425 only true for PC/XE, and PC/XI cards; not for the XEM, or CX series.
1426 On the PCI cards the number of ports is determined by reading a
1427 ID PROM located in the box attached to the card. The card can then
1428 determine the index the id to determine the number of ports available.
1429 (FYI - The id should be located at 0x1ac (And may use up to 4 bytes
1430 if the box in question is a XEM or CX)).
1431 ------------------------------------------------------------------------ */
1432 /* PCI cards are already remapped at this point ISA are not */
1433 bd->numports = readw(bd->re_map_membase + XEMPORTS);
1434 epcaassert(bd->numports <= 64,"PCI returned a invalid number of ports");
1435 nbdevs += (bd->numports);
1436 } else {
1437 /* Fix up the mappings for ISA/EISA etc */
1438 /* FIXME: 64K - can we be smarter ? */
1439 bd->re_map_membase = ioremap(bd->membase, 0x10000);
1442 if (crd != 0)
1443 card_ptr[crd] = card_ptr[crd-1] + boards[crd-1].numports;
1444 else
1445 card_ptr[crd] = &digi_channels[crd]; /* <- For card 0 only */
1447 ch = card_ptr[crd];
1448 epcaassert(ch <= &digi_channels[nbdevs - 1], "ch out of range");
1450 memaddr = bd->re_map_membase;
1452 /* -----------------------------------------------------------------
1453 The below assignment will set bc to point at the BEGINING of
1454 the cards channel structures. For 1 card there will be between
1455 8 and 64 of these structures.
1456 -------------------------------------------------------------------- */
1458 bc = memaddr + CHANSTRUCT;
1460 /* -------------------------------------------------------------------
1461 The below assignment will set gd to point at the BEGINING of
1462 global memory address 0xc00. The first data in that global
1463 memory actually starts at address 0xc1a. The command in
1464 pointer begins at 0xd10.
1465 ---------------------------------------------------------------------- */
1467 gd = memaddr + GLOBAL;
1469 /* --------------------------------------------------------------------
1470 XEPORTS (address 0xc22) points at the number of channels the
1471 card supports. (For 64XE, XI, XEM, and XR use 0xc02)
1472 ----------------------------------------------------------------------- */
1474 if ((bd->type == PCXEVE || bd->type == PCXE) && (readw(memaddr + XEPORTS) < 3))
1475 shrinkmem = 1;
1476 if (bd->type < PCIXEM)
1477 if (!request_region((int)bd->port, 4, board_desc[bd->type]))
1478 return;
1479 memwinon(bd, 0);
1481 /* --------------------------------------------------------------------
1482 Remember ch is the main drivers channels structure, while bc is
1483 the cards channel structure.
1484 ------------------------------------------------------------------------ */
1486 /* For every port on the card do ..... */
1488 for (i = 0; i < bd->numports; i++, ch++, bc++) { /* Begin for each port */
1489 unsigned long flags;
1490 u16 tseg, rseg;
1492 ch->brdchan = bc;
1493 ch->mailbox = gd;
1494 INIT_WORK(&ch->tqueue, do_softint, ch);
1495 ch->board = &boards[crd];
1497 spin_lock_irqsave(&epca_lock, flags);
1498 switch (bd->type) {
1499 /* ----------------------------------------------------------------
1500 Since some of the boards use different bitmaps for their
1501 control signals we cannot hard code these values and retain
1502 portability. We virtualize this data here.
1503 ------------------------------------------------------------------- */
1504 case EISAXEM:
1505 case PCXEM:
1506 case PCIXEM:
1507 case PCIXRJ:
1508 case PCIXR:
1509 ch->m_rts = 0x02 ;
1510 ch->m_dcd = 0x80 ;
1511 ch->m_dsr = 0x20 ;
1512 ch->m_cts = 0x10 ;
1513 ch->m_ri = 0x40 ;
1514 ch->m_dtr = 0x01 ;
1515 break;
1517 case PCXE:
1518 case PCXEVE:
1519 case PCXI:
1520 case PC64XE:
1521 ch->m_rts = 0x02 ;
1522 ch->m_dcd = 0x08 ;
1523 ch->m_dsr = 0x10 ;
1524 ch->m_cts = 0x20 ;
1525 ch->m_ri = 0x40 ;
1526 ch->m_dtr = 0x80 ;
1527 break;
1529 } /* End switch bd->type */
1531 if (boards[crd].altpin) {
1532 ch->dsr = ch->m_dcd;
1533 ch->dcd = ch->m_dsr;
1534 ch->digiext.digi_flags |= DIGI_ALTPIN;
1536 else {
1537 ch->dcd = ch->m_dcd;
1538 ch->dsr = ch->m_dsr;
1541 ch->boardnum = crd;
1542 ch->channelnum = i;
1543 ch->magic = EPCA_MAGIC;
1544 ch->tty = NULL;
1546 if (shrinkmem) {
1547 fepcmd(ch, SETBUFFER, 32, 0, 0, 0);
1548 shrinkmem = 0;
1551 tseg = readw(&bc->tseg);
1552 rseg = readw(&bc->rseg);
1554 switch (bd->type) {
1556 case PCIXEM:
1557 case PCIXRJ:
1558 case PCIXR:
1559 /* Cover all the 2MEG cards */
1560 ch->txptr = memaddr + ((tseg << 4) & 0x1fffff);
1561 ch->rxptr = memaddr + ((rseg << 4) & 0x1fffff);
1562 ch->txwin = FEPWIN | (tseg >> 11);
1563 ch->rxwin = FEPWIN | (rseg >> 11);
1564 break;
1566 case PCXEM:
1567 case EISAXEM:
1568 /* Cover all the 32K windowed cards */
1569 /* Mask equal to window size - 1 */
1570 ch->txptr = memaddr + ((tseg << 4) & 0x7fff);
1571 ch->rxptr = memaddr + ((rseg << 4) & 0x7fff);
1572 ch->txwin = FEPWIN | (tseg >> 11);
1573 ch->rxwin = FEPWIN | (rseg >> 11);
1574 break;
1576 case PCXEVE:
1577 case PCXE:
1578 ch->txptr = memaddr + (((tseg - bd->memory_seg) << 4) & 0x1fff);
1579 ch->txwin = FEPWIN | ((tseg - bd->memory_seg) >> 9);
1580 ch->rxptr = memaddr + (((rseg - bd->memory_seg) << 4) & 0x1fff);
1581 ch->rxwin = FEPWIN | ((rseg - bd->memory_seg) >>9 );
1582 break;
1584 case PCXI:
1585 case PC64XE:
1586 ch->txptr = memaddr + ((tseg - bd->memory_seg) << 4);
1587 ch->rxptr = memaddr + ((rseg - bd->memory_seg) << 4);
1588 ch->txwin = ch->rxwin = 0;
1589 break;
1591 } /* End switch bd->type */
1593 ch->txbufhead = 0;
1594 ch->txbufsize = readw(&bc->tmax) + 1;
1596 ch->rxbufhead = 0;
1597 ch->rxbufsize = readw(&bc->rmax) + 1;
1599 lowwater = ch->txbufsize >= 2000 ? 1024 : (ch->txbufsize / 2);
1601 /* Set transmitter low water mark */
1602 fepcmd(ch, STXLWATER, lowwater, 0, 10, 0);
1604 /* Set receiver low water mark */
1606 fepcmd(ch, SRXLWATER, (ch->rxbufsize / 4), 0, 10, 0);
1608 /* Set receiver high water mark */
1610 fepcmd(ch, SRXHWATER, (3 * ch->rxbufsize / 4), 0, 10, 0);
1612 writew(100, &bc->edelay);
1613 writeb(1, &bc->idata);
1615 ch->startc = readb(&bc->startc);
1616 ch->stopc = readb(&bc->stopc);
1617 ch->startca = readb(&bc->startca);
1618 ch->stopca = readb(&bc->stopca);
1620 ch->fepcflag = 0;
1621 ch->fepiflag = 0;
1622 ch->fepoflag = 0;
1623 ch->fepstartc = 0;
1624 ch->fepstopc = 0;
1625 ch->fepstartca = 0;
1626 ch->fepstopca = 0;
1628 ch->close_delay = 50;
1629 ch->count = 0;
1630 ch->blocked_open = 0;
1631 init_waitqueue_head(&ch->open_wait);
1632 init_waitqueue_head(&ch->close_wait);
1634 spin_unlock_irqrestore(&epca_lock, flags);
1635 } /* End for each port */
1637 printk(KERN_INFO
1638 "Digi PC/Xx Driver V%s: %s I/O = 0x%lx Mem = 0x%lx Ports = %d\n",
1639 VERSION, board_desc[bd->type], (long)bd->port, (long)bd->membase, bd->numports);
1640 memwinoff(bd, 0);
1642 } /* End post_fep_init */
1644 /* --------------------- Begin epcapoll ------------------------ */
1646 static void epcapoll(unsigned long ignored)
1647 { /* Begin epcapoll */
1649 unsigned long flags;
1650 int crd;
1651 volatile unsigned int head, tail;
1652 struct channel *ch;
1653 struct board_info *bd;
1655 /* -------------------------------------------------------------------
1656 This routine is called upon every timer interrupt. Even though
1657 the Digi series cards are capable of generating interrupts this
1658 method of non-looping polling is more efficient. This routine
1659 checks for card generated events (Such as receive data, are transmit
1660 buffer empty) and acts on those events.
1661 ----------------------------------------------------------------------- */
1663 for (crd = 0; crd < num_cards; crd++)
1664 { /* Begin for each card */
1666 bd = &boards[crd];
1667 ch = card_ptr[crd];
1669 if ((bd->status == DISABLED) || digi_poller_inhibited)
1670 continue; /* Begin loop next interation */
1672 /* -----------------------------------------------------------
1673 assertmemoff is not needed here; indeed it is an empty subroutine.
1674 It is being kept because future boards may need this as well as
1675 some legacy boards.
1676 ---------------------------------------------------------------- */
1678 spin_lock_irqsave(&epca_lock, flags);
1680 assertmemoff(ch);
1682 globalwinon(ch);
1684 /* ---------------------------------------------------------------
1685 In this case head and tail actually refer to the event queue not
1686 the transmit or receive queue.
1687 ------------------------------------------------------------------- */
1689 head = readw(&ch->mailbox->ein);
1690 tail = readw(&ch->mailbox->eout);
1692 /* If head isn't equal to tail we have an event */
1694 if (head != tail)
1695 doevent(crd);
1696 memoff(ch);
1698 spin_unlock_irqrestore(&epca_lock, flags);
1700 } /* End for each card */
1701 mod_timer(&epca_timer, jiffies + (HZ / 25));
1702 } /* End epcapoll */
1704 /* --------------------- Begin doevent ------------------------ */
1706 static void doevent(int crd)
1707 { /* Begin doevent */
1709 void __iomem *eventbuf;
1710 struct channel *ch, *chan0;
1711 static struct tty_struct *tty;
1712 struct board_info *bd;
1713 struct board_chan __iomem *bc;
1714 unsigned int tail, head;
1715 int event, channel;
1716 int mstat, lstat;
1718 /* -------------------------------------------------------------------
1719 This subroutine is called by epcapoll when an event is detected
1720 in the event queue. This routine responds to those events.
1721 --------------------------------------------------------------------- */
1722 bd = &boards[crd];
1724 chan0 = card_ptr[crd];
1725 epcaassert(chan0 <= &digi_channels[nbdevs - 1], "ch out of range");
1726 assertgwinon(chan0);
1727 while ((tail = readw(&chan0->mailbox->eout)) != (head = readw(&chan0->mailbox->ein)))
1728 { /* Begin while something in event queue */
1729 assertgwinon(chan0);
1730 eventbuf = bd->re_map_membase + tail + ISTART;
1731 /* Get the channel the event occurred on */
1732 channel = readb(eventbuf);
1733 /* Get the actual event code that occurred */
1734 event = readb(eventbuf + 1);
1735 /* ----------------------------------------------------------------
1736 The two assignments below get the current modem status (mstat)
1737 and the previous modem status (lstat). These are useful becuase
1738 an event could signal a change in modem signals itself.
1739 ------------------------------------------------------------------- */
1740 mstat = readb(eventbuf + 2);
1741 lstat = readb(eventbuf + 3);
1743 ch = chan0 + channel;
1744 if ((unsigned)channel >= bd->numports || !ch) {
1745 if (channel >= bd->numports)
1746 ch = chan0;
1747 bc = ch->brdchan;
1748 goto next;
1751 if ((bc = ch->brdchan) == NULL)
1752 goto next;
1754 if (event & DATA_IND) { /* Begin DATA_IND */
1755 receive_data(ch);
1756 assertgwinon(ch);
1757 } /* End DATA_IND */
1758 /* else *//* Fix for DCD transition missed bug */
1759 if (event & MODEMCHG_IND) { /* Begin MODEMCHG_IND */
1760 /* A modem signal change has been indicated */
1761 ch->imodem = mstat;
1762 if (ch->asyncflags & ASYNC_CHECK_CD) {
1763 if (mstat & ch->dcd) /* We are now receiving dcd */
1764 wake_up_interruptible(&ch->open_wait);
1765 else
1766 pc_sched_event(ch, EPCA_EVENT_HANGUP); /* No dcd; hangup */
1768 } /* End MODEMCHG_IND */
1769 tty = ch->tty;
1770 if (tty) { /* Begin if valid tty */
1771 if (event & BREAK_IND) { /* Begin if BREAK_IND */
1772 /* A break has been indicated */
1773 tty_insert_flip_char(tty, 0, TTY_BREAK);
1774 tty_schedule_flip(tty);
1775 } else if (event & LOWTX_IND) { /* Begin LOWTX_IND */
1776 if (ch->statusflags & LOWWAIT)
1777 { /* Begin if LOWWAIT */
1778 ch->statusflags &= ~LOWWAIT;
1779 tty_wakeup(tty);
1780 wake_up_interruptible(&tty->write_wait);
1781 } /* End if LOWWAIT */
1782 } else if (event & EMPTYTX_IND) { /* Begin EMPTYTX_IND */
1783 /* This event is generated by setup_empty_event */
1784 ch->statusflags &= ~TXBUSY;
1785 if (ch->statusflags & EMPTYWAIT) { /* Begin if EMPTYWAIT */
1786 ch->statusflags &= ~EMPTYWAIT;
1787 tty_wakeup(tty);
1788 wake_up_interruptible(&tty->write_wait);
1789 } /* End if EMPTYWAIT */
1790 } /* End EMPTYTX_IND */
1791 } /* End if valid tty */
1792 next:
1793 globalwinon(ch);
1794 BUG_ON(!bc);
1795 writew(1, &bc->idata);
1796 writew((tail + 4) & (IMAX - ISTART - 4), &chan0->mailbox->eout);
1797 globalwinon(chan0);
1798 } /* End while something in event queue */
1799 } /* End doevent */
1801 /* --------------------- Begin fepcmd ------------------------ */
1803 static void fepcmd(struct channel *ch, int cmd, int word_or_byte,
1804 int byte2, int ncmds, int bytecmd)
1805 { /* Begin fepcmd */
1806 unchar __iomem *memaddr;
1807 unsigned int head, cmdTail, cmdStart, cmdMax;
1808 long count;
1809 int n;
1811 /* This is the routine in which commands may be passed to the card. */
1813 if (ch->board->status == DISABLED)
1814 return;
1815 assertgwinon(ch);
1816 /* Remember head (As well as max) is just an offset not a base addr */
1817 head = readw(&ch->mailbox->cin);
1818 /* cmdStart is a base address */
1819 cmdStart = readw(&ch->mailbox->cstart);
1820 /* ------------------------------------------------------------------
1821 We do the addition below because we do not want a max pointer
1822 relative to cmdStart. We want a max pointer that points at the
1823 physical end of the command queue.
1824 -------------------------------------------------------------------- */
1825 cmdMax = (cmdStart + 4 + readw(&ch->mailbox->cmax));
1826 memaddr = ch->board->re_map_membase;
1828 if (head >= (cmdMax - cmdStart) || (head & 03)) {
1829 printk(KERN_ERR "line %d: Out of range, cmd = %x, head = %x\n", __LINE__, cmd, head);
1830 printk(KERN_ERR "line %d: Out of range, cmdMax = %x, cmdStart = %x\n", __LINE__, cmdMax, cmdStart);
1831 return;
1833 if (bytecmd) {
1834 writeb(cmd, memaddr + head + cmdStart + 0);
1835 writeb(ch->channelnum, memaddr + head + cmdStart + 1);
1836 /* Below word_or_byte is bits to set */
1837 writeb(word_or_byte, memaddr + head + cmdStart + 2);
1838 /* Below byte2 is bits to reset */
1839 writeb(byte2, memaddr + head + cmdStart + 3);
1840 } else {
1841 writeb(cmd, memaddr + head + cmdStart + 0);
1842 writeb(ch->channelnum, memaddr + head + cmdStart + 1);
1843 writeb(word_or_byte, memaddr + head + cmdStart + 2);
1845 head = (head + 4) & (cmdMax - cmdStart - 4);
1846 writew(head, &ch->mailbox->cin);
1847 count = FEPTIMEOUT;
1849 for (;;) { /* Begin forever loop */
1850 count--;
1851 if (count == 0) {
1852 printk(KERN_ERR "<Error> - Fep not responding in fepcmd()\n");
1853 return;
1855 head = readw(&ch->mailbox->cin);
1856 cmdTail = readw(&ch->mailbox->cout);
1857 n = (head - cmdTail) & (cmdMax - cmdStart - 4);
1858 /* ----------------------------------------------------------
1859 Basically this will break when the FEP acknowledges the
1860 command by incrementing cmdTail (Making it equal to head).
1861 ------------------------------------------------------------- */
1862 if (n <= ncmds * (sizeof(short) * 4))
1863 break; /* Well nearly forever :-) */
1864 } /* End forever loop */
1865 } /* End fepcmd */
1867 /* ---------------------------------------------------------------------
1868 Digi products use fields in their channels structures that are very
1869 similar to the c_cflag and c_iflag fields typically found in UNIX
1870 termios structures. The below three routines allow mappings
1871 between these hardware "flags" and their respective Linux flags.
1872 ------------------------------------------------------------------------- */
1874 /* --------------------- Begin termios2digi_h -------------------- */
1876 static unsigned termios2digi_h(struct channel *ch, unsigned cflag)
1877 { /* Begin termios2digi_h */
1878 unsigned res = 0;
1880 if (cflag & CRTSCTS) {
1881 ch->digiext.digi_flags |= (RTSPACE | CTSPACE);
1882 res |= ((ch->m_cts) | (ch->m_rts));
1885 if (ch->digiext.digi_flags & RTSPACE)
1886 res |= ch->m_rts;
1888 if (ch->digiext.digi_flags & DTRPACE)
1889 res |= ch->m_dtr;
1891 if (ch->digiext.digi_flags & CTSPACE)
1892 res |= ch->m_cts;
1894 if (ch->digiext.digi_flags & DSRPACE)
1895 res |= ch->dsr;
1897 if (ch->digiext.digi_flags & DCDPACE)
1898 res |= ch->dcd;
1900 if (res & (ch->m_rts))
1901 ch->digiext.digi_flags |= RTSPACE;
1903 if (res & (ch->m_cts))
1904 ch->digiext.digi_flags |= CTSPACE;
1906 return res;
1908 } /* End termios2digi_h */
1910 /* --------------------- Begin termios2digi_i -------------------- */
1911 static unsigned termios2digi_i(struct channel *ch, unsigned iflag)
1912 { /* Begin termios2digi_i */
1914 unsigned res = iflag & (IGNBRK | BRKINT | IGNPAR | PARMRK |
1915 INPCK | ISTRIP|IXON|IXANY|IXOFF);
1916 if (ch->digiext.digi_flags & DIGI_AIXON)
1917 res |= IAIXON;
1918 return res;
1920 } /* End termios2digi_i */
1922 /* --------------------- Begin termios2digi_c -------------------- */
1924 static unsigned termios2digi_c(struct channel *ch, unsigned cflag)
1925 { /* Begin termios2digi_c */
1927 unsigned res = 0;
1928 if (cflag & CBAUDEX) { /* Begin detected CBAUDEX */
1929 ch->digiext.digi_flags |= DIGI_FAST;
1930 /* -------------------------------------------------------------
1931 HUPCL bit is used by FEP to indicate fast baud
1932 table is to be used.
1933 ----------------------------------------------------------------- */
1934 res |= FEP_HUPCL;
1935 } /* End detected CBAUDEX */
1936 else ch->digiext.digi_flags &= ~DIGI_FAST;
1937 /* -------------------------------------------------------------------
1938 CBAUD has bit position 0x1000 set these days to indicate Linux
1939 baud rate remap. Digi hardware can't handle the bit assignment.
1940 (We use a different bit assignment for high speed.). Clear this
1941 bit out.
1942 ---------------------------------------------------------------------- */
1943 res |= cflag & ((CBAUD ^ CBAUDEX) | PARODD | PARENB | CSTOPB | CSIZE);
1944 /* -------------------------------------------------------------
1945 This gets a little confusing. The Digi cards have their own
1946 representation of c_cflags controling baud rate. For the most
1947 part this is identical to the Linux implementation. However;
1948 Digi supports one rate (76800) that Linux doesn't. This means
1949 that the c_cflag entry that would normally mean 76800 for Digi
1950 actually means 115200 under Linux. Without the below mapping,
1951 a stty 115200 would only drive the board at 76800. Since
1952 the rate 230400 is also found after 76800, the same problem afflicts
1953 us when we choose a rate of 230400. Without the below modificiation
1954 stty 230400 would actually give us 115200.
1956 There are two additional differences. The Linux value for CLOCAL
1957 (0x800; 0004000) has no meaning to the Digi hardware. Also in
1958 later releases of Linux; the CBAUD define has CBAUDEX (0x1000;
1959 0010000) ored into it (CBAUD = 0x100f as opposed to 0xf). CBAUDEX
1960 should be checked for a screened out prior to termios2digi_c
1961 returning. Since CLOCAL isn't used by the board this can be
1962 ignored as long as the returned value is used only by Digi hardware.
1963 ----------------------------------------------------------------- */
1964 if (cflag & CBAUDEX) {
1965 /* -------------------------------------------------------------
1966 The below code is trying to guarantee that only baud rates
1967 115200 and 230400 are remapped. We use exclusive or because
1968 the various baud rates share common bit positions and therefore
1969 can't be tested for easily.
1970 ----------------------------------------------------------------- */
1973 if ((!((cflag & 0x7) ^ (B115200 & ~CBAUDEX))) ||
1974 (!((cflag & 0x7) ^ (B230400 & ~CBAUDEX))))
1975 res += 1;
1977 return res;
1979 } /* End termios2digi_c */
1981 /* --------------------- Begin epcaparam ----------------------- */
1983 /* Caller must hold the locks */
1984 static void epcaparam(struct tty_struct *tty, struct channel *ch)
1985 { /* Begin epcaparam */
1987 unsigned int cmdHead;
1988 struct termios *ts;
1989 struct board_chan __iomem *bc;
1990 unsigned mval, hflow, cflag, iflag;
1992 bc = ch->brdchan;
1993 epcaassert(bc !=0, "bc out of range");
1995 assertgwinon(ch);
1996 ts = tty->termios;
1997 if ((ts->c_cflag & CBAUD) == 0) { /* Begin CBAUD detected */
1998 cmdHead = readw(&bc->rin);
1999 writew(cmdHead, &bc->rout);
2000 cmdHead = readw(&bc->tin);
2001 /* Changing baud in mid-stream transmission can be wonderful */
2002 /* ---------------------------------------------------------------
2003 Flush current transmit buffer by setting cmdTail pointer (tout)
2004 to cmdHead pointer (tin). Hopefully the transmit buffer is empty.
2005 ----------------------------------------------------------------- */
2006 fepcmd(ch, STOUT, (unsigned) cmdHead, 0, 0, 0);
2007 mval = 0;
2008 } else { /* Begin CBAUD not detected */
2009 /* -------------------------------------------------------------------
2010 c_cflags have changed but that change had nothing to do with BAUD.
2011 Propagate the change to the card.
2012 ---------------------------------------------------------------------- */
2013 cflag = termios2digi_c(ch, ts->c_cflag);
2014 if (cflag != ch->fepcflag) {
2015 ch->fepcflag = cflag;
2016 /* Set baud rate, char size, stop bits, parity */
2017 fepcmd(ch, SETCTRLFLAGS, (unsigned) cflag, 0, 0, 0);
2019 /* ----------------------------------------------------------------
2020 If the user has not forced CLOCAL and if the device is not a
2021 CALLOUT device (Which is always CLOCAL) we set flags such that
2022 the driver will wait on carrier detect.
2023 ------------------------------------------------------------------- */
2024 if (ts->c_cflag & CLOCAL)
2025 ch->asyncflags &= ~ASYNC_CHECK_CD;
2026 else
2027 ch->asyncflags |= ASYNC_CHECK_CD;
2028 mval = ch->m_dtr | ch->m_rts;
2029 } /* End CBAUD not detected */
2030 iflag = termios2digi_i(ch, ts->c_iflag);
2031 /* Check input mode flags */
2032 if (iflag != ch->fepiflag) {
2033 ch->fepiflag = iflag;
2034 /* ---------------------------------------------------------------
2035 Command sets channels iflag structure on the board. Such things
2036 as input soft flow control, handling of parity errors, and
2037 break handling are all set here.
2038 ------------------------------------------------------------------- */
2039 /* break handling, parity handling, input stripping, flow control chars */
2040 fepcmd(ch, SETIFLAGS, (unsigned int) ch->fepiflag, 0, 0, 0);
2042 /* ---------------------------------------------------------------
2043 Set the board mint value for this channel. This will cause hardware
2044 events to be generated each time the DCD signal (Described in mint)
2045 changes.
2046 ------------------------------------------------------------------- */
2047 writeb(ch->dcd, &bc->mint);
2048 if ((ts->c_cflag & CLOCAL) || (ch->digiext.digi_flags & DIGI_FORCEDCD))
2049 if (ch->digiext.digi_flags & DIGI_FORCEDCD)
2050 writeb(0, &bc->mint);
2051 ch->imodem = readb(&bc->mstat);
2052 hflow = termios2digi_h(ch, ts->c_cflag);
2053 if (hflow != ch->hflow) {
2054 ch->hflow = hflow;
2055 /* --------------------------------------------------------------
2056 Hard flow control has been selected but the board is not
2057 using it. Activate hard flow control now.
2058 ----------------------------------------------------------------- */
2059 fepcmd(ch, SETHFLOW, hflow, 0xff, 0, 1);
2061 mval ^= ch->modemfake & (mval ^ ch->modem);
2063 if (ch->omodem ^ mval) {
2064 ch->omodem = mval;
2065 /* --------------------------------------------------------------
2066 The below command sets the DTR and RTS mstat structure. If
2067 hard flow control is NOT active these changes will drive the
2068 output of the actual DTR and RTS lines. If hard flow control
2069 is active, the changes will be saved in the mstat structure and
2070 only asserted when hard flow control is turned off.
2071 ----------------------------------------------------------------- */
2073 /* First reset DTR & RTS; then set them */
2074 fepcmd(ch, SETMODEM, 0, ((ch->m_dtr)|(ch->m_rts)), 0, 1);
2075 fepcmd(ch, SETMODEM, mval, 0, 0, 1);
2077 if (ch->startc != ch->fepstartc || ch->stopc != ch->fepstopc) {
2078 ch->fepstartc = ch->startc;
2079 ch->fepstopc = ch->stopc;
2080 /* ------------------------------------------------------------
2081 The XON / XOFF characters have changed; propagate these
2082 changes to the card.
2083 --------------------------------------------------------------- */
2084 fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1);
2086 if (ch->startca != ch->fepstartca || ch->stopca != ch->fepstopca) {
2087 ch->fepstartca = ch->startca;
2088 ch->fepstopca = ch->stopca;
2089 /* ---------------------------------------------------------------
2090 Similar to the above, this time the auxilarly XON / XOFF
2091 characters have changed; propagate these changes to the card.
2092 ------------------------------------------------------------------ */
2093 fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1);
2095 } /* End epcaparam */
2097 /* --------------------- Begin receive_data ----------------------- */
2098 /* Caller holds lock */
2099 static void receive_data(struct channel *ch)
2100 { /* Begin receive_data */
2102 unchar *rptr;
2103 struct termios *ts = NULL;
2104 struct tty_struct *tty;
2105 struct board_chan __iomem *bc;
2106 int dataToRead, wrapgap, bytesAvailable;
2107 unsigned int tail, head;
2108 unsigned int wrapmask;
2110 /* ---------------------------------------------------------------
2111 This routine is called by doint when a receive data event
2112 has taken place.
2113 ------------------------------------------------------------------- */
2115 globalwinon(ch);
2116 if (ch->statusflags & RXSTOPPED)
2117 return;
2118 tty = ch->tty;
2119 if (tty)
2120 ts = tty->termios;
2121 bc = ch->brdchan;
2122 BUG_ON(!bc);
2123 wrapmask = ch->rxbufsize - 1;
2125 /* ---------------------------------------------------------------------
2126 Get the head and tail pointers to the receiver queue. Wrap the
2127 head pointer if it has reached the end of the buffer.
2128 ------------------------------------------------------------------------ */
2129 head = readw(&bc->rin);
2130 head &= wrapmask;
2131 tail = readw(&bc->rout) & wrapmask;
2133 bytesAvailable = (head - tail) & wrapmask;
2134 if (bytesAvailable == 0)
2135 return;
2137 /* ------------------------------------------------------------------
2138 If CREAD bit is off or device not open, set TX tail to head
2139 --------------------------------------------------------------------- */
2141 if (!tty || !ts || !(ts->c_cflag & CREAD)) {
2142 writew(head, &bc->rout);
2143 return;
2146 if (tty_buffer_request_room(tty, bytesAvailable + 1) == 0)
2147 return;
2149 if (readb(&bc->orun)) {
2150 writeb(0, &bc->orun);
2151 printk(KERN_WARNING "epca; overrun! DigiBoard device %s\n",tty->name);
2152 tty_insert_flip_char(tty, 0, TTY_OVERRUN);
2154 rxwinon(ch);
2155 while (bytesAvailable > 0) { /* Begin while there is data on the card */
2156 wrapgap = (head >= tail) ? head - tail : ch->rxbufsize - tail;
2157 /* ---------------------------------------------------------------
2158 Even if head has wrapped around only report the amount of
2159 data to be equal to the size - tail. Remember memcpy can't
2160 automaticly wrap around the receive buffer.
2161 ----------------------------------------------------------------- */
2162 dataToRead = (wrapgap < bytesAvailable) ? wrapgap : bytesAvailable;
2163 /* --------------------------------------------------------------
2164 Make sure we don't overflow the buffer
2165 ----------------------------------------------------------------- */
2166 dataToRead = tty_prepare_flip_string(tty, &rptr, dataToRead);
2167 if (dataToRead == 0)
2168 break;
2169 /* ---------------------------------------------------------------
2170 Move data read from our card into the line disciplines buffer
2171 for translation if necessary.
2172 ------------------------------------------------------------------ */
2173 memcpy_fromio(rptr, ch->rxptr + tail, dataToRead);
2174 tail = (tail + dataToRead) & wrapmask;
2175 bytesAvailable -= dataToRead;
2176 } /* End while there is data on the card */
2177 globalwinon(ch);
2178 writew(tail, &bc->rout);
2179 /* Must be called with global data */
2180 tty_schedule_flip(ch->tty);
2181 return;
2182 } /* End receive_data */
2184 static int info_ioctl(struct tty_struct *tty, struct file * file,
2185 unsigned int cmd, unsigned long arg)
2187 switch (cmd)
2188 { /* Begin switch cmd */
2189 case DIGI_GETINFO:
2190 { /* Begin case DIGI_GETINFO */
2191 struct digi_info di ;
2192 int brd;
2194 if(get_user(brd, (unsigned int __user *)arg))
2195 return -EFAULT;
2196 if (brd < 0 || brd >= num_cards || num_cards == 0)
2197 return -ENODEV;
2199 memset(&di, 0, sizeof(di));
2201 di.board = brd ;
2202 di.status = boards[brd].status;
2203 di.type = boards[brd].type ;
2204 di.numports = boards[brd].numports ;
2205 /* Legacy fixups - just move along nothing to see */
2206 di.port = (unsigned char *)boards[brd].port ;
2207 di.membase = (unsigned char *)boards[brd].membase ;
2209 if (copy_to_user((void __user *)arg, &di, sizeof (di)))
2210 return -EFAULT;
2211 break;
2213 } /* End case DIGI_GETINFO */
2215 case DIGI_POLLER:
2216 { /* Begin case DIGI_POLLER */
2218 int brd = arg & 0xff000000 >> 16 ;
2219 unsigned char state = arg & 0xff ;
2221 if (brd < 0 || brd >= num_cards) {
2222 printk(KERN_ERR "epca: DIGI POLLER : brd not valid!\n");
2223 return (-ENODEV);
2225 digi_poller_inhibited = state ;
2226 break ;
2227 } /* End case DIGI_POLLER */
2229 case DIGI_INIT:
2230 { /* Begin case DIGI_INIT */
2231 /* ------------------------------------------------------------
2232 This call is made by the apps to complete the initilization
2233 of the board(s). This routine is responsible for setting
2234 the card to its initial state and setting the drivers control
2235 fields to the sutianle settings for the card in question.
2236 ---------------------------------------------------------------- */
2237 int crd ;
2238 for (crd = 0; crd < num_cards; crd++)
2239 post_fep_init (crd);
2240 break ;
2241 } /* End case DIGI_INIT */
2242 default:
2243 return -ENOTTY;
2244 } /* End switch cmd */
2245 return (0) ;
2247 /* --------------------- Begin pc_ioctl ----------------------- */
2249 static int pc_tiocmget(struct tty_struct *tty, struct file *file)
2251 struct channel *ch = (struct channel *) tty->driver_data;
2252 struct board_chan __iomem *bc;
2253 unsigned int mstat, mflag = 0;
2254 unsigned long flags;
2256 if (ch)
2257 bc = ch->brdchan;
2258 else
2259 return -EINVAL;
2261 spin_lock_irqsave(&epca_lock, flags);
2262 globalwinon(ch);
2263 mstat = readb(&bc->mstat);
2264 memoff(ch);
2265 spin_unlock_irqrestore(&epca_lock, flags);
2267 if (mstat & ch->m_dtr)
2268 mflag |= TIOCM_DTR;
2269 if (mstat & ch->m_rts)
2270 mflag |= TIOCM_RTS;
2271 if (mstat & ch->m_cts)
2272 mflag |= TIOCM_CTS;
2273 if (mstat & ch->dsr)
2274 mflag |= TIOCM_DSR;
2275 if (mstat & ch->m_ri)
2276 mflag |= TIOCM_RI;
2277 if (mstat & ch->dcd)
2278 mflag |= TIOCM_CD;
2279 return mflag;
2282 static int pc_tiocmset(struct tty_struct *tty, struct file *file,
2283 unsigned int set, unsigned int clear)
2285 struct channel *ch = (struct channel *) tty->driver_data;
2286 unsigned long flags;
2288 if (!ch)
2289 return -EINVAL;
2291 spin_lock_irqsave(&epca_lock, flags);
2293 * I think this modemfake stuff is broken. It doesn't
2294 * correctly reflect the behaviour desired by the TIOCM*
2295 * ioctls. Therefore this is probably broken.
2297 if (set & TIOCM_RTS) {
2298 ch->modemfake |= ch->m_rts;
2299 ch->modem |= ch->m_rts;
2301 if (set & TIOCM_DTR) {
2302 ch->modemfake |= ch->m_dtr;
2303 ch->modem |= ch->m_dtr;
2305 if (clear & TIOCM_RTS) {
2306 ch->modemfake |= ch->m_rts;
2307 ch->modem &= ~ch->m_rts;
2309 if (clear & TIOCM_DTR) {
2310 ch->modemfake |= ch->m_dtr;
2311 ch->modem &= ~ch->m_dtr;
2313 globalwinon(ch);
2314 /* --------------------------------------------------------------
2315 The below routine generally sets up parity, baud, flow control
2316 issues, etc.... It effect both control flags and input flags.
2317 ------------------------------------------------------------------ */
2318 epcaparam(tty,ch);
2319 memoff(ch);
2320 spin_unlock_irqrestore(&epca_lock, flags);
2321 return 0;
2324 static int pc_ioctl(struct tty_struct *tty, struct file * file,
2325 unsigned int cmd, unsigned long arg)
2326 { /* Begin pc_ioctl */
2328 digiflow_t dflow;
2329 int retval;
2330 unsigned long flags;
2331 unsigned int mflag, mstat;
2332 unsigned char startc, stopc;
2333 struct board_chan __iomem *bc;
2334 struct channel *ch = (struct channel *) tty->driver_data;
2335 void __user *argp = (void __user *)arg;
2337 if (ch)
2338 bc = ch->brdchan;
2339 else
2340 return -EINVAL;
2342 /* -------------------------------------------------------------------
2343 For POSIX compliance we need to add more ioctls. See tty_ioctl.c
2344 in /usr/src/linux/drivers/char for a good example. In particular
2345 think about adding TCSETAF, TCSETAW, TCSETA, TCSETSF, TCSETSW, TCSETS.
2346 ---------------------------------------------------------------------- */
2348 switch (cmd)
2349 { /* Begin switch cmd */
2351 case TCGETS:
2352 if (copy_to_user(argp, tty->termios, sizeof(struct termios)))
2353 return -EFAULT;
2354 return 0;
2355 case TCGETA:
2356 return get_termio(tty, argp);
2357 case TCSBRK: /* SVID version: non-zero arg --> no break */
2358 retval = tty_check_change(tty);
2359 if (retval)
2360 return retval;
2361 /* Setup an event to indicate when the transmit buffer empties */
2362 spin_lock_irqsave(&epca_lock, flags);
2363 setup_empty_event(tty,ch);
2364 spin_unlock_irqrestore(&epca_lock, flags);
2365 tty_wait_until_sent(tty, 0);
2366 if (!arg)
2367 digi_send_break(ch, HZ/4); /* 1/4 second */
2368 return 0;
2369 case TCSBRKP: /* support for POSIX tcsendbreak() */
2370 retval = tty_check_change(tty);
2371 if (retval)
2372 return retval;
2374 /* Setup an event to indicate when the transmit buffer empties */
2375 spin_lock_irqsave(&epca_lock, flags);
2376 setup_empty_event(tty,ch);
2377 spin_unlock_irqrestore(&epca_lock, flags);
2378 tty_wait_until_sent(tty, 0);
2379 digi_send_break(ch, arg ? arg*(HZ/10) : HZ/4);
2380 return 0;
2381 case TIOCGSOFTCAR:
2382 if (put_user(C_CLOCAL(tty)?1:0, (unsigned long __user *)arg))
2383 return -EFAULT;
2384 return 0;
2385 case TIOCSSOFTCAR:
2387 unsigned int value;
2389 if (get_user(value, (unsigned __user *)argp))
2390 return -EFAULT;
2391 tty->termios->c_cflag =
2392 ((tty->termios->c_cflag & ~CLOCAL) |
2393 (value ? CLOCAL : 0));
2394 return 0;
2396 case TIOCMODG:
2397 mflag = pc_tiocmget(tty, file);
2398 if (put_user(mflag, (unsigned long __user *)argp))
2399 return -EFAULT;
2400 break;
2401 case TIOCMODS:
2402 if (get_user(mstat, (unsigned __user *)argp))
2403 return -EFAULT;
2404 return pc_tiocmset(tty, file, mstat, ~mstat);
2405 case TIOCSDTR:
2406 spin_lock_irqsave(&epca_lock, flags);
2407 ch->omodem |= ch->m_dtr;
2408 globalwinon(ch);
2409 fepcmd(ch, SETMODEM, ch->m_dtr, 0, 10, 1);
2410 memoff(ch);
2411 spin_unlock_irqrestore(&epca_lock, flags);
2412 break;
2414 case TIOCCDTR:
2415 spin_lock_irqsave(&epca_lock, flags);
2416 ch->omodem &= ~ch->m_dtr;
2417 globalwinon(ch);
2418 fepcmd(ch, SETMODEM, 0, ch->m_dtr, 10, 1);
2419 memoff(ch);
2420 spin_unlock_irqrestore(&epca_lock, flags);
2421 break;
2422 case DIGI_GETA:
2423 if (copy_to_user(argp, &ch->digiext, sizeof(digi_t)))
2424 return -EFAULT;
2425 break;
2426 case DIGI_SETAW:
2427 case DIGI_SETAF:
2428 if (cmd == DIGI_SETAW) {
2429 /* Setup an event to indicate when the transmit buffer empties */
2430 spin_lock_irqsave(&epca_lock, flags);
2431 setup_empty_event(tty,ch);
2432 spin_unlock_irqrestore(&epca_lock, flags);
2433 tty_wait_until_sent(tty, 0);
2434 } else {
2435 /* ldisc lock already held in ioctl */
2436 if (tty->ldisc.flush_buffer)
2437 tty->ldisc.flush_buffer(tty);
2439 /* Fall Thru */
2440 case DIGI_SETA:
2441 if (copy_from_user(&ch->digiext, argp, sizeof(digi_t)))
2442 return -EFAULT;
2444 if (ch->digiext.digi_flags & DIGI_ALTPIN) {
2445 ch->dcd = ch->m_dsr;
2446 ch->dsr = ch->m_dcd;
2447 } else {
2448 ch->dcd = ch->m_dcd;
2449 ch->dsr = ch->m_dsr;
2452 spin_lock_irqsave(&epca_lock, flags);
2453 globalwinon(ch);
2455 /* -----------------------------------------------------------------
2456 The below routine generally sets up parity, baud, flow control
2457 issues, etc.... It effect both control flags and input flags.
2458 ------------------------------------------------------------------- */
2460 epcaparam(tty,ch);
2461 memoff(ch);
2462 spin_unlock_irqrestore(&epca_lock, flags);
2463 break;
2465 case DIGI_GETFLOW:
2466 case DIGI_GETAFLOW:
2467 spin_lock_irqsave(&epca_lock, flags);
2468 globalwinon(ch);
2469 if (cmd == DIGI_GETFLOW) {
2470 dflow.startc = readb(&bc->startc);
2471 dflow.stopc = readb(&bc->stopc);
2472 } else {
2473 dflow.startc = readb(&bc->startca);
2474 dflow.stopc = readb(&bc->stopca);
2476 memoff(ch);
2477 spin_unlock_irqrestore(&epca_lock, flags);
2479 if (copy_to_user(argp, &dflow, sizeof(dflow)))
2480 return -EFAULT;
2481 break;
2483 case DIGI_SETAFLOW:
2484 case DIGI_SETFLOW:
2485 if (cmd == DIGI_SETFLOW) {
2486 startc = ch->startc;
2487 stopc = ch->stopc;
2488 } else {
2489 startc = ch->startca;
2490 stopc = ch->stopca;
2493 if (copy_from_user(&dflow, argp, sizeof(dflow)))
2494 return -EFAULT;
2496 if (dflow.startc != startc || dflow.stopc != stopc) { /* Begin if setflow toggled */
2497 spin_lock_irqsave(&epca_lock, flags);
2498 globalwinon(ch);
2500 if (cmd == DIGI_SETFLOW) {
2501 ch->fepstartc = ch->startc = dflow.startc;
2502 ch->fepstopc = ch->stopc = dflow.stopc;
2503 fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1);
2504 } else {
2505 ch->fepstartca = ch->startca = dflow.startc;
2506 ch->fepstopca = ch->stopca = dflow.stopc;
2507 fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1);
2510 if (ch->statusflags & TXSTOPPED)
2511 pc_start(tty);
2513 memoff(ch);
2514 spin_unlock_irqrestore(&epca_lock, flags);
2515 } /* End if setflow toggled */
2516 break;
2517 default:
2518 return -ENOIOCTLCMD;
2519 } /* End switch cmd */
2520 return 0;
2521 } /* End pc_ioctl */
2523 /* --------------------- Begin pc_set_termios ----------------------- */
2525 static void pc_set_termios(struct tty_struct *tty, struct termios *old_termios)
2526 { /* Begin pc_set_termios */
2528 struct channel *ch;
2529 unsigned long flags;
2530 /* ---------------------------------------------------------
2531 verifyChannel returns the channel from the tty struct
2532 if it is valid. This serves as a sanity check.
2533 ------------------------------------------------------------- */
2534 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2535 spin_lock_irqsave(&epca_lock, flags);
2536 globalwinon(ch);
2537 epcaparam(tty, ch);
2538 memoff(ch);
2539 spin_unlock_irqrestore(&epca_lock, flags);
2541 if ((old_termios->c_cflag & CRTSCTS) &&
2542 ((tty->termios->c_cflag & CRTSCTS) == 0))
2543 tty->hw_stopped = 0;
2545 if (!(old_termios->c_cflag & CLOCAL) &&
2546 (tty->termios->c_cflag & CLOCAL))
2547 wake_up_interruptible(&ch->open_wait);
2549 } /* End if channel valid */
2551 } /* End pc_set_termios */
2553 /* --------------------- Begin do_softint ----------------------- */
2555 static void do_softint(void *private_)
2556 { /* Begin do_softint */
2557 struct channel *ch = (struct channel *) private_;
2558 /* Called in response to a modem change event */
2559 if (ch && ch->magic == EPCA_MAGIC) { /* Begin EPCA_MAGIC */
2560 struct tty_struct *tty = ch->tty;
2562 if (tty && tty->driver_data) {
2563 if (test_and_clear_bit(EPCA_EVENT_HANGUP, &ch->event)) { /* Begin if clear_bit */
2564 tty_hangup(tty); /* FIXME: module removal race here - AKPM */
2565 wake_up_interruptible(&ch->open_wait);
2566 ch->asyncflags &= ~ASYNC_NORMAL_ACTIVE;
2567 } /* End if clear_bit */
2569 } /* End EPCA_MAGIC */
2570 } /* End do_softint */
2572 /* ------------------------------------------------------------
2573 pc_stop and pc_start provide software flow control to the
2574 routine and the pc_ioctl routine.
2575 ---------------------------------------------------------------- */
2577 /* --------------------- Begin pc_stop ----------------------- */
2579 static void pc_stop(struct tty_struct *tty)
2580 { /* Begin pc_stop */
2582 struct channel *ch;
2583 unsigned long flags;
2584 /* ---------------------------------------------------------
2585 verifyChannel returns the channel from the tty struct
2586 if it is valid. This serves as a sanity check.
2587 ------------------------------------------------------------- */
2588 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if valid channel */
2589 spin_lock_irqsave(&epca_lock, flags);
2590 if ((ch->statusflags & TXSTOPPED) == 0) { /* Begin if transmit stop requested */
2591 globalwinon(ch);
2592 /* STOP transmitting now !! */
2593 fepcmd(ch, PAUSETX, 0, 0, 0, 0);
2594 ch->statusflags |= TXSTOPPED;
2595 memoff(ch);
2596 } /* End if transmit stop requested */
2597 spin_unlock_irqrestore(&epca_lock, flags);
2598 } /* End if valid channel */
2599 } /* End pc_stop */
2601 /* --------------------- Begin pc_start ----------------------- */
2603 static void pc_start(struct tty_struct *tty)
2604 { /* Begin pc_start */
2605 struct channel *ch;
2606 /* ---------------------------------------------------------
2607 verifyChannel returns the channel from the tty struct
2608 if it is valid. This serves as a sanity check.
2609 ------------------------------------------------------------- */
2610 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2611 unsigned long flags;
2612 spin_lock_irqsave(&epca_lock, flags);
2613 /* Just in case output was resumed because of a change in Digi-flow */
2614 if (ch->statusflags & TXSTOPPED) { /* Begin transmit resume requested */
2615 struct board_chan __iomem *bc;
2616 globalwinon(ch);
2617 bc = ch->brdchan;
2618 if (ch->statusflags & LOWWAIT)
2619 writeb(1, &bc->ilow);
2620 /* Okay, you can start transmitting again... */
2621 fepcmd(ch, RESUMETX, 0, 0, 0, 0);
2622 ch->statusflags &= ~TXSTOPPED;
2623 memoff(ch);
2624 } /* End transmit resume requested */
2625 spin_unlock_irqrestore(&epca_lock, flags);
2626 } /* End if channel valid */
2627 } /* End pc_start */
2629 /* ------------------------------------------------------------------
2630 The below routines pc_throttle and pc_unthrottle are used
2631 to slow (And resume) the receipt of data into the kernels
2632 receive buffers. The exact occurrence of this depends on the
2633 size of the kernels receive buffer and what the 'watermarks'
2634 are set to for that buffer. See the n_ttys.c file for more
2635 details.
2636 ______________________________________________________________________ */
2637 /* --------------------- Begin throttle ----------------------- */
2639 static void pc_throttle(struct tty_struct * tty)
2640 { /* Begin pc_throttle */
2641 struct channel *ch;
2642 unsigned long flags;
2643 /* ---------------------------------------------------------
2644 verifyChannel returns the channel from the tty struct
2645 if it is valid. This serves as a sanity check.
2646 ------------------------------------------------------------- */
2647 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2648 spin_lock_irqsave(&epca_lock, flags);
2649 if ((ch->statusflags & RXSTOPPED) == 0) {
2650 globalwinon(ch);
2651 fepcmd(ch, PAUSERX, 0, 0, 0, 0);
2652 ch->statusflags |= RXSTOPPED;
2653 memoff(ch);
2655 spin_unlock_irqrestore(&epca_lock, flags);
2656 } /* End if channel valid */
2657 } /* End pc_throttle */
2659 /* --------------------- Begin unthrottle ----------------------- */
2661 static void pc_unthrottle(struct tty_struct *tty)
2662 { /* Begin pc_unthrottle */
2663 struct channel *ch;
2664 unsigned long flags;
2665 /* ---------------------------------------------------------
2666 verifyChannel returns the channel from the tty struct
2667 if it is valid. This serves as a sanity check.
2668 ------------------------------------------------------------- */
2669 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2670 /* Just in case output was resumed because of a change in Digi-flow */
2671 spin_lock_irqsave(&epca_lock, flags);
2672 if (ch->statusflags & RXSTOPPED) {
2673 globalwinon(ch);
2674 fepcmd(ch, RESUMERX, 0, 0, 0, 0);
2675 ch->statusflags &= ~RXSTOPPED;
2676 memoff(ch);
2678 spin_unlock_irqrestore(&epca_lock, flags);
2679 } /* End if channel valid */
2680 } /* End pc_unthrottle */
2682 /* --------------------- Begin digi_send_break ----------------------- */
2684 void digi_send_break(struct channel *ch, int msec)
2685 { /* Begin digi_send_break */
2686 unsigned long flags;
2688 spin_lock_irqsave(&epca_lock, flags);
2689 globalwinon(ch);
2690 /* --------------------------------------------------------------------
2691 Maybe I should send an infinite break here, schedule() for
2692 msec amount of time, and then stop the break. This way,
2693 the user can't screw up the FEP by causing digi_send_break()
2694 to be called (i.e. via an ioctl()) more than once in msec amount
2695 of time. Try this for now...
2696 ------------------------------------------------------------------------ */
2697 fepcmd(ch, SENDBREAK, msec, 0, 10, 0);
2698 memoff(ch);
2699 spin_unlock_irqrestore(&epca_lock, flags);
2700 } /* End digi_send_break */
2702 /* --------------------- Begin setup_empty_event ----------------------- */
2704 /* Caller MUST hold the lock */
2706 static void setup_empty_event(struct tty_struct *tty, struct channel *ch)
2707 { /* Begin setup_empty_event */
2709 struct board_chan __iomem *bc = ch->brdchan;
2711 globalwinon(ch);
2712 ch->statusflags |= EMPTYWAIT;
2713 /* ------------------------------------------------------------------
2714 When set the iempty flag request a event to be generated when the
2715 transmit buffer is empty (If there is no BREAK in progress).
2716 --------------------------------------------------------------------- */
2717 writeb(1, &bc->iempty);
2718 memoff(ch);
2719 } /* End setup_empty_event */
2721 /* --------------------- Begin get_termio ----------------------- */
2723 static int get_termio(struct tty_struct * tty, struct termio __user * termio)
2724 { /* Begin get_termio */
2725 return kernel_termios_to_user_termio(termio, tty->termios);
2726 } /* End get_termio */
2728 /* ---------------------- Begin epca_setup -------------------------- */
2729 void epca_setup(char *str, int *ints)
2730 { /* Begin epca_setup */
2731 struct board_info board;
2732 int index, loop, last;
2733 char *temp, *t2;
2734 unsigned len;
2736 /* ----------------------------------------------------------------------
2737 If this routine looks a little strange it is because it is only called
2738 if a LILO append command is given to boot the kernel with parameters.
2739 In this way, we can provide the user a method of changing his board
2740 configuration without rebuilding the kernel.
2741 ----------------------------------------------------------------------- */
2742 if (!liloconfig)
2743 liloconfig = 1;
2745 memset(&board, 0, sizeof(board));
2747 /* Assume the data is int first, later we can change it */
2748 /* I think that array position 0 of ints holds the number of args */
2749 for (last = 0, index = 1; index <= ints[0]; index++)
2750 switch(index)
2751 { /* Begin parse switch */
2752 case 1:
2753 board.status = ints[index];
2754 /* ---------------------------------------------------------
2755 We check for 2 (As opposed to 1; because 2 is a flag
2756 instructing the driver to ignore epcaconfig.) For this
2757 reason we check for 2.
2758 ------------------------------------------------------------ */
2759 if (board.status == 2) { /* Begin ignore epcaconfig as well as lilo cmd line */
2760 nbdevs = 0;
2761 num_cards = 0;
2762 return;
2763 } /* End ignore epcaconfig as well as lilo cmd line */
2765 if (board.status > 2) {
2766 printk(KERN_ERR "epca_setup: Invalid board status 0x%x\n", board.status);
2767 invalid_lilo_config = 1;
2768 setup_error_code |= INVALID_BOARD_STATUS;
2769 return;
2771 last = index;
2772 break;
2773 case 2:
2774 board.type = ints[index];
2775 if (board.type >= PCIXEM) {
2776 printk(KERN_ERR "epca_setup: Invalid board type 0x%x\n", board.type);
2777 invalid_lilo_config = 1;
2778 setup_error_code |= INVALID_BOARD_TYPE;
2779 return;
2781 last = index;
2782 break;
2783 case 3:
2784 board.altpin = ints[index];
2785 if (board.altpin > 1) {
2786 printk(KERN_ERR "epca_setup: Invalid board altpin 0x%x\n", board.altpin);
2787 invalid_lilo_config = 1;
2788 setup_error_code |= INVALID_ALTPIN;
2789 return;
2791 last = index;
2792 break;
2794 case 4:
2795 board.numports = ints[index];
2796 if (board.numports < 2 || board.numports > 256) {
2797 printk(KERN_ERR "epca_setup: Invalid board numports 0x%x\n", board.numports);
2798 invalid_lilo_config = 1;
2799 setup_error_code |= INVALID_NUM_PORTS;
2800 return;
2802 nbdevs += board.numports;
2803 last = index;
2804 break;
2806 case 5:
2807 board.port = ints[index];
2808 if (ints[index] <= 0) {
2809 printk(KERN_ERR "epca_setup: Invalid io port 0x%x\n", (unsigned int)board.port);
2810 invalid_lilo_config = 1;
2811 setup_error_code |= INVALID_PORT_BASE;
2812 return;
2814 last = index;
2815 break;
2817 case 6:
2818 board.membase = ints[index];
2819 if (ints[index] <= 0) {
2820 printk(KERN_ERR "epca_setup: Invalid memory base 0x%x\n",(unsigned int)board.membase);
2821 invalid_lilo_config = 1;
2822 setup_error_code |= INVALID_MEM_BASE;
2823 return;
2825 last = index;
2826 break;
2828 default:
2829 printk(KERN_ERR "<Error> - epca_setup: Too many integer parms\n");
2830 return;
2832 } /* End parse switch */
2834 while (str && *str) { /* Begin while there is a string arg */
2835 /* find the next comma or terminator */
2836 temp = str;
2837 /* While string is not null, and a comma hasn't been found */
2838 while (*temp && (*temp != ','))
2839 temp++;
2840 if (!*temp)
2841 temp = NULL;
2842 else
2843 *temp++ = 0;
2844 /* Set index to the number of args + 1 */
2845 index = last + 1;
2847 switch(index)
2849 case 1:
2850 len = strlen(str);
2851 if (strncmp("Disable", str, len) == 0)
2852 board.status = 0;
2853 else if (strncmp("Enable", str, len) == 0)
2854 board.status = 1;
2855 else {
2856 printk(KERN_ERR "epca_setup: Invalid status %s\n", str);
2857 invalid_lilo_config = 1;
2858 setup_error_code |= INVALID_BOARD_STATUS;
2859 return;
2861 last = index;
2862 break;
2864 case 2:
2865 for(loop = 0; loop < EPCA_NUM_TYPES; loop++)
2866 if (strcmp(board_desc[loop], str) == 0)
2867 break;
2868 /* ---------------------------------------------------------------
2869 If the index incremented above refers to a legitamate board
2870 type set it here.
2871 ------------------------------------------------------------------*/
2872 if (index < EPCA_NUM_TYPES)
2873 board.type = loop;
2874 else {
2875 printk(KERN_ERR "epca_setup: Invalid board type: %s\n", str);
2876 invalid_lilo_config = 1;
2877 setup_error_code |= INVALID_BOARD_TYPE;
2878 return;
2880 last = index;
2881 break;
2883 case 3:
2884 len = strlen(str);
2885 if (strncmp("Disable", str, len) == 0)
2886 board.altpin = 0;
2887 else if (strncmp("Enable", str, len) == 0)
2888 board.altpin = 1;
2889 else {
2890 printk(KERN_ERR "epca_setup: Invalid altpin %s\n", str);
2891 invalid_lilo_config = 1;
2892 setup_error_code |= INVALID_ALTPIN;
2893 return;
2895 last = index;
2896 break;
2898 case 4:
2899 t2 = str;
2900 while (isdigit(*t2))
2901 t2++;
2903 if (*t2) {
2904 printk(KERN_ERR "epca_setup: Invalid port count %s\n", str);
2905 invalid_lilo_config = 1;
2906 setup_error_code |= INVALID_NUM_PORTS;
2907 return;
2910 /* ------------------------------------------------------------
2911 There is not a man page for simple_strtoul but the code can be
2912 found in vsprintf.c. The first argument is the string to
2913 translate (To an unsigned long obviously), the second argument
2914 can be the address of any character variable or a NULL. If a
2915 variable is given, the end pointer of the string will be stored
2916 in that variable; if a NULL is given the end pointer will
2917 not be returned. The last argument is the base to use. If
2918 a 0 is indicated, the routine will attempt to determine the
2919 proper base by looking at the values prefix (A '0' for octal,
2920 a 'x' for hex, etc ... If a value is given it will use that
2921 value as the base.
2922 ---------------------------------------------------------------- */
2923 board.numports = simple_strtoul(str, NULL, 0);
2924 nbdevs += board.numports;
2925 last = index;
2926 break;
2928 case 5:
2929 t2 = str;
2930 while (isxdigit(*t2))
2931 t2++;
2933 if (*t2) {
2934 printk(KERN_ERR "epca_setup: Invalid i/o address %s\n", str);
2935 invalid_lilo_config = 1;
2936 setup_error_code |= INVALID_PORT_BASE;
2937 return;
2940 board.port = simple_strtoul(str, NULL, 16);
2941 last = index;
2942 break;
2944 case 6:
2945 t2 = str;
2946 while (isxdigit(*t2))
2947 t2++;
2949 if (*t2) {
2950 printk(KERN_ERR "epca_setup: Invalid memory base %s\n",str);
2951 invalid_lilo_config = 1;
2952 setup_error_code |= INVALID_MEM_BASE;
2953 return;
2955 board.membase = simple_strtoul(str, NULL, 16);
2956 last = index;
2957 break;
2958 default:
2959 printk(KERN_ERR "epca: Too many string parms\n");
2960 return;
2962 str = temp;
2963 } /* End while there is a string arg */
2965 if (last < 6) {
2966 printk(KERN_ERR "epca: Insufficient parms specified\n");
2967 return;
2970 /* I should REALLY validate the stuff here */
2971 /* Copies our local copy of board into boards */
2972 memcpy((void *)&boards[num_cards],(void *)&board, sizeof(board));
2973 /* Does this get called once per lilo arg are what ? */
2974 printk(KERN_INFO "PC/Xx: Added board %i, %s %i ports at 0x%4.4X base 0x%6.6X\n",
2975 num_cards, board_desc[board.type],
2976 board.numports, (int)board.port, (unsigned int) board.membase);
2977 num_cards++;
2978 } /* End epca_setup */
2981 /* ------------------------ Begin init_PCI --------------------------- */
2983 enum epic_board_types {
2984 brd_xr = 0,
2985 brd_xem,
2986 brd_cx,
2987 brd_xrj,
2991 /* indexed directly by epic_board_types enum */
2992 static struct {
2993 unsigned char board_type;
2994 unsigned bar_idx; /* PCI base address region */
2995 } epca_info_tbl[] = {
2996 { PCIXR, 0, },
2997 { PCIXEM, 0, },
2998 { PCICX, 0, },
2999 { PCIXRJ, 2, },
3002 static int __devinit epca_init_one (struct pci_dev *pdev,
3003 const struct pci_device_id *ent)
3005 static int board_num = -1;
3006 int board_idx, info_idx = ent->driver_data;
3007 unsigned long addr;
3009 if (pci_enable_device(pdev))
3010 return -EIO;
3012 board_num++;
3013 board_idx = board_num + num_cards;
3014 if (board_idx >= MAXBOARDS)
3015 goto err_out;
3017 addr = pci_resource_start (pdev, epca_info_tbl[info_idx].bar_idx);
3018 if (!addr) {
3019 printk (KERN_ERR PFX "PCI region #%d not available (size 0)\n",
3020 epca_info_tbl[info_idx].bar_idx);
3021 goto err_out;
3024 boards[board_idx].status = ENABLED;
3025 boards[board_idx].type = epca_info_tbl[info_idx].board_type;
3026 boards[board_idx].numports = 0x0;
3027 boards[board_idx].port = addr + PCI_IO_OFFSET;
3028 boards[board_idx].membase = addr;
3030 if (!request_mem_region (addr + PCI_IO_OFFSET, 0x200000, "epca")) {
3031 printk (KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
3032 0x200000, addr + PCI_IO_OFFSET);
3033 goto err_out;
3036 boards[board_idx].re_map_port = ioremap(addr + PCI_IO_OFFSET, 0x200000);
3037 if (!boards[board_idx].re_map_port) {
3038 printk (KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
3039 0x200000, addr + PCI_IO_OFFSET);
3040 goto err_out_free_pciio;
3043 if (!request_mem_region (addr, 0x200000, "epca")) {
3044 printk (KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
3045 0x200000, addr);
3046 goto err_out_free_iounmap;
3049 boards[board_idx].re_map_membase = ioremap(addr, 0x200000);
3050 if (!boards[board_idx].re_map_membase) {
3051 printk (KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
3052 0x200000, addr + PCI_IO_OFFSET);
3053 goto err_out_free_memregion;
3056 /* --------------------------------------------------------------
3057 I don't know what the below does, but the hardware guys say
3058 its required on everything except PLX (In this case XRJ).
3059 ---------------------------------------------------------------- */
3060 if (info_idx != brd_xrj) {
3061 pci_write_config_byte(pdev, 0x40, 0);
3062 pci_write_config_byte(pdev, 0x46, 0);
3065 return 0;
3067 err_out_free_memregion:
3068 release_mem_region (addr, 0x200000);
3069 err_out_free_iounmap:
3070 iounmap (boards[board_idx].re_map_port);
3071 err_out_free_pciio:
3072 release_mem_region (addr + PCI_IO_OFFSET, 0x200000);
3073 err_out:
3074 return -ENODEV;
3078 static struct pci_device_id epca_pci_tbl[] = {
3079 { PCI_VENDOR_DIGI, PCI_DEVICE_XR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xr },
3080 { PCI_VENDOR_DIGI, PCI_DEVICE_XEM, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xem },
3081 { PCI_VENDOR_DIGI, PCI_DEVICE_CX, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_cx },
3082 { PCI_VENDOR_DIGI, PCI_DEVICE_XRJ, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xrj },
3083 { 0, }
3086 MODULE_DEVICE_TABLE(pci, epca_pci_tbl);
3088 int __init init_PCI (void)
3089 { /* Begin init_PCI */
3090 memset (&epca_driver, 0, sizeof (epca_driver));
3091 epca_driver.name = "epca";
3092 epca_driver.id_table = epca_pci_tbl;
3093 epca_driver.probe = epca_init_one;
3095 return pci_register_driver(&epca_driver);
3098 MODULE_LICENSE("GPL");