Btrfs: fail to mount if we have problems reading the block groups
[linux-2.6/kvm.git] / fs / btrfs / disk-io.c
blob5ae1c0fcfce0d0a40f941c7c24e540eba1f3d597
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include "compat.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "volumes.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
38 #include "locking.h"
39 #include "tree-log.h"
40 #include "free-space-cache.h"
42 static struct extent_io_ops btree_extent_io_ops;
43 static void end_workqueue_fn(struct btrfs_work *work);
44 static void free_fs_root(struct btrfs_root *root);
46 static atomic_t btrfs_bdi_num = ATOMIC_INIT(0);
49 * end_io_wq structs are used to do processing in task context when an IO is
50 * complete. This is used during reads to verify checksums, and it is used
51 * by writes to insert metadata for new file extents after IO is complete.
53 struct end_io_wq {
54 struct bio *bio;
55 bio_end_io_t *end_io;
56 void *private;
57 struct btrfs_fs_info *info;
58 int error;
59 int metadata;
60 struct list_head list;
61 struct btrfs_work work;
65 * async submit bios are used to offload expensive checksumming
66 * onto the worker threads. They checksum file and metadata bios
67 * just before they are sent down the IO stack.
69 struct async_submit_bio {
70 struct inode *inode;
71 struct bio *bio;
72 struct list_head list;
73 extent_submit_bio_hook_t *submit_bio_start;
74 extent_submit_bio_hook_t *submit_bio_done;
75 int rw;
76 int mirror_num;
77 unsigned long bio_flags;
78 struct btrfs_work work;
81 /* These are used to set the lockdep class on the extent buffer locks.
82 * The class is set by the readpage_end_io_hook after the buffer has
83 * passed csum validation but before the pages are unlocked.
85 * The lockdep class is also set by btrfs_init_new_buffer on freshly
86 * allocated blocks.
88 * The class is based on the level in the tree block, which allows lockdep
89 * to know that lower nodes nest inside the locks of higher nodes.
91 * We also add a check to make sure the highest level of the tree is
92 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
93 * code needs update as well.
95 #ifdef CONFIG_DEBUG_LOCK_ALLOC
96 # if BTRFS_MAX_LEVEL != 8
97 # error
98 # endif
99 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
100 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
101 /* leaf */
102 "btrfs-extent-00",
103 "btrfs-extent-01",
104 "btrfs-extent-02",
105 "btrfs-extent-03",
106 "btrfs-extent-04",
107 "btrfs-extent-05",
108 "btrfs-extent-06",
109 "btrfs-extent-07",
110 /* highest possible level */
111 "btrfs-extent-08",
113 #endif
116 * extents on the btree inode are pretty simple, there's one extent
117 * that covers the entire device
119 static struct extent_map *btree_get_extent(struct inode *inode,
120 struct page *page, size_t page_offset, u64 start, u64 len,
121 int create)
123 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
124 struct extent_map *em;
125 int ret;
127 read_lock(&em_tree->lock);
128 em = lookup_extent_mapping(em_tree, start, len);
129 if (em) {
130 em->bdev =
131 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
132 read_unlock(&em_tree->lock);
133 goto out;
135 read_unlock(&em_tree->lock);
137 em = alloc_extent_map(GFP_NOFS);
138 if (!em) {
139 em = ERR_PTR(-ENOMEM);
140 goto out;
142 em->start = 0;
143 em->len = (u64)-1;
144 em->block_len = (u64)-1;
145 em->block_start = 0;
146 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
148 write_lock(&em_tree->lock);
149 ret = add_extent_mapping(em_tree, em);
150 if (ret == -EEXIST) {
151 u64 failed_start = em->start;
152 u64 failed_len = em->len;
154 free_extent_map(em);
155 em = lookup_extent_mapping(em_tree, start, len);
156 if (em) {
157 ret = 0;
158 } else {
159 em = lookup_extent_mapping(em_tree, failed_start,
160 failed_len);
161 ret = -EIO;
163 } else if (ret) {
164 free_extent_map(em);
165 em = NULL;
167 write_unlock(&em_tree->lock);
169 if (ret)
170 em = ERR_PTR(ret);
171 out:
172 return em;
175 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
177 return crc32c(seed, data, len);
180 void btrfs_csum_final(u32 crc, char *result)
182 *(__le32 *)result = ~cpu_to_le32(crc);
186 * compute the csum for a btree block, and either verify it or write it
187 * into the csum field of the block.
189 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
190 int verify)
192 u16 csum_size =
193 btrfs_super_csum_size(&root->fs_info->super_copy);
194 char *result = NULL;
195 unsigned long len;
196 unsigned long cur_len;
197 unsigned long offset = BTRFS_CSUM_SIZE;
198 char *map_token = NULL;
199 char *kaddr;
200 unsigned long map_start;
201 unsigned long map_len;
202 int err;
203 u32 crc = ~(u32)0;
204 unsigned long inline_result;
206 len = buf->len - offset;
207 while (len > 0) {
208 err = map_private_extent_buffer(buf, offset, 32,
209 &map_token, &kaddr,
210 &map_start, &map_len, KM_USER0);
211 if (err)
212 return 1;
213 cur_len = min(len, map_len - (offset - map_start));
214 crc = btrfs_csum_data(root, kaddr + offset - map_start,
215 crc, cur_len);
216 len -= cur_len;
217 offset += cur_len;
218 unmap_extent_buffer(buf, map_token, KM_USER0);
220 if (csum_size > sizeof(inline_result)) {
221 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
222 if (!result)
223 return 1;
224 } else {
225 result = (char *)&inline_result;
228 btrfs_csum_final(crc, result);
230 if (verify) {
231 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
232 u32 val;
233 u32 found = 0;
234 memcpy(&found, result, csum_size);
236 read_extent_buffer(buf, &val, 0, csum_size);
237 if (printk_ratelimit()) {
238 printk(KERN_INFO "btrfs: %s checksum verify "
239 "failed on %llu wanted %X found %X "
240 "level %d\n",
241 root->fs_info->sb->s_id,
242 (unsigned long long)buf->start, val, found,
243 btrfs_header_level(buf));
245 if (result != (char *)&inline_result)
246 kfree(result);
247 return 1;
249 } else {
250 write_extent_buffer(buf, result, 0, csum_size);
252 if (result != (char *)&inline_result)
253 kfree(result);
254 return 0;
258 * we can't consider a given block up to date unless the transid of the
259 * block matches the transid in the parent node's pointer. This is how we
260 * detect blocks that either didn't get written at all or got written
261 * in the wrong place.
263 static int verify_parent_transid(struct extent_io_tree *io_tree,
264 struct extent_buffer *eb, u64 parent_transid)
266 struct extent_state *cached_state = NULL;
267 int ret;
269 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
270 return 0;
272 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
273 0, &cached_state, GFP_NOFS);
274 if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
275 btrfs_header_generation(eb) == parent_transid) {
276 ret = 0;
277 goto out;
279 if (printk_ratelimit()) {
280 printk("parent transid verify failed on %llu wanted %llu "
281 "found %llu\n",
282 (unsigned long long)eb->start,
283 (unsigned long long)parent_transid,
284 (unsigned long long)btrfs_header_generation(eb));
286 ret = 1;
287 clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
288 out:
289 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
290 &cached_state, GFP_NOFS);
291 return ret;
295 * helper to read a given tree block, doing retries as required when
296 * the checksums don't match and we have alternate mirrors to try.
298 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
299 struct extent_buffer *eb,
300 u64 start, u64 parent_transid)
302 struct extent_io_tree *io_tree;
303 int ret;
304 int num_copies = 0;
305 int mirror_num = 0;
307 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
308 while (1) {
309 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
310 btree_get_extent, mirror_num);
311 if (!ret &&
312 !verify_parent_transid(io_tree, eb, parent_transid))
313 return ret;
315 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
316 eb->start, eb->len);
317 if (num_copies == 1)
318 return ret;
320 mirror_num++;
321 if (mirror_num > num_copies)
322 return ret;
324 return -EIO;
328 * checksum a dirty tree block before IO. This has extra checks to make sure
329 * we only fill in the checksum field in the first page of a multi-page block
332 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
334 struct extent_io_tree *tree;
335 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
336 u64 found_start;
337 int found_level;
338 unsigned long len;
339 struct extent_buffer *eb;
340 int ret;
342 tree = &BTRFS_I(page->mapping->host)->io_tree;
344 if (page->private == EXTENT_PAGE_PRIVATE)
345 goto out;
346 if (!page->private)
347 goto out;
348 len = page->private >> 2;
349 WARN_ON(len == 0);
351 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
352 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
353 btrfs_header_generation(eb));
354 BUG_ON(ret);
355 found_start = btrfs_header_bytenr(eb);
356 if (found_start != start) {
357 WARN_ON(1);
358 goto err;
360 if (eb->first_page != page) {
361 WARN_ON(1);
362 goto err;
364 if (!PageUptodate(page)) {
365 WARN_ON(1);
366 goto err;
368 found_level = btrfs_header_level(eb);
370 csum_tree_block(root, eb, 0);
371 err:
372 free_extent_buffer(eb);
373 out:
374 return 0;
377 static int check_tree_block_fsid(struct btrfs_root *root,
378 struct extent_buffer *eb)
380 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
381 u8 fsid[BTRFS_UUID_SIZE];
382 int ret = 1;
384 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
385 BTRFS_FSID_SIZE);
386 while (fs_devices) {
387 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
388 ret = 0;
389 break;
391 fs_devices = fs_devices->seed;
393 return ret;
396 #ifdef CONFIG_DEBUG_LOCK_ALLOC
397 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
399 lockdep_set_class_and_name(&eb->lock,
400 &btrfs_eb_class[level],
401 btrfs_eb_name[level]);
403 #endif
405 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
406 struct extent_state *state)
408 struct extent_io_tree *tree;
409 u64 found_start;
410 int found_level;
411 unsigned long len;
412 struct extent_buffer *eb;
413 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
414 int ret = 0;
416 tree = &BTRFS_I(page->mapping->host)->io_tree;
417 if (page->private == EXTENT_PAGE_PRIVATE)
418 goto out;
419 if (!page->private)
420 goto out;
422 len = page->private >> 2;
423 WARN_ON(len == 0);
425 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
427 found_start = btrfs_header_bytenr(eb);
428 if (found_start != start) {
429 if (printk_ratelimit()) {
430 printk(KERN_INFO "btrfs bad tree block start "
431 "%llu %llu\n",
432 (unsigned long long)found_start,
433 (unsigned long long)eb->start);
435 ret = -EIO;
436 goto err;
438 if (eb->first_page != page) {
439 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
440 eb->first_page->index, page->index);
441 WARN_ON(1);
442 ret = -EIO;
443 goto err;
445 if (check_tree_block_fsid(root, eb)) {
446 if (printk_ratelimit()) {
447 printk(KERN_INFO "btrfs bad fsid on block %llu\n",
448 (unsigned long long)eb->start);
450 ret = -EIO;
451 goto err;
453 found_level = btrfs_header_level(eb);
455 btrfs_set_buffer_lockdep_class(eb, found_level);
457 ret = csum_tree_block(root, eb, 1);
458 if (ret)
459 ret = -EIO;
461 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
462 end = eb->start + end - 1;
463 err:
464 free_extent_buffer(eb);
465 out:
466 return ret;
469 static void end_workqueue_bio(struct bio *bio, int err)
471 struct end_io_wq *end_io_wq = bio->bi_private;
472 struct btrfs_fs_info *fs_info;
474 fs_info = end_io_wq->info;
475 end_io_wq->error = err;
476 end_io_wq->work.func = end_workqueue_fn;
477 end_io_wq->work.flags = 0;
479 if (bio->bi_rw & (1 << BIO_RW)) {
480 if (end_io_wq->metadata)
481 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
482 &end_io_wq->work);
483 else
484 btrfs_queue_worker(&fs_info->endio_write_workers,
485 &end_io_wq->work);
486 } else {
487 if (end_io_wq->metadata)
488 btrfs_queue_worker(&fs_info->endio_meta_workers,
489 &end_io_wq->work);
490 else
491 btrfs_queue_worker(&fs_info->endio_workers,
492 &end_io_wq->work);
496 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
497 int metadata)
499 struct end_io_wq *end_io_wq;
500 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
501 if (!end_io_wq)
502 return -ENOMEM;
504 end_io_wq->private = bio->bi_private;
505 end_io_wq->end_io = bio->bi_end_io;
506 end_io_wq->info = info;
507 end_io_wq->error = 0;
508 end_io_wq->bio = bio;
509 end_io_wq->metadata = metadata;
511 bio->bi_private = end_io_wq;
512 bio->bi_end_io = end_workqueue_bio;
513 return 0;
516 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
518 unsigned long limit = min_t(unsigned long,
519 info->workers.max_workers,
520 info->fs_devices->open_devices);
521 return 256 * limit;
524 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
526 return atomic_read(&info->nr_async_bios) >
527 btrfs_async_submit_limit(info);
530 static void run_one_async_start(struct btrfs_work *work)
532 struct btrfs_fs_info *fs_info;
533 struct async_submit_bio *async;
535 async = container_of(work, struct async_submit_bio, work);
536 fs_info = BTRFS_I(async->inode)->root->fs_info;
537 async->submit_bio_start(async->inode, async->rw, async->bio,
538 async->mirror_num, async->bio_flags);
541 static void run_one_async_done(struct btrfs_work *work)
543 struct btrfs_fs_info *fs_info;
544 struct async_submit_bio *async;
545 int limit;
547 async = container_of(work, struct async_submit_bio, work);
548 fs_info = BTRFS_I(async->inode)->root->fs_info;
550 limit = btrfs_async_submit_limit(fs_info);
551 limit = limit * 2 / 3;
553 atomic_dec(&fs_info->nr_async_submits);
555 if (atomic_read(&fs_info->nr_async_submits) < limit &&
556 waitqueue_active(&fs_info->async_submit_wait))
557 wake_up(&fs_info->async_submit_wait);
559 async->submit_bio_done(async->inode, async->rw, async->bio,
560 async->mirror_num, async->bio_flags);
563 static void run_one_async_free(struct btrfs_work *work)
565 struct async_submit_bio *async;
567 async = container_of(work, struct async_submit_bio, work);
568 kfree(async);
571 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
572 int rw, struct bio *bio, int mirror_num,
573 unsigned long bio_flags,
574 extent_submit_bio_hook_t *submit_bio_start,
575 extent_submit_bio_hook_t *submit_bio_done)
577 struct async_submit_bio *async;
579 async = kmalloc(sizeof(*async), GFP_NOFS);
580 if (!async)
581 return -ENOMEM;
583 async->inode = inode;
584 async->rw = rw;
585 async->bio = bio;
586 async->mirror_num = mirror_num;
587 async->submit_bio_start = submit_bio_start;
588 async->submit_bio_done = submit_bio_done;
590 async->work.func = run_one_async_start;
591 async->work.ordered_func = run_one_async_done;
592 async->work.ordered_free = run_one_async_free;
594 async->work.flags = 0;
595 async->bio_flags = bio_flags;
597 atomic_inc(&fs_info->nr_async_submits);
599 if (rw & (1 << BIO_RW_SYNCIO))
600 btrfs_set_work_high_prio(&async->work);
602 btrfs_queue_worker(&fs_info->workers, &async->work);
604 while (atomic_read(&fs_info->async_submit_draining) &&
605 atomic_read(&fs_info->nr_async_submits)) {
606 wait_event(fs_info->async_submit_wait,
607 (atomic_read(&fs_info->nr_async_submits) == 0));
610 return 0;
613 static int btree_csum_one_bio(struct bio *bio)
615 struct bio_vec *bvec = bio->bi_io_vec;
616 int bio_index = 0;
617 struct btrfs_root *root;
619 WARN_ON(bio->bi_vcnt <= 0);
620 while (bio_index < bio->bi_vcnt) {
621 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
622 csum_dirty_buffer(root, bvec->bv_page);
623 bio_index++;
624 bvec++;
626 return 0;
629 static int __btree_submit_bio_start(struct inode *inode, int rw,
630 struct bio *bio, int mirror_num,
631 unsigned long bio_flags)
634 * when we're called for a write, we're already in the async
635 * submission context. Just jump into btrfs_map_bio
637 btree_csum_one_bio(bio);
638 return 0;
641 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
642 int mirror_num, unsigned long bio_flags)
645 * when we're called for a write, we're already in the async
646 * submission context. Just jump into btrfs_map_bio
648 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
651 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
652 int mirror_num, unsigned long bio_flags)
654 int ret;
656 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
657 bio, 1);
658 BUG_ON(ret);
660 if (!(rw & (1 << BIO_RW))) {
662 * called for a read, do the setup so that checksum validation
663 * can happen in the async kernel threads
665 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
666 mirror_num, 0);
670 * kthread helpers are used to submit writes so that checksumming
671 * can happen in parallel across all CPUs
673 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
674 inode, rw, bio, mirror_num, 0,
675 __btree_submit_bio_start,
676 __btree_submit_bio_done);
679 static int btree_writepage(struct page *page, struct writeback_control *wbc)
681 struct extent_io_tree *tree;
682 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
683 struct extent_buffer *eb;
684 int was_dirty;
686 tree = &BTRFS_I(page->mapping->host)->io_tree;
687 if (!(current->flags & PF_MEMALLOC)) {
688 return extent_write_full_page(tree, page,
689 btree_get_extent, wbc);
692 redirty_page_for_writepage(wbc, page);
693 eb = btrfs_find_tree_block(root, page_offset(page),
694 PAGE_CACHE_SIZE);
695 WARN_ON(!eb);
697 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
698 if (!was_dirty) {
699 spin_lock(&root->fs_info->delalloc_lock);
700 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
701 spin_unlock(&root->fs_info->delalloc_lock);
703 free_extent_buffer(eb);
705 unlock_page(page);
706 return 0;
709 static int btree_writepages(struct address_space *mapping,
710 struct writeback_control *wbc)
712 struct extent_io_tree *tree;
713 tree = &BTRFS_I(mapping->host)->io_tree;
714 if (wbc->sync_mode == WB_SYNC_NONE) {
715 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
716 u64 num_dirty;
717 unsigned long thresh = 32 * 1024 * 1024;
719 if (wbc->for_kupdate)
720 return 0;
722 /* this is a bit racy, but that's ok */
723 num_dirty = root->fs_info->dirty_metadata_bytes;
724 if (num_dirty < thresh)
725 return 0;
727 return extent_writepages(tree, mapping, btree_get_extent, wbc);
730 static int btree_readpage(struct file *file, struct page *page)
732 struct extent_io_tree *tree;
733 tree = &BTRFS_I(page->mapping->host)->io_tree;
734 return extent_read_full_page(tree, page, btree_get_extent);
737 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
739 struct extent_io_tree *tree;
740 struct extent_map_tree *map;
741 int ret;
743 if (PageWriteback(page) || PageDirty(page))
744 return 0;
746 tree = &BTRFS_I(page->mapping->host)->io_tree;
747 map = &BTRFS_I(page->mapping->host)->extent_tree;
749 ret = try_release_extent_state(map, tree, page, gfp_flags);
750 if (!ret)
751 return 0;
753 ret = try_release_extent_buffer(tree, page);
754 if (ret == 1) {
755 ClearPagePrivate(page);
756 set_page_private(page, 0);
757 page_cache_release(page);
760 return ret;
763 static void btree_invalidatepage(struct page *page, unsigned long offset)
765 struct extent_io_tree *tree;
766 tree = &BTRFS_I(page->mapping->host)->io_tree;
767 extent_invalidatepage(tree, page, offset);
768 btree_releasepage(page, GFP_NOFS);
769 if (PagePrivate(page)) {
770 printk(KERN_WARNING "btrfs warning page private not zero "
771 "on page %llu\n", (unsigned long long)page_offset(page));
772 ClearPagePrivate(page);
773 set_page_private(page, 0);
774 page_cache_release(page);
778 static const struct address_space_operations btree_aops = {
779 .readpage = btree_readpage,
780 .writepage = btree_writepage,
781 .writepages = btree_writepages,
782 .releasepage = btree_releasepage,
783 .invalidatepage = btree_invalidatepage,
784 .sync_page = block_sync_page,
787 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
788 u64 parent_transid)
790 struct extent_buffer *buf = NULL;
791 struct inode *btree_inode = root->fs_info->btree_inode;
792 int ret = 0;
794 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
795 if (!buf)
796 return 0;
797 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
798 buf, 0, 0, btree_get_extent, 0);
799 free_extent_buffer(buf);
800 return ret;
803 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
804 u64 bytenr, u32 blocksize)
806 struct inode *btree_inode = root->fs_info->btree_inode;
807 struct extent_buffer *eb;
808 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
809 bytenr, blocksize, GFP_NOFS);
810 return eb;
813 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
814 u64 bytenr, u32 blocksize)
816 struct inode *btree_inode = root->fs_info->btree_inode;
817 struct extent_buffer *eb;
819 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
820 bytenr, blocksize, NULL, GFP_NOFS);
821 return eb;
825 int btrfs_write_tree_block(struct extent_buffer *buf)
827 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
828 buf->start + buf->len - 1);
831 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
833 return filemap_fdatawait_range(buf->first_page->mapping,
834 buf->start, buf->start + buf->len - 1);
837 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
838 u32 blocksize, u64 parent_transid)
840 struct extent_buffer *buf = NULL;
841 struct inode *btree_inode = root->fs_info->btree_inode;
842 struct extent_io_tree *io_tree;
843 int ret;
845 io_tree = &BTRFS_I(btree_inode)->io_tree;
847 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
848 if (!buf)
849 return NULL;
851 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
853 if (ret == 0)
854 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
855 return buf;
859 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
860 struct extent_buffer *buf)
862 struct inode *btree_inode = root->fs_info->btree_inode;
863 if (btrfs_header_generation(buf) ==
864 root->fs_info->running_transaction->transid) {
865 btrfs_assert_tree_locked(buf);
867 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
868 spin_lock(&root->fs_info->delalloc_lock);
869 if (root->fs_info->dirty_metadata_bytes >= buf->len)
870 root->fs_info->dirty_metadata_bytes -= buf->len;
871 else
872 WARN_ON(1);
873 spin_unlock(&root->fs_info->delalloc_lock);
876 /* ugh, clear_extent_buffer_dirty needs to lock the page */
877 btrfs_set_lock_blocking(buf);
878 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
879 buf);
881 return 0;
884 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
885 u32 stripesize, struct btrfs_root *root,
886 struct btrfs_fs_info *fs_info,
887 u64 objectid)
889 root->node = NULL;
890 root->commit_root = NULL;
891 root->sectorsize = sectorsize;
892 root->nodesize = nodesize;
893 root->leafsize = leafsize;
894 root->stripesize = stripesize;
895 root->ref_cows = 0;
896 root->track_dirty = 0;
897 root->in_radix = 0;
898 root->clean_orphans = 0;
900 root->fs_info = fs_info;
901 root->objectid = objectid;
902 root->last_trans = 0;
903 root->highest_objectid = 0;
904 root->name = NULL;
905 root->in_sysfs = 0;
906 root->inode_tree = RB_ROOT;
908 INIT_LIST_HEAD(&root->dirty_list);
909 INIT_LIST_HEAD(&root->orphan_list);
910 INIT_LIST_HEAD(&root->root_list);
911 spin_lock_init(&root->node_lock);
912 spin_lock_init(&root->list_lock);
913 spin_lock_init(&root->inode_lock);
914 mutex_init(&root->objectid_mutex);
915 mutex_init(&root->log_mutex);
916 init_waitqueue_head(&root->log_writer_wait);
917 init_waitqueue_head(&root->log_commit_wait[0]);
918 init_waitqueue_head(&root->log_commit_wait[1]);
919 atomic_set(&root->log_commit[0], 0);
920 atomic_set(&root->log_commit[1], 0);
921 atomic_set(&root->log_writers, 0);
922 root->log_batch = 0;
923 root->log_transid = 0;
924 root->last_log_commit = 0;
925 extent_io_tree_init(&root->dirty_log_pages,
926 fs_info->btree_inode->i_mapping, GFP_NOFS);
928 memset(&root->root_key, 0, sizeof(root->root_key));
929 memset(&root->root_item, 0, sizeof(root->root_item));
930 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
931 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
932 root->defrag_trans_start = fs_info->generation;
933 init_completion(&root->kobj_unregister);
934 root->defrag_running = 0;
935 root->root_key.objectid = objectid;
936 root->anon_super.s_root = NULL;
937 root->anon_super.s_dev = 0;
938 INIT_LIST_HEAD(&root->anon_super.s_list);
939 INIT_LIST_HEAD(&root->anon_super.s_instances);
940 init_rwsem(&root->anon_super.s_umount);
942 return 0;
945 static int find_and_setup_root(struct btrfs_root *tree_root,
946 struct btrfs_fs_info *fs_info,
947 u64 objectid,
948 struct btrfs_root *root)
950 int ret;
951 u32 blocksize;
952 u64 generation;
954 __setup_root(tree_root->nodesize, tree_root->leafsize,
955 tree_root->sectorsize, tree_root->stripesize,
956 root, fs_info, objectid);
957 ret = btrfs_find_last_root(tree_root, objectid,
958 &root->root_item, &root->root_key);
959 if (ret > 0)
960 return -ENOENT;
961 BUG_ON(ret);
963 generation = btrfs_root_generation(&root->root_item);
964 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
965 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
966 blocksize, generation);
967 BUG_ON(!root->node);
968 root->commit_root = btrfs_root_node(root);
969 return 0;
972 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
973 struct btrfs_fs_info *fs_info)
975 struct extent_buffer *eb;
976 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
977 u64 start = 0;
978 u64 end = 0;
979 int ret;
981 if (!log_root_tree)
982 return 0;
984 while (1) {
985 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
986 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
987 if (ret)
988 break;
990 clear_extent_bits(&log_root_tree->dirty_log_pages, start, end,
991 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
993 eb = fs_info->log_root_tree->node;
995 WARN_ON(btrfs_header_level(eb) != 0);
996 WARN_ON(btrfs_header_nritems(eb) != 0);
998 ret = btrfs_free_reserved_extent(fs_info->tree_root,
999 eb->start, eb->len);
1000 BUG_ON(ret);
1002 free_extent_buffer(eb);
1003 kfree(fs_info->log_root_tree);
1004 fs_info->log_root_tree = NULL;
1005 return 0;
1008 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1009 struct btrfs_fs_info *fs_info)
1011 struct btrfs_root *root;
1012 struct btrfs_root *tree_root = fs_info->tree_root;
1013 struct extent_buffer *leaf;
1015 root = kzalloc(sizeof(*root), GFP_NOFS);
1016 if (!root)
1017 return ERR_PTR(-ENOMEM);
1019 __setup_root(tree_root->nodesize, tree_root->leafsize,
1020 tree_root->sectorsize, tree_root->stripesize,
1021 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1023 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1024 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1025 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1027 * log trees do not get reference counted because they go away
1028 * before a real commit is actually done. They do store pointers
1029 * to file data extents, and those reference counts still get
1030 * updated (along with back refs to the log tree).
1032 root->ref_cows = 0;
1034 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1035 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1036 if (IS_ERR(leaf)) {
1037 kfree(root);
1038 return ERR_CAST(leaf);
1041 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1042 btrfs_set_header_bytenr(leaf, leaf->start);
1043 btrfs_set_header_generation(leaf, trans->transid);
1044 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1045 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1046 root->node = leaf;
1048 write_extent_buffer(root->node, root->fs_info->fsid,
1049 (unsigned long)btrfs_header_fsid(root->node),
1050 BTRFS_FSID_SIZE);
1051 btrfs_mark_buffer_dirty(root->node);
1052 btrfs_tree_unlock(root->node);
1053 return root;
1056 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1057 struct btrfs_fs_info *fs_info)
1059 struct btrfs_root *log_root;
1061 log_root = alloc_log_tree(trans, fs_info);
1062 if (IS_ERR(log_root))
1063 return PTR_ERR(log_root);
1064 WARN_ON(fs_info->log_root_tree);
1065 fs_info->log_root_tree = log_root;
1066 return 0;
1069 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1070 struct btrfs_root *root)
1072 struct btrfs_root *log_root;
1073 struct btrfs_inode_item *inode_item;
1075 log_root = alloc_log_tree(trans, root->fs_info);
1076 if (IS_ERR(log_root))
1077 return PTR_ERR(log_root);
1079 log_root->last_trans = trans->transid;
1080 log_root->root_key.offset = root->root_key.objectid;
1082 inode_item = &log_root->root_item.inode;
1083 inode_item->generation = cpu_to_le64(1);
1084 inode_item->size = cpu_to_le64(3);
1085 inode_item->nlink = cpu_to_le32(1);
1086 inode_item->nbytes = cpu_to_le64(root->leafsize);
1087 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1089 btrfs_set_root_node(&log_root->root_item, log_root->node);
1091 WARN_ON(root->log_root);
1092 root->log_root = log_root;
1093 root->log_transid = 0;
1094 root->last_log_commit = 0;
1095 return 0;
1098 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1099 struct btrfs_key *location)
1101 struct btrfs_root *root;
1102 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1103 struct btrfs_path *path;
1104 struct extent_buffer *l;
1105 u64 generation;
1106 u32 blocksize;
1107 int ret = 0;
1109 root = kzalloc(sizeof(*root), GFP_NOFS);
1110 if (!root)
1111 return ERR_PTR(-ENOMEM);
1112 if (location->offset == (u64)-1) {
1113 ret = find_and_setup_root(tree_root, fs_info,
1114 location->objectid, root);
1115 if (ret) {
1116 kfree(root);
1117 return ERR_PTR(ret);
1119 goto out;
1122 __setup_root(tree_root->nodesize, tree_root->leafsize,
1123 tree_root->sectorsize, tree_root->stripesize,
1124 root, fs_info, location->objectid);
1126 path = btrfs_alloc_path();
1127 BUG_ON(!path);
1128 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1129 if (ret == 0) {
1130 l = path->nodes[0];
1131 read_extent_buffer(l, &root->root_item,
1132 btrfs_item_ptr_offset(l, path->slots[0]),
1133 sizeof(root->root_item));
1134 memcpy(&root->root_key, location, sizeof(*location));
1136 btrfs_free_path(path);
1137 if (ret) {
1138 if (ret > 0)
1139 ret = -ENOENT;
1140 return ERR_PTR(ret);
1143 generation = btrfs_root_generation(&root->root_item);
1144 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1145 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1146 blocksize, generation);
1147 root->commit_root = btrfs_root_node(root);
1148 BUG_ON(!root->node);
1149 out:
1150 if (location->objectid != BTRFS_TREE_LOG_OBJECTID)
1151 root->ref_cows = 1;
1153 return root;
1156 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1157 u64 root_objectid)
1159 struct btrfs_root *root;
1161 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1162 return fs_info->tree_root;
1163 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1164 return fs_info->extent_root;
1166 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1167 (unsigned long)root_objectid);
1168 return root;
1171 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1172 struct btrfs_key *location)
1174 struct btrfs_root *root;
1175 int ret;
1177 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1178 return fs_info->tree_root;
1179 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1180 return fs_info->extent_root;
1181 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1182 return fs_info->chunk_root;
1183 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1184 return fs_info->dev_root;
1185 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1186 return fs_info->csum_root;
1187 again:
1188 spin_lock(&fs_info->fs_roots_radix_lock);
1189 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1190 (unsigned long)location->objectid);
1191 spin_unlock(&fs_info->fs_roots_radix_lock);
1192 if (root)
1193 return root;
1195 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1196 if (ret == 0)
1197 ret = -ENOENT;
1198 if (ret < 0)
1199 return ERR_PTR(ret);
1201 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1202 if (IS_ERR(root))
1203 return root;
1205 WARN_ON(btrfs_root_refs(&root->root_item) == 0);
1206 set_anon_super(&root->anon_super, NULL);
1208 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1209 if (ret)
1210 goto fail;
1212 spin_lock(&fs_info->fs_roots_radix_lock);
1213 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1214 (unsigned long)root->root_key.objectid,
1215 root);
1216 if (ret == 0) {
1217 root->in_radix = 1;
1218 root->clean_orphans = 1;
1220 spin_unlock(&fs_info->fs_roots_radix_lock);
1221 radix_tree_preload_end();
1222 if (ret) {
1223 if (ret == -EEXIST) {
1224 free_fs_root(root);
1225 goto again;
1227 goto fail;
1230 ret = btrfs_find_dead_roots(fs_info->tree_root,
1231 root->root_key.objectid);
1232 WARN_ON(ret);
1233 return root;
1234 fail:
1235 free_fs_root(root);
1236 return ERR_PTR(ret);
1239 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1240 struct btrfs_key *location,
1241 const char *name, int namelen)
1243 return btrfs_read_fs_root_no_name(fs_info, location);
1244 #if 0
1245 struct btrfs_root *root;
1246 int ret;
1248 root = btrfs_read_fs_root_no_name(fs_info, location);
1249 if (!root)
1250 return NULL;
1252 if (root->in_sysfs)
1253 return root;
1255 ret = btrfs_set_root_name(root, name, namelen);
1256 if (ret) {
1257 free_extent_buffer(root->node);
1258 kfree(root);
1259 return ERR_PTR(ret);
1262 ret = btrfs_sysfs_add_root(root);
1263 if (ret) {
1264 free_extent_buffer(root->node);
1265 kfree(root->name);
1266 kfree(root);
1267 return ERR_PTR(ret);
1269 root->in_sysfs = 1;
1270 return root;
1271 #endif
1274 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1276 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1277 int ret = 0;
1278 struct btrfs_device *device;
1279 struct backing_dev_info *bdi;
1281 list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1282 if (!device->bdev)
1283 continue;
1284 bdi = blk_get_backing_dev_info(device->bdev);
1285 if (bdi && bdi_congested(bdi, bdi_bits)) {
1286 ret = 1;
1287 break;
1290 return ret;
1294 * this unplugs every device on the box, and it is only used when page
1295 * is null
1297 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1299 struct btrfs_device *device;
1300 struct btrfs_fs_info *info;
1302 info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1303 list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1304 if (!device->bdev)
1305 continue;
1307 bdi = blk_get_backing_dev_info(device->bdev);
1308 if (bdi->unplug_io_fn)
1309 bdi->unplug_io_fn(bdi, page);
1313 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1315 struct inode *inode;
1316 struct extent_map_tree *em_tree;
1317 struct extent_map *em;
1318 struct address_space *mapping;
1319 u64 offset;
1321 /* the generic O_DIRECT read code does this */
1322 if (1 || !page) {
1323 __unplug_io_fn(bdi, page);
1324 return;
1328 * page->mapping may change at any time. Get a consistent copy
1329 * and use that for everything below
1331 smp_mb();
1332 mapping = page->mapping;
1333 if (!mapping)
1334 return;
1336 inode = mapping->host;
1339 * don't do the expensive searching for a small number of
1340 * devices
1342 if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1343 __unplug_io_fn(bdi, page);
1344 return;
1347 offset = page_offset(page);
1349 em_tree = &BTRFS_I(inode)->extent_tree;
1350 read_lock(&em_tree->lock);
1351 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1352 read_unlock(&em_tree->lock);
1353 if (!em) {
1354 __unplug_io_fn(bdi, page);
1355 return;
1358 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1359 free_extent_map(em);
1360 __unplug_io_fn(bdi, page);
1361 return;
1363 offset = offset - em->start;
1364 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1365 em->block_start + offset, page);
1366 free_extent_map(em);
1370 * If this fails, caller must call bdi_destroy() to get rid of the
1371 * bdi again.
1373 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1375 int err;
1377 bdi->name = "btrfs";
1378 bdi->capabilities = BDI_CAP_MAP_COPY;
1379 err = bdi_init(bdi);
1380 if (err)
1381 return err;
1383 err = bdi_register(bdi, NULL, "btrfs-%d",
1384 atomic_inc_return(&btrfs_bdi_num));
1385 if (err) {
1386 bdi_destroy(bdi);
1387 return err;
1390 bdi->ra_pages = default_backing_dev_info.ra_pages;
1391 bdi->unplug_io_fn = btrfs_unplug_io_fn;
1392 bdi->unplug_io_data = info;
1393 bdi->congested_fn = btrfs_congested_fn;
1394 bdi->congested_data = info;
1395 return 0;
1398 static int bio_ready_for_csum(struct bio *bio)
1400 u64 length = 0;
1401 u64 buf_len = 0;
1402 u64 start = 0;
1403 struct page *page;
1404 struct extent_io_tree *io_tree = NULL;
1405 struct btrfs_fs_info *info = NULL;
1406 struct bio_vec *bvec;
1407 int i;
1408 int ret;
1410 bio_for_each_segment(bvec, bio, i) {
1411 page = bvec->bv_page;
1412 if (page->private == EXTENT_PAGE_PRIVATE) {
1413 length += bvec->bv_len;
1414 continue;
1416 if (!page->private) {
1417 length += bvec->bv_len;
1418 continue;
1420 length = bvec->bv_len;
1421 buf_len = page->private >> 2;
1422 start = page_offset(page) + bvec->bv_offset;
1423 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1424 info = BTRFS_I(page->mapping->host)->root->fs_info;
1426 /* are we fully contained in this bio? */
1427 if (buf_len <= length)
1428 return 1;
1430 ret = extent_range_uptodate(io_tree, start + length,
1431 start + buf_len - 1);
1432 return ret;
1436 * called by the kthread helper functions to finally call the bio end_io
1437 * functions. This is where read checksum verification actually happens
1439 static void end_workqueue_fn(struct btrfs_work *work)
1441 struct bio *bio;
1442 struct end_io_wq *end_io_wq;
1443 struct btrfs_fs_info *fs_info;
1444 int error;
1446 end_io_wq = container_of(work, struct end_io_wq, work);
1447 bio = end_io_wq->bio;
1448 fs_info = end_io_wq->info;
1450 /* metadata bio reads are special because the whole tree block must
1451 * be checksummed at once. This makes sure the entire block is in
1452 * ram and up to date before trying to verify things. For
1453 * blocksize <= pagesize, it is basically a noop
1455 if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
1456 !bio_ready_for_csum(bio)) {
1457 btrfs_queue_worker(&fs_info->endio_meta_workers,
1458 &end_io_wq->work);
1459 return;
1461 error = end_io_wq->error;
1462 bio->bi_private = end_io_wq->private;
1463 bio->bi_end_io = end_io_wq->end_io;
1464 kfree(end_io_wq);
1465 bio_endio(bio, error);
1468 static int cleaner_kthread(void *arg)
1470 struct btrfs_root *root = arg;
1472 do {
1473 smp_mb();
1474 if (root->fs_info->closing)
1475 break;
1477 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1479 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1480 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1481 btrfs_run_delayed_iputs(root);
1482 btrfs_clean_old_snapshots(root);
1483 mutex_unlock(&root->fs_info->cleaner_mutex);
1486 if (freezing(current)) {
1487 refrigerator();
1488 } else {
1489 smp_mb();
1490 if (root->fs_info->closing)
1491 break;
1492 set_current_state(TASK_INTERRUPTIBLE);
1493 schedule();
1494 __set_current_state(TASK_RUNNING);
1496 } while (!kthread_should_stop());
1497 return 0;
1500 static int transaction_kthread(void *arg)
1502 struct btrfs_root *root = arg;
1503 struct btrfs_trans_handle *trans;
1504 struct btrfs_transaction *cur;
1505 unsigned long now;
1506 unsigned long delay;
1507 int ret;
1509 do {
1510 smp_mb();
1511 if (root->fs_info->closing)
1512 break;
1514 delay = HZ * 30;
1515 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1516 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1518 mutex_lock(&root->fs_info->trans_mutex);
1519 cur = root->fs_info->running_transaction;
1520 if (!cur) {
1521 mutex_unlock(&root->fs_info->trans_mutex);
1522 goto sleep;
1525 now = get_seconds();
1526 if (now < cur->start_time || now - cur->start_time < 30) {
1527 mutex_unlock(&root->fs_info->trans_mutex);
1528 delay = HZ * 5;
1529 goto sleep;
1531 mutex_unlock(&root->fs_info->trans_mutex);
1532 trans = btrfs_start_transaction(root, 1);
1533 ret = btrfs_commit_transaction(trans, root);
1535 sleep:
1536 wake_up_process(root->fs_info->cleaner_kthread);
1537 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1539 if (freezing(current)) {
1540 refrigerator();
1541 } else {
1542 if (root->fs_info->closing)
1543 break;
1544 set_current_state(TASK_INTERRUPTIBLE);
1545 schedule_timeout(delay);
1546 __set_current_state(TASK_RUNNING);
1548 } while (!kthread_should_stop());
1549 return 0;
1552 struct btrfs_root *open_ctree(struct super_block *sb,
1553 struct btrfs_fs_devices *fs_devices,
1554 char *options)
1556 u32 sectorsize;
1557 u32 nodesize;
1558 u32 leafsize;
1559 u32 blocksize;
1560 u32 stripesize;
1561 u64 generation;
1562 u64 features;
1563 struct btrfs_key location;
1564 struct buffer_head *bh;
1565 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1566 GFP_NOFS);
1567 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1568 GFP_NOFS);
1569 struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1570 GFP_NOFS);
1571 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1572 GFP_NOFS);
1573 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1574 GFP_NOFS);
1575 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1576 GFP_NOFS);
1577 struct btrfs_root *log_tree_root;
1579 int ret;
1580 int err = -EINVAL;
1582 struct btrfs_super_block *disk_super;
1584 if (!extent_root || !tree_root || !fs_info ||
1585 !chunk_root || !dev_root || !csum_root) {
1586 err = -ENOMEM;
1587 goto fail;
1590 ret = init_srcu_struct(&fs_info->subvol_srcu);
1591 if (ret) {
1592 err = ret;
1593 goto fail;
1596 ret = setup_bdi(fs_info, &fs_info->bdi);
1597 if (ret) {
1598 err = ret;
1599 goto fail_srcu;
1602 fs_info->btree_inode = new_inode(sb);
1603 if (!fs_info->btree_inode) {
1604 err = -ENOMEM;
1605 goto fail_bdi;
1608 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1609 INIT_LIST_HEAD(&fs_info->trans_list);
1610 INIT_LIST_HEAD(&fs_info->dead_roots);
1611 INIT_LIST_HEAD(&fs_info->delayed_iputs);
1612 INIT_LIST_HEAD(&fs_info->hashers);
1613 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1614 INIT_LIST_HEAD(&fs_info->ordered_operations);
1615 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1616 spin_lock_init(&fs_info->delalloc_lock);
1617 spin_lock_init(&fs_info->new_trans_lock);
1618 spin_lock_init(&fs_info->ref_cache_lock);
1619 spin_lock_init(&fs_info->fs_roots_radix_lock);
1620 spin_lock_init(&fs_info->delayed_iput_lock);
1622 init_completion(&fs_info->kobj_unregister);
1623 fs_info->tree_root = tree_root;
1624 fs_info->extent_root = extent_root;
1625 fs_info->csum_root = csum_root;
1626 fs_info->chunk_root = chunk_root;
1627 fs_info->dev_root = dev_root;
1628 fs_info->fs_devices = fs_devices;
1629 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1630 INIT_LIST_HEAD(&fs_info->space_info);
1631 btrfs_mapping_init(&fs_info->mapping_tree);
1632 atomic_set(&fs_info->nr_async_submits, 0);
1633 atomic_set(&fs_info->async_delalloc_pages, 0);
1634 atomic_set(&fs_info->async_submit_draining, 0);
1635 atomic_set(&fs_info->nr_async_bios, 0);
1636 fs_info->sb = sb;
1637 fs_info->max_extent = (u64)-1;
1638 fs_info->max_inline = 8192 * 1024;
1639 fs_info->metadata_ratio = 0;
1641 fs_info->thread_pool_size = min_t(unsigned long,
1642 num_online_cpus() + 2, 8);
1644 INIT_LIST_HEAD(&fs_info->ordered_extents);
1645 spin_lock_init(&fs_info->ordered_extent_lock);
1647 sb->s_blocksize = 4096;
1648 sb->s_blocksize_bits = blksize_bits(4096);
1649 sb->s_bdi = &fs_info->bdi;
1651 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1652 fs_info->btree_inode->i_nlink = 1;
1654 * we set the i_size on the btree inode to the max possible int.
1655 * the real end of the address space is determined by all of
1656 * the devices in the system
1658 fs_info->btree_inode->i_size = OFFSET_MAX;
1659 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1660 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1662 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1663 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1664 fs_info->btree_inode->i_mapping,
1665 GFP_NOFS);
1666 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1667 GFP_NOFS);
1669 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1671 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1672 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1673 sizeof(struct btrfs_key));
1674 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
1675 insert_inode_hash(fs_info->btree_inode);
1677 spin_lock_init(&fs_info->block_group_cache_lock);
1678 fs_info->block_group_cache_tree = RB_ROOT;
1680 extent_io_tree_init(&fs_info->freed_extents[0],
1681 fs_info->btree_inode->i_mapping, GFP_NOFS);
1682 extent_io_tree_init(&fs_info->freed_extents[1],
1683 fs_info->btree_inode->i_mapping, GFP_NOFS);
1684 fs_info->pinned_extents = &fs_info->freed_extents[0];
1685 fs_info->do_barriers = 1;
1688 mutex_init(&fs_info->trans_mutex);
1689 mutex_init(&fs_info->ordered_operations_mutex);
1690 mutex_init(&fs_info->tree_log_mutex);
1691 mutex_init(&fs_info->chunk_mutex);
1692 mutex_init(&fs_info->transaction_kthread_mutex);
1693 mutex_init(&fs_info->cleaner_mutex);
1694 mutex_init(&fs_info->volume_mutex);
1695 init_rwsem(&fs_info->extent_commit_sem);
1696 init_rwsem(&fs_info->cleanup_work_sem);
1697 init_rwsem(&fs_info->subvol_sem);
1699 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1700 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1702 init_waitqueue_head(&fs_info->transaction_throttle);
1703 init_waitqueue_head(&fs_info->transaction_wait);
1704 init_waitqueue_head(&fs_info->async_submit_wait);
1706 __setup_root(4096, 4096, 4096, 4096, tree_root,
1707 fs_info, BTRFS_ROOT_TREE_OBJECTID);
1710 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1711 if (!bh)
1712 goto fail_iput;
1714 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1715 memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1716 sizeof(fs_info->super_for_commit));
1717 brelse(bh);
1719 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1721 disk_super = &fs_info->super_copy;
1722 if (!btrfs_super_root(disk_super))
1723 goto fail_iput;
1725 ret = btrfs_parse_options(tree_root, options);
1726 if (ret) {
1727 err = ret;
1728 goto fail_iput;
1731 features = btrfs_super_incompat_flags(disk_super) &
1732 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1733 if (features) {
1734 printk(KERN_ERR "BTRFS: couldn't mount because of "
1735 "unsupported optional features (%Lx).\n",
1736 (unsigned long long)features);
1737 err = -EINVAL;
1738 goto fail_iput;
1741 features = btrfs_super_incompat_flags(disk_super);
1742 if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
1743 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1744 btrfs_set_super_incompat_flags(disk_super, features);
1747 features = btrfs_super_compat_ro_flags(disk_super) &
1748 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1749 if (!(sb->s_flags & MS_RDONLY) && features) {
1750 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1751 "unsupported option features (%Lx).\n",
1752 (unsigned long long)features);
1753 err = -EINVAL;
1754 goto fail_iput;
1757 btrfs_init_workers(&fs_info->generic_worker,
1758 "genwork", 1, NULL);
1760 btrfs_init_workers(&fs_info->workers, "worker",
1761 fs_info->thread_pool_size,
1762 &fs_info->generic_worker);
1764 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1765 fs_info->thread_pool_size,
1766 &fs_info->generic_worker);
1768 btrfs_init_workers(&fs_info->submit_workers, "submit",
1769 min_t(u64, fs_devices->num_devices,
1770 fs_info->thread_pool_size),
1771 &fs_info->generic_worker);
1772 btrfs_init_workers(&fs_info->enospc_workers, "enospc",
1773 fs_info->thread_pool_size,
1774 &fs_info->generic_worker);
1776 /* a higher idle thresh on the submit workers makes it much more
1777 * likely that bios will be send down in a sane order to the
1778 * devices
1780 fs_info->submit_workers.idle_thresh = 64;
1782 fs_info->workers.idle_thresh = 16;
1783 fs_info->workers.ordered = 1;
1785 fs_info->delalloc_workers.idle_thresh = 2;
1786 fs_info->delalloc_workers.ordered = 1;
1788 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
1789 &fs_info->generic_worker);
1790 btrfs_init_workers(&fs_info->endio_workers, "endio",
1791 fs_info->thread_pool_size,
1792 &fs_info->generic_worker);
1793 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1794 fs_info->thread_pool_size,
1795 &fs_info->generic_worker);
1796 btrfs_init_workers(&fs_info->endio_meta_write_workers,
1797 "endio-meta-write", fs_info->thread_pool_size,
1798 &fs_info->generic_worker);
1799 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1800 fs_info->thread_pool_size,
1801 &fs_info->generic_worker);
1804 * endios are largely parallel and should have a very
1805 * low idle thresh
1807 fs_info->endio_workers.idle_thresh = 4;
1808 fs_info->endio_meta_workers.idle_thresh = 4;
1810 fs_info->endio_write_workers.idle_thresh = 2;
1811 fs_info->endio_meta_write_workers.idle_thresh = 2;
1813 btrfs_start_workers(&fs_info->workers, 1);
1814 btrfs_start_workers(&fs_info->generic_worker, 1);
1815 btrfs_start_workers(&fs_info->submit_workers, 1);
1816 btrfs_start_workers(&fs_info->delalloc_workers, 1);
1817 btrfs_start_workers(&fs_info->fixup_workers, 1);
1818 btrfs_start_workers(&fs_info->endio_workers, 1);
1819 btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1820 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1821 btrfs_start_workers(&fs_info->endio_write_workers, 1);
1822 btrfs_start_workers(&fs_info->enospc_workers, 1);
1824 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1825 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1826 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1828 nodesize = btrfs_super_nodesize(disk_super);
1829 leafsize = btrfs_super_leafsize(disk_super);
1830 sectorsize = btrfs_super_sectorsize(disk_super);
1831 stripesize = btrfs_super_stripesize(disk_super);
1832 tree_root->nodesize = nodesize;
1833 tree_root->leafsize = leafsize;
1834 tree_root->sectorsize = sectorsize;
1835 tree_root->stripesize = stripesize;
1837 sb->s_blocksize = sectorsize;
1838 sb->s_blocksize_bits = blksize_bits(sectorsize);
1840 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1841 sizeof(disk_super->magic))) {
1842 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1843 goto fail_sb_buffer;
1846 mutex_lock(&fs_info->chunk_mutex);
1847 ret = btrfs_read_sys_array(tree_root);
1848 mutex_unlock(&fs_info->chunk_mutex);
1849 if (ret) {
1850 printk(KERN_WARNING "btrfs: failed to read the system "
1851 "array on %s\n", sb->s_id);
1852 goto fail_sb_buffer;
1855 blocksize = btrfs_level_size(tree_root,
1856 btrfs_super_chunk_root_level(disk_super));
1857 generation = btrfs_super_chunk_root_generation(disk_super);
1859 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1860 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1862 chunk_root->node = read_tree_block(chunk_root,
1863 btrfs_super_chunk_root(disk_super),
1864 blocksize, generation);
1865 BUG_ON(!chunk_root->node);
1866 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1867 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1868 sb->s_id);
1869 goto fail_chunk_root;
1871 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1872 chunk_root->commit_root = btrfs_root_node(chunk_root);
1874 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1875 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1876 BTRFS_UUID_SIZE);
1878 mutex_lock(&fs_info->chunk_mutex);
1879 ret = btrfs_read_chunk_tree(chunk_root);
1880 mutex_unlock(&fs_info->chunk_mutex);
1881 if (ret) {
1882 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1883 sb->s_id);
1884 goto fail_chunk_root;
1887 btrfs_close_extra_devices(fs_devices);
1889 blocksize = btrfs_level_size(tree_root,
1890 btrfs_super_root_level(disk_super));
1891 generation = btrfs_super_generation(disk_super);
1893 tree_root->node = read_tree_block(tree_root,
1894 btrfs_super_root(disk_super),
1895 blocksize, generation);
1896 if (!tree_root->node)
1897 goto fail_chunk_root;
1898 if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1899 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1900 sb->s_id);
1901 goto fail_tree_root;
1903 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1904 tree_root->commit_root = btrfs_root_node(tree_root);
1906 ret = find_and_setup_root(tree_root, fs_info,
1907 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1908 if (ret)
1909 goto fail_tree_root;
1910 extent_root->track_dirty = 1;
1912 ret = find_and_setup_root(tree_root, fs_info,
1913 BTRFS_DEV_TREE_OBJECTID, dev_root);
1914 if (ret)
1915 goto fail_extent_root;
1916 dev_root->track_dirty = 1;
1918 ret = find_and_setup_root(tree_root, fs_info,
1919 BTRFS_CSUM_TREE_OBJECTID, csum_root);
1920 if (ret)
1921 goto fail_dev_root;
1923 csum_root->track_dirty = 1;
1925 ret = btrfs_read_block_groups(extent_root);
1926 if (ret) {
1927 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
1928 goto fail_block_groups;
1931 fs_info->generation = generation;
1932 fs_info->last_trans_committed = generation;
1933 fs_info->data_alloc_profile = (u64)-1;
1934 fs_info->metadata_alloc_profile = (u64)-1;
1935 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1936 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1937 "btrfs-cleaner");
1938 if (IS_ERR(fs_info->cleaner_kthread))
1939 goto fail_block_groups;
1941 fs_info->transaction_kthread = kthread_run(transaction_kthread,
1942 tree_root,
1943 "btrfs-transaction");
1944 if (IS_ERR(fs_info->transaction_kthread))
1945 goto fail_cleaner;
1947 if (!btrfs_test_opt(tree_root, SSD) &&
1948 !btrfs_test_opt(tree_root, NOSSD) &&
1949 !fs_info->fs_devices->rotating) {
1950 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
1951 "mode\n");
1952 btrfs_set_opt(fs_info->mount_opt, SSD);
1955 if (btrfs_super_log_root(disk_super) != 0) {
1956 u64 bytenr = btrfs_super_log_root(disk_super);
1958 if (fs_devices->rw_devices == 0) {
1959 printk(KERN_WARNING "Btrfs log replay required "
1960 "on RO media\n");
1961 err = -EIO;
1962 goto fail_trans_kthread;
1964 blocksize =
1965 btrfs_level_size(tree_root,
1966 btrfs_super_log_root_level(disk_super));
1968 log_tree_root = kzalloc(sizeof(struct btrfs_root),
1969 GFP_NOFS);
1971 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1972 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1974 log_tree_root->node = read_tree_block(tree_root, bytenr,
1975 blocksize,
1976 generation + 1);
1977 ret = btrfs_recover_log_trees(log_tree_root);
1978 BUG_ON(ret);
1980 if (sb->s_flags & MS_RDONLY) {
1981 ret = btrfs_commit_super(tree_root);
1982 BUG_ON(ret);
1986 ret = btrfs_find_orphan_roots(tree_root);
1987 BUG_ON(ret);
1989 if (!(sb->s_flags & MS_RDONLY)) {
1990 ret = btrfs_recover_relocation(tree_root);
1991 if (ret < 0) {
1992 printk(KERN_WARNING
1993 "btrfs: failed to recover relocation\n");
1994 err = -EINVAL;
1995 goto fail_trans_kthread;
1999 location.objectid = BTRFS_FS_TREE_OBJECTID;
2000 location.type = BTRFS_ROOT_ITEM_KEY;
2001 location.offset = (u64)-1;
2003 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2004 if (!fs_info->fs_root)
2005 goto fail_trans_kthread;
2007 if (!(sb->s_flags & MS_RDONLY)) {
2008 down_read(&fs_info->cleanup_work_sem);
2009 btrfs_orphan_cleanup(fs_info->fs_root);
2010 up_read(&fs_info->cleanup_work_sem);
2013 return tree_root;
2015 fail_trans_kthread:
2016 kthread_stop(fs_info->transaction_kthread);
2017 fail_cleaner:
2018 kthread_stop(fs_info->cleaner_kthread);
2021 * make sure we're done with the btree inode before we stop our
2022 * kthreads
2024 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2025 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2027 fail_block_groups:
2028 btrfs_free_block_groups(fs_info);
2029 free_extent_buffer(csum_root->node);
2030 free_extent_buffer(csum_root->commit_root);
2031 fail_dev_root:
2032 free_extent_buffer(dev_root->node);
2033 free_extent_buffer(dev_root->commit_root);
2034 fail_extent_root:
2035 free_extent_buffer(extent_root->node);
2036 free_extent_buffer(extent_root->commit_root);
2037 fail_tree_root:
2038 free_extent_buffer(tree_root->node);
2039 free_extent_buffer(tree_root->commit_root);
2040 fail_chunk_root:
2041 free_extent_buffer(chunk_root->node);
2042 free_extent_buffer(chunk_root->commit_root);
2043 fail_sb_buffer:
2044 btrfs_stop_workers(&fs_info->generic_worker);
2045 btrfs_stop_workers(&fs_info->fixup_workers);
2046 btrfs_stop_workers(&fs_info->delalloc_workers);
2047 btrfs_stop_workers(&fs_info->workers);
2048 btrfs_stop_workers(&fs_info->endio_workers);
2049 btrfs_stop_workers(&fs_info->endio_meta_workers);
2050 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2051 btrfs_stop_workers(&fs_info->endio_write_workers);
2052 btrfs_stop_workers(&fs_info->submit_workers);
2053 btrfs_stop_workers(&fs_info->enospc_workers);
2054 fail_iput:
2055 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2056 iput(fs_info->btree_inode);
2058 btrfs_close_devices(fs_info->fs_devices);
2059 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2060 fail_bdi:
2061 bdi_destroy(&fs_info->bdi);
2062 fail_srcu:
2063 cleanup_srcu_struct(&fs_info->subvol_srcu);
2064 fail:
2065 kfree(extent_root);
2066 kfree(tree_root);
2067 kfree(fs_info);
2068 kfree(chunk_root);
2069 kfree(dev_root);
2070 kfree(csum_root);
2071 return ERR_PTR(err);
2074 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2076 char b[BDEVNAME_SIZE];
2078 if (uptodate) {
2079 set_buffer_uptodate(bh);
2080 } else {
2081 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
2082 printk(KERN_WARNING "lost page write due to "
2083 "I/O error on %s\n",
2084 bdevname(bh->b_bdev, b));
2086 /* note, we dont' set_buffer_write_io_error because we have
2087 * our own ways of dealing with the IO errors
2089 clear_buffer_uptodate(bh);
2091 unlock_buffer(bh);
2092 put_bh(bh);
2095 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2097 struct buffer_head *bh;
2098 struct buffer_head *latest = NULL;
2099 struct btrfs_super_block *super;
2100 int i;
2101 u64 transid = 0;
2102 u64 bytenr;
2104 /* we would like to check all the supers, but that would make
2105 * a btrfs mount succeed after a mkfs from a different FS.
2106 * So, we need to add a special mount option to scan for
2107 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2109 for (i = 0; i < 1; i++) {
2110 bytenr = btrfs_sb_offset(i);
2111 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2112 break;
2113 bh = __bread(bdev, bytenr / 4096, 4096);
2114 if (!bh)
2115 continue;
2117 super = (struct btrfs_super_block *)bh->b_data;
2118 if (btrfs_super_bytenr(super) != bytenr ||
2119 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2120 sizeof(super->magic))) {
2121 brelse(bh);
2122 continue;
2125 if (!latest || btrfs_super_generation(super) > transid) {
2126 brelse(latest);
2127 latest = bh;
2128 transid = btrfs_super_generation(super);
2129 } else {
2130 brelse(bh);
2133 return latest;
2137 * this should be called twice, once with wait == 0 and
2138 * once with wait == 1. When wait == 0 is done, all the buffer heads
2139 * we write are pinned.
2141 * They are released when wait == 1 is done.
2142 * max_mirrors must be the same for both runs, and it indicates how
2143 * many supers on this one device should be written.
2145 * max_mirrors == 0 means to write them all.
2147 static int write_dev_supers(struct btrfs_device *device,
2148 struct btrfs_super_block *sb,
2149 int do_barriers, int wait, int max_mirrors)
2151 struct buffer_head *bh;
2152 int i;
2153 int ret;
2154 int errors = 0;
2155 u32 crc;
2156 u64 bytenr;
2157 int last_barrier = 0;
2159 if (max_mirrors == 0)
2160 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2162 /* make sure only the last submit_bh does a barrier */
2163 if (do_barriers) {
2164 for (i = 0; i < max_mirrors; i++) {
2165 bytenr = btrfs_sb_offset(i);
2166 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2167 device->total_bytes)
2168 break;
2169 last_barrier = i;
2173 for (i = 0; i < max_mirrors; i++) {
2174 bytenr = btrfs_sb_offset(i);
2175 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2176 break;
2178 if (wait) {
2179 bh = __find_get_block(device->bdev, bytenr / 4096,
2180 BTRFS_SUPER_INFO_SIZE);
2181 BUG_ON(!bh);
2182 wait_on_buffer(bh);
2183 if (!buffer_uptodate(bh))
2184 errors++;
2186 /* drop our reference */
2187 brelse(bh);
2189 /* drop the reference from the wait == 0 run */
2190 brelse(bh);
2191 continue;
2192 } else {
2193 btrfs_set_super_bytenr(sb, bytenr);
2195 crc = ~(u32)0;
2196 crc = btrfs_csum_data(NULL, (char *)sb +
2197 BTRFS_CSUM_SIZE, crc,
2198 BTRFS_SUPER_INFO_SIZE -
2199 BTRFS_CSUM_SIZE);
2200 btrfs_csum_final(crc, sb->csum);
2203 * one reference for us, and we leave it for the
2204 * caller
2206 bh = __getblk(device->bdev, bytenr / 4096,
2207 BTRFS_SUPER_INFO_SIZE);
2208 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2210 /* one reference for submit_bh */
2211 get_bh(bh);
2213 set_buffer_uptodate(bh);
2214 lock_buffer(bh);
2215 bh->b_end_io = btrfs_end_buffer_write_sync;
2218 if (i == last_barrier && do_barriers && device->barriers) {
2219 ret = submit_bh(WRITE_BARRIER, bh);
2220 if (ret == -EOPNOTSUPP) {
2221 printk("btrfs: disabling barriers on dev %s\n",
2222 device->name);
2223 set_buffer_uptodate(bh);
2224 device->barriers = 0;
2225 /* one reference for submit_bh */
2226 get_bh(bh);
2227 lock_buffer(bh);
2228 ret = submit_bh(WRITE_SYNC, bh);
2230 } else {
2231 ret = submit_bh(WRITE_SYNC, bh);
2234 if (ret)
2235 errors++;
2237 return errors < i ? 0 : -1;
2240 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2242 struct list_head *head;
2243 struct btrfs_device *dev;
2244 struct btrfs_super_block *sb;
2245 struct btrfs_dev_item *dev_item;
2246 int ret;
2247 int do_barriers;
2248 int max_errors;
2249 int total_errors = 0;
2250 u64 flags;
2252 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2253 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2255 sb = &root->fs_info->super_for_commit;
2256 dev_item = &sb->dev_item;
2258 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2259 head = &root->fs_info->fs_devices->devices;
2260 list_for_each_entry(dev, head, dev_list) {
2261 if (!dev->bdev) {
2262 total_errors++;
2263 continue;
2265 if (!dev->in_fs_metadata || !dev->writeable)
2266 continue;
2268 btrfs_set_stack_device_generation(dev_item, 0);
2269 btrfs_set_stack_device_type(dev_item, dev->type);
2270 btrfs_set_stack_device_id(dev_item, dev->devid);
2271 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2272 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2273 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2274 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2275 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2276 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2277 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2279 flags = btrfs_super_flags(sb);
2280 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2282 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2283 if (ret)
2284 total_errors++;
2286 if (total_errors > max_errors) {
2287 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2288 total_errors);
2289 BUG();
2292 total_errors = 0;
2293 list_for_each_entry(dev, head, dev_list) {
2294 if (!dev->bdev)
2295 continue;
2296 if (!dev->in_fs_metadata || !dev->writeable)
2297 continue;
2299 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2300 if (ret)
2301 total_errors++;
2303 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2304 if (total_errors > max_errors) {
2305 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2306 total_errors);
2307 BUG();
2309 return 0;
2312 int write_ctree_super(struct btrfs_trans_handle *trans,
2313 struct btrfs_root *root, int max_mirrors)
2315 int ret;
2317 ret = write_all_supers(root, max_mirrors);
2318 return ret;
2321 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2323 spin_lock(&fs_info->fs_roots_radix_lock);
2324 radix_tree_delete(&fs_info->fs_roots_radix,
2325 (unsigned long)root->root_key.objectid);
2326 spin_unlock(&fs_info->fs_roots_radix_lock);
2328 if (btrfs_root_refs(&root->root_item) == 0)
2329 synchronize_srcu(&fs_info->subvol_srcu);
2331 free_fs_root(root);
2332 return 0;
2335 static void free_fs_root(struct btrfs_root *root)
2337 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2338 if (root->anon_super.s_dev) {
2339 down_write(&root->anon_super.s_umount);
2340 kill_anon_super(&root->anon_super);
2342 free_extent_buffer(root->node);
2343 free_extent_buffer(root->commit_root);
2344 kfree(root->name);
2345 kfree(root);
2348 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2350 int ret;
2351 struct btrfs_root *gang[8];
2352 int i;
2354 while (!list_empty(&fs_info->dead_roots)) {
2355 gang[0] = list_entry(fs_info->dead_roots.next,
2356 struct btrfs_root, root_list);
2357 list_del(&gang[0]->root_list);
2359 if (gang[0]->in_radix) {
2360 btrfs_free_fs_root(fs_info, gang[0]);
2361 } else {
2362 free_extent_buffer(gang[0]->node);
2363 free_extent_buffer(gang[0]->commit_root);
2364 kfree(gang[0]);
2368 while (1) {
2369 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2370 (void **)gang, 0,
2371 ARRAY_SIZE(gang));
2372 if (!ret)
2373 break;
2374 for (i = 0; i < ret; i++)
2375 btrfs_free_fs_root(fs_info, gang[i]);
2377 return 0;
2380 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2382 u64 root_objectid = 0;
2383 struct btrfs_root *gang[8];
2384 int i;
2385 int ret;
2387 while (1) {
2388 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2389 (void **)gang, root_objectid,
2390 ARRAY_SIZE(gang));
2391 if (!ret)
2392 break;
2394 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2395 for (i = 0; i < ret; i++) {
2396 root_objectid = gang[i]->root_key.objectid;
2397 btrfs_orphan_cleanup(gang[i]);
2399 root_objectid++;
2401 return 0;
2404 int btrfs_commit_super(struct btrfs_root *root)
2406 struct btrfs_trans_handle *trans;
2407 int ret;
2409 mutex_lock(&root->fs_info->cleaner_mutex);
2410 btrfs_run_delayed_iputs(root);
2411 btrfs_clean_old_snapshots(root);
2412 mutex_unlock(&root->fs_info->cleaner_mutex);
2414 /* wait until ongoing cleanup work done */
2415 down_write(&root->fs_info->cleanup_work_sem);
2416 up_write(&root->fs_info->cleanup_work_sem);
2418 trans = btrfs_start_transaction(root, 1);
2419 ret = btrfs_commit_transaction(trans, root);
2420 BUG_ON(ret);
2421 /* run commit again to drop the original snapshot */
2422 trans = btrfs_start_transaction(root, 1);
2423 btrfs_commit_transaction(trans, root);
2424 ret = btrfs_write_and_wait_transaction(NULL, root);
2425 BUG_ON(ret);
2427 ret = write_ctree_super(NULL, root, 0);
2428 return ret;
2431 int close_ctree(struct btrfs_root *root)
2433 struct btrfs_fs_info *fs_info = root->fs_info;
2434 int ret;
2436 fs_info->closing = 1;
2437 smp_mb();
2439 kthread_stop(root->fs_info->transaction_kthread);
2440 kthread_stop(root->fs_info->cleaner_kthread);
2442 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2443 ret = btrfs_commit_super(root);
2444 if (ret)
2445 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2448 fs_info->closing = 2;
2449 smp_mb();
2451 if (fs_info->delalloc_bytes) {
2452 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2453 (unsigned long long)fs_info->delalloc_bytes);
2455 if (fs_info->total_ref_cache_size) {
2456 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2457 (unsigned long long)fs_info->total_ref_cache_size);
2460 free_extent_buffer(fs_info->extent_root->node);
2461 free_extent_buffer(fs_info->extent_root->commit_root);
2462 free_extent_buffer(fs_info->tree_root->node);
2463 free_extent_buffer(fs_info->tree_root->commit_root);
2464 free_extent_buffer(root->fs_info->chunk_root->node);
2465 free_extent_buffer(root->fs_info->chunk_root->commit_root);
2466 free_extent_buffer(root->fs_info->dev_root->node);
2467 free_extent_buffer(root->fs_info->dev_root->commit_root);
2468 free_extent_buffer(root->fs_info->csum_root->node);
2469 free_extent_buffer(root->fs_info->csum_root->commit_root);
2471 btrfs_free_block_groups(root->fs_info);
2473 del_fs_roots(fs_info);
2475 iput(fs_info->btree_inode);
2477 btrfs_stop_workers(&fs_info->generic_worker);
2478 btrfs_stop_workers(&fs_info->fixup_workers);
2479 btrfs_stop_workers(&fs_info->delalloc_workers);
2480 btrfs_stop_workers(&fs_info->workers);
2481 btrfs_stop_workers(&fs_info->endio_workers);
2482 btrfs_stop_workers(&fs_info->endio_meta_workers);
2483 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2484 btrfs_stop_workers(&fs_info->endio_write_workers);
2485 btrfs_stop_workers(&fs_info->submit_workers);
2486 btrfs_stop_workers(&fs_info->enospc_workers);
2488 btrfs_close_devices(fs_info->fs_devices);
2489 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2491 bdi_destroy(&fs_info->bdi);
2492 cleanup_srcu_struct(&fs_info->subvol_srcu);
2494 kfree(fs_info->extent_root);
2495 kfree(fs_info->tree_root);
2496 kfree(fs_info->chunk_root);
2497 kfree(fs_info->dev_root);
2498 kfree(fs_info->csum_root);
2499 return 0;
2502 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2504 int ret;
2505 struct inode *btree_inode = buf->first_page->mapping->host;
2507 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
2508 NULL);
2509 if (!ret)
2510 return ret;
2512 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2513 parent_transid);
2514 return !ret;
2517 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2519 struct inode *btree_inode = buf->first_page->mapping->host;
2520 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2521 buf);
2524 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2526 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2527 u64 transid = btrfs_header_generation(buf);
2528 struct inode *btree_inode = root->fs_info->btree_inode;
2529 int was_dirty;
2531 btrfs_assert_tree_locked(buf);
2532 if (transid != root->fs_info->generation) {
2533 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2534 "found %llu running %llu\n",
2535 (unsigned long long)buf->start,
2536 (unsigned long long)transid,
2537 (unsigned long long)root->fs_info->generation);
2538 WARN_ON(1);
2540 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2541 buf);
2542 if (!was_dirty) {
2543 spin_lock(&root->fs_info->delalloc_lock);
2544 root->fs_info->dirty_metadata_bytes += buf->len;
2545 spin_unlock(&root->fs_info->delalloc_lock);
2549 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2552 * looks as though older kernels can get into trouble with
2553 * this code, they end up stuck in balance_dirty_pages forever
2555 u64 num_dirty;
2556 unsigned long thresh = 32 * 1024 * 1024;
2558 if (current->flags & PF_MEMALLOC)
2559 return;
2561 num_dirty = root->fs_info->dirty_metadata_bytes;
2563 if (num_dirty > thresh) {
2564 balance_dirty_pages_ratelimited_nr(
2565 root->fs_info->btree_inode->i_mapping, 1);
2567 return;
2570 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2572 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2573 int ret;
2574 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2575 if (ret == 0)
2576 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2577 return ret;
2580 int btree_lock_page_hook(struct page *page)
2582 struct inode *inode = page->mapping->host;
2583 struct btrfs_root *root = BTRFS_I(inode)->root;
2584 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2585 struct extent_buffer *eb;
2586 unsigned long len;
2587 u64 bytenr = page_offset(page);
2589 if (page->private == EXTENT_PAGE_PRIVATE)
2590 goto out;
2592 len = page->private >> 2;
2593 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2594 if (!eb)
2595 goto out;
2597 btrfs_tree_lock(eb);
2598 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2600 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2601 spin_lock(&root->fs_info->delalloc_lock);
2602 if (root->fs_info->dirty_metadata_bytes >= eb->len)
2603 root->fs_info->dirty_metadata_bytes -= eb->len;
2604 else
2605 WARN_ON(1);
2606 spin_unlock(&root->fs_info->delalloc_lock);
2609 btrfs_tree_unlock(eb);
2610 free_extent_buffer(eb);
2611 out:
2612 lock_page(page);
2613 return 0;
2616 static struct extent_io_ops btree_extent_io_ops = {
2617 .write_cache_pages_lock_hook = btree_lock_page_hook,
2618 .readpage_end_io_hook = btree_readpage_end_io_hook,
2619 .submit_bio_hook = btree_submit_bio_hook,
2620 /* note we're sharing with inode.c for the merge bio hook */
2621 .merge_bio_hook = btrfs_merge_bio_hook,