KVM: Make shadow pte updates atomic
[linux-2.6/kvm.git] / drivers / kvm / paging_tmpl.h
blob397a4039eaad34eba84ca2c432aa4b475dbe51c7
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * MMU support
9 * Copyright (C) 2006 Qumranet, Inc.
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
21 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
22 * so the code in this file is compiled twice, once per pte size.
25 #if PTTYPE == 64
26 #define pt_element_t u64
27 #define guest_walker guest_walker64
28 #define FNAME(name) paging##64_##name
29 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
30 #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
31 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
32 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
33 #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
34 #define PT_PTE_COPY_MASK PT64_PTE_COPY_MASK
35 #ifdef CONFIG_X86_64
36 #define PT_MAX_FULL_LEVELS 4
37 #else
38 #define PT_MAX_FULL_LEVELS 2
39 #endif
40 #elif PTTYPE == 32
41 #define pt_element_t u32
42 #define guest_walker guest_walker32
43 #define FNAME(name) paging##32_##name
44 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
45 #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
46 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
47 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
48 #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
49 #define PT_PTE_COPY_MASK PT32_PTE_COPY_MASK
50 #define PT_MAX_FULL_LEVELS 2
51 #else
52 #error Invalid PTTYPE value
53 #endif
56 * The guest_walker structure emulates the behavior of the hardware page
57 * table walker.
59 struct guest_walker {
60 int level;
61 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
62 pt_element_t *table;
63 pt_element_t *ptep;
64 pt_element_t inherited_ar;
65 gfn_t gfn;
66 u32 error_code;
70 * Fetch a guest pte for a guest virtual address
72 static int FNAME(walk_addr)(struct guest_walker *walker,
73 struct kvm_vcpu *vcpu, gva_t addr,
74 int write_fault, int user_fault, int fetch_fault)
76 hpa_t hpa;
77 struct kvm_memory_slot *slot;
78 pt_element_t *ptep;
79 pt_element_t root;
80 gfn_t table_gfn;
82 pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
83 walker->level = vcpu->mmu.root_level;
84 walker->table = NULL;
85 root = vcpu->cr3;
86 #if PTTYPE == 64
87 if (!is_long_mode(vcpu)) {
88 walker->ptep = &vcpu->pdptrs[(addr >> 30) & 3];
89 root = *walker->ptep;
90 if (!(root & PT_PRESENT_MASK))
91 goto not_present;
92 --walker->level;
94 #endif
95 table_gfn = (root & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
96 walker->table_gfn[walker->level - 1] = table_gfn;
97 pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
98 walker->level - 1, table_gfn);
99 slot = gfn_to_memslot(vcpu->kvm, table_gfn);
100 hpa = safe_gpa_to_hpa(vcpu, root & PT64_BASE_ADDR_MASK);
101 walker->table = kmap_atomic(pfn_to_page(hpa >> PAGE_SHIFT), KM_USER0);
103 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
104 (vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) == 0);
106 walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
108 for (;;) {
109 int index = PT_INDEX(addr, walker->level);
110 hpa_t paddr;
112 ptep = &walker->table[index];
113 ASSERT(((unsigned long)walker->table & PAGE_MASK) ==
114 ((unsigned long)ptep & PAGE_MASK));
116 if (!is_present_pte(*ptep))
117 goto not_present;
119 if (write_fault && !is_writeble_pte(*ptep))
120 if (user_fault || is_write_protection(vcpu))
121 goto access_error;
123 if (user_fault && !(*ptep & PT_USER_MASK))
124 goto access_error;
126 #if PTTYPE == 64
127 if (fetch_fault && is_nx(vcpu) && (*ptep & PT64_NX_MASK))
128 goto access_error;
129 #endif
131 if (!(*ptep & PT_ACCESSED_MASK)) {
132 mark_page_dirty(vcpu->kvm, table_gfn);
133 *ptep |= PT_ACCESSED_MASK;
136 if (walker->level == PT_PAGE_TABLE_LEVEL) {
137 walker->gfn = (*ptep & PT_BASE_ADDR_MASK)
138 >> PAGE_SHIFT;
139 break;
142 if (walker->level == PT_DIRECTORY_LEVEL
143 && (*ptep & PT_PAGE_SIZE_MASK)
144 && (PTTYPE == 64 || is_pse(vcpu))) {
145 walker->gfn = (*ptep & PT_DIR_BASE_ADDR_MASK)
146 >> PAGE_SHIFT;
147 walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
148 break;
151 walker->inherited_ar &= walker->table[index];
152 table_gfn = (*ptep & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
153 paddr = safe_gpa_to_hpa(vcpu, *ptep & PT_BASE_ADDR_MASK);
154 kunmap_atomic(walker->table, KM_USER0);
155 walker->table = kmap_atomic(pfn_to_page(paddr >> PAGE_SHIFT),
156 KM_USER0);
157 --walker->level;
158 walker->table_gfn[walker->level - 1 ] = table_gfn;
159 pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
160 walker->level - 1, table_gfn);
162 walker->ptep = ptep;
163 pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)*ptep);
164 return 1;
166 not_present:
167 walker->error_code = 0;
168 goto err;
170 access_error:
171 walker->error_code = PFERR_PRESENT_MASK;
173 err:
174 if (write_fault)
175 walker->error_code |= PFERR_WRITE_MASK;
176 if (user_fault)
177 walker->error_code |= PFERR_USER_MASK;
178 if (fetch_fault)
179 walker->error_code |= PFERR_FETCH_MASK;
180 return 0;
183 static void FNAME(release_walker)(struct guest_walker *walker)
185 if (walker->table)
186 kunmap_atomic(walker->table, KM_USER0);
189 static void FNAME(mark_pagetable_dirty)(struct kvm *kvm,
190 struct guest_walker *walker)
192 mark_page_dirty(kvm, walker->table_gfn[walker->level - 1]);
195 static void FNAME(set_pte_common)(struct kvm_vcpu *vcpu,
196 u64 *shadow_pte,
197 gpa_t gaddr,
198 pt_element_t *gpte,
199 u64 access_bits,
200 int user_fault,
201 int write_fault,
202 int *ptwrite,
203 struct guest_walker *walker,
204 gfn_t gfn)
206 hpa_t paddr;
207 int dirty = *gpte & PT_DIRTY_MASK;
208 u64 spte = *shadow_pte;
209 int was_rmapped = is_rmap_pte(spte);
211 pgprintk("%s: spte %llx gpte %llx access %llx write_fault %d"
212 " user_fault %d gfn %lx\n",
213 __FUNCTION__, spte, (u64)*gpte, access_bits,
214 write_fault, user_fault, gfn);
216 if (write_fault && !dirty) {
217 *gpte |= PT_DIRTY_MASK;
218 dirty = 1;
219 FNAME(mark_pagetable_dirty)(vcpu->kvm, walker);
222 spte |= *gpte & PT_PTE_COPY_MASK;
223 spte |= access_bits << PT_SHADOW_BITS_OFFSET;
224 if (!dirty)
225 access_bits &= ~PT_WRITABLE_MASK;
227 paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
229 spte |= PT_PRESENT_MASK;
230 if (access_bits & PT_USER_MASK)
231 spte |= PT_USER_MASK;
233 if (is_error_hpa(paddr)) {
234 spte |= gaddr;
235 spte |= PT_SHADOW_IO_MARK;
236 spte &= ~PT_PRESENT_MASK;
237 *shadow_pte = spte;
238 return;
241 spte |= paddr;
243 if (!write_fault && (spte & PT_SHADOW_USER_MASK) &&
244 !(spte & PT_USER_MASK)) {
246 * If supervisor write protect is disabled, we shadow kernel
247 * pages as user pages so we can trap the write access.
249 spte |= PT_USER_MASK;
250 spte &= ~PT_WRITABLE_MASK;
251 access_bits &= ~PT_WRITABLE_MASK;
254 if ((access_bits & PT_WRITABLE_MASK)
255 || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
256 struct kvm_mmu_page *shadow;
258 spte |= PT_WRITABLE_MASK;
259 if (user_fault) {
260 mmu_unshadow(vcpu, gfn);
261 goto unshadowed;
264 shadow = kvm_mmu_lookup_page(vcpu, gfn);
265 if (shadow) {
266 pgprintk("%s: found shadow page for %lx, marking ro\n",
267 __FUNCTION__, gfn);
268 access_bits &= ~PT_WRITABLE_MASK;
269 if (is_writeble_pte(spte)) {
270 spte &= ~PT_WRITABLE_MASK;
271 kvm_arch_ops->tlb_flush(vcpu);
273 if (write_fault)
274 *ptwrite = 1;
278 unshadowed:
280 if (access_bits & PT_WRITABLE_MASK)
281 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
283 *shadow_pte = spte;
284 page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
285 if (!was_rmapped)
286 rmap_add(vcpu, shadow_pte);
289 static void FNAME(set_pte)(struct kvm_vcpu *vcpu, pt_element_t *gpte,
290 u64 *shadow_pte, u64 access_bits,
291 int user_fault, int write_fault, int *ptwrite,
292 struct guest_walker *walker, gfn_t gfn)
294 access_bits &= *gpte;
295 FNAME(set_pte_common)(vcpu, shadow_pte, *gpte & PT_BASE_ADDR_MASK,
296 gpte, access_bits, user_fault, write_fault,
297 ptwrite, walker, gfn);
300 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
301 u64 *spte, const void *pte, int bytes)
303 pt_element_t gpte;
305 if (bytes < sizeof(pt_element_t))
306 return;
307 gpte = *(const pt_element_t *)pte;
308 if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK))
309 return;
310 pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
311 FNAME(set_pte)(vcpu, &gpte, spte, PT_USER_MASK | PT_WRITABLE_MASK, 0,
312 0, NULL, NULL,
313 (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT);
316 static void FNAME(set_pde)(struct kvm_vcpu *vcpu, pt_element_t *gpde,
317 u64 *shadow_pte, u64 access_bits,
318 int user_fault, int write_fault, int *ptwrite,
319 struct guest_walker *walker, gfn_t gfn)
321 gpa_t gaddr;
323 access_bits &= *gpde;
324 gaddr = (gpa_t)gfn << PAGE_SHIFT;
325 if (PTTYPE == 32 && is_cpuid_PSE36())
326 gaddr |= (*gpde & PT32_DIR_PSE36_MASK) <<
327 (32 - PT32_DIR_PSE36_SHIFT);
328 FNAME(set_pte_common)(vcpu, shadow_pte, gaddr,
329 gpde, access_bits, user_fault, write_fault,
330 ptwrite, walker, gfn);
334 * Fetch a shadow pte for a specific level in the paging hierarchy.
336 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
337 struct guest_walker *walker,
338 int user_fault, int write_fault, int *ptwrite)
340 hpa_t shadow_addr;
341 int level;
342 u64 *shadow_ent;
343 u64 *prev_shadow_ent = NULL;
344 pt_element_t *guest_ent = walker->ptep;
346 if (!is_present_pte(*guest_ent))
347 return NULL;
349 shadow_addr = vcpu->mmu.root_hpa;
350 level = vcpu->mmu.shadow_root_level;
351 if (level == PT32E_ROOT_LEVEL) {
352 shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
353 shadow_addr &= PT64_BASE_ADDR_MASK;
354 --level;
357 for (; ; level--) {
358 u32 index = SHADOW_PT_INDEX(addr, level);
359 struct kvm_mmu_page *shadow_page;
360 u64 shadow_pte;
361 int metaphysical;
362 gfn_t table_gfn;
363 unsigned hugepage_access = 0;
365 shadow_ent = ((u64 *)__va(shadow_addr)) + index;
366 if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) {
367 if (level == PT_PAGE_TABLE_LEVEL)
368 break;
369 shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
370 prev_shadow_ent = shadow_ent;
371 continue;
374 if (level == PT_PAGE_TABLE_LEVEL)
375 break;
377 if (level - 1 == PT_PAGE_TABLE_LEVEL
378 && walker->level == PT_DIRECTORY_LEVEL) {
379 metaphysical = 1;
380 hugepage_access = *guest_ent;
381 hugepage_access &= PT_USER_MASK | PT_WRITABLE_MASK;
382 hugepage_access >>= PT_WRITABLE_SHIFT;
383 table_gfn = (*guest_ent & PT_BASE_ADDR_MASK)
384 >> PAGE_SHIFT;
385 } else {
386 metaphysical = 0;
387 table_gfn = walker->table_gfn[level - 2];
389 shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
390 metaphysical, hugepage_access,
391 shadow_ent);
392 shadow_addr = __pa(shadow_page->spt);
393 shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
394 | PT_WRITABLE_MASK | PT_USER_MASK;
395 *shadow_ent = shadow_pte;
396 prev_shadow_ent = shadow_ent;
399 if (walker->level == PT_DIRECTORY_LEVEL) {
400 if (prev_shadow_ent)
401 *prev_shadow_ent |= PT_SHADOW_PS_MARK;
402 FNAME(set_pde)(vcpu, guest_ent, shadow_ent,
403 walker->inherited_ar, user_fault, write_fault,
404 ptwrite, walker, walker->gfn);
405 } else {
406 ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
407 FNAME(set_pte)(vcpu, guest_ent, shadow_ent,
408 walker->inherited_ar, user_fault, write_fault,
409 ptwrite, walker, walker->gfn);
411 return shadow_ent;
415 * Page fault handler. There are several causes for a page fault:
416 * - there is no shadow pte for the guest pte
417 * - write access through a shadow pte marked read only so that we can set
418 * the dirty bit
419 * - write access to a shadow pte marked read only so we can update the page
420 * dirty bitmap, when userspace requests it
421 * - mmio access; in this case we will never install a present shadow pte
422 * - normal guest page fault due to the guest pte marked not present, not
423 * writable, or not executable
425 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
426 * a negative value on error.
428 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
429 u32 error_code)
431 int write_fault = error_code & PFERR_WRITE_MASK;
432 int user_fault = error_code & PFERR_USER_MASK;
433 int fetch_fault = error_code & PFERR_FETCH_MASK;
434 struct guest_walker walker;
435 u64 *shadow_pte;
436 int write_pt = 0;
437 int r;
439 pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
440 kvm_mmu_audit(vcpu, "pre page fault");
442 r = mmu_topup_memory_caches(vcpu);
443 if (r)
444 return r;
447 * Look up the shadow pte for the faulting address.
449 r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
450 fetch_fault);
453 * The page is not mapped by the guest. Let the guest handle it.
455 if (!r) {
456 pgprintk("%s: guest page fault\n", __FUNCTION__);
457 inject_page_fault(vcpu, addr, walker.error_code);
458 FNAME(release_walker)(&walker);
459 vcpu->last_pt_write_count = 0; /* reset fork detector */
460 return 0;
463 shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
464 &write_pt);
465 pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __FUNCTION__,
466 shadow_pte, *shadow_pte, write_pt);
468 FNAME(release_walker)(&walker);
470 if (!write_pt)
471 vcpu->last_pt_write_count = 0; /* reset fork detector */
474 * mmio: emulate if accessible, otherwise its a guest fault.
476 if (is_io_pte(*shadow_pte))
477 return 1;
479 ++vcpu->stat.pf_fixed;
480 kvm_mmu_audit(vcpu, "post page fault (fixed)");
482 return write_pt;
485 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
487 struct guest_walker walker;
488 gpa_t gpa = UNMAPPED_GVA;
489 int r;
491 r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
493 if (r) {
494 gpa = (gpa_t)walker.gfn << PAGE_SHIFT;
495 gpa |= vaddr & ~PAGE_MASK;
498 FNAME(release_walker)(&walker);
499 return gpa;
502 #undef pt_element_t
503 #undef guest_walker
504 #undef FNAME
505 #undef PT_BASE_ADDR_MASK
506 #undef PT_INDEX
507 #undef SHADOW_PT_INDEX
508 #undef PT_LEVEL_MASK
509 #undef PT_PTE_COPY_MASK
510 #undef PT_NON_PTE_COPY_MASK
511 #undef PT_DIR_BASE_ADDR_MASK
512 #undef PT_MAX_FULL_LEVELS