[POWERPC] iseries: eliminate a couple of warnings
[linux-2.6/kvm.git] / fs / reiserfs / inode.c
blob52f1e2136546f215f7bd13ea403735222a621e46
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include <linux/reiserfs_fs.h>
8 #include <linux/reiserfs_acl.h>
9 #include <linux/reiserfs_xattr.h>
10 #include <linux/smp_lock.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <asm/uaccess.h>
14 #include <asm/unaligned.h>
15 #include <linux/buffer_head.h>
16 #include <linux/mpage.h>
17 #include <linux/writeback.h>
18 #include <linux/quotaops.h>
20 extern int reiserfs_default_io_size; /* default io size devuned in super.c */
22 static int reiserfs_commit_write(struct file *f, struct page *page,
23 unsigned from, unsigned to);
24 static int reiserfs_prepare_write(struct file *f, struct page *page,
25 unsigned from, unsigned to);
27 void reiserfs_delete_inode(struct inode *inode)
29 /* We need blocks for transaction + (user+group) quota update (possibly delete) */
30 int jbegin_count =
31 JOURNAL_PER_BALANCE_CNT * 2 +
32 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
33 struct reiserfs_transaction_handle th;
34 int err;
36 truncate_inode_pages(&inode->i_data, 0);
38 reiserfs_write_lock(inode->i_sb);
40 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
41 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */
42 reiserfs_delete_xattrs(inode);
44 if (journal_begin(&th, inode->i_sb, jbegin_count))
45 goto out;
46 reiserfs_update_inode_transaction(inode);
48 err = reiserfs_delete_object(&th, inode);
50 /* Do quota update inside a transaction for journaled quotas. We must do that
51 * after delete_object so that quota updates go into the same transaction as
52 * stat data deletion */
53 if (!err)
54 DQUOT_FREE_INODE(inode);
56 if (journal_end(&th, inode->i_sb, jbegin_count))
57 goto out;
59 /* check return value from reiserfs_delete_object after
60 * ending the transaction
62 if (err)
63 goto out;
65 /* all items of file are deleted, so we can remove "save" link */
66 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything
67 * about an error here */
68 } else {
69 /* no object items are in the tree */
72 out:
73 clear_inode(inode); /* note this must go after the journal_end to prevent deadlock */
74 inode->i_blocks = 0;
75 reiserfs_write_unlock(inode->i_sb);
78 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
79 __u32 objectid, loff_t offset, int type, int length)
81 key->version = version;
83 key->on_disk_key.k_dir_id = dirid;
84 key->on_disk_key.k_objectid = objectid;
85 set_cpu_key_k_offset(key, offset);
86 set_cpu_key_k_type(key, type);
87 key->key_length = length;
90 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
91 offset and type of key */
92 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
93 int type, int length)
95 _make_cpu_key(key, get_inode_item_key_version(inode),
96 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
97 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
98 length);
102 // when key is 0, do not set version and short key
104 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
105 int version,
106 loff_t offset, int type, int length,
107 int entry_count /*or ih_free_space */ )
109 if (key) {
110 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
111 ih->ih_key.k_objectid =
112 cpu_to_le32(key->on_disk_key.k_objectid);
114 put_ih_version(ih, version);
115 set_le_ih_k_offset(ih, offset);
116 set_le_ih_k_type(ih, type);
117 put_ih_item_len(ih, length);
118 /* set_ih_free_space (ih, 0); */
119 // for directory items it is entry count, for directs and stat
120 // datas - 0xffff, for indirects - 0
121 put_ih_entry_count(ih, entry_count);
125 // FIXME: we might cache recently accessed indirect item
127 // Ugh. Not too eager for that....
128 // I cut the code until such time as I see a convincing argument (benchmark).
129 // I don't want a bloated inode struct..., and I don't like code complexity....
131 /* cutting the code is fine, since it really isn't in use yet and is easy
132 ** to add back in. But, Vladimir has a really good idea here. Think
133 ** about what happens for reading a file. For each page,
134 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
135 ** an indirect item. This indirect item has X number of pointers, where
136 ** X is a big number if we've done the block allocation right. But,
137 ** we only use one or two of these pointers during each call to readpage,
138 ** needlessly researching again later on.
140 ** The size of the cache could be dynamic based on the size of the file.
142 ** I'd also like to see us cache the location the stat data item, since
143 ** we are needlessly researching for that frequently.
145 ** --chris
148 /* If this page has a file tail in it, and
149 ** it was read in by get_block_create_0, the page data is valid,
150 ** but tail is still sitting in a direct item, and we can't write to
151 ** it. So, look through this page, and check all the mapped buffers
152 ** to make sure they have valid block numbers. Any that don't need
153 ** to be unmapped, so that block_prepare_write will correctly call
154 ** reiserfs_get_block to convert the tail into an unformatted node
156 static inline void fix_tail_page_for_writing(struct page *page)
158 struct buffer_head *head, *next, *bh;
160 if (page && page_has_buffers(page)) {
161 head = page_buffers(page);
162 bh = head;
163 do {
164 next = bh->b_this_page;
165 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
166 reiserfs_unmap_buffer(bh);
168 bh = next;
169 } while (bh != head);
173 /* reiserfs_get_block does not need to allocate a block only if it has been
174 done already or non-hole position has been found in the indirect item */
175 static inline int allocation_needed(int retval, b_blocknr_t allocated,
176 struct item_head *ih,
177 __le32 * item, int pos_in_item)
179 if (allocated)
180 return 0;
181 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
182 get_block_num(item, pos_in_item))
183 return 0;
184 return 1;
187 static inline int indirect_item_found(int retval, struct item_head *ih)
189 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
192 static inline void set_block_dev_mapped(struct buffer_head *bh,
193 b_blocknr_t block, struct inode *inode)
195 map_bh(bh, inode->i_sb, block);
199 // files which were created in the earlier version can not be longer,
200 // than 2 gb
202 static int file_capable(struct inode *inode, long block)
204 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file.
205 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb
206 return 1;
208 return 0;
211 /*static*/ int restart_transaction(struct reiserfs_transaction_handle *th,
212 struct inode *inode, struct path *path)
214 struct super_block *s = th->t_super;
215 int len = th->t_blocks_allocated;
216 int err;
218 BUG_ON(!th->t_trans_id);
219 BUG_ON(!th->t_refcount);
221 /* we cannot restart while nested */
222 if (th->t_refcount > 1) {
223 return 0;
225 pathrelse(path);
226 reiserfs_update_sd(th, inode);
227 err = journal_end(th, s, len);
228 if (!err) {
229 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
230 if (!err)
231 reiserfs_update_inode_transaction(inode);
233 return err;
236 // it is called by get_block when create == 0. Returns block number
237 // for 'block'-th logical block of file. When it hits direct item it
238 // returns 0 (being called from bmap) or read direct item into piece
239 // of page (bh_result)
241 // Please improve the english/clarity in the comment above, as it is
242 // hard to understand.
244 static int _get_block_create_0(struct inode *inode, long block,
245 struct buffer_head *bh_result, int args)
247 INITIALIZE_PATH(path);
248 struct cpu_key key;
249 struct buffer_head *bh;
250 struct item_head *ih, tmp_ih;
251 int fs_gen;
252 int blocknr;
253 char *p = NULL;
254 int chars;
255 int ret;
256 int result;
257 int done = 0;
258 unsigned long offset;
260 // prepare the key to look for the 'block'-th block of file
261 make_cpu_key(&key, inode,
262 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
265 research:
266 result = search_for_position_by_key(inode->i_sb, &key, &path);
267 if (result != POSITION_FOUND) {
268 pathrelse(&path);
269 if (p)
270 kunmap(bh_result->b_page);
271 if (result == IO_ERROR)
272 return -EIO;
273 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
274 // That there is some MMAPED data associated with it that is yet to be written to disk.
275 if ((args & GET_BLOCK_NO_HOLE)
276 && !PageUptodate(bh_result->b_page)) {
277 return -ENOENT;
279 return 0;
282 bh = get_last_bh(&path);
283 ih = get_ih(&path);
284 if (is_indirect_le_ih(ih)) {
285 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
287 /* FIXME: here we could cache indirect item or part of it in
288 the inode to avoid search_by_key in case of subsequent
289 access to file */
290 blocknr = get_block_num(ind_item, path.pos_in_item);
291 ret = 0;
292 if (blocknr) {
293 map_bh(bh_result, inode->i_sb, blocknr);
294 if (path.pos_in_item ==
295 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
296 set_buffer_boundary(bh_result);
298 } else
299 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
300 // That there is some MMAPED data associated with it that is yet to be written to disk.
301 if ((args & GET_BLOCK_NO_HOLE)
302 && !PageUptodate(bh_result->b_page)) {
303 ret = -ENOENT;
306 pathrelse(&path);
307 if (p)
308 kunmap(bh_result->b_page);
309 return ret;
311 // requested data are in direct item(s)
312 if (!(args & GET_BLOCK_READ_DIRECT)) {
313 // we are called by bmap. FIXME: we can not map block of file
314 // when it is stored in direct item(s)
315 pathrelse(&path);
316 if (p)
317 kunmap(bh_result->b_page);
318 return -ENOENT;
321 /* if we've got a direct item, and the buffer or page was uptodate,
322 ** we don't want to pull data off disk again. skip to the
323 ** end, where we map the buffer and return
325 if (buffer_uptodate(bh_result)) {
326 goto finished;
327 } else
329 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
330 ** pages without any buffers. If the page is up to date, we don't want
331 ** read old data off disk. Set the up to date bit on the buffer instead
332 ** and jump to the end
334 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
335 set_buffer_uptodate(bh_result);
336 goto finished;
338 // read file tail into part of page
339 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
340 fs_gen = get_generation(inode->i_sb);
341 copy_item_head(&tmp_ih, ih);
343 /* we only want to kmap if we are reading the tail into the page.
344 ** this is not the common case, so we don't kmap until we are
345 ** sure we need to. But, this means the item might move if
346 ** kmap schedules
348 if (!p) {
349 p = (char *)kmap(bh_result->b_page);
350 if (fs_changed(fs_gen, inode->i_sb)
351 && item_moved(&tmp_ih, &path)) {
352 goto research;
355 p += offset;
356 memset(p, 0, inode->i_sb->s_blocksize);
357 do {
358 if (!is_direct_le_ih(ih)) {
359 BUG();
361 /* make sure we don't read more bytes than actually exist in
362 ** the file. This can happen in odd cases where i_size isn't
363 ** correct, and when direct item padding results in a few
364 ** extra bytes at the end of the direct item
366 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
367 break;
368 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
369 chars =
370 inode->i_size - (le_ih_k_offset(ih) - 1) -
371 path.pos_in_item;
372 done = 1;
373 } else {
374 chars = ih_item_len(ih) - path.pos_in_item;
376 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
378 if (done)
379 break;
381 p += chars;
383 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
384 // we done, if read direct item is not the last item of
385 // node FIXME: we could try to check right delimiting key
386 // to see whether direct item continues in the right
387 // neighbor or rely on i_size
388 break;
390 // update key to look for the next piece
391 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
392 result = search_for_position_by_key(inode->i_sb, &key, &path);
393 if (result != POSITION_FOUND)
394 // i/o error most likely
395 break;
396 bh = get_last_bh(&path);
397 ih = get_ih(&path);
398 } while (1);
400 flush_dcache_page(bh_result->b_page);
401 kunmap(bh_result->b_page);
403 finished:
404 pathrelse(&path);
406 if (result == IO_ERROR)
407 return -EIO;
409 /* this buffer has valid data, but isn't valid for io. mapping it to
410 * block #0 tells the rest of reiserfs it just has a tail in it
412 map_bh(bh_result, inode->i_sb, 0);
413 set_buffer_uptodate(bh_result);
414 return 0;
417 // this is called to create file map. So, _get_block_create_0 will not
418 // read direct item
419 static int reiserfs_bmap(struct inode *inode, sector_t block,
420 struct buffer_head *bh_result, int create)
422 if (!file_capable(inode, block))
423 return -EFBIG;
425 reiserfs_write_lock(inode->i_sb);
426 /* do not read the direct item */
427 _get_block_create_0(inode, block, bh_result, 0);
428 reiserfs_write_unlock(inode->i_sb);
429 return 0;
432 /* special version of get_block that is only used by grab_tail_page right
433 ** now. It is sent to block_prepare_write, and when you try to get a
434 ** block past the end of the file (or a block from a hole) it returns
435 ** -ENOENT instead of a valid buffer. block_prepare_write expects to
436 ** be able to do i/o on the buffers returned, unless an error value
437 ** is also returned.
439 ** So, this allows block_prepare_write to be used for reading a single block
440 ** in a page. Where it does not produce a valid page for holes, or past the
441 ** end of the file. This turns out to be exactly what we need for reading
442 ** tails for conversion.
444 ** The point of the wrapper is forcing a certain value for create, even
445 ** though the VFS layer is calling this function with create==1. If you
446 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
447 ** don't use this function.
449 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
450 struct buffer_head *bh_result,
451 int create)
453 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
456 /* This is special helper for reiserfs_get_block in case we are executing
457 direct_IO request. */
458 static int reiserfs_get_blocks_direct_io(struct inode *inode,
459 sector_t iblock,
460 struct buffer_head *bh_result,
461 int create)
463 int ret;
465 bh_result->b_page = NULL;
467 /* We set the b_size before reiserfs_get_block call since it is
468 referenced in convert_tail_for_hole() that may be called from
469 reiserfs_get_block() */
470 bh_result->b_size = (1 << inode->i_blkbits);
472 ret = reiserfs_get_block(inode, iblock, bh_result,
473 create | GET_BLOCK_NO_DANGLE);
474 if (ret)
475 goto out;
477 /* don't allow direct io onto tail pages */
478 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
479 /* make sure future calls to the direct io funcs for this offset
480 ** in the file fail by unmapping the buffer
482 clear_buffer_mapped(bh_result);
483 ret = -EINVAL;
485 /* Possible unpacked tail. Flush the data before pages have
486 disappeared */
487 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
488 int err;
489 lock_kernel();
490 err = reiserfs_commit_for_inode(inode);
491 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
492 unlock_kernel();
493 if (err < 0)
494 ret = err;
496 out:
497 return ret;
501 ** helper function for when reiserfs_get_block is called for a hole
502 ** but the file tail is still in a direct item
503 ** bh_result is the buffer head for the hole
504 ** tail_offset is the offset of the start of the tail in the file
506 ** This calls prepare_write, which will start a new transaction
507 ** you should not be in a transaction, or have any paths held when you
508 ** call this.
510 static int convert_tail_for_hole(struct inode *inode,
511 struct buffer_head *bh_result,
512 loff_t tail_offset)
514 unsigned long index;
515 unsigned long tail_end;
516 unsigned long tail_start;
517 struct page *tail_page;
518 struct page *hole_page = bh_result->b_page;
519 int retval = 0;
521 if ((tail_offset & (bh_result->b_size - 1)) != 1)
522 return -EIO;
524 /* always try to read until the end of the block */
525 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
526 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
528 index = tail_offset >> PAGE_CACHE_SHIFT;
529 /* hole_page can be zero in case of direct_io, we are sure
530 that we cannot get here if we write with O_DIRECT into
531 tail page */
532 if (!hole_page || index != hole_page->index) {
533 tail_page = grab_cache_page(inode->i_mapping, index);
534 retval = -ENOMEM;
535 if (!tail_page) {
536 goto out;
538 } else {
539 tail_page = hole_page;
542 /* we don't have to make sure the conversion did not happen while
543 ** we were locking the page because anyone that could convert
544 ** must first take i_mutex.
546 ** We must fix the tail page for writing because it might have buffers
547 ** that are mapped, but have a block number of 0. This indicates tail
548 ** data that has been read directly into the page, and block_prepare_write
549 ** won't trigger a get_block in this case.
551 fix_tail_page_for_writing(tail_page);
552 retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end);
553 if (retval)
554 goto unlock;
556 /* tail conversion might change the data in the page */
557 flush_dcache_page(tail_page);
559 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
561 unlock:
562 if (tail_page != hole_page) {
563 unlock_page(tail_page);
564 page_cache_release(tail_page);
566 out:
567 return retval;
570 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
571 long block,
572 struct inode *inode,
573 b_blocknr_t * allocated_block_nr,
574 struct path *path, int flags)
576 BUG_ON(!th->t_trans_id);
578 #ifdef REISERFS_PREALLOCATE
579 if (!(flags & GET_BLOCK_NO_IMUX)) {
580 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
581 path, block);
583 #endif
584 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
585 block);
588 int reiserfs_get_block(struct inode *inode, sector_t block,
589 struct buffer_head *bh_result, int create)
591 int repeat, retval = 0;
592 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int
593 INITIALIZE_PATH(path);
594 int pos_in_item;
595 struct cpu_key key;
596 struct buffer_head *bh, *unbh = NULL;
597 struct item_head *ih, tmp_ih;
598 __le32 *item;
599 int done;
600 int fs_gen;
601 struct reiserfs_transaction_handle *th = NULL;
602 /* space reserved in transaction batch:
603 . 3 balancings in direct->indirect conversion
604 . 1 block involved into reiserfs_update_sd()
605 XXX in practically impossible worst case direct2indirect()
606 can incur (much) more than 3 balancings.
607 quota update for user, group */
608 int jbegin_count =
609 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
610 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
611 int version;
612 int dangle = 1;
613 loff_t new_offset =
614 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
616 /* bad.... */
617 reiserfs_write_lock(inode->i_sb);
618 version = get_inode_item_key_version(inode);
620 if (!file_capable(inode, block)) {
621 reiserfs_write_unlock(inode->i_sb);
622 return -EFBIG;
625 /* if !create, we aren't changing the FS, so we don't need to
626 ** log anything, so we don't need to start a transaction
628 if (!(create & GET_BLOCK_CREATE)) {
629 int ret;
630 /* find number of block-th logical block of the file */
631 ret = _get_block_create_0(inode, block, bh_result,
632 create | GET_BLOCK_READ_DIRECT);
633 reiserfs_write_unlock(inode->i_sb);
634 return ret;
637 * if we're already in a transaction, make sure to close
638 * any new transactions we start in this func
640 if ((create & GET_BLOCK_NO_DANGLE) ||
641 reiserfs_transaction_running(inode->i_sb))
642 dangle = 0;
644 /* If file is of such a size, that it might have a tail and tails are enabled
645 ** we should mark it as possibly needing tail packing on close
647 if ((have_large_tails(inode->i_sb)
648 && inode->i_size < i_block_size(inode) * 4)
649 || (have_small_tails(inode->i_sb)
650 && inode->i_size < i_block_size(inode)))
651 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
653 /* set the key of the first byte in the 'block'-th block of file */
654 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
655 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
656 start_trans:
657 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
658 if (!th) {
659 retval = -ENOMEM;
660 goto failure;
662 reiserfs_update_inode_transaction(inode);
664 research:
666 retval = search_for_position_by_key(inode->i_sb, &key, &path);
667 if (retval == IO_ERROR) {
668 retval = -EIO;
669 goto failure;
672 bh = get_last_bh(&path);
673 ih = get_ih(&path);
674 item = get_item(&path);
675 pos_in_item = path.pos_in_item;
677 fs_gen = get_generation(inode->i_sb);
678 copy_item_head(&tmp_ih, ih);
680 if (allocation_needed
681 (retval, allocated_block_nr, ih, item, pos_in_item)) {
682 /* we have to allocate block for the unformatted node */
683 if (!th) {
684 pathrelse(&path);
685 goto start_trans;
688 repeat =
689 _allocate_block(th, block, inode, &allocated_block_nr,
690 &path, create);
692 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
693 /* restart the transaction to give the journal a chance to free
694 ** some blocks. releases the path, so we have to go back to
695 ** research if we succeed on the second try
697 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
698 retval = restart_transaction(th, inode, &path);
699 if (retval)
700 goto failure;
701 repeat =
702 _allocate_block(th, block, inode,
703 &allocated_block_nr, NULL, create);
705 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
706 goto research;
708 if (repeat == QUOTA_EXCEEDED)
709 retval = -EDQUOT;
710 else
711 retval = -ENOSPC;
712 goto failure;
715 if (fs_changed(fs_gen, inode->i_sb)
716 && item_moved(&tmp_ih, &path)) {
717 goto research;
721 if (indirect_item_found(retval, ih)) {
722 b_blocknr_t unfm_ptr;
723 /* 'block'-th block is in the file already (there is
724 corresponding cell in some indirect item). But it may be
725 zero unformatted node pointer (hole) */
726 unfm_ptr = get_block_num(item, pos_in_item);
727 if (unfm_ptr == 0) {
728 /* use allocated block to plug the hole */
729 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
730 if (fs_changed(fs_gen, inode->i_sb)
731 && item_moved(&tmp_ih, &path)) {
732 reiserfs_restore_prepared_buffer(inode->i_sb,
733 bh);
734 goto research;
736 set_buffer_new(bh_result);
737 if (buffer_dirty(bh_result)
738 && reiserfs_data_ordered(inode->i_sb))
739 reiserfs_add_ordered_list(inode, bh_result);
740 put_block_num(item, pos_in_item, allocated_block_nr);
741 unfm_ptr = allocated_block_nr;
742 journal_mark_dirty(th, inode->i_sb, bh);
743 reiserfs_update_sd(th, inode);
745 set_block_dev_mapped(bh_result, unfm_ptr, inode);
746 pathrelse(&path);
747 retval = 0;
748 if (!dangle && th)
749 retval = reiserfs_end_persistent_transaction(th);
751 reiserfs_write_unlock(inode->i_sb);
753 /* the item was found, so new blocks were not added to the file
754 ** there is no need to make sure the inode is updated with this
755 ** transaction
757 return retval;
760 if (!th) {
761 pathrelse(&path);
762 goto start_trans;
765 /* desired position is not found or is in the direct item. We have
766 to append file with holes up to 'block'-th block converting
767 direct items to indirect one if necessary */
768 done = 0;
769 do {
770 if (is_statdata_le_ih(ih)) {
771 __le32 unp = 0;
772 struct cpu_key tmp_key;
774 /* indirect item has to be inserted */
775 make_le_item_head(&tmp_ih, &key, version, 1,
776 TYPE_INDIRECT, UNFM_P_SIZE,
777 0 /* free_space */ );
779 if (cpu_key_k_offset(&key) == 1) {
780 /* we are going to add 'block'-th block to the file. Use
781 allocated block for that */
782 unp = cpu_to_le32(allocated_block_nr);
783 set_block_dev_mapped(bh_result,
784 allocated_block_nr, inode);
785 set_buffer_new(bh_result);
786 done = 1;
788 tmp_key = key; // ;)
789 set_cpu_key_k_offset(&tmp_key, 1);
790 PATH_LAST_POSITION(&path)++;
792 retval =
793 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
794 inode, (char *)&unp);
795 if (retval) {
796 reiserfs_free_block(th, inode,
797 allocated_block_nr, 1);
798 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
800 //mark_tail_converted (inode);
801 } else if (is_direct_le_ih(ih)) {
802 /* direct item has to be converted */
803 loff_t tail_offset;
805 tail_offset =
806 ((le_ih_k_offset(ih) -
807 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
808 if (tail_offset == cpu_key_k_offset(&key)) {
809 /* direct item we just found fits into block we have
810 to map. Convert it into unformatted node: use
811 bh_result for the conversion */
812 set_block_dev_mapped(bh_result,
813 allocated_block_nr, inode);
814 unbh = bh_result;
815 done = 1;
816 } else {
817 /* we have to padd file tail stored in direct item(s)
818 up to block size and convert it to unformatted
819 node. FIXME: this should also get into page cache */
821 pathrelse(&path);
823 * ugly, but we can only end the transaction if
824 * we aren't nested
826 BUG_ON(!th->t_refcount);
827 if (th->t_refcount == 1) {
828 retval =
829 reiserfs_end_persistent_transaction
830 (th);
831 th = NULL;
832 if (retval)
833 goto failure;
836 retval =
837 convert_tail_for_hole(inode, bh_result,
838 tail_offset);
839 if (retval) {
840 if (retval != -ENOSPC)
841 reiserfs_warning(inode->i_sb,
842 "clm-6004: convert tail failed inode %lu, error %d",
843 inode->i_ino,
844 retval);
845 if (allocated_block_nr) {
846 /* the bitmap, the super, and the stat data == 3 */
847 if (!th)
848 th = reiserfs_persistent_transaction(inode->i_sb, 3);
849 if (th)
850 reiserfs_free_block(th,
851 inode,
852 allocated_block_nr,
855 goto failure;
857 goto research;
859 retval =
860 direct2indirect(th, inode, &path, unbh,
861 tail_offset);
862 if (retval) {
863 reiserfs_unmap_buffer(unbh);
864 reiserfs_free_block(th, inode,
865 allocated_block_nr, 1);
866 goto failure;
868 /* it is important the set_buffer_uptodate is done after
869 ** the direct2indirect. The buffer might contain valid
870 ** data newer than the data on disk (read by readpage, changed,
871 ** and then sent here by writepage). direct2indirect needs
872 ** to know if unbh was already up to date, so it can decide
873 ** if the data in unbh needs to be replaced with data from
874 ** the disk
876 set_buffer_uptodate(unbh);
878 /* unbh->b_page == NULL in case of DIRECT_IO request, this means
879 buffer will disappear shortly, so it should not be added to
881 if (unbh->b_page) {
882 /* we've converted the tail, so we must
883 ** flush unbh before the transaction commits
885 reiserfs_add_tail_list(inode, unbh);
887 /* mark it dirty now to prevent commit_write from adding
888 ** this buffer to the inode's dirty buffer list
891 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
892 * It's still atomic, but it sets the page dirty too,
893 * which makes it eligible for writeback at any time by the
894 * VM (which was also the case with __mark_buffer_dirty())
896 mark_buffer_dirty(unbh);
898 } else {
899 /* append indirect item with holes if needed, when appending
900 pointer to 'block'-th block use block, which is already
901 allocated */
902 struct cpu_key tmp_key;
903 unp_t unf_single = 0; // We use this in case we need to allocate only
904 // one block which is a fastpath
905 unp_t *un;
906 __u64 max_to_insert =
907 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
908 UNFM_P_SIZE;
909 __u64 blocks_needed;
911 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
912 "vs-804: invalid position for append");
913 /* indirect item has to be appended, set up key of that position */
914 make_cpu_key(&tmp_key, inode,
915 le_key_k_offset(version,
916 &(ih->ih_key)) +
917 op_bytes_number(ih,
918 inode->i_sb->s_blocksize),
919 //pos_in_item * inode->i_sb->s_blocksize,
920 TYPE_INDIRECT, 3); // key type is unimportant
922 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
923 "green-805: invalid offset");
924 blocks_needed =
926 ((cpu_key_k_offset(&key) -
927 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
928 s_blocksize_bits);
930 if (blocks_needed == 1) {
931 un = &unf_single;
932 } else {
933 un = kmalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_ATOMIC); // We need to avoid scheduling.
934 if (!un) {
935 un = &unf_single;
936 blocks_needed = 1;
937 max_to_insert = 0;
938 } else
939 memset(un, 0,
940 UNFM_P_SIZE * min(blocks_needed,
941 max_to_insert));
943 if (blocks_needed <= max_to_insert) {
944 /* we are going to add target block to the file. Use allocated
945 block for that */
946 un[blocks_needed - 1] =
947 cpu_to_le32(allocated_block_nr);
948 set_block_dev_mapped(bh_result,
949 allocated_block_nr, inode);
950 set_buffer_new(bh_result);
951 done = 1;
952 } else {
953 /* paste hole to the indirect item */
954 /* If kmalloc failed, max_to_insert becomes zero and it means we
955 only have space for one block */
956 blocks_needed =
957 max_to_insert ? max_to_insert : 1;
959 retval =
960 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
961 (char *)un,
962 UNFM_P_SIZE *
963 blocks_needed);
965 if (blocks_needed != 1)
966 kfree(un);
968 if (retval) {
969 reiserfs_free_block(th, inode,
970 allocated_block_nr, 1);
971 goto failure;
973 if (!done) {
974 /* We need to mark new file size in case this function will be
975 interrupted/aborted later on. And we may do this only for
976 holes. */
977 inode->i_size +=
978 inode->i_sb->s_blocksize * blocks_needed;
982 if (done == 1)
983 break;
985 /* this loop could log more blocks than we had originally asked
986 ** for. So, we have to allow the transaction to end if it is
987 ** too big or too full. Update the inode so things are
988 ** consistent if we crash before the function returns
990 ** release the path so that anybody waiting on the path before
991 ** ending their transaction will be able to continue.
993 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
994 retval = restart_transaction(th, inode, &path);
995 if (retval)
996 goto failure;
998 /* inserting indirect pointers for a hole can take a
999 ** long time. reschedule if needed
1001 cond_resched();
1003 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1004 if (retval == IO_ERROR) {
1005 retval = -EIO;
1006 goto failure;
1008 if (retval == POSITION_FOUND) {
1009 reiserfs_warning(inode->i_sb,
1010 "vs-825: reiserfs_get_block: "
1011 "%K should not be found", &key);
1012 retval = -EEXIST;
1013 if (allocated_block_nr)
1014 reiserfs_free_block(th, inode,
1015 allocated_block_nr, 1);
1016 pathrelse(&path);
1017 goto failure;
1019 bh = get_last_bh(&path);
1020 ih = get_ih(&path);
1021 item = get_item(&path);
1022 pos_in_item = path.pos_in_item;
1023 } while (1);
1025 retval = 0;
1027 failure:
1028 if (th && (!dangle || (retval && !th->t_trans_id))) {
1029 int err;
1030 if (th->t_trans_id)
1031 reiserfs_update_sd(th, inode);
1032 err = reiserfs_end_persistent_transaction(th);
1033 if (err)
1034 retval = err;
1037 reiserfs_write_unlock(inode->i_sb);
1038 reiserfs_check_path(&path);
1039 return retval;
1042 static int
1043 reiserfs_readpages(struct file *file, struct address_space *mapping,
1044 struct list_head *pages, unsigned nr_pages)
1046 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1049 /* Compute real number of used bytes by file
1050 * Following three functions can go away when we'll have enough space in stat item
1052 static int real_space_diff(struct inode *inode, int sd_size)
1054 int bytes;
1055 loff_t blocksize = inode->i_sb->s_blocksize;
1057 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1058 return sd_size;
1060 /* End of file is also in full block with indirect reference, so round
1061 ** up to the next block.
1063 ** there is just no way to know if the tail is actually packed
1064 ** on the file, so we have to assume it isn't. When we pack the
1065 ** tail, we add 4 bytes to pretend there really is an unformatted
1066 ** node pointer
1068 bytes =
1069 ((inode->i_size +
1070 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1071 sd_size;
1072 return bytes;
1075 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1076 int sd_size)
1078 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1079 return inode->i_size +
1080 (loff_t) (real_space_diff(inode, sd_size));
1082 return ((loff_t) real_space_diff(inode, sd_size)) +
1083 (((loff_t) blocks) << 9);
1086 /* Compute number of blocks used by file in ReiserFS counting */
1087 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1089 loff_t bytes = inode_get_bytes(inode);
1090 loff_t real_space = real_space_diff(inode, sd_size);
1092 /* keeps fsck and non-quota versions of reiserfs happy */
1093 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1094 bytes += (loff_t) 511;
1097 /* files from before the quota patch might i_blocks such that
1098 ** bytes < real_space. Deal with that here to prevent it from
1099 ** going negative.
1101 if (bytes < real_space)
1102 return 0;
1103 return (bytes - real_space) >> 9;
1107 // BAD: new directories have stat data of new type and all other items
1108 // of old type. Version stored in the inode says about body items, so
1109 // in update_stat_data we can not rely on inode, but have to check
1110 // item version directly
1113 // called by read_locked_inode
1114 static void init_inode(struct inode *inode, struct path *path)
1116 struct buffer_head *bh;
1117 struct item_head *ih;
1118 __u32 rdev;
1119 //int version = ITEM_VERSION_1;
1121 bh = PATH_PLAST_BUFFER(path);
1122 ih = PATH_PITEM_HEAD(path);
1124 copy_key(INODE_PKEY(inode), &(ih->ih_key));
1125 inode->i_blksize = reiserfs_default_io_size;
1127 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1128 REISERFS_I(inode)->i_flags = 0;
1129 REISERFS_I(inode)->i_prealloc_block = 0;
1130 REISERFS_I(inode)->i_prealloc_count = 0;
1131 REISERFS_I(inode)->i_trans_id = 0;
1132 REISERFS_I(inode)->i_jl = NULL;
1133 REISERFS_I(inode)->i_acl_access = NULL;
1134 REISERFS_I(inode)->i_acl_default = NULL;
1135 init_rwsem(&REISERFS_I(inode)->xattr_sem);
1137 if (stat_data_v1(ih)) {
1138 struct stat_data_v1 *sd =
1139 (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1140 unsigned long blocks;
1142 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1143 set_inode_sd_version(inode, STAT_DATA_V1);
1144 inode->i_mode = sd_v1_mode(sd);
1145 inode->i_nlink = sd_v1_nlink(sd);
1146 inode->i_uid = sd_v1_uid(sd);
1147 inode->i_gid = sd_v1_gid(sd);
1148 inode->i_size = sd_v1_size(sd);
1149 inode->i_atime.tv_sec = sd_v1_atime(sd);
1150 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1151 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1152 inode->i_atime.tv_nsec = 0;
1153 inode->i_ctime.tv_nsec = 0;
1154 inode->i_mtime.tv_nsec = 0;
1156 inode->i_blocks = sd_v1_blocks(sd);
1157 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1158 blocks = (inode->i_size + 511) >> 9;
1159 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1160 if (inode->i_blocks > blocks) {
1161 // there was a bug in <=3.5.23 when i_blocks could take negative
1162 // values. Starting from 3.5.17 this value could even be stored in
1163 // stat data. For such files we set i_blocks based on file
1164 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1165 // only updated if file's inode will ever change
1166 inode->i_blocks = blocks;
1169 rdev = sd_v1_rdev(sd);
1170 REISERFS_I(inode)->i_first_direct_byte =
1171 sd_v1_first_direct_byte(sd);
1172 /* an early bug in the quota code can give us an odd number for the
1173 ** block count. This is incorrect, fix it here.
1175 if (inode->i_blocks & 1) {
1176 inode->i_blocks++;
1178 inode_set_bytes(inode,
1179 to_real_used_space(inode, inode->i_blocks,
1180 SD_V1_SIZE));
1181 /* nopack is initially zero for v1 objects. For v2 objects,
1182 nopack is initialised from sd_attrs */
1183 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1184 } else {
1185 // new stat data found, but object may have old items
1186 // (directories and symlinks)
1187 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1189 inode->i_mode = sd_v2_mode(sd);
1190 inode->i_nlink = sd_v2_nlink(sd);
1191 inode->i_uid = sd_v2_uid(sd);
1192 inode->i_size = sd_v2_size(sd);
1193 inode->i_gid = sd_v2_gid(sd);
1194 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1195 inode->i_atime.tv_sec = sd_v2_atime(sd);
1196 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1197 inode->i_ctime.tv_nsec = 0;
1198 inode->i_mtime.tv_nsec = 0;
1199 inode->i_atime.tv_nsec = 0;
1200 inode->i_blocks = sd_v2_blocks(sd);
1201 rdev = sd_v2_rdev(sd);
1202 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1203 inode->i_generation =
1204 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1205 else
1206 inode->i_generation = sd_v2_generation(sd);
1208 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1209 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1210 else
1211 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1212 REISERFS_I(inode)->i_first_direct_byte = 0;
1213 set_inode_sd_version(inode, STAT_DATA_V2);
1214 inode_set_bytes(inode,
1215 to_real_used_space(inode, inode->i_blocks,
1216 SD_V2_SIZE));
1217 /* read persistent inode attributes from sd and initalise
1218 generic inode flags from them */
1219 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1220 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1223 pathrelse(path);
1224 if (S_ISREG(inode->i_mode)) {
1225 inode->i_op = &reiserfs_file_inode_operations;
1226 inode->i_fop = &reiserfs_file_operations;
1227 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1228 } else if (S_ISDIR(inode->i_mode)) {
1229 inode->i_op = &reiserfs_dir_inode_operations;
1230 inode->i_fop = &reiserfs_dir_operations;
1231 } else if (S_ISLNK(inode->i_mode)) {
1232 inode->i_op = &reiserfs_symlink_inode_operations;
1233 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1234 } else {
1235 inode->i_blocks = 0;
1236 inode->i_op = &reiserfs_special_inode_operations;
1237 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1241 // update new stat data with inode fields
1242 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1244 struct stat_data *sd_v2 = (struct stat_data *)sd;
1245 __u16 flags;
1247 set_sd_v2_mode(sd_v2, inode->i_mode);
1248 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1249 set_sd_v2_uid(sd_v2, inode->i_uid);
1250 set_sd_v2_size(sd_v2, size);
1251 set_sd_v2_gid(sd_v2, inode->i_gid);
1252 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1253 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1254 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1255 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1256 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1257 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1258 else
1259 set_sd_v2_generation(sd_v2, inode->i_generation);
1260 flags = REISERFS_I(inode)->i_attrs;
1261 i_attrs_to_sd_attrs(inode, &flags);
1262 set_sd_v2_attrs(sd_v2, flags);
1265 // used to copy inode's fields to old stat data
1266 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1268 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1270 set_sd_v1_mode(sd_v1, inode->i_mode);
1271 set_sd_v1_uid(sd_v1, inode->i_uid);
1272 set_sd_v1_gid(sd_v1, inode->i_gid);
1273 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1274 set_sd_v1_size(sd_v1, size);
1275 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1276 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1277 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1279 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1280 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1281 else
1282 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1284 // Sigh. i_first_direct_byte is back
1285 set_sd_v1_first_direct_byte(sd_v1,
1286 REISERFS_I(inode)->i_first_direct_byte);
1289 /* NOTE, you must prepare the buffer head before sending it here,
1290 ** and then log it after the call
1292 static void update_stat_data(struct path *path, struct inode *inode,
1293 loff_t size)
1295 struct buffer_head *bh;
1296 struct item_head *ih;
1298 bh = PATH_PLAST_BUFFER(path);
1299 ih = PATH_PITEM_HEAD(path);
1301 if (!is_statdata_le_ih(ih))
1302 reiserfs_panic(inode->i_sb,
1303 "vs-13065: update_stat_data: key %k, found item %h",
1304 INODE_PKEY(inode), ih);
1306 if (stat_data_v1(ih)) {
1307 // path points to old stat data
1308 inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1309 } else {
1310 inode2sd(B_I_PITEM(bh, ih), inode, size);
1313 return;
1316 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1317 struct inode *inode, loff_t size)
1319 struct cpu_key key;
1320 INITIALIZE_PATH(path);
1321 struct buffer_head *bh;
1322 int fs_gen;
1323 struct item_head *ih, tmp_ih;
1324 int retval;
1326 BUG_ON(!th->t_trans_id);
1328 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant
1330 for (;;) {
1331 int pos;
1332 /* look for the object's stat data */
1333 retval = search_item(inode->i_sb, &key, &path);
1334 if (retval == IO_ERROR) {
1335 reiserfs_warning(inode->i_sb,
1336 "vs-13050: reiserfs_update_sd: "
1337 "i/o failure occurred trying to update %K stat data",
1338 &key);
1339 return;
1341 if (retval == ITEM_NOT_FOUND) {
1342 pos = PATH_LAST_POSITION(&path);
1343 pathrelse(&path);
1344 if (inode->i_nlink == 0) {
1345 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1346 return;
1348 reiserfs_warning(inode->i_sb,
1349 "vs-13060: reiserfs_update_sd: "
1350 "stat data of object %k (nlink == %d) not found (pos %d)",
1351 INODE_PKEY(inode), inode->i_nlink,
1352 pos);
1353 reiserfs_check_path(&path);
1354 return;
1357 /* sigh, prepare_for_journal might schedule. When it schedules the
1358 ** FS might change. We have to detect that, and loop back to the
1359 ** search if the stat data item has moved
1361 bh = get_last_bh(&path);
1362 ih = get_ih(&path);
1363 copy_item_head(&tmp_ih, ih);
1364 fs_gen = get_generation(inode->i_sb);
1365 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1366 if (fs_changed(fs_gen, inode->i_sb)
1367 && item_moved(&tmp_ih, &path)) {
1368 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1369 continue; /* Stat_data item has been moved after scheduling. */
1371 break;
1373 update_stat_data(&path, inode, size);
1374 journal_mark_dirty(th, th->t_super, bh);
1375 pathrelse(&path);
1376 return;
1379 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1380 ** does a make_bad_inode when things go wrong. But, we need to make sure
1381 ** and clear the key in the private portion of the inode, otherwise a
1382 ** corresponding iput might try to delete whatever object the inode last
1383 ** represented.
1385 static void reiserfs_make_bad_inode(struct inode *inode)
1387 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1388 make_bad_inode(inode);
1392 // initially this function was derived from minix or ext2's analog and
1393 // evolved as the prototype did
1396 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1398 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1399 inode->i_ino = args->objectid;
1400 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1401 return 0;
1404 /* looks for stat data in the tree, and fills up the fields of in-core
1405 inode stat data fields */
1406 void reiserfs_read_locked_inode(struct inode *inode,
1407 struct reiserfs_iget_args *args)
1409 INITIALIZE_PATH(path_to_sd);
1410 struct cpu_key key;
1411 unsigned long dirino;
1412 int retval;
1414 dirino = args->dirid;
1416 /* set version 1, version 2 could be used too, because stat data
1417 key is the same in both versions */
1418 key.version = KEY_FORMAT_3_5;
1419 key.on_disk_key.k_dir_id = dirino;
1420 key.on_disk_key.k_objectid = inode->i_ino;
1421 key.on_disk_key.k_offset = 0;
1422 key.on_disk_key.k_type = 0;
1424 /* look for the object's stat data */
1425 retval = search_item(inode->i_sb, &key, &path_to_sd);
1426 if (retval == IO_ERROR) {
1427 reiserfs_warning(inode->i_sb,
1428 "vs-13070: reiserfs_read_locked_inode: "
1429 "i/o failure occurred trying to find stat data of %K",
1430 &key);
1431 reiserfs_make_bad_inode(inode);
1432 return;
1434 if (retval != ITEM_FOUND) {
1435 /* a stale NFS handle can trigger this without it being an error */
1436 pathrelse(&path_to_sd);
1437 reiserfs_make_bad_inode(inode);
1438 inode->i_nlink = 0;
1439 return;
1442 init_inode(inode, &path_to_sd);
1444 /* It is possible that knfsd is trying to access inode of a file
1445 that is being removed from the disk by some other thread. As we
1446 update sd on unlink all that is required is to check for nlink
1447 here. This bug was first found by Sizif when debugging
1448 SquidNG/Butterfly, forgotten, and found again after Philippe
1449 Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1451 More logical fix would require changes in fs/inode.c:iput() to
1452 remove inode from hash-table _after_ fs cleaned disk stuff up and
1453 in iget() to return NULL if I_FREEING inode is found in
1454 hash-table. */
1455 /* Currently there is one place where it's ok to meet inode with
1456 nlink==0: processing of open-unlinked and half-truncated files
1457 during mount (fs/reiserfs/super.c:finish_unfinished()). */
1458 if ((inode->i_nlink == 0) &&
1459 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1460 reiserfs_warning(inode->i_sb,
1461 "vs-13075: reiserfs_read_locked_inode: "
1462 "dead inode read from disk %K. "
1463 "This is likely to be race with knfsd. Ignore",
1464 &key);
1465 reiserfs_make_bad_inode(inode);
1468 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */
1473 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1475 * @inode: inode from hash table to check
1476 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1478 * This function is called by iget5_locked() to distinguish reiserfs inodes
1479 * having the same inode numbers. Such inodes can only exist due to some
1480 * error condition. One of them should be bad. Inodes with identical
1481 * inode numbers (objectids) are distinguished by parent directory ids.
1484 int reiserfs_find_actor(struct inode *inode, void *opaque)
1486 struct reiserfs_iget_args *args;
1488 args = opaque;
1489 /* args is already in CPU order */
1490 return (inode->i_ino == args->objectid) &&
1491 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1494 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1496 struct inode *inode;
1497 struct reiserfs_iget_args args;
1499 args.objectid = key->on_disk_key.k_objectid;
1500 args.dirid = key->on_disk_key.k_dir_id;
1501 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1502 reiserfs_find_actor, reiserfs_init_locked_inode,
1503 (void *)(&args));
1504 if (!inode)
1505 return ERR_PTR(-ENOMEM);
1507 if (inode->i_state & I_NEW) {
1508 reiserfs_read_locked_inode(inode, &args);
1509 unlock_new_inode(inode);
1512 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1513 /* either due to i/o error or a stale NFS handle */
1514 iput(inode);
1515 inode = NULL;
1517 return inode;
1520 struct dentry *reiserfs_get_dentry(struct super_block *sb, void *vobjp)
1522 __u32 *data = vobjp;
1523 struct cpu_key key;
1524 struct dentry *result;
1525 struct inode *inode;
1527 key.on_disk_key.k_objectid = data[0];
1528 key.on_disk_key.k_dir_id = data[1];
1529 reiserfs_write_lock(sb);
1530 inode = reiserfs_iget(sb, &key);
1531 if (inode && !IS_ERR(inode) && data[2] != 0 &&
1532 data[2] != inode->i_generation) {
1533 iput(inode);
1534 inode = NULL;
1536 reiserfs_write_unlock(sb);
1537 if (!inode)
1538 inode = ERR_PTR(-ESTALE);
1539 if (IS_ERR(inode))
1540 return ERR_PTR(PTR_ERR(inode));
1541 result = d_alloc_anon(inode);
1542 if (!result) {
1543 iput(inode);
1544 return ERR_PTR(-ENOMEM);
1546 return result;
1549 struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 * data,
1550 int len, int fhtype,
1551 int (*acceptable) (void *contect,
1552 struct dentry * de),
1553 void *context)
1555 __u32 obj[3], parent[3];
1557 /* fhtype happens to reflect the number of u32s encoded.
1558 * due to a bug in earlier code, fhtype might indicate there
1559 * are more u32s then actually fitted.
1560 * so if fhtype seems to be more than len, reduce fhtype.
1561 * Valid types are:
1562 * 2 - objectid + dir_id - legacy support
1563 * 3 - objectid + dir_id + generation
1564 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1565 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1566 * 6 - as above plus generation of directory
1567 * 6 does not fit in NFSv2 handles
1569 if (fhtype > len) {
1570 if (fhtype != 6 || len != 5)
1571 reiserfs_warning(sb,
1572 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1573 fhtype, len);
1574 fhtype = 5;
1577 obj[0] = data[0];
1578 obj[1] = data[1];
1579 if (fhtype == 3 || fhtype >= 5)
1580 obj[2] = data[2];
1581 else
1582 obj[2] = 0; /* generation number */
1584 if (fhtype >= 4) {
1585 parent[0] = data[fhtype >= 5 ? 3 : 2];
1586 parent[1] = data[fhtype >= 5 ? 4 : 3];
1587 if (fhtype == 6)
1588 parent[2] = data[5];
1589 else
1590 parent[2] = 0;
1592 return sb->s_export_op->find_exported_dentry(sb, obj,
1593 fhtype < 4 ? NULL : parent,
1594 acceptable, context);
1597 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1598 int need_parent)
1600 struct inode *inode = dentry->d_inode;
1601 int maxlen = *lenp;
1603 if (maxlen < 3)
1604 return 255;
1606 data[0] = inode->i_ino;
1607 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1608 data[2] = inode->i_generation;
1609 *lenp = 3;
1610 /* no room for directory info? return what we've stored so far */
1611 if (maxlen < 5 || !need_parent)
1612 return 3;
1614 spin_lock(&dentry->d_lock);
1615 inode = dentry->d_parent->d_inode;
1616 data[3] = inode->i_ino;
1617 data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1618 *lenp = 5;
1619 if (maxlen >= 6) {
1620 data[5] = inode->i_generation;
1621 *lenp = 6;
1623 spin_unlock(&dentry->d_lock);
1624 return *lenp;
1627 /* looks for stat data, then copies fields to it, marks the buffer
1628 containing stat data as dirty */
1629 /* reiserfs inodes are never really dirty, since the dirty inode call
1630 ** always logs them. This call allows the VFS inode marking routines
1631 ** to properly mark inodes for datasync and such, but only actually
1632 ** does something when called for a synchronous update.
1634 int reiserfs_write_inode(struct inode *inode, int do_sync)
1636 struct reiserfs_transaction_handle th;
1637 int jbegin_count = 1;
1639 if (inode->i_sb->s_flags & MS_RDONLY)
1640 return -EROFS;
1641 /* memory pressure can sometimes initiate write_inode calls with sync == 1,
1642 ** these cases are just when the system needs ram, not when the
1643 ** inode needs to reach disk for safety, and they can safely be
1644 ** ignored because the altered inode has already been logged.
1646 if (do_sync && !(current->flags & PF_MEMALLOC)) {
1647 reiserfs_write_lock(inode->i_sb);
1648 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1649 reiserfs_update_sd(&th, inode);
1650 journal_end_sync(&th, inode->i_sb, jbegin_count);
1652 reiserfs_write_unlock(inode->i_sb);
1654 return 0;
1657 /* stat data of new object is inserted already, this inserts the item
1658 containing "." and ".." entries */
1659 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1660 struct inode *inode,
1661 struct item_head *ih, struct path *path,
1662 struct inode *dir)
1664 struct super_block *sb = th->t_super;
1665 char empty_dir[EMPTY_DIR_SIZE];
1666 char *body = empty_dir;
1667 struct cpu_key key;
1668 int retval;
1670 BUG_ON(!th->t_trans_id);
1672 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1673 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1674 TYPE_DIRENTRY, 3 /*key length */ );
1676 /* compose item head for new item. Directories consist of items of
1677 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1678 is done by reiserfs_new_inode */
1679 if (old_format_only(sb)) {
1680 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1681 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1683 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1684 ih->ih_key.k_objectid,
1685 INODE_PKEY(dir)->k_dir_id,
1686 INODE_PKEY(dir)->k_objectid);
1687 } else {
1688 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1689 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1691 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1692 ih->ih_key.k_objectid,
1693 INODE_PKEY(dir)->k_dir_id,
1694 INODE_PKEY(dir)->k_objectid);
1697 /* look for place in the tree for new item */
1698 retval = search_item(sb, &key, path);
1699 if (retval == IO_ERROR) {
1700 reiserfs_warning(sb, "vs-13080: reiserfs_new_directory: "
1701 "i/o failure occurred creating new directory");
1702 return -EIO;
1704 if (retval == ITEM_FOUND) {
1705 pathrelse(path);
1706 reiserfs_warning(sb, "vs-13070: reiserfs_new_directory: "
1707 "object with this key exists (%k)",
1708 &(ih->ih_key));
1709 return -EEXIST;
1712 /* insert item, that is empty directory item */
1713 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1716 /* stat data of object has been inserted, this inserts the item
1717 containing the body of symlink */
1718 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */
1719 struct item_head *ih,
1720 struct path *path, const char *symname,
1721 int item_len)
1723 struct super_block *sb = th->t_super;
1724 struct cpu_key key;
1725 int retval;
1727 BUG_ON(!th->t_trans_id);
1729 _make_cpu_key(&key, KEY_FORMAT_3_5,
1730 le32_to_cpu(ih->ih_key.k_dir_id),
1731 le32_to_cpu(ih->ih_key.k_objectid),
1732 1, TYPE_DIRECT, 3 /*key length */ );
1734 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1735 0 /*free_space */ );
1737 /* look for place in the tree for new item */
1738 retval = search_item(sb, &key, path);
1739 if (retval == IO_ERROR) {
1740 reiserfs_warning(sb, "vs-13080: reiserfs_new_symlinik: "
1741 "i/o failure occurred creating new symlink");
1742 return -EIO;
1744 if (retval == ITEM_FOUND) {
1745 pathrelse(path);
1746 reiserfs_warning(sb, "vs-13080: reiserfs_new_symlink: "
1747 "object with this key exists (%k)",
1748 &(ih->ih_key));
1749 return -EEXIST;
1752 /* insert item, that is body of symlink */
1753 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1756 /* inserts the stat data into the tree, and then calls
1757 reiserfs_new_directory (to insert ".", ".." item if new object is
1758 directory) or reiserfs_new_symlink (to insert symlink body if new
1759 object is symlink) or nothing (if new object is regular file)
1761 NOTE! uid and gid must already be set in the inode. If we return
1762 non-zero due to an error, we have to drop the quota previously allocated
1763 for the fresh inode. This can only be done outside a transaction, so
1764 if we return non-zero, we also end the transaction. */
1765 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1766 struct inode *dir, int mode, const char *symname,
1767 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1768 strlen (symname) for symlinks) */
1769 loff_t i_size, struct dentry *dentry,
1770 struct inode *inode)
1772 struct super_block *sb;
1773 INITIALIZE_PATH(path_to_key);
1774 struct cpu_key key;
1775 struct item_head ih;
1776 struct stat_data sd;
1777 int retval;
1778 int err;
1780 BUG_ON(!th->t_trans_id);
1782 if (DQUOT_ALLOC_INODE(inode)) {
1783 err = -EDQUOT;
1784 goto out_end_trans;
1786 if (!dir || !dir->i_nlink) {
1787 err = -EPERM;
1788 goto out_bad_inode;
1791 sb = dir->i_sb;
1793 /* item head of new item */
1794 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1795 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1796 if (!ih.ih_key.k_objectid) {
1797 err = -ENOMEM;
1798 goto out_bad_inode;
1800 if (old_format_only(sb))
1801 /* not a perfect generation count, as object ids can be reused, but
1802 ** this is as good as reiserfs can do right now.
1803 ** note that the private part of inode isn't filled in yet, we have
1804 ** to use the directory.
1806 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1807 else
1808 #if defined( USE_INODE_GENERATION_COUNTER )
1809 inode->i_generation =
1810 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1811 #else
1812 inode->i_generation = ++event;
1813 #endif
1815 /* fill stat data */
1816 inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1818 /* uid and gid must already be set by the caller for quota init */
1820 /* symlink cannot be immutable or append only, right? */
1821 if (S_ISLNK(inode->i_mode))
1822 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1824 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1825 inode->i_size = i_size;
1826 inode->i_blocks = 0;
1827 inode->i_bytes = 0;
1828 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1829 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1831 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1832 REISERFS_I(inode)->i_flags = 0;
1833 REISERFS_I(inode)->i_prealloc_block = 0;
1834 REISERFS_I(inode)->i_prealloc_count = 0;
1835 REISERFS_I(inode)->i_trans_id = 0;
1836 REISERFS_I(inode)->i_jl = NULL;
1837 REISERFS_I(inode)->i_attrs =
1838 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1839 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1840 REISERFS_I(inode)->i_acl_access = NULL;
1841 REISERFS_I(inode)->i_acl_default = NULL;
1842 init_rwsem(&REISERFS_I(inode)->xattr_sem);
1844 if (old_format_only(sb))
1845 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1846 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1847 else
1848 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1849 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1851 /* key to search for correct place for new stat data */
1852 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1853 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1854 TYPE_STAT_DATA, 3 /*key length */ );
1856 /* find proper place for inserting of stat data */
1857 retval = search_item(sb, &key, &path_to_key);
1858 if (retval == IO_ERROR) {
1859 err = -EIO;
1860 goto out_bad_inode;
1862 if (retval == ITEM_FOUND) {
1863 pathrelse(&path_to_key);
1864 err = -EEXIST;
1865 goto out_bad_inode;
1867 if (old_format_only(sb)) {
1868 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1869 pathrelse(&path_to_key);
1870 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
1871 err = -EINVAL;
1872 goto out_bad_inode;
1874 inode2sd_v1(&sd, inode, inode->i_size);
1875 } else {
1876 inode2sd(&sd, inode, inode->i_size);
1878 // these do not go to on-disk stat data
1879 inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1880 inode->i_blksize = reiserfs_default_io_size;
1882 // store in in-core inode the key of stat data and version all
1883 // object items will have (directory items will have old offset
1884 // format, other new objects will consist of new items)
1885 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1886 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1887 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1888 else
1889 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1890 if (old_format_only(sb))
1891 set_inode_sd_version(inode, STAT_DATA_V1);
1892 else
1893 set_inode_sd_version(inode, STAT_DATA_V2);
1895 /* insert the stat data into the tree */
1896 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1897 if (REISERFS_I(dir)->new_packing_locality)
1898 th->displace_new_blocks = 1;
1899 #endif
1900 retval =
1901 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1902 (char *)(&sd));
1903 if (retval) {
1904 err = retval;
1905 reiserfs_check_path(&path_to_key);
1906 goto out_bad_inode;
1908 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1909 if (!th->displace_new_blocks)
1910 REISERFS_I(dir)->new_packing_locality = 0;
1911 #endif
1912 if (S_ISDIR(mode)) {
1913 /* insert item with "." and ".." */
1914 retval =
1915 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1918 if (S_ISLNK(mode)) {
1919 /* insert body of symlink */
1920 if (!old_format_only(sb))
1921 i_size = ROUND_UP(i_size);
1922 retval =
1923 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1924 i_size);
1926 if (retval) {
1927 err = retval;
1928 reiserfs_check_path(&path_to_key);
1929 journal_end(th, th->t_super, th->t_blocks_allocated);
1930 goto out_inserted_sd;
1933 /* XXX CHECK THIS */
1934 if (reiserfs_posixacl(inode->i_sb)) {
1935 retval = reiserfs_inherit_default_acl(dir, dentry, inode);
1936 if (retval) {
1937 err = retval;
1938 reiserfs_check_path(&path_to_key);
1939 journal_end(th, th->t_super, th->t_blocks_allocated);
1940 goto out_inserted_sd;
1942 } else if (inode->i_sb->s_flags & MS_POSIXACL) {
1943 reiserfs_warning(inode->i_sb, "ACLs aren't enabled in the fs, "
1944 "but vfs thinks they are!");
1945 } else if (is_reiserfs_priv_object(dir)) {
1946 reiserfs_mark_inode_private(inode);
1949 insert_inode_hash(inode);
1950 reiserfs_update_sd(th, inode);
1951 reiserfs_check_path(&path_to_key);
1953 return 0;
1955 /* it looks like you can easily compress these two goto targets into
1956 * one. Keeping it like this doesn't actually hurt anything, and they
1957 * are place holders for what the quota code actually needs.
1959 out_bad_inode:
1960 /* Invalidate the object, nothing was inserted yet */
1961 INODE_PKEY(inode)->k_objectid = 0;
1963 /* Quota change must be inside a transaction for journaling */
1964 DQUOT_FREE_INODE(inode);
1966 out_end_trans:
1967 journal_end(th, th->t_super, th->t_blocks_allocated);
1968 /* Drop can be outside and it needs more credits so it's better to have it outside */
1969 DQUOT_DROP(inode);
1970 inode->i_flags |= S_NOQUOTA;
1971 make_bad_inode(inode);
1973 out_inserted_sd:
1974 inode->i_nlink = 0;
1975 th->t_trans_id = 0; /* so the caller can't use this handle later */
1977 /* If we were inheriting an ACL, we need to release the lock so that
1978 * iput doesn't deadlock in reiserfs_delete_xattrs. The locking
1979 * code really needs to be reworked, but this will take care of it
1980 * for now. -jeffm */
1981 if (REISERFS_I(dir)->i_acl_default && !IS_ERR(REISERFS_I(dir)->i_acl_default)) {
1982 reiserfs_write_unlock_xattrs(dir->i_sb);
1983 iput(inode);
1984 reiserfs_write_lock_xattrs(dir->i_sb);
1985 } else
1986 iput(inode);
1987 return err;
1991 ** finds the tail page in the page cache,
1992 ** reads the last block in.
1994 ** On success, page_result is set to a locked, pinned page, and bh_result
1995 ** is set to an up to date buffer for the last block in the file. returns 0.
1997 ** tail conversion is not done, so bh_result might not be valid for writing
1998 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
1999 ** trying to write the block.
2001 ** on failure, nonzero is returned, page_result and bh_result are untouched.
2003 static int grab_tail_page(struct inode *p_s_inode,
2004 struct page **page_result,
2005 struct buffer_head **bh_result)
2008 /* we want the page with the last byte in the file,
2009 ** not the page that will hold the next byte for appending
2011 unsigned long index = (p_s_inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2012 unsigned long pos = 0;
2013 unsigned long start = 0;
2014 unsigned long blocksize = p_s_inode->i_sb->s_blocksize;
2015 unsigned long offset = (p_s_inode->i_size) & (PAGE_CACHE_SIZE - 1);
2016 struct buffer_head *bh;
2017 struct buffer_head *head;
2018 struct page *page;
2019 int error;
2021 /* we know that we are only called with inode->i_size > 0.
2022 ** we also know that a file tail can never be as big as a block
2023 ** If i_size % blocksize == 0, our file is currently block aligned
2024 ** and it won't need converting or zeroing after a truncate.
2026 if ((offset & (blocksize - 1)) == 0) {
2027 return -ENOENT;
2029 page = grab_cache_page(p_s_inode->i_mapping, index);
2030 error = -ENOMEM;
2031 if (!page) {
2032 goto out;
2034 /* start within the page of the last block in the file */
2035 start = (offset / blocksize) * blocksize;
2037 error = block_prepare_write(page, start, offset,
2038 reiserfs_get_block_create_0);
2039 if (error)
2040 goto unlock;
2042 head = page_buffers(page);
2043 bh = head;
2044 do {
2045 if (pos >= start) {
2046 break;
2048 bh = bh->b_this_page;
2049 pos += blocksize;
2050 } while (bh != head);
2052 if (!buffer_uptodate(bh)) {
2053 /* note, this should never happen, prepare_write should
2054 ** be taking care of this for us. If the buffer isn't up to date,
2055 ** I've screwed up the code to find the buffer, or the code to
2056 ** call prepare_write
2058 reiserfs_warning(p_s_inode->i_sb,
2059 "clm-6000: error reading block %lu on dev %s",
2060 bh->b_blocknr,
2061 reiserfs_bdevname(p_s_inode->i_sb));
2062 error = -EIO;
2063 goto unlock;
2065 *bh_result = bh;
2066 *page_result = page;
2068 out:
2069 return error;
2071 unlock:
2072 unlock_page(page);
2073 page_cache_release(page);
2074 return error;
2078 ** vfs version of truncate file. Must NOT be called with
2079 ** a transaction already started.
2081 ** some code taken from block_truncate_page
2083 int reiserfs_truncate_file(struct inode *p_s_inode, int update_timestamps)
2085 struct reiserfs_transaction_handle th;
2086 /* we want the offset for the first byte after the end of the file */
2087 unsigned long offset = p_s_inode->i_size & (PAGE_CACHE_SIZE - 1);
2088 unsigned blocksize = p_s_inode->i_sb->s_blocksize;
2089 unsigned length;
2090 struct page *page = NULL;
2091 int error;
2092 struct buffer_head *bh = NULL;
2093 int err2;
2095 reiserfs_write_lock(p_s_inode->i_sb);
2097 if (p_s_inode->i_size > 0) {
2098 if ((error = grab_tail_page(p_s_inode, &page, &bh))) {
2099 // -ENOENT means we truncated past the end of the file,
2100 // and get_block_create_0 could not find a block to read in,
2101 // which is ok.
2102 if (error != -ENOENT)
2103 reiserfs_warning(p_s_inode->i_sb,
2104 "clm-6001: grab_tail_page failed %d",
2105 error);
2106 page = NULL;
2107 bh = NULL;
2111 /* so, if page != NULL, we have a buffer head for the offset at
2112 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2113 ** then we have an unformatted node. Otherwise, we have a direct item,
2114 ** and no zeroing is required on disk. We zero after the truncate,
2115 ** because the truncate might pack the item anyway
2116 ** (it will unmap bh if it packs).
2118 /* it is enough to reserve space in transaction for 2 balancings:
2119 one for "save" link adding and another for the first
2120 cut_from_item. 1 is for update_sd */
2121 error = journal_begin(&th, p_s_inode->i_sb,
2122 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2123 if (error)
2124 goto out;
2125 reiserfs_update_inode_transaction(p_s_inode);
2126 if (update_timestamps)
2127 /* we are doing real truncate: if the system crashes before the last
2128 transaction of truncating gets committed - on reboot the file
2129 either appears truncated properly or not truncated at all */
2130 add_save_link(&th, p_s_inode, 1);
2131 err2 = reiserfs_do_truncate(&th, p_s_inode, page, update_timestamps);
2132 error =
2133 journal_end(&th, p_s_inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2134 if (error)
2135 goto out;
2137 /* check reiserfs_do_truncate after ending the transaction */
2138 if (err2) {
2139 error = err2;
2140 goto out;
2143 if (update_timestamps) {
2144 error = remove_save_link(p_s_inode, 1 /* truncate */ );
2145 if (error)
2146 goto out;
2149 if (page) {
2150 length = offset & (blocksize - 1);
2151 /* if we are not on a block boundary */
2152 if (length) {
2153 char *kaddr;
2155 length = blocksize - length;
2156 kaddr = kmap_atomic(page, KM_USER0);
2157 memset(kaddr + offset, 0, length);
2158 flush_dcache_page(page);
2159 kunmap_atomic(kaddr, KM_USER0);
2160 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2161 mark_buffer_dirty(bh);
2164 unlock_page(page);
2165 page_cache_release(page);
2168 reiserfs_write_unlock(p_s_inode->i_sb);
2169 return 0;
2170 out:
2171 if (page) {
2172 unlock_page(page);
2173 page_cache_release(page);
2175 reiserfs_write_unlock(p_s_inode->i_sb);
2176 return error;
2179 static int map_block_for_writepage(struct inode *inode,
2180 struct buffer_head *bh_result,
2181 unsigned long block)
2183 struct reiserfs_transaction_handle th;
2184 int fs_gen;
2185 struct item_head tmp_ih;
2186 struct item_head *ih;
2187 struct buffer_head *bh;
2188 __le32 *item;
2189 struct cpu_key key;
2190 INITIALIZE_PATH(path);
2191 int pos_in_item;
2192 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2193 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2194 int retval;
2195 int use_get_block = 0;
2196 int bytes_copied = 0;
2197 int copy_size;
2198 int trans_running = 0;
2200 /* catch places below that try to log something without starting a trans */
2201 th.t_trans_id = 0;
2203 if (!buffer_uptodate(bh_result)) {
2204 return -EIO;
2207 kmap(bh_result->b_page);
2208 start_over:
2209 reiserfs_write_lock(inode->i_sb);
2210 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2212 research:
2213 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2214 if (retval != POSITION_FOUND) {
2215 use_get_block = 1;
2216 goto out;
2219 bh = get_last_bh(&path);
2220 ih = get_ih(&path);
2221 item = get_item(&path);
2222 pos_in_item = path.pos_in_item;
2224 /* we've found an unformatted node */
2225 if (indirect_item_found(retval, ih)) {
2226 if (bytes_copied > 0) {
2227 reiserfs_warning(inode->i_sb,
2228 "clm-6002: bytes_copied %d",
2229 bytes_copied);
2231 if (!get_block_num(item, pos_in_item)) {
2232 /* crap, we are writing to a hole */
2233 use_get_block = 1;
2234 goto out;
2236 set_block_dev_mapped(bh_result,
2237 get_block_num(item, pos_in_item), inode);
2238 } else if (is_direct_le_ih(ih)) {
2239 char *p;
2240 p = page_address(bh_result->b_page);
2241 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2242 copy_size = ih_item_len(ih) - pos_in_item;
2244 fs_gen = get_generation(inode->i_sb);
2245 copy_item_head(&tmp_ih, ih);
2247 if (!trans_running) {
2248 /* vs-3050 is gone, no need to drop the path */
2249 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2250 if (retval)
2251 goto out;
2252 reiserfs_update_inode_transaction(inode);
2253 trans_running = 1;
2254 if (fs_changed(fs_gen, inode->i_sb)
2255 && item_moved(&tmp_ih, &path)) {
2256 reiserfs_restore_prepared_buffer(inode->i_sb,
2257 bh);
2258 goto research;
2262 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2264 if (fs_changed(fs_gen, inode->i_sb)
2265 && item_moved(&tmp_ih, &path)) {
2266 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2267 goto research;
2270 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2271 copy_size);
2273 journal_mark_dirty(&th, inode->i_sb, bh);
2274 bytes_copied += copy_size;
2275 set_block_dev_mapped(bh_result, 0, inode);
2277 /* are there still bytes left? */
2278 if (bytes_copied < bh_result->b_size &&
2279 (byte_offset + bytes_copied) < inode->i_size) {
2280 set_cpu_key_k_offset(&key,
2281 cpu_key_k_offset(&key) +
2282 copy_size);
2283 goto research;
2285 } else {
2286 reiserfs_warning(inode->i_sb,
2287 "clm-6003: bad item inode %lu, device %s",
2288 inode->i_ino, reiserfs_bdevname(inode->i_sb));
2289 retval = -EIO;
2290 goto out;
2292 retval = 0;
2294 out:
2295 pathrelse(&path);
2296 if (trans_running) {
2297 int err = journal_end(&th, inode->i_sb, jbegin_count);
2298 if (err)
2299 retval = err;
2300 trans_running = 0;
2302 reiserfs_write_unlock(inode->i_sb);
2304 /* this is where we fill in holes in the file. */
2305 if (use_get_block) {
2306 retval = reiserfs_get_block(inode, block, bh_result,
2307 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2308 | GET_BLOCK_NO_DANGLE);
2309 if (!retval) {
2310 if (!buffer_mapped(bh_result)
2311 || bh_result->b_blocknr == 0) {
2312 /* get_block failed to find a mapped unformatted node. */
2313 use_get_block = 0;
2314 goto start_over;
2318 kunmap(bh_result->b_page);
2320 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2321 /* we've copied data from the page into the direct item, so the
2322 * buffer in the page is now clean, mark it to reflect that.
2324 lock_buffer(bh_result);
2325 clear_buffer_dirty(bh_result);
2326 unlock_buffer(bh_result);
2328 return retval;
2332 * mason@suse.com: updated in 2.5.54 to follow the same general io
2333 * start/recovery path as __block_write_full_page, along with special
2334 * code to handle reiserfs tails.
2336 static int reiserfs_write_full_page(struct page *page,
2337 struct writeback_control *wbc)
2339 struct inode *inode = page->mapping->host;
2340 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2341 int error = 0;
2342 unsigned long block;
2343 sector_t last_block;
2344 struct buffer_head *head, *bh;
2345 int partial = 0;
2346 int nr = 0;
2347 int checked = PageChecked(page);
2348 struct reiserfs_transaction_handle th;
2349 struct super_block *s = inode->i_sb;
2350 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2351 th.t_trans_id = 0;
2353 /* no logging allowed when nonblocking or from PF_MEMALLOC */
2354 if (checked && (current->flags & PF_MEMALLOC)) {
2355 redirty_page_for_writepage(wbc, page);
2356 unlock_page(page);
2357 return 0;
2360 /* The page dirty bit is cleared before writepage is called, which
2361 * means we have to tell create_empty_buffers to make dirty buffers
2362 * The page really should be up to date at this point, so tossing
2363 * in the BH_Uptodate is just a sanity check.
2365 if (!page_has_buffers(page)) {
2366 create_empty_buffers(page, s->s_blocksize,
2367 (1 << BH_Dirty) | (1 << BH_Uptodate));
2369 head = page_buffers(page);
2371 /* last page in the file, zero out any contents past the
2372 ** last byte in the file
2374 if (page->index >= end_index) {
2375 char *kaddr;
2376 unsigned last_offset;
2378 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2379 /* no file contents in this page */
2380 if (page->index >= end_index + 1 || !last_offset) {
2381 unlock_page(page);
2382 return 0;
2384 kaddr = kmap_atomic(page, KM_USER0);
2385 memset(kaddr + last_offset, 0, PAGE_CACHE_SIZE - last_offset);
2386 flush_dcache_page(page);
2387 kunmap_atomic(kaddr, KM_USER0);
2389 bh = head;
2390 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2391 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2392 /* first map all the buffers, logging any direct items we find */
2393 do {
2394 if (block > last_block) {
2396 * This can happen when the block size is less than
2397 * the page size. The corresponding bytes in the page
2398 * were zero filled above
2400 clear_buffer_dirty(bh);
2401 set_buffer_uptodate(bh);
2402 } else if ((checked || buffer_dirty(bh)) &&
2403 (!buffer_mapped(bh) || (buffer_mapped(bh)
2404 && bh->b_blocknr ==
2405 0))) {
2406 /* not mapped yet, or it points to a direct item, search
2407 * the btree for the mapping info, and log any direct
2408 * items found
2410 if ((error = map_block_for_writepage(inode, bh, block))) {
2411 goto fail;
2414 bh = bh->b_this_page;
2415 block++;
2416 } while (bh != head);
2419 * we start the transaction after map_block_for_writepage,
2420 * because it can create holes in the file (an unbounded operation).
2421 * starting it here, we can make a reliable estimate for how many
2422 * blocks we're going to log
2424 if (checked) {
2425 ClearPageChecked(page);
2426 reiserfs_write_lock(s);
2427 error = journal_begin(&th, s, bh_per_page + 1);
2428 if (error) {
2429 reiserfs_write_unlock(s);
2430 goto fail;
2432 reiserfs_update_inode_transaction(inode);
2434 /* now go through and lock any dirty buffers on the page */
2435 do {
2436 get_bh(bh);
2437 if (!buffer_mapped(bh))
2438 continue;
2439 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2440 continue;
2442 if (checked) {
2443 reiserfs_prepare_for_journal(s, bh, 1);
2444 journal_mark_dirty(&th, s, bh);
2445 continue;
2447 /* from this point on, we know the buffer is mapped to a
2448 * real block and not a direct item
2450 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
2451 lock_buffer(bh);
2452 } else {
2453 if (test_set_buffer_locked(bh)) {
2454 redirty_page_for_writepage(wbc, page);
2455 continue;
2458 if (test_clear_buffer_dirty(bh)) {
2459 mark_buffer_async_write(bh);
2460 } else {
2461 unlock_buffer(bh);
2463 } while ((bh = bh->b_this_page) != head);
2465 if (checked) {
2466 error = journal_end(&th, s, bh_per_page + 1);
2467 reiserfs_write_unlock(s);
2468 if (error)
2469 goto fail;
2471 BUG_ON(PageWriteback(page));
2472 set_page_writeback(page);
2473 unlock_page(page);
2476 * since any buffer might be the only dirty buffer on the page,
2477 * the first submit_bh can bring the page out of writeback.
2478 * be careful with the buffers.
2480 do {
2481 struct buffer_head *next = bh->b_this_page;
2482 if (buffer_async_write(bh)) {
2483 submit_bh(WRITE, bh);
2484 nr++;
2486 put_bh(bh);
2487 bh = next;
2488 } while (bh != head);
2490 error = 0;
2491 done:
2492 if (nr == 0) {
2494 * if this page only had a direct item, it is very possible for
2495 * no io to be required without there being an error. Or,
2496 * someone else could have locked them and sent them down the
2497 * pipe without locking the page
2499 bh = head;
2500 do {
2501 if (!buffer_uptodate(bh)) {
2502 partial = 1;
2503 break;
2505 bh = bh->b_this_page;
2506 } while (bh != head);
2507 if (!partial)
2508 SetPageUptodate(page);
2509 end_page_writeback(page);
2511 return error;
2513 fail:
2514 /* catches various errors, we need to make sure any valid dirty blocks
2515 * get to the media. The page is currently locked and not marked for
2516 * writeback
2518 ClearPageUptodate(page);
2519 bh = head;
2520 do {
2521 get_bh(bh);
2522 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2523 lock_buffer(bh);
2524 mark_buffer_async_write(bh);
2525 } else {
2527 * clear any dirty bits that might have come from getting
2528 * attached to a dirty page
2530 clear_buffer_dirty(bh);
2532 bh = bh->b_this_page;
2533 } while (bh != head);
2534 SetPageError(page);
2535 BUG_ON(PageWriteback(page));
2536 set_page_writeback(page);
2537 unlock_page(page);
2538 do {
2539 struct buffer_head *next = bh->b_this_page;
2540 if (buffer_async_write(bh)) {
2541 clear_buffer_dirty(bh);
2542 submit_bh(WRITE, bh);
2543 nr++;
2545 put_bh(bh);
2546 bh = next;
2547 } while (bh != head);
2548 goto done;
2551 static int reiserfs_readpage(struct file *f, struct page *page)
2553 return block_read_full_page(page, reiserfs_get_block);
2556 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2558 struct inode *inode = page->mapping->host;
2559 reiserfs_wait_on_write_block(inode->i_sb);
2560 return reiserfs_write_full_page(page, wbc);
2563 static int reiserfs_prepare_write(struct file *f, struct page *page,
2564 unsigned from, unsigned to)
2566 struct inode *inode = page->mapping->host;
2567 int ret;
2568 int old_ref = 0;
2570 reiserfs_wait_on_write_block(inode->i_sb);
2571 fix_tail_page_for_writing(page);
2572 if (reiserfs_transaction_running(inode->i_sb)) {
2573 struct reiserfs_transaction_handle *th;
2574 th = (struct reiserfs_transaction_handle *)current->
2575 journal_info;
2576 BUG_ON(!th->t_refcount);
2577 BUG_ON(!th->t_trans_id);
2578 old_ref = th->t_refcount;
2579 th->t_refcount++;
2582 ret = block_prepare_write(page, from, to, reiserfs_get_block);
2583 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2584 struct reiserfs_transaction_handle *th = current->journal_info;
2585 /* this gets a little ugly. If reiserfs_get_block returned an
2586 * error and left a transacstion running, we've got to close it,
2587 * and we've got to free handle if it was a persistent transaction.
2589 * But, if we had nested into an existing transaction, we need
2590 * to just drop the ref count on the handle.
2592 * If old_ref == 0, the transaction is from reiserfs_get_block,
2593 * and it was a persistent trans. Otherwise, it was nested above.
2595 if (th->t_refcount > old_ref) {
2596 if (old_ref)
2597 th->t_refcount--;
2598 else {
2599 int err;
2600 reiserfs_write_lock(inode->i_sb);
2601 err = reiserfs_end_persistent_transaction(th);
2602 reiserfs_write_unlock(inode->i_sb);
2603 if (err)
2604 ret = err;
2608 return ret;
2612 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2614 return generic_block_bmap(as, block, reiserfs_bmap);
2617 static int reiserfs_commit_write(struct file *f, struct page *page,
2618 unsigned from, unsigned to)
2620 struct inode *inode = page->mapping->host;
2621 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2622 int ret = 0;
2623 int update_sd = 0;
2624 struct reiserfs_transaction_handle *th = NULL;
2626 reiserfs_wait_on_write_block(inode->i_sb);
2627 if (reiserfs_transaction_running(inode->i_sb)) {
2628 th = current->journal_info;
2630 reiserfs_commit_page(inode, page, from, to);
2632 /* generic_commit_write does this for us, but does not update the
2633 ** transaction tracking stuff when the size changes. So, we have
2634 ** to do the i_size updates here.
2636 if (pos > inode->i_size) {
2637 struct reiserfs_transaction_handle myth;
2638 reiserfs_write_lock(inode->i_sb);
2639 /* If the file have grown beyond the border where it
2640 can have a tail, unmark it as needing a tail
2641 packing */
2642 if ((have_large_tails(inode->i_sb)
2643 && inode->i_size > i_block_size(inode) * 4)
2644 || (have_small_tails(inode->i_sb)
2645 && inode->i_size > i_block_size(inode)))
2646 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2648 ret = journal_begin(&myth, inode->i_sb, 1);
2649 if (ret) {
2650 reiserfs_write_unlock(inode->i_sb);
2651 goto journal_error;
2653 reiserfs_update_inode_transaction(inode);
2654 inode->i_size = pos;
2656 * this will just nest into our transaction. It's important
2657 * to use mark_inode_dirty so the inode gets pushed around on the
2658 * dirty lists, and so that O_SYNC works as expected
2660 mark_inode_dirty(inode);
2661 reiserfs_update_sd(&myth, inode);
2662 update_sd = 1;
2663 ret = journal_end(&myth, inode->i_sb, 1);
2664 reiserfs_write_unlock(inode->i_sb);
2665 if (ret)
2666 goto journal_error;
2668 if (th) {
2669 reiserfs_write_lock(inode->i_sb);
2670 if (!update_sd)
2671 mark_inode_dirty(inode);
2672 ret = reiserfs_end_persistent_transaction(th);
2673 reiserfs_write_unlock(inode->i_sb);
2674 if (ret)
2675 goto out;
2678 out:
2679 return ret;
2681 journal_error:
2682 if (th) {
2683 reiserfs_write_lock(inode->i_sb);
2684 if (!update_sd)
2685 reiserfs_update_sd(th, inode);
2686 ret = reiserfs_end_persistent_transaction(th);
2687 reiserfs_write_unlock(inode->i_sb);
2690 return ret;
2693 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2695 if (reiserfs_attrs(inode->i_sb)) {
2696 if (sd_attrs & REISERFS_SYNC_FL)
2697 inode->i_flags |= S_SYNC;
2698 else
2699 inode->i_flags &= ~S_SYNC;
2700 if (sd_attrs & REISERFS_IMMUTABLE_FL)
2701 inode->i_flags |= S_IMMUTABLE;
2702 else
2703 inode->i_flags &= ~S_IMMUTABLE;
2704 if (sd_attrs & REISERFS_APPEND_FL)
2705 inode->i_flags |= S_APPEND;
2706 else
2707 inode->i_flags &= ~S_APPEND;
2708 if (sd_attrs & REISERFS_NOATIME_FL)
2709 inode->i_flags |= S_NOATIME;
2710 else
2711 inode->i_flags &= ~S_NOATIME;
2712 if (sd_attrs & REISERFS_NOTAIL_FL)
2713 REISERFS_I(inode)->i_flags |= i_nopack_mask;
2714 else
2715 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2719 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2721 if (reiserfs_attrs(inode->i_sb)) {
2722 if (inode->i_flags & S_IMMUTABLE)
2723 *sd_attrs |= REISERFS_IMMUTABLE_FL;
2724 else
2725 *sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2726 if (inode->i_flags & S_SYNC)
2727 *sd_attrs |= REISERFS_SYNC_FL;
2728 else
2729 *sd_attrs &= ~REISERFS_SYNC_FL;
2730 if (inode->i_flags & S_NOATIME)
2731 *sd_attrs |= REISERFS_NOATIME_FL;
2732 else
2733 *sd_attrs &= ~REISERFS_NOATIME_FL;
2734 if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2735 *sd_attrs |= REISERFS_NOTAIL_FL;
2736 else
2737 *sd_attrs &= ~REISERFS_NOTAIL_FL;
2741 /* decide if this buffer needs to stay around for data logging or ordered
2742 ** write purposes
2744 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2746 int ret = 1;
2747 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2749 lock_buffer(bh);
2750 spin_lock(&j->j_dirty_buffers_lock);
2751 if (!buffer_mapped(bh)) {
2752 goto free_jh;
2754 /* the page is locked, and the only places that log a data buffer
2755 * also lock the page.
2757 if (reiserfs_file_data_log(inode)) {
2759 * very conservative, leave the buffer pinned if
2760 * anyone might need it.
2762 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2763 ret = 0;
2765 } else if (buffer_dirty(bh)) {
2766 struct reiserfs_journal_list *jl;
2767 struct reiserfs_jh *jh = bh->b_private;
2769 /* why is this safe?
2770 * reiserfs_setattr updates i_size in the on disk
2771 * stat data before allowing vmtruncate to be called.
2773 * If buffer was put onto the ordered list for this
2774 * transaction, we know for sure either this transaction
2775 * or an older one already has updated i_size on disk,
2776 * and this ordered data won't be referenced in the file
2777 * if we crash.
2779 * if the buffer was put onto the ordered list for an older
2780 * transaction, we need to leave it around
2782 if (jh && (jl = jh->jl)
2783 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2784 ret = 0;
2786 free_jh:
2787 if (ret && bh->b_private) {
2788 reiserfs_free_jh(bh);
2790 spin_unlock(&j->j_dirty_buffers_lock);
2791 unlock_buffer(bh);
2792 return ret;
2795 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2796 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2798 struct buffer_head *head, *bh, *next;
2799 struct inode *inode = page->mapping->host;
2800 unsigned int curr_off = 0;
2801 int ret = 1;
2803 BUG_ON(!PageLocked(page));
2805 if (offset == 0)
2806 ClearPageChecked(page);
2808 if (!page_has_buffers(page))
2809 goto out;
2811 head = page_buffers(page);
2812 bh = head;
2813 do {
2814 unsigned int next_off = curr_off + bh->b_size;
2815 next = bh->b_this_page;
2818 * is this block fully invalidated?
2820 if (offset <= curr_off) {
2821 if (invalidatepage_can_drop(inode, bh))
2822 reiserfs_unmap_buffer(bh);
2823 else
2824 ret = 0;
2826 curr_off = next_off;
2827 bh = next;
2828 } while (bh != head);
2831 * We release buffers only if the entire page is being invalidated.
2832 * The get_block cached value has been unconditionally invalidated,
2833 * so real IO is not possible anymore.
2835 if (!offset && ret) {
2836 ret = try_to_release_page(page, 0);
2837 /* maybe should BUG_ON(!ret); - neilb */
2839 out:
2840 return;
2843 static int reiserfs_set_page_dirty(struct page *page)
2845 struct inode *inode = page->mapping->host;
2846 if (reiserfs_file_data_log(inode)) {
2847 SetPageChecked(page);
2848 return __set_page_dirty_nobuffers(page);
2850 return __set_page_dirty_buffers(page);
2854 * Returns 1 if the page's buffers were dropped. The page is locked.
2856 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
2857 * in the buffers at page_buffers(page).
2859 * even in -o notail mode, we can't be sure an old mount without -o notail
2860 * didn't create files with tails.
2862 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
2864 struct inode *inode = page->mapping->host;
2865 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2866 struct buffer_head *head;
2867 struct buffer_head *bh;
2868 int ret = 1;
2870 WARN_ON(PageChecked(page));
2871 spin_lock(&j->j_dirty_buffers_lock);
2872 head = page_buffers(page);
2873 bh = head;
2874 do {
2875 if (bh->b_private) {
2876 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
2877 reiserfs_free_jh(bh);
2878 } else {
2879 ret = 0;
2880 break;
2883 bh = bh->b_this_page;
2884 } while (bh != head);
2885 if (ret)
2886 ret = try_to_free_buffers(page);
2887 spin_unlock(&j->j_dirty_buffers_lock);
2888 return ret;
2891 /* We thank Mingming Cao for helping us understand in great detail what
2892 to do in this section of the code. */
2893 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
2894 const struct iovec *iov, loff_t offset,
2895 unsigned long nr_segs)
2897 struct file *file = iocb->ki_filp;
2898 struct inode *inode = file->f_mapping->host;
2900 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2901 offset, nr_segs,
2902 reiserfs_get_blocks_direct_io, NULL);
2905 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
2907 struct inode *inode = dentry->d_inode;
2908 int error;
2909 unsigned int ia_valid = attr->ia_valid;
2910 reiserfs_write_lock(inode->i_sb);
2911 if (attr->ia_valid & ATTR_SIZE) {
2912 /* version 2 items will be caught by the s_maxbytes check
2913 ** done for us in vmtruncate
2915 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
2916 attr->ia_size > MAX_NON_LFS) {
2917 error = -EFBIG;
2918 goto out;
2920 /* fill in hole pointers in the expanding truncate case. */
2921 if (attr->ia_size > inode->i_size) {
2922 error = generic_cont_expand(inode, attr->ia_size);
2923 if (REISERFS_I(inode)->i_prealloc_count > 0) {
2924 int err;
2925 struct reiserfs_transaction_handle th;
2926 /* we're changing at most 2 bitmaps, inode + super */
2927 err = journal_begin(&th, inode->i_sb, 4);
2928 if (!err) {
2929 reiserfs_discard_prealloc(&th, inode);
2930 err = journal_end(&th, inode->i_sb, 4);
2932 if (err)
2933 error = err;
2935 if (error)
2936 goto out;
2938 * file size is changed, ctime and mtime are
2939 * to be updated
2941 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
2945 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
2946 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
2947 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
2948 /* stat data of format v3.5 has 16 bit uid and gid */
2949 error = -EINVAL;
2950 goto out;
2953 error = inode_change_ok(inode, attr);
2954 if (!error) {
2955 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2956 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2957 error = reiserfs_chown_xattrs(inode, attr);
2959 if (!error) {
2960 struct reiserfs_transaction_handle th;
2961 int jbegin_count =
2963 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
2964 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
2967 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
2968 error =
2969 journal_begin(&th, inode->i_sb,
2970 jbegin_count);
2971 if (error)
2972 goto out;
2973 error =
2974 DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
2975 if (error) {
2976 journal_end(&th, inode->i_sb,
2977 jbegin_count);
2978 goto out;
2980 /* Update corresponding info in inode so that everything is in
2981 * one transaction */
2982 if (attr->ia_valid & ATTR_UID)
2983 inode->i_uid = attr->ia_uid;
2984 if (attr->ia_valid & ATTR_GID)
2985 inode->i_gid = attr->ia_gid;
2986 mark_inode_dirty(inode);
2987 error =
2988 journal_end(&th, inode->i_sb, jbegin_count);
2991 if (!error)
2992 error = inode_setattr(inode, attr);
2995 if (!error && reiserfs_posixacl(inode->i_sb)) {
2996 if (attr->ia_valid & ATTR_MODE)
2997 error = reiserfs_acl_chmod(inode);
3000 out:
3001 reiserfs_write_unlock(inode->i_sb);
3002 return error;
3005 const struct address_space_operations reiserfs_address_space_operations = {
3006 .writepage = reiserfs_writepage,
3007 .readpage = reiserfs_readpage,
3008 .readpages = reiserfs_readpages,
3009 .releasepage = reiserfs_releasepage,
3010 .invalidatepage = reiserfs_invalidatepage,
3011 .sync_page = block_sync_page,
3012 .prepare_write = reiserfs_prepare_write,
3013 .commit_write = reiserfs_commit_write,
3014 .bmap = reiserfs_aop_bmap,
3015 .direct_IO = reiserfs_direct_IO,
3016 .set_page_dirty = reiserfs_set_page_dirty,