cxgb3: Add 1G fiber support
[linux-2.6/kvm.git] / drivers / net / cxgb3 / t3_hw.c
blob4da5b09b9bc29221ec7a2eae370bb9b8832a398a
1 /*
2 * Copyright (c) 2003-2007 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
32 #include "common.h"
33 #include "regs.h"
34 #include "sge_defs.h"
35 #include "firmware_exports.h"
37 /**
38 * t3_wait_op_done_val - wait until an operation is completed
39 * @adapter: the adapter performing the operation
40 * @reg: the register to check for completion
41 * @mask: a single-bit field within @reg that indicates completion
42 * @polarity: the value of the field when the operation is completed
43 * @attempts: number of check iterations
44 * @delay: delay in usecs between iterations
45 * @valp: where to store the value of the register at completion time
47 * Wait until an operation is completed by checking a bit in a register
48 * up to @attempts times. If @valp is not NULL the value of the register
49 * at the time it indicated completion is stored there. Returns 0 if the
50 * operation completes and -EAGAIN otherwise.
53 int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
54 int polarity, int attempts, int delay, u32 *valp)
56 while (1) {
57 u32 val = t3_read_reg(adapter, reg);
59 if (!!(val & mask) == polarity) {
60 if (valp)
61 *valp = val;
62 return 0;
64 if (--attempts == 0)
65 return -EAGAIN;
66 if (delay)
67 udelay(delay);
71 /**
72 * t3_write_regs - write a bunch of registers
73 * @adapter: the adapter to program
74 * @p: an array of register address/register value pairs
75 * @n: the number of address/value pairs
76 * @offset: register address offset
78 * Takes an array of register address/register value pairs and writes each
79 * value to the corresponding register. Register addresses are adjusted
80 * by the supplied offset.
82 void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
83 int n, unsigned int offset)
85 while (n--) {
86 t3_write_reg(adapter, p->reg_addr + offset, p->val);
87 p++;
91 /**
92 * t3_set_reg_field - set a register field to a value
93 * @adapter: the adapter to program
94 * @addr: the register address
95 * @mask: specifies the portion of the register to modify
96 * @val: the new value for the register field
98 * Sets a register field specified by the supplied mask to the
99 * given value.
101 void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
102 u32 val)
104 u32 v = t3_read_reg(adapter, addr) & ~mask;
106 t3_write_reg(adapter, addr, v | val);
107 t3_read_reg(adapter, addr); /* flush */
111 * t3_read_indirect - read indirectly addressed registers
112 * @adap: the adapter
113 * @addr_reg: register holding the indirect address
114 * @data_reg: register holding the value of the indirect register
115 * @vals: where the read register values are stored
116 * @start_idx: index of first indirect register to read
117 * @nregs: how many indirect registers to read
119 * Reads registers that are accessed indirectly through an address/data
120 * register pair.
122 static void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
123 unsigned int data_reg, u32 *vals,
124 unsigned int nregs, unsigned int start_idx)
126 while (nregs--) {
127 t3_write_reg(adap, addr_reg, start_idx);
128 *vals++ = t3_read_reg(adap, data_reg);
129 start_idx++;
134 * t3_mc7_bd_read - read from MC7 through backdoor accesses
135 * @mc7: identifies MC7 to read from
136 * @start: index of first 64-bit word to read
137 * @n: number of 64-bit words to read
138 * @buf: where to store the read result
140 * Read n 64-bit words from MC7 starting at word start, using backdoor
141 * accesses.
143 int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
144 u64 *buf)
146 static const int shift[] = { 0, 0, 16, 24 };
147 static const int step[] = { 0, 32, 16, 8 };
149 unsigned int size64 = mc7->size / 8; /* # of 64-bit words */
150 struct adapter *adap = mc7->adapter;
152 if (start >= size64 || start + n > size64)
153 return -EINVAL;
155 start *= (8 << mc7->width);
156 while (n--) {
157 int i;
158 u64 val64 = 0;
160 for (i = (1 << mc7->width) - 1; i >= 0; --i) {
161 int attempts = 10;
162 u32 val;
164 t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
165 t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
166 val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
167 while ((val & F_BUSY) && attempts--)
168 val = t3_read_reg(adap,
169 mc7->offset + A_MC7_BD_OP);
170 if (val & F_BUSY)
171 return -EIO;
173 val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
174 if (mc7->width == 0) {
175 val64 = t3_read_reg(adap,
176 mc7->offset +
177 A_MC7_BD_DATA0);
178 val64 |= (u64) val << 32;
179 } else {
180 if (mc7->width > 1)
181 val >>= shift[mc7->width];
182 val64 |= (u64) val << (step[mc7->width] * i);
184 start += 8;
186 *buf++ = val64;
188 return 0;
192 * Initialize MI1.
194 static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
196 u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
197 u32 val = F_PREEN | V_CLKDIV(clkdiv);
199 t3_write_reg(adap, A_MI1_CFG, val);
202 #define MDIO_ATTEMPTS 20
205 * MI1 read/write operations for clause 22 PHYs.
207 static int t3_mi1_read(struct adapter *adapter, int phy_addr, int mmd_addr,
208 int reg_addr, unsigned int *valp)
210 int ret;
211 u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
213 if (mmd_addr)
214 return -EINVAL;
216 mutex_lock(&adapter->mdio_lock);
217 t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
218 t3_write_reg(adapter, A_MI1_ADDR, addr);
219 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
220 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
221 if (!ret)
222 *valp = t3_read_reg(adapter, A_MI1_DATA);
223 mutex_unlock(&adapter->mdio_lock);
224 return ret;
227 static int t3_mi1_write(struct adapter *adapter, int phy_addr, int mmd_addr,
228 int reg_addr, unsigned int val)
230 int ret;
231 u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
233 if (mmd_addr)
234 return -EINVAL;
236 mutex_lock(&adapter->mdio_lock);
237 t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
238 t3_write_reg(adapter, A_MI1_ADDR, addr);
239 t3_write_reg(adapter, A_MI1_DATA, val);
240 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
241 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
242 mutex_unlock(&adapter->mdio_lock);
243 return ret;
246 static const struct mdio_ops mi1_mdio_ops = {
247 t3_mi1_read,
248 t3_mi1_write
252 * Performs the address cycle for clause 45 PHYs.
253 * Must be called with the MDIO_LOCK held.
255 static int mi1_wr_addr(struct adapter *adapter, int phy_addr, int mmd_addr,
256 int reg_addr)
258 u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
260 t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), 0);
261 t3_write_reg(adapter, A_MI1_ADDR, addr);
262 t3_write_reg(adapter, A_MI1_DATA, reg_addr);
263 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
264 return t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
265 MDIO_ATTEMPTS, 10);
269 * MI1 read/write operations for indirect-addressed PHYs.
271 static int mi1_ext_read(struct adapter *adapter, int phy_addr, int mmd_addr,
272 int reg_addr, unsigned int *valp)
274 int ret;
276 mutex_lock(&adapter->mdio_lock);
277 ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
278 if (!ret) {
279 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
280 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
281 MDIO_ATTEMPTS, 10);
282 if (!ret)
283 *valp = t3_read_reg(adapter, A_MI1_DATA);
285 mutex_unlock(&adapter->mdio_lock);
286 return ret;
289 static int mi1_ext_write(struct adapter *adapter, int phy_addr, int mmd_addr,
290 int reg_addr, unsigned int val)
292 int ret;
294 mutex_lock(&adapter->mdio_lock);
295 ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
296 if (!ret) {
297 t3_write_reg(adapter, A_MI1_DATA, val);
298 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
299 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
300 MDIO_ATTEMPTS, 10);
302 mutex_unlock(&adapter->mdio_lock);
303 return ret;
306 static const struct mdio_ops mi1_mdio_ext_ops = {
307 mi1_ext_read,
308 mi1_ext_write
312 * t3_mdio_change_bits - modify the value of a PHY register
313 * @phy: the PHY to operate on
314 * @mmd: the device address
315 * @reg: the register address
316 * @clear: what part of the register value to mask off
317 * @set: what part of the register value to set
319 * Changes the value of a PHY register by applying a mask to its current
320 * value and ORing the result with a new value.
322 int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
323 unsigned int set)
325 int ret;
326 unsigned int val;
328 ret = mdio_read(phy, mmd, reg, &val);
329 if (!ret) {
330 val &= ~clear;
331 ret = mdio_write(phy, mmd, reg, val | set);
333 return ret;
337 * t3_phy_reset - reset a PHY block
338 * @phy: the PHY to operate on
339 * @mmd: the device address of the PHY block to reset
340 * @wait: how long to wait for the reset to complete in 1ms increments
342 * Resets a PHY block and optionally waits for the reset to complete.
343 * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset
344 * for 10G PHYs.
346 int t3_phy_reset(struct cphy *phy, int mmd, int wait)
348 int err;
349 unsigned int ctl;
351 err = t3_mdio_change_bits(phy, mmd, MII_BMCR, BMCR_PDOWN, BMCR_RESET);
352 if (err || !wait)
353 return err;
355 do {
356 err = mdio_read(phy, mmd, MII_BMCR, &ctl);
357 if (err)
358 return err;
359 ctl &= BMCR_RESET;
360 if (ctl)
361 msleep(1);
362 } while (ctl && --wait);
364 return ctl ? -1 : 0;
368 * t3_phy_advertise - set the PHY advertisement registers for autoneg
369 * @phy: the PHY to operate on
370 * @advert: bitmap of capabilities the PHY should advertise
372 * Sets a 10/100/1000 PHY's advertisement registers to advertise the
373 * requested capabilities.
375 int t3_phy_advertise(struct cphy *phy, unsigned int advert)
377 int err;
378 unsigned int val = 0;
380 err = mdio_read(phy, 0, MII_CTRL1000, &val);
381 if (err)
382 return err;
384 val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
385 if (advert & ADVERTISED_1000baseT_Half)
386 val |= ADVERTISE_1000HALF;
387 if (advert & ADVERTISED_1000baseT_Full)
388 val |= ADVERTISE_1000FULL;
390 err = mdio_write(phy, 0, MII_CTRL1000, val);
391 if (err)
392 return err;
394 val = 1;
395 if (advert & ADVERTISED_10baseT_Half)
396 val |= ADVERTISE_10HALF;
397 if (advert & ADVERTISED_10baseT_Full)
398 val |= ADVERTISE_10FULL;
399 if (advert & ADVERTISED_100baseT_Half)
400 val |= ADVERTISE_100HALF;
401 if (advert & ADVERTISED_100baseT_Full)
402 val |= ADVERTISE_100FULL;
403 if (advert & ADVERTISED_Pause)
404 val |= ADVERTISE_PAUSE_CAP;
405 if (advert & ADVERTISED_Asym_Pause)
406 val |= ADVERTISE_PAUSE_ASYM;
407 return mdio_write(phy, 0, MII_ADVERTISE, val);
411 * t3_phy_advertise_fiber - set fiber PHY advertisement register
412 * @phy: the PHY to operate on
413 * @advert: bitmap of capabilities the PHY should advertise
415 * Sets a fiber PHY's advertisement register to advertise the
416 * requested capabilities.
418 int t3_phy_advertise_fiber(struct cphy *phy, unsigned int advert)
420 unsigned int val = 0;
422 if (advert & ADVERTISED_1000baseT_Half)
423 val |= ADVERTISE_1000XHALF;
424 if (advert & ADVERTISED_1000baseT_Full)
425 val |= ADVERTISE_1000XFULL;
426 if (advert & ADVERTISED_Pause)
427 val |= ADVERTISE_1000XPAUSE;
428 if (advert & ADVERTISED_Asym_Pause)
429 val |= ADVERTISE_1000XPSE_ASYM;
430 return mdio_write(phy, 0, MII_ADVERTISE, val);
434 * t3_set_phy_speed_duplex - force PHY speed and duplex
435 * @phy: the PHY to operate on
436 * @speed: requested PHY speed
437 * @duplex: requested PHY duplex
439 * Force a 10/100/1000 PHY's speed and duplex. This also disables
440 * auto-negotiation except for GigE, where auto-negotiation is mandatory.
442 int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
444 int err;
445 unsigned int ctl;
447 err = mdio_read(phy, 0, MII_BMCR, &ctl);
448 if (err)
449 return err;
451 if (speed >= 0) {
452 ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
453 if (speed == SPEED_100)
454 ctl |= BMCR_SPEED100;
455 else if (speed == SPEED_1000)
456 ctl |= BMCR_SPEED1000;
458 if (duplex >= 0) {
459 ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
460 if (duplex == DUPLEX_FULL)
461 ctl |= BMCR_FULLDPLX;
463 if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
464 ctl |= BMCR_ANENABLE;
465 return mdio_write(phy, 0, MII_BMCR, ctl);
468 int t3_phy_lasi_intr_enable(struct cphy *phy)
470 return mdio_write(phy, MDIO_DEV_PMA_PMD, LASI_CTRL, 1);
473 int t3_phy_lasi_intr_disable(struct cphy *phy)
475 return mdio_write(phy, MDIO_DEV_PMA_PMD, LASI_CTRL, 0);
478 int t3_phy_lasi_intr_clear(struct cphy *phy)
480 u32 val;
482 return mdio_read(phy, MDIO_DEV_PMA_PMD, LASI_STAT, &val);
485 int t3_phy_lasi_intr_handler(struct cphy *phy)
487 unsigned int status;
488 int err = mdio_read(phy, MDIO_DEV_PMA_PMD, LASI_STAT, &status);
490 if (err)
491 return err;
492 return (status & 1) ? cphy_cause_link_change : 0;
495 static const struct adapter_info t3_adap_info[] = {
496 {2, 0,
497 F_GPIO2_OEN | F_GPIO4_OEN |
498 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
499 &mi1_mdio_ops, "Chelsio PE9000"},
500 {2, 0,
501 F_GPIO2_OEN | F_GPIO4_OEN |
502 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
503 &mi1_mdio_ops, "Chelsio T302"},
504 {1, 0,
505 F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
506 F_GPIO11_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
507 { 0 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
508 &mi1_mdio_ext_ops, "Chelsio T310"},
509 {2, 0,
510 F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
511 F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
512 F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
513 { S_GPIO9, S_GPIO3 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
514 &mi1_mdio_ext_ops, "Chelsio T320"},
518 * Return the adapter_info structure with a given index. Out-of-range indices
519 * return NULL.
521 const struct adapter_info *t3_get_adapter_info(unsigned int id)
523 return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
526 struct port_type_info {
527 int (*phy_prep)(struct cphy *phy, struct adapter *adapter,
528 int phy_addr, const struct mdio_ops *ops);
531 static const struct port_type_info port_types[] = {
532 { NULL },
533 { t3_ael1002_phy_prep },
534 { t3_vsc8211_phy_prep },
535 { NULL},
536 { t3_xaui_direct_phy_prep },
537 { t3_ael2005_phy_prep },
538 { t3_qt2045_phy_prep },
539 { t3_ael1006_phy_prep },
540 { NULL },
543 #define VPD_ENTRY(name, len) \
544 u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
547 * Partial EEPROM Vital Product Data structure. Includes only the ID and
548 * VPD-R sections.
550 struct t3_vpd {
551 u8 id_tag;
552 u8 id_len[2];
553 u8 id_data[16];
554 u8 vpdr_tag;
555 u8 vpdr_len[2];
556 VPD_ENTRY(pn, 16); /* part number */
557 VPD_ENTRY(ec, 16); /* EC level */
558 VPD_ENTRY(sn, SERNUM_LEN); /* serial number */
559 VPD_ENTRY(na, 12); /* MAC address base */
560 VPD_ENTRY(cclk, 6); /* core clock */
561 VPD_ENTRY(mclk, 6); /* mem clock */
562 VPD_ENTRY(uclk, 6); /* uP clk */
563 VPD_ENTRY(mdc, 6); /* MDIO clk */
564 VPD_ENTRY(mt, 2); /* mem timing */
565 VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */
566 VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */
567 VPD_ENTRY(port0, 2); /* PHY0 complex */
568 VPD_ENTRY(port1, 2); /* PHY1 complex */
569 VPD_ENTRY(port2, 2); /* PHY2 complex */
570 VPD_ENTRY(port3, 2); /* PHY3 complex */
571 VPD_ENTRY(rv, 1); /* csum */
572 u32 pad; /* for multiple-of-4 sizing and alignment */
575 #define EEPROM_MAX_POLL 4
576 #define EEPROM_STAT_ADDR 0x4000
577 #define VPD_BASE 0xc00
580 * t3_seeprom_read - read a VPD EEPROM location
581 * @adapter: adapter to read
582 * @addr: EEPROM address
583 * @data: where to store the read data
585 * Read a 32-bit word from a location in VPD EEPROM using the card's PCI
586 * VPD ROM capability. A zero is written to the flag bit when the
587 * addres is written to the control register. The hardware device will
588 * set the flag to 1 when 4 bytes have been read into the data register.
590 int t3_seeprom_read(struct adapter *adapter, u32 addr, __le32 *data)
592 u16 val;
593 int attempts = EEPROM_MAX_POLL;
594 u32 v;
595 unsigned int base = adapter->params.pci.vpd_cap_addr;
597 if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
598 return -EINVAL;
600 pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
601 do {
602 udelay(10);
603 pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
604 } while (!(val & PCI_VPD_ADDR_F) && --attempts);
606 if (!(val & PCI_VPD_ADDR_F)) {
607 CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
608 return -EIO;
610 pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, &v);
611 *data = cpu_to_le32(v);
612 return 0;
616 * t3_seeprom_write - write a VPD EEPROM location
617 * @adapter: adapter to write
618 * @addr: EEPROM address
619 * @data: value to write
621 * Write a 32-bit word to a location in VPD EEPROM using the card's PCI
622 * VPD ROM capability.
624 int t3_seeprom_write(struct adapter *adapter, u32 addr, __le32 data)
626 u16 val;
627 int attempts = EEPROM_MAX_POLL;
628 unsigned int base = adapter->params.pci.vpd_cap_addr;
630 if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
631 return -EINVAL;
633 pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
634 le32_to_cpu(data));
635 pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
636 addr | PCI_VPD_ADDR_F);
637 do {
638 msleep(1);
639 pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
640 } while ((val & PCI_VPD_ADDR_F) && --attempts);
642 if (val & PCI_VPD_ADDR_F) {
643 CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
644 return -EIO;
646 return 0;
650 * t3_seeprom_wp - enable/disable EEPROM write protection
651 * @adapter: the adapter
652 * @enable: 1 to enable write protection, 0 to disable it
654 * Enables or disables write protection on the serial EEPROM.
656 int t3_seeprom_wp(struct adapter *adapter, int enable)
658 return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
662 * Convert a character holding a hex digit to a number.
664 static unsigned int hex2int(unsigned char c)
666 return isdigit(c) ? c - '0' : toupper(c) - 'A' + 10;
670 * get_vpd_params - read VPD parameters from VPD EEPROM
671 * @adapter: adapter to read
672 * @p: where to store the parameters
674 * Reads card parameters stored in VPD EEPROM.
676 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
678 int i, addr, ret;
679 struct t3_vpd vpd;
682 * Card information is normally at VPD_BASE but some early cards had
683 * it at 0.
685 ret = t3_seeprom_read(adapter, VPD_BASE, (__le32 *)&vpd);
686 if (ret)
687 return ret;
688 addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
690 for (i = 0; i < sizeof(vpd); i += 4) {
691 ret = t3_seeprom_read(adapter, addr + i,
692 (__le32 *)((u8 *)&vpd + i));
693 if (ret)
694 return ret;
697 p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10);
698 p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10);
699 p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10);
700 p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10);
701 p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10);
702 memcpy(p->sn, vpd.sn_data, SERNUM_LEN);
704 /* Old eeproms didn't have port information */
705 if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
706 p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
707 p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
708 } else {
709 p->port_type[0] = hex2int(vpd.port0_data[0]);
710 p->port_type[1] = hex2int(vpd.port1_data[0]);
711 p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16);
712 p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16);
715 for (i = 0; i < 6; i++)
716 p->eth_base[i] = hex2int(vpd.na_data[2 * i]) * 16 +
717 hex2int(vpd.na_data[2 * i + 1]);
718 return 0;
721 /* serial flash and firmware constants */
722 enum {
723 SF_ATTEMPTS = 5, /* max retries for SF1 operations */
724 SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */
725 SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */
727 /* flash command opcodes */
728 SF_PROG_PAGE = 2, /* program page */
729 SF_WR_DISABLE = 4, /* disable writes */
730 SF_RD_STATUS = 5, /* read status register */
731 SF_WR_ENABLE = 6, /* enable writes */
732 SF_RD_DATA_FAST = 0xb, /* read flash */
733 SF_ERASE_SECTOR = 0xd8, /* erase sector */
735 FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */
736 FW_VERS_ADDR = 0x7fffc, /* flash address holding FW version */
737 FW_MIN_SIZE = 8 /* at least version and csum */
741 * sf1_read - read data from the serial flash
742 * @adapter: the adapter
743 * @byte_cnt: number of bytes to read
744 * @cont: whether another operation will be chained
745 * @valp: where to store the read data
747 * Reads up to 4 bytes of data from the serial flash. The location of
748 * the read needs to be specified prior to calling this by issuing the
749 * appropriate commands to the serial flash.
751 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
752 u32 *valp)
754 int ret;
756 if (!byte_cnt || byte_cnt > 4)
757 return -EINVAL;
758 if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
759 return -EBUSY;
760 t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
761 ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
762 if (!ret)
763 *valp = t3_read_reg(adapter, A_SF_DATA);
764 return ret;
768 * sf1_write - write data to the serial flash
769 * @adapter: the adapter
770 * @byte_cnt: number of bytes to write
771 * @cont: whether another operation will be chained
772 * @val: value to write
774 * Writes up to 4 bytes of data to the serial flash. The location of
775 * the write needs to be specified prior to calling this by issuing the
776 * appropriate commands to the serial flash.
778 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
779 u32 val)
781 if (!byte_cnt || byte_cnt > 4)
782 return -EINVAL;
783 if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
784 return -EBUSY;
785 t3_write_reg(adapter, A_SF_DATA, val);
786 t3_write_reg(adapter, A_SF_OP,
787 V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
788 return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
792 * flash_wait_op - wait for a flash operation to complete
793 * @adapter: the adapter
794 * @attempts: max number of polls of the status register
795 * @delay: delay between polls in ms
797 * Wait for a flash operation to complete by polling the status register.
799 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
801 int ret;
802 u32 status;
804 while (1) {
805 if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
806 (ret = sf1_read(adapter, 1, 0, &status)) != 0)
807 return ret;
808 if (!(status & 1))
809 return 0;
810 if (--attempts == 0)
811 return -EAGAIN;
812 if (delay)
813 msleep(delay);
818 * t3_read_flash - read words from serial flash
819 * @adapter: the adapter
820 * @addr: the start address for the read
821 * @nwords: how many 32-bit words to read
822 * @data: where to store the read data
823 * @byte_oriented: whether to store data as bytes or as words
825 * Read the specified number of 32-bit words from the serial flash.
826 * If @byte_oriented is set the read data is stored as a byte array
827 * (i.e., big-endian), otherwise as 32-bit words in the platform's
828 * natural endianess.
830 int t3_read_flash(struct adapter *adapter, unsigned int addr,
831 unsigned int nwords, u32 *data, int byte_oriented)
833 int ret;
835 if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
836 return -EINVAL;
838 addr = swab32(addr) | SF_RD_DATA_FAST;
840 if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
841 (ret = sf1_read(adapter, 1, 1, data)) != 0)
842 return ret;
844 for (; nwords; nwords--, data++) {
845 ret = sf1_read(adapter, 4, nwords > 1, data);
846 if (ret)
847 return ret;
848 if (byte_oriented)
849 *data = htonl(*data);
851 return 0;
855 * t3_write_flash - write up to a page of data to the serial flash
856 * @adapter: the adapter
857 * @addr: the start address to write
858 * @n: length of data to write
859 * @data: the data to write
861 * Writes up to a page of data (256 bytes) to the serial flash starting
862 * at the given address.
864 static int t3_write_flash(struct adapter *adapter, unsigned int addr,
865 unsigned int n, const u8 *data)
867 int ret;
868 u32 buf[64];
869 unsigned int i, c, left, val, offset = addr & 0xff;
871 if (addr + n > SF_SIZE || offset + n > 256)
872 return -EINVAL;
874 val = swab32(addr) | SF_PROG_PAGE;
876 if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
877 (ret = sf1_write(adapter, 4, 1, val)) != 0)
878 return ret;
880 for (left = n; left; left -= c) {
881 c = min(left, 4U);
882 for (val = 0, i = 0; i < c; ++i)
883 val = (val << 8) + *data++;
885 ret = sf1_write(adapter, c, c != left, val);
886 if (ret)
887 return ret;
889 if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
890 return ret;
892 /* Read the page to verify the write succeeded */
893 ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
894 if (ret)
895 return ret;
897 if (memcmp(data - n, (u8 *) buf + offset, n))
898 return -EIO;
899 return 0;
903 * t3_get_tp_version - read the tp sram version
904 * @adapter: the adapter
905 * @vers: where to place the version
907 * Reads the protocol sram version from sram.
909 int t3_get_tp_version(struct adapter *adapter, u32 *vers)
911 int ret;
913 /* Get version loaded in SRAM */
914 t3_write_reg(adapter, A_TP_EMBED_OP_FIELD0, 0);
915 ret = t3_wait_op_done(adapter, A_TP_EMBED_OP_FIELD0,
916 1, 1, 5, 1);
917 if (ret)
918 return ret;
920 *vers = t3_read_reg(adapter, A_TP_EMBED_OP_FIELD1);
922 return 0;
926 * t3_check_tpsram_version - read the tp sram version
927 * @adapter: the adapter
928 * @must_load: set to 1 if loading a new microcode image is required
930 * Reads the protocol sram version from flash.
932 int t3_check_tpsram_version(struct adapter *adapter, int *must_load)
934 int ret;
935 u32 vers;
936 unsigned int major, minor;
938 if (adapter->params.rev == T3_REV_A)
939 return 0;
941 *must_load = 1;
943 ret = t3_get_tp_version(adapter, &vers);
944 if (ret)
945 return ret;
947 major = G_TP_VERSION_MAJOR(vers);
948 minor = G_TP_VERSION_MINOR(vers);
950 if (major == TP_VERSION_MAJOR && minor == TP_VERSION_MINOR)
951 return 0;
953 if (major != TP_VERSION_MAJOR)
954 CH_ERR(adapter, "found wrong TP version (%u.%u), "
955 "driver needs version %d.%d\n", major, minor,
956 TP_VERSION_MAJOR, TP_VERSION_MINOR);
957 else {
958 *must_load = 0;
959 CH_ERR(adapter, "found wrong TP version (%u.%u), "
960 "driver compiled for version %d.%d\n", major, minor,
961 TP_VERSION_MAJOR, TP_VERSION_MINOR);
963 return -EINVAL;
967 * t3_check_tpsram - check if provided protocol SRAM
968 * is compatible with this driver
969 * @adapter: the adapter
970 * @tp_sram: the firmware image to write
971 * @size: image size
973 * Checks if an adapter's tp sram is compatible with the driver.
974 * Returns 0 if the versions are compatible, a negative error otherwise.
976 int t3_check_tpsram(struct adapter *adapter, const u8 *tp_sram,
977 unsigned int size)
979 u32 csum;
980 unsigned int i;
981 const __be32 *p = (const __be32 *)tp_sram;
983 /* Verify checksum */
984 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
985 csum += ntohl(p[i]);
986 if (csum != 0xffffffff) {
987 CH_ERR(adapter, "corrupted protocol SRAM image, checksum %u\n",
988 csum);
989 return -EINVAL;
992 return 0;
995 enum fw_version_type {
996 FW_VERSION_N3,
997 FW_VERSION_T3
1001 * t3_get_fw_version - read the firmware version
1002 * @adapter: the adapter
1003 * @vers: where to place the version
1005 * Reads the FW version from flash.
1007 int t3_get_fw_version(struct adapter *adapter, u32 *vers)
1009 return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
1013 * t3_check_fw_version - check if the FW is compatible with this driver
1014 * @adapter: the adapter
1015 * @must_load: set to 1 if loading a new FW image is required
1017 * Checks if an adapter's FW is compatible with the driver. Returns 0
1018 * if the versions are compatible, a negative error otherwise.
1020 int t3_check_fw_version(struct adapter *adapter, int *must_load)
1022 int ret;
1023 u32 vers;
1024 unsigned int type, major, minor;
1026 *must_load = 1;
1027 ret = t3_get_fw_version(adapter, &vers);
1028 if (ret)
1029 return ret;
1031 type = G_FW_VERSION_TYPE(vers);
1032 major = G_FW_VERSION_MAJOR(vers);
1033 minor = G_FW_VERSION_MINOR(vers);
1035 if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR &&
1036 minor == FW_VERSION_MINOR)
1037 return 0;
1039 if (major != FW_VERSION_MAJOR)
1040 CH_ERR(adapter, "found wrong FW version(%u.%u), "
1041 "driver needs version %u.%u\n", major, minor,
1042 FW_VERSION_MAJOR, FW_VERSION_MINOR);
1043 else if (minor < FW_VERSION_MINOR) {
1044 *must_load = 0;
1045 CH_WARN(adapter, "found old FW minor version(%u.%u), "
1046 "driver compiled for version %u.%u\n", major, minor,
1047 FW_VERSION_MAJOR, FW_VERSION_MINOR);
1048 } else {
1049 CH_WARN(adapter, "found newer FW version(%u.%u), "
1050 "driver compiled for version %u.%u\n", major, minor,
1051 FW_VERSION_MAJOR, FW_VERSION_MINOR);
1052 return 0;
1054 return -EINVAL;
1058 * t3_flash_erase_sectors - erase a range of flash sectors
1059 * @adapter: the adapter
1060 * @start: the first sector to erase
1061 * @end: the last sector to erase
1063 * Erases the sectors in the given range.
1065 static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
1067 while (start <= end) {
1068 int ret;
1070 if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
1071 (ret = sf1_write(adapter, 4, 0,
1072 SF_ERASE_SECTOR | (start << 8))) != 0 ||
1073 (ret = flash_wait_op(adapter, 5, 500)) != 0)
1074 return ret;
1075 start++;
1077 return 0;
1081 * t3_load_fw - download firmware
1082 * @adapter: the adapter
1083 * @fw_data: the firmware image to write
1084 * @size: image size
1086 * Write the supplied firmware image to the card's serial flash.
1087 * The FW image has the following sections: @size - 8 bytes of code and
1088 * data, followed by 4 bytes of FW version, followed by the 32-bit
1089 * 1's complement checksum of the whole image.
1091 int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
1093 u32 csum;
1094 unsigned int i;
1095 const __be32 *p = (const __be32 *)fw_data;
1096 int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
1098 if ((size & 3) || size < FW_MIN_SIZE)
1099 return -EINVAL;
1100 if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
1101 return -EFBIG;
1103 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
1104 csum += ntohl(p[i]);
1105 if (csum != 0xffffffff) {
1106 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1107 csum);
1108 return -EINVAL;
1111 ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
1112 if (ret)
1113 goto out;
1115 size -= 8; /* trim off version and checksum */
1116 for (addr = FW_FLASH_BOOT_ADDR; size;) {
1117 unsigned int chunk_size = min(size, 256U);
1119 ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
1120 if (ret)
1121 goto out;
1123 addr += chunk_size;
1124 fw_data += chunk_size;
1125 size -= chunk_size;
1128 ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
1129 out:
1130 if (ret)
1131 CH_ERR(adapter, "firmware download failed, error %d\n", ret);
1132 return ret;
1135 #define CIM_CTL_BASE 0x2000
1138 * t3_cim_ctl_blk_read - read a block from CIM control region
1140 * @adap: the adapter
1141 * @addr: the start address within the CIM control region
1142 * @n: number of words to read
1143 * @valp: where to store the result
1145 * Reads a block of 4-byte words from the CIM control region.
1147 int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
1148 unsigned int n, unsigned int *valp)
1150 int ret = 0;
1152 if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
1153 return -EBUSY;
1155 for ( ; !ret && n--; addr += 4) {
1156 t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
1157 ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
1158 0, 5, 2);
1159 if (!ret)
1160 *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
1162 return ret;
1167 * t3_link_changed - handle interface link changes
1168 * @adapter: the adapter
1169 * @port_id: the port index that changed link state
1171 * Called when a port's link settings change to propagate the new values
1172 * to the associated PHY and MAC. After performing the common tasks it
1173 * invokes an OS-specific handler.
1175 void t3_link_changed(struct adapter *adapter, int port_id)
1177 int link_ok, speed, duplex, fc;
1178 struct port_info *pi = adap2pinfo(adapter, port_id);
1179 struct cphy *phy = &pi->phy;
1180 struct cmac *mac = &pi->mac;
1181 struct link_config *lc = &pi->link_config;
1183 phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
1185 if (lc->requested_fc & PAUSE_AUTONEG)
1186 fc &= lc->requested_fc;
1187 else
1188 fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1190 if (link_ok == lc->link_ok && speed == lc->speed &&
1191 duplex == lc->duplex && fc == lc->fc)
1192 return; /* nothing changed */
1194 if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
1195 uses_xaui(adapter)) {
1196 if (link_ok)
1197 t3b_pcs_reset(mac);
1198 t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
1199 link_ok ? F_TXACTENABLE | F_RXEN : 0);
1201 lc->link_ok = link_ok;
1202 lc->speed = speed < 0 ? SPEED_INVALID : speed;
1203 lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
1205 if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
1206 /* Set MAC speed, duplex, and flow control to match PHY. */
1207 t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
1208 lc->fc = fc;
1211 t3_os_link_changed(adapter, port_id, link_ok, speed, duplex, fc);
1215 * t3_link_start - apply link configuration to MAC/PHY
1216 * @phy: the PHY to setup
1217 * @mac: the MAC to setup
1218 * @lc: the requested link configuration
1220 * Set up a port's MAC and PHY according to a desired link configuration.
1221 * - If the PHY can auto-negotiate first decide what to advertise, then
1222 * enable/disable auto-negotiation as desired, and reset.
1223 * - If the PHY does not auto-negotiate just reset it.
1224 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
1225 * otherwise do it later based on the outcome of auto-negotiation.
1227 int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
1229 unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1231 lc->link_ok = 0;
1232 if (lc->supported & SUPPORTED_Autoneg) {
1233 lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
1234 if (fc) {
1235 lc->advertising |= ADVERTISED_Asym_Pause;
1236 if (fc & PAUSE_RX)
1237 lc->advertising |= ADVERTISED_Pause;
1239 phy->ops->advertise(phy, lc->advertising);
1241 if (lc->autoneg == AUTONEG_DISABLE) {
1242 lc->speed = lc->requested_speed;
1243 lc->duplex = lc->requested_duplex;
1244 lc->fc = (unsigned char)fc;
1245 t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
1246 fc);
1247 /* Also disables autoneg */
1248 phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
1249 } else
1250 phy->ops->autoneg_enable(phy);
1251 } else {
1252 t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
1253 lc->fc = (unsigned char)fc;
1254 phy->ops->reset(phy, 0);
1256 return 0;
1260 * t3_set_vlan_accel - control HW VLAN extraction
1261 * @adapter: the adapter
1262 * @ports: bitmap of adapter ports to operate on
1263 * @on: enable (1) or disable (0) HW VLAN extraction
1265 * Enables or disables HW extraction of VLAN tags for the given port.
1267 void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
1269 t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
1270 ports << S_VLANEXTRACTIONENABLE,
1271 on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
1274 struct intr_info {
1275 unsigned int mask; /* bits to check in interrupt status */
1276 const char *msg; /* message to print or NULL */
1277 short stat_idx; /* stat counter to increment or -1 */
1278 unsigned short fatal; /* whether the condition reported is fatal */
1282 * t3_handle_intr_status - table driven interrupt handler
1283 * @adapter: the adapter that generated the interrupt
1284 * @reg: the interrupt status register to process
1285 * @mask: a mask to apply to the interrupt status
1286 * @acts: table of interrupt actions
1287 * @stats: statistics counters tracking interrupt occurences
1289 * A table driven interrupt handler that applies a set of masks to an
1290 * interrupt status word and performs the corresponding actions if the
1291 * interrupts described by the mask have occured. The actions include
1292 * optionally printing a warning or alert message, and optionally
1293 * incrementing a stat counter. The table is terminated by an entry
1294 * specifying mask 0. Returns the number of fatal interrupt conditions.
1296 static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
1297 unsigned int mask,
1298 const struct intr_info *acts,
1299 unsigned long *stats)
1301 int fatal = 0;
1302 unsigned int status = t3_read_reg(adapter, reg) & mask;
1304 for (; acts->mask; ++acts) {
1305 if (!(status & acts->mask))
1306 continue;
1307 if (acts->fatal) {
1308 fatal++;
1309 CH_ALERT(adapter, "%s (0x%x)\n",
1310 acts->msg, status & acts->mask);
1311 } else if (acts->msg)
1312 CH_WARN(adapter, "%s (0x%x)\n",
1313 acts->msg, status & acts->mask);
1314 if (acts->stat_idx >= 0)
1315 stats[acts->stat_idx]++;
1317 if (status) /* clear processed interrupts */
1318 t3_write_reg(adapter, reg, status);
1319 return fatal;
1322 #define SGE_INTR_MASK (F_RSPQDISABLED | \
1323 F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR | \
1324 F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
1325 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
1326 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
1327 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
1328 F_HIRCQPARITYERROR)
1329 #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
1330 F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
1331 F_NFASRCHFAIL)
1332 #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
1333 #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
1334 V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
1335 F_TXFIFO_UNDERRUN | F_RXFIFO_OVERFLOW)
1336 #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
1337 F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
1338 F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
1339 F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
1340 V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
1341 V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
1342 #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
1343 F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
1344 /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
1345 F_RETRYBUFPARERR | F_RETRYLUTPARERR | F_RXPARERR | \
1346 F_TXPARERR | V_BISTERR(M_BISTERR))
1347 #define ULPRX_INTR_MASK (F_PARERRDATA | F_PARERRPCMD | F_ARBPF1PERR | \
1348 F_ARBPF0PERR | F_ARBFPERR | F_PCMDMUXPERR | \
1349 F_DATASELFRAMEERR1 | F_DATASELFRAMEERR0)
1350 #define ULPTX_INTR_MASK 0xfc
1351 #define CPLSW_INTR_MASK (F_CIM_OP_MAP_PERR | F_TP_FRAMING_ERROR | \
1352 F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
1353 F_ZERO_SWITCH_ERROR)
1354 #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
1355 F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
1356 F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
1357 F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT | \
1358 F_DRAMPARERR | F_ICACHEPARERR | F_DCACHEPARERR | \
1359 F_OBQSGEPARERR | F_OBQULPHIPARERR | F_OBQULPLOPARERR | \
1360 F_IBQSGELOPARERR | F_IBQSGEHIPARERR | F_IBQULPPARERR | \
1361 F_IBQTPPARERR | F_ITAGPARERR | F_DTAGPARERR)
1362 #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
1363 V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
1364 V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
1365 #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
1366 V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
1367 V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
1368 #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
1369 V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
1370 V_RXTPPARERRENB(M_RXTPPARERRENB) | \
1371 V_MCAPARERRENB(M_MCAPARERRENB))
1372 #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
1373 F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
1374 F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
1375 F_MPS0 | F_CPL_SWITCH)
1378 * Interrupt handler for the PCIX1 module.
1380 static void pci_intr_handler(struct adapter *adapter)
1382 static const struct intr_info pcix1_intr_info[] = {
1383 {F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
1384 {F_SIGTARABT, "PCI signaled target abort", -1, 1},
1385 {F_RCVTARABT, "PCI received target abort", -1, 1},
1386 {F_RCVMSTABT, "PCI received master abort", -1, 1},
1387 {F_SIGSYSERR, "PCI signaled system error", -1, 1},
1388 {F_DETPARERR, "PCI detected parity error", -1, 1},
1389 {F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
1390 {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
1391 {F_RCVSPLCMPERR, "PCI received split completion error", -1,
1393 {F_DETCORECCERR, "PCI correctable ECC error",
1394 STAT_PCI_CORR_ECC, 0},
1395 {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
1396 {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
1397 {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
1399 {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
1401 {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
1403 {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
1404 "error", -1, 1},
1408 if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
1409 pcix1_intr_info, adapter->irq_stats))
1410 t3_fatal_err(adapter);
1414 * Interrupt handler for the PCIE module.
1416 static void pcie_intr_handler(struct adapter *adapter)
1418 static const struct intr_info pcie_intr_info[] = {
1419 {F_PEXERR, "PCI PEX error", -1, 1},
1420 {F_UNXSPLCPLERRR,
1421 "PCI unexpected split completion DMA read error", -1, 1},
1422 {F_UNXSPLCPLERRC,
1423 "PCI unexpected split completion DMA command error", -1, 1},
1424 {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
1425 {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
1426 {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
1427 {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
1428 {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
1429 "PCI MSI-X table/PBA parity error", -1, 1},
1430 {F_RETRYBUFPARERR, "PCI retry buffer parity error", -1, 1},
1431 {F_RETRYLUTPARERR, "PCI retry LUT parity error", -1, 1},
1432 {F_RXPARERR, "PCI Rx parity error", -1, 1},
1433 {F_TXPARERR, "PCI Tx parity error", -1, 1},
1434 {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
1438 if (t3_read_reg(adapter, A_PCIE_INT_CAUSE) & F_PEXERR)
1439 CH_ALERT(adapter, "PEX error code 0x%x\n",
1440 t3_read_reg(adapter, A_PCIE_PEX_ERR));
1442 if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
1443 pcie_intr_info, adapter->irq_stats))
1444 t3_fatal_err(adapter);
1448 * TP interrupt handler.
1450 static void tp_intr_handler(struct adapter *adapter)
1452 static const struct intr_info tp_intr_info[] = {
1453 {0xffffff, "TP parity error", -1, 1},
1454 {0x1000000, "TP out of Rx pages", -1, 1},
1455 {0x2000000, "TP out of Tx pages", -1, 1},
1459 static struct intr_info tp_intr_info_t3c[] = {
1460 {0x1fffffff, "TP parity error", -1, 1},
1461 {F_FLMRXFLSTEMPTY, "TP out of Rx pages", -1, 1},
1462 {F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1},
1466 if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
1467 adapter->params.rev < T3_REV_C ?
1468 tp_intr_info : tp_intr_info_t3c, NULL))
1469 t3_fatal_err(adapter);
1473 * CIM interrupt handler.
1475 static void cim_intr_handler(struct adapter *adapter)
1477 static const struct intr_info cim_intr_info[] = {
1478 {F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
1479 {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
1480 {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
1481 {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
1482 {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
1483 {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
1484 {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
1485 {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
1486 {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
1487 {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
1488 {F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
1489 {F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
1490 {F_DRAMPARERR, "CIM DRAM parity error", -1, 1},
1491 {F_ICACHEPARERR, "CIM icache parity error", -1, 1},
1492 {F_DCACHEPARERR, "CIM dcache parity error", -1, 1},
1493 {F_OBQSGEPARERR, "CIM OBQ SGE parity error", -1, 1},
1494 {F_OBQULPHIPARERR, "CIM OBQ ULPHI parity error", -1, 1},
1495 {F_OBQULPLOPARERR, "CIM OBQ ULPLO parity error", -1, 1},
1496 {F_IBQSGELOPARERR, "CIM IBQ SGELO parity error", -1, 1},
1497 {F_IBQSGEHIPARERR, "CIM IBQ SGEHI parity error", -1, 1},
1498 {F_IBQULPPARERR, "CIM IBQ ULP parity error", -1, 1},
1499 {F_IBQTPPARERR, "CIM IBQ TP parity error", -1, 1},
1500 {F_ITAGPARERR, "CIM itag parity error", -1, 1},
1501 {F_DTAGPARERR, "CIM dtag parity error", -1, 1},
1505 if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
1506 cim_intr_info, NULL))
1507 t3_fatal_err(adapter);
1511 * ULP RX interrupt handler.
1513 static void ulprx_intr_handler(struct adapter *adapter)
1515 static const struct intr_info ulprx_intr_info[] = {
1516 {F_PARERRDATA, "ULP RX data parity error", -1, 1},
1517 {F_PARERRPCMD, "ULP RX command parity error", -1, 1},
1518 {F_ARBPF1PERR, "ULP RX ArbPF1 parity error", -1, 1},
1519 {F_ARBPF0PERR, "ULP RX ArbPF0 parity error", -1, 1},
1520 {F_ARBFPERR, "ULP RX ArbF parity error", -1, 1},
1521 {F_PCMDMUXPERR, "ULP RX PCMDMUX parity error", -1, 1},
1522 {F_DATASELFRAMEERR1, "ULP RX frame error", -1, 1},
1523 {F_DATASELFRAMEERR0, "ULP RX frame error", -1, 1},
1527 if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
1528 ulprx_intr_info, NULL))
1529 t3_fatal_err(adapter);
1533 * ULP TX interrupt handler.
1535 static void ulptx_intr_handler(struct adapter *adapter)
1537 static const struct intr_info ulptx_intr_info[] = {
1538 {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
1539 STAT_ULP_CH0_PBL_OOB, 0},
1540 {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
1541 STAT_ULP_CH1_PBL_OOB, 0},
1542 {0xfc, "ULP TX parity error", -1, 1},
1546 if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
1547 ulptx_intr_info, adapter->irq_stats))
1548 t3_fatal_err(adapter);
1551 #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
1552 F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
1553 F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
1554 F_ICSPI1_TX_FRAMING_ERROR)
1555 #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
1556 F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
1557 F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
1558 F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
1561 * PM TX interrupt handler.
1563 static void pmtx_intr_handler(struct adapter *adapter)
1565 static const struct intr_info pmtx_intr_info[] = {
1566 {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
1567 {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
1568 {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
1569 {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
1570 "PMTX ispi parity error", -1, 1},
1571 {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
1572 "PMTX ospi parity error", -1, 1},
1576 if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
1577 pmtx_intr_info, NULL))
1578 t3_fatal_err(adapter);
1581 #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
1582 F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
1583 F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
1584 F_IESPI1_TX_FRAMING_ERROR)
1585 #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
1586 F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
1587 F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
1588 F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
1591 * PM RX interrupt handler.
1593 static void pmrx_intr_handler(struct adapter *adapter)
1595 static const struct intr_info pmrx_intr_info[] = {
1596 {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
1597 {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
1598 {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
1599 {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
1600 "PMRX ispi parity error", -1, 1},
1601 {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
1602 "PMRX ospi parity error", -1, 1},
1606 if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
1607 pmrx_intr_info, NULL))
1608 t3_fatal_err(adapter);
1612 * CPL switch interrupt handler.
1614 static void cplsw_intr_handler(struct adapter *adapter)
1616 static const struct intr_info cplsw_intr_info[] = {
1617 {F_CIM_OP_MAP_PERR, "CPL switch CIM parity error", -1, 1},
1618 {F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1},
1619 {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
1620 {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
1621 {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
1622 {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
1626 if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
1627 cplsw_intr_info, NULL))
1628 t3_fatal_err(adapter);
1632 * MPS interrupt handler.
1634 static void mps_intr_handler(struct adapter *adapter)
1636 static const struct intr_info mps_intr_info[] = {
1637 {0x1ff, "MPS parity error", -1, 1},
1641 if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
1642 mps_intr_info, NULL))
1643 t3_fatal_err(adapter);
1646 #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
1649 * MC7 interrupt handler.
1651 static void mc7_intr_handler(struct mc7 *mc7)
1653 struct adapter *adapter = mc7->adapter;
1654 u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
1656 if (cause & F_CE) {
1657 mc7->stats.corr_err++;
1658 CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
1659 "data 0x%x 0x%x 0x%x\n", mc7->name,
1660 t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
1661 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
1662 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
1663 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
1666 if (cause & F_UE) {
1667 mc7->stats.uncorr_err++;
1668 CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
1669 "data 0x%x 0x%x 0x%x\n", mc7->name,
1670 t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
1671 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
1672 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
1673 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
1676 if (G_PE(cause)) {
1677 mc7->stats.parity_err++;
1678 CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
1679 mc7->name, G_PE(cause));
1682 if (cause & F_AE) {
1683 u32 addr = 0;
1685 if (adapter->params.rev > 0)
1686 addr = t3_read_reg(adapter,
1687 mc7->offset + A_MC7_ERR_ADDR);
1688 mc7->stats.addr_err++;
1689 CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
1690 mc7->name, addr);
1693 if (cause & MC7_INTR_FATAL)
1694 t3_fatal_err(adapter);
1696 t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
1699 #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
1700 V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
1702 * XGMAC interrupt handler.
1704 static int mac_intr_handler(struct adapter *adap, unsigned int idx)
1706 struct cmac *mac = &adap2pinfo(adap, idx)->mac;
1707 u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset);
1709 if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
1710 mac->stats.tx_fifo_parity_err++;
1711 CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
1713 if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
1714 mac->stats.rx_fifo_parity_err++;
1715 CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
1717 if (cause & F_TXFIFO_UNDERRUN)
1718 mac->stats.tx_fifo_urun++;
1719 if (cause & F_RXFIFO_OVERFLOW)
1720 mac->stats.rx_fifo_ovfl++;
1721 if (cause & V_SERDES_LOS(M_SERDES_LOS))
1722 mac->stats.serdes_signal_loss++;
1723 if (cause & F_XAUIPCSCTCERR)
1724 mac->stats.xaui_pcs_ctc_err++;
1725 if (cause & F_XAUIPCSALIGNCHANGE)
1726 mac->stats.xaui_pcs_align_change++;
1728 t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
1729 if (cause & XGM_INTR_FATAL)
1730 t3_fatal_err(adap);
1731 return cause != 0;
1735 * Interrupt handler for PHY events.
1737 int t3_phy_intr_handler(struct adapter *adapter)
1739 u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
1741 for_each_port(adapter, i) {
1742 struct port_info *p = adap2pinfo(adapter, i);
1744 if (!(p->phy.caps & SUPPORTED_IRQ))
1745 continue;
1747 if (cause & (1 << adapter_info(adapter)->gpio_intr[i])) {
1748 int phy_cause = p->phy.ops->intr_handler(&p->phy);
1750 if (phy_cause & cphy_cause_link_change)
1751 t3_link_changed(adapter, i);
1752 if (phy_cause & cphy_cause_fifo_error)
1753 p->phy.fifo_errors++;
1754 if (phy_cause & cphy_cause_module_change)
1755 t3_os_phymod_changed(adapter, i);
1759 t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
1760 return 0;
1764 * T3 slow path (non-data) interrupt handler.
1766 int t3_slow_intr_handler(struct adapter *adapter)
1768 u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
1770 cause &= adapter->slow_intr_mask;
1771 if (!cause)
1772 return 0;
1773 if (cause & F_PCIM0) {
1774 if (is_pcie(adapter))
1775 pcie_intr_handler(adapter);
1776 else
1777 pci_intr_handler(adapter);
1779 if (cause & F_SGE3)
1780 t3_sge_err_intr_handler(adapter);
1781 if (cause & F_MC7_PMRX)
1782 mc7_intr_handler(&adapter->pmrx);
1783 if (cause & F_MC7_PMTX)
1784 mc7_intr_handler(&adapter->pmtx);
1785 if (cause & F_MC7_CM)
1786 mc7_intr_handler(&adapter->cm);
1787 if (cause & F_CIM)
1788 cim_intr_handler(adapter);
1789 if (cause & F_TP1)
1790 tp_intr_handler(adapter);
1791 if (cause & F_ULP2_RX)
1792 ulprx_intr_handler(adapter);
1793 if (cause & F_ULP2_TX)
1794 ulptx_intr_handler(adapter);
1795 if (cause & F_PM1_RX)
1796 pmrx_intr_handler(adapter);
1797 if (cause & F_PM1_TX)
1798 pmtx_intr_handler(adapter);
1799 if (cause & F_CPL_SWITCH)
1800 cplsw_intr_handler(adapter);
1801 if (cause & F_MPS0)
1802 mps_intr_handler(adapter);
1803 if (cause & F_MC5A)
1804 t3_mc5_intr_handler(&adapter->mc5);
1805 if (cause & F_XGMAC0_0)
1806 mac_intr_handler(adapter, 0);
1807 if (cause & F_XGMAC0_1)
1808 mac_intr_handler(adapter, 1);
1809 if (cause & F_T3DBG)
1810 t3_os_ext_intr_handler(adapter);
1812 /* Clear the interrupts just processed. */
1813 t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
1814 t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
1815 return 1;
1818 static unsigned int calc_gpio_intr(struct adapter *adap)
1820 unsigned int i, gpi_intr = 0;
1822 for_each_port(adap, i)
1823 if ((adap2pinfo(adap, i)->phy.caps & SUPPORTED_IRQ) &&
1824 adapter_info(adap)->gpio_intr[i])
1825 gpi_intr |= 1 << adapter_info(adap)->gpio_intr[i];
1826 return gpi_intr;
1830 * t3_intr_enable - enable interrupts
1831 * @adapter: the adapter whose interrupts should be enabled
1833 * Enable interrupts by setting the interrupt enable registers of the
1834 * various HW modules and then enabling the top-level interrupt
1835 * concentrator.
1837 void t3_intr_enable(struct adapter *adapter)
1839 static const struct addr_val_pair intr_en_avp[] = {
1840 {A_SG_INT_ENABLE, SGE_INTR_MASK},
1841 {A_MC7_INT_ENABLE, MC7_INTR_MASK},
1842 {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
1843 MC7_INTR_MASK},
1844 {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
1845 MC7_INTR_MASK},
1846 {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
1847 {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
1848 {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
1849 {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
1850 {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
1851 {A_MPS_INT_ENABLE, MPS_INTR_MASK},
1854 adapter->slow_intr_mask = PL_INTR_MASK;
1856 t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
1857 t3_write_reg(adapter, A_TP_INT_ENABLE,
1858 adapter->params.rev >= T3_REV_C ? 0x2bfffff : 0x3bfffff);
1860 if (adapter->params.rev > 0) {
1861 t3_write_reg(adapter, A_CPL_INTR_ENABLE,
1862 CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
1863 t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
1864 ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
1865 F_PBL_BOUND_ERR_CH1);
1866 } else {
1867 t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
1868 t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
1871 t3_write_reg(adapter, A_T3DBG_INT_ENABLE, calc_gpio_intr(adapter));
1873 if (is_pcie(adapter))
1874 t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
1875 else
1876 t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
1877 t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
1878 t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
1882 * t3_intr_disable - disable a card's interrupts
1883 * @adapter: the adapter whose interrupts should be disabled
1885 * Disable interrupts. We only disable the top-level interrupt
1886 * concentrator and the SGE data interrupts.
1888 void t3_intr_disable(struct adapter *adapter)
1890 t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
1891 t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
1892 adapter->slow_intr_mask = 0;
1896 * t3_intr_clear - clear all interrupts
1897 * @adapter: the adapter whose interrupts should be cleared
1899 * Clears all interrupts.
1901 void t3_intr_clear(struct adapter *adapter)
1903 static const unsigned int cause_reg_addr[] = {
1904 A_SG_INT_CAUSE,
1905 A_SG_RSPQ_FL_STATUS,
1906 A_PCIX_INT_CAUSE,
1907 A_MC7_INT_CAUSE,
1908 A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
1909 A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
1910 A_CIM_HOST_INT_CAUSE,
1911 A_TP_INT_CAUSE,
1912 A_MC5_DB_INT_CAUSE,
1913 A_ULPRX_INT_CAUSE,
1914 A_ULPTX_INT_CAUSE,
1915 A_CPL_INTR_CAUSE,
1916 A_PM1_TX_INT_CAUSE,
1917 A_PM1_RX_INT_CAUSE,
1918 A_MPS_INT_CAUSE,
1919 A_T3DBG_INT_CAUSE,
1921 unsigned int i;
1923 /* Clear PHY and MAC interrupts for each port. */
1924 for_each_port(adapter, i)
1925 t3_port_intr_clear(adapter, i);
1927 for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
1928 t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
1930 if (is_pcie(adapter))
1931 t3_write_reg(adapter, A_PCIE_PEX_ERR, 0xffffffff);
1932 t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
1933 t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
1937 * t3_port_intr_enable - enable port-specific interrupts
1938 * @adapter: associated adapter
1939 * @idx: index of port whose interrupts should be enabled
1941 * Enable port-specific (i.e., MAC and PHY) interrupts for the given
1942 * adapter port.
1944 void t3_port_intr_enable(struct adapter *adapter, int idx)
1946 struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
1948 t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
1949 t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
1950 phy->ops->intr_enable(phy);
1954 * t3_port_intr_disable - disable port-specific interrupts
1955 * @adapter: associated adapter
1956 * @idx: index of port whose interrupts should be disabled
1958 * Disable port-specific (i.e., MAC and PHY) interrupts for the given
1959 * adapter port.
1961 void t3_port_intr_disable(struct adapter *adapter, int idx)
1963 struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
1965 t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
1966 t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
1967 phy->ops->intr_disable(phy);
1971 * t3_port_intr_clear - clear port-specific interrupts
1972 * @adapter: associated adapter
1973 * @idx: index of port whose interrupts to clear
1975 * Clear port-specific (i.e., MAC and PHY) interrupts for the given
1976 * adapter port.
1978 void t3_port_intr_clear(struct adapter *adapter, int idx)
1980 struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
1982 t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
1983 t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
1984 phy->ops->intr_clear(phy);
1987 #define SG_CONTEXT_CMD_ATTEMPTS 100
1990 * t3_sge_write_context - write an SGE context
1991 * @adapter: the adapter
1992 * @id: the context id
1993 * @type: the context type
1995 * Program an SGE context with the values already loaded in the
1996 * CONTEXT_DATA? registers.
1998 static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
1999 unsigned int type)
2001 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
2002 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
2003 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
2004 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
2005 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2006 V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
2007 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2008 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2011 static int clear_sge_ctxt(struct adapter *adap, unsigned int id,
2012 unsigned int type)
2014 t3_write_reg(adap, A_SG_CONTEXT_DATA0, 0);
2015 t3_write_reg(adap, A_SG_CONTEXT_DATA1, 0);
2016 t3_write_reg(adap, A_SG_CONTEXT_DATA2, 0);
2017 t3_write_reg(adap, A_SG_CONTEXT_DATA3, 0);
2018 return t3_sge_write_context(adap, id, type);
2022 * t3_sge_init_ecntxt - initialize an SGE egress context
2023 * @adapter: the adapter to configure
2024 * @id: the context id
2025 * @gts_enable: whether to enable GTS for the context
2026 * @type: the egress context type
2027 * @respq: associated response queue
2028 * @base_addr: base address of queue
2029 * @size: number of queue entries
2030 * @token: uP token
2031 * @gen: initial generation value for the context
2032 * @cidx: consumer pointer
2034 * Initialize an SGE egress context and make it ready for use. If the
2035 * platform allows concurrent context operations, the caller is
2036 * responsible for appropriate locking.
2038 int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
2039 enum sge_context_type type, int respq, u64 base_addr,
2040 unsigned int size, unsigned int token, int gen,
2041 unsigned int cidx)
2043 unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
2045 if (base_addr & 0xfff) /* must be 4K aligned */
2046 return -EINVAL;
2047 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2048 return -EBUSY;
2050 base_addr >>= 12;
2051 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
2052 V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
2053 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
2054 V_EC_BASE_LO(base_addr & 0xffff));
2055 base_addr >>= 16;
2056 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
2057 base_addr >>= 32;
2058 t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
2059 V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
2060 V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
2061 F_EC_VALID);
2062 return t3_sge_write_context(adapter, id, F_EGRESS);
2066 * t3_sge_init_flcntxt - initialize an SGE free-buffer list context
2067 * @adapter: the adapter to configure
2068 * @id: the context id
2069 * @gts_enable: whether to enable GTS for the context
2070 * @base_addr: base address of queue
2071 * @size: number of queue entries
2072 * @bsize: size of each buffer for this queue
2073 * @cong_thres: threshold to signal congestion to upstream producers
2074 * @gen: initial generation value for the context
2075 * @cidx: consumer pointer
2077 * Initialize an SGE free list context and make it ready for use. The
2078 * caller is responsible for ensuring only one context operation occurs
2079 * at a time.
2081 int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
2082 int gts_enable, u64 base_addr, unsigned int size,
2083 unsigned int bsize, unsigned int cong_thres, int gen,
2084 unsigned int cidx)
2086 if (base_addr & 0xfff) /* must be 4K aligned */
2087 return -EINVAL;
2088 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2089 return -EBUSY;
2091 base_addr >>= 12;
2092 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
2093 base_addr >>= 32;
2094 t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
2095 V_FL_BASE_HI((u32) base_addr) |
2096 V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
2097 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
2098 V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
2099 V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
2100 t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
2101 V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
2102 V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
2103 return t3_sge_write_context(adapter, id, F_FREELIST);
2107 * t3_sge_init_rspcntxt - initialize an SGE response queue context
2108 * @adapter: the adapter to configure
2109 * @id: the context id
2110 * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
2111 * @base_addr: base address of queue
2112 * @size: number of queue entries
2113 * @fl_thres: threshold for selecting the normal or jumbo free list
2114 * @gen: initial generation value for the context
2115 * @cidx: consumer pointer
2117 * Initialize an SGE response queue context and make it ready for use.
2118 * The caller is responsible for ensuring only one context operation
2119 * occurs at a time.
2121 int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
2122 int irq_vec_idx, u64 base_addr, unsigned int size,
2123 unsigned int fl_thres, int gen, unsigned int cidx)
2125 unsigned int intr = 0;
2127 if (base_addr & 0xfff) /* must be 4K aligned */
2128 return -EINVAL;
2129 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2130 return -EBUSY;
2132 base_addr >>= 12;
2133 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
2134 V_CQ_INDEX(cidx));
2135 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
2136 base_addr >>= 32;
2137 if (irq_vec_idx >= 0)
2138 intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
2139 t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
2140 V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
2141 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
2142 return t3_sge_write_context(adapter, id, F_RESPONSEQ);
2146 * t3_sge_init_cqcntxt - initialize an SGE completion queue context
2147 * @adapter: the adapter to configure
2148 * @id: the context id
2149 * @base_addr: base address of queue
2150 * @size: number of queue entries
2151 * @rspq: response queue for async notifications
2152 * @ovfl_mode: CQ overflow mode
2153 * @credits: completion queue credits
2154 * @credit_thres: the credit threshold
2156 * Initialize an SGE completion queue context and make it ready for use.
2157 * The caller is responsible for ensuring only one context operation
2158 * occurs at a time.
2160 int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
2161 unsigned int size, int rspq, int ovfl_mode,
2162 unsigned int credits, unsigned int credit_thres)
2164 if (base_addr & 0xfff) /* must be 4K aligned */
2165 return -EINVAL;
2166 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2167 return -EBUSY;
2169 base_addr >>= 12;
2170 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
2171 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
2172 base_addr >>= 32;
2173 t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
2174 V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
2175 V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode) |
2176 V_CQ_ERR(ovfl_mode));
2177 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
2178 V_CQ_CREDIT_THRES(credit_thres));
2179 return t3_sge_write_context(adapter, id, F_CQ);
2183 * t3_sge_enable_ecntxt - enable/disable an SGE egress context
2184 * @adapter: the adapter
2185 * @id: the egress context id
2186 * @enable: enable (1) or disable (0) the context
2188 * Enable or disable an SGE egress context. The caller is responsible for
2189 * ensuring only one context operation occurs at a time.
2191 int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
2193 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2194 return -EBUSY;
2196 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
2197 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2198 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
2199 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
2200 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
2201 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2202 V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
2203 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2204 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2208 * t3_sge_disable_fl - disable an SGE free-buffer list
2209 * @adapter: the adapter
2210 * @id: the free list context id
2212 * Disable an SGE free-buffer list. The caller is responsible for
2213 * ensuring only one context operation occurs at a time.
2215 int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
2217 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2218 return -EBUSY;
2220 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
2221 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2222 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
2223 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
2224 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
2225 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2226 V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
2227 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2228 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2232 * t3_sge_disable_rspcntxt - disable an SGE response queue
2233 * @adapter: the adapter
2234 * @id: the response queue context id
2236 * Disable an SGE response queue. The caller is responsible for
2237 * ensuring only one context operation occurs at a time.
2239 int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
2241 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2242 return -EBUSY;
2244 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
2245 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2246 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
2247 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
2248 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
2249 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2250 V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
2251 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2252 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2256 * t3_sge_disable_cqcntxt - disable an SGE completion queue
2257 * @adapter: the adapter
2258 * @id: the completion queue context id
2260 * Disable an SGE completion queue. The caller is responsible for
2261 * ensuring only one context operation occurs at a time.
2263 int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
2265 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2266 return -EBUSY;
2268 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
2269 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2270 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
2271 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
2272 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
2273 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2274 V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
2275 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2276 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2280 * t3_sge_cqcntxt_op - perform an operation on a completion queue context
2281 * @adapter: the adapter
2282 * @id: the context id
2283 * @op: the operation to perform
2285 * Perform the selected operation on an SGE completion queue context.
2286 * The caller is responsible for ensuring only one context operation
2287 * occurs at a time.
2289 int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
2290 unsigned int credits)
2292 u32 val;
2294 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2295 return -EBUSY;
2297 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
2298 t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
2299 V_CONTEXT(id) | F_CQ);
2300 if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2301 0, SG_CONTEXT_CMD_ATTEMPTS, 1, &val))
2302 return -EIO;
2304 if (op >= 2 && op < 7) {
2305 if (adapter->params.rev > 0)
2306 return G_CQ_INDEX(val);
2308 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2309 V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
2310 if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
2311 F_CONTEXT_CMD_BUSY, 0,
2312 SG_CONTEXT_CMD_ATTEMPTS, 1))
2313 return -EIO;
2314 return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
2316 return 0;
2320 * t3_sge_read_context - read an SGE context
2321 * @type: the context type
2322 * @adapter: the adapter
2323 * @id: the context id
2324 * @data: holds the retrieved context
2326 * Read an SGE egress context. The caller is responsible for ensuring
2327 * only one context operation occurs at a time.
2329 static int t3_sge_read_context(unsigned int type, struct adapter *adapter,
2330 unsigned int id, u32 data[4])
2332 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2333 return -EBUSY;
2335 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2336 V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id));
2337 if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0,
2338 SG_CONTEXT_CMD_ATTEMPTS, 1))
2339 return -EIO;
2340 data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0);
2341 data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1);
2342 data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2);
2343 data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3);
2344 return 0;
2348 * t3_sge_read_ecntxt - read an SGE egress context
2349 * @adapter: the adapter
2350 * @id: the context id
2351 * @data: holds the retrieved context
2353 * Read an SGE egress context. The caller is responsible for ensuring
2354 * only one context operation occurs at a time.
2356 int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4])
2358 if (id >= 65536)
2359 return -EINVAL;
2360 return t3_sge_read_context(F_EGRESS, adapter, id, data);
2364 * t3_sge_read_cq - read an SGE CQ context
2365 * @adapter: the adapter
2366 * @id: the context id
2367 * @data: holds the retrieved context
2369 * Read an SGE CQ context. The caller is responsible for ensuring
2370 * only one context operation occurs at a time.
2372 int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4])
2374 if (id >= 65536)
2375 return -EINVAL;
2376 return t3_sge_read_context(F_CQ, adapter, id, data);
2380 * t3_sge_read_fl - read an SGE free-list context
2381 * @adapter: the adapter
2382 * @id: the context id
2383 * @data: holds the retrieved context
2385 * Read an SGE free-list context. The caller is responsible for ensuring
2386 * only one context operation occurs at a time.
2388 int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4])
2390 if (id >= SGE_QSETS * 2)
2391 return -EINVAL;
2392 return t3_sge_read_context(F_FREELIST, adapter, id, data);
2396 * t3_sge_read_rspq - read an SGE response queue context
2397 * @adapter: the adapter
2398 * @id: the context id
2399 * @data: holds the retrieved context
2401 * Read an SGE response queue context. The caller is responsible for
2402 * ensuring only one context operation occurs at a time.
2404 int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4])
2406 if (id >= SGE_QSETS)
2407 return -EINVAL;
2408 return t3_sge_read_context(F_RESPONSEQ, adapter, id, data);
2412 * t3_config_rss - configure Rx packet steering
2413 * @adapter: the adapter
2414 * @rss_config: RSS settings (written to TP_RSS_CONFIG)
2415 * @cpus: values for the CPU lookup table (0xff terminated)
2416 * @rspq: values for the response queue lookup table (0xffff terminated)
2418 * Programs the receive packet steering logic. @cpus and @rspq provide
2419 * the values for the CPU and response queue lookup tables. If they
2420 * provide fewer values than the size of the tables the supplied values
2421 * are used repeatedly until the tables are fully populated.
2423 void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
2424 const u8 * cpus, const u16 *rspq)
2426 int i, j, cpu_idx = 0, q_idx = 0;
2428 if (cpus)
2429 for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2430 u32 val = i << 16;
2432 for (j = 0; j < 2; ++j) {
2433 val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
2434 if (cpus[cpu_idx] == 0xff)
2435 cpu_idx = 0;
2437 t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
2440 if (rspq)
2441 for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2442 t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
2443 (i << 16) | rspq[q_idx++]);
2444 if (rspq[q_idx] == 0xffff)
2445 q_idx = 0;
2448 t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
2452 * t3_read_rss - read the contents of the RSS tables
2453 * @adapter: the adapter
2454 * @lkup: holds the contents of the RSS lookup table
2455 * @map: holds the contents of the RSS map table
2457 * Reads the contents of the receive packet steering tables.
2459 int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map)
2461 int i;
2462 u32 val;
2464 if (lkup)
2465 for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2466 t3_write_reg(adapter, A_TP_RSS_LKP_TABLE,
2467 0xffff0000 | i);
2468 val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE);
2469 if (!(val & 0x80000000))
2470 return -EAGAIN;
2471 *lkup++ = val;
2472 *lkup++ = (val >> 8);
2475 if (map)
2476 for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2477 t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
2478 0xffff0000 | i);
2479 val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE);
2480 if (!(val & 0x80000000))
2481 return -EAGAIN;
2482 *map++ = val;
2484 return 0;
2488 * t3_tp_set_offload_mode - put TP in NIC/offload mode
2489 * @adap: the adapter
2490 * @enable: 1 to select offload mode, 0 for regular NIC
2492 * Switches TP to NIC/offload mode.
2494 void t3_tp_set_offload_mode(struct adapter *adap, int enable)
2496 if (is_offload(adap) || !enable)
2497 t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
2498 V_NICMODE(!enable));
2502 * pm_num_pages - calculate the number of pages of the payload memory
2503 * @mem_size: the size of the payload memory
2504 * @pg_size: the size of each payload memory page
2506 * Calculate the number of pages, each of the given size, that fit in a
2507 * memory of the specified size, respecting the HW requirement that the
2508 * number of pages must be a multiple of 24.
2510 static inline unsigned int pm_num_pages(unsigned int mem_size,
2511 unsigned int pg_size)
2513 unsigned int n = mem_size / pg_size;
2515 return n - n % 24;
2518 #define mem_region(adap, start, size, reg) \
2519 t3_write_reg((adap), A_ ## reg, (start)); \
2520 start += size
2523 * partition_mem - partition memory and configure TP memory settings
2524 * @adap: the adapter
2525 * @p: the TP parameters
2527 * Partitions context and payload memory and configures TP's memory
2528 * registers.
2530 static void partition_mem(struct adapter *adap, const struct tp_params *p)
2532 unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
2533 unsigned int timers = 0, timers_shift = 22;
2535 if (adap->params.rev > 0) {
2536 if (tids <= 16 * 1024) {
2537 timers = 1;
2538 timers_shift = 16;
2539 } else if (tids <= 64 * 1024) {
2540 timers = 2;
2541 timers_shift = 18;
2542 } else if (tids <= 256 * 1024) {
2543 timers = 3;
2544 timers_shift = 20;
2548 t3_write_reg(adap, A_TP_PMM_SIZE,
2549 p->chan_rx_size | (p->chan_tx_size >> 16));
2551 t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
2552 t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
2553 t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
2554 t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
2555 V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
2557 t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
2558 t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
2559 t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
2561 pstructs = p->rx_num_pgs + p->tx_num_pgs;
2562 /* Add a bit of headroom and make multiple of 24 */
2563 pstructs += 48;
2564 pstructs -= pstructs % 24;
2565 t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
2567 m = tids * TCB_SIZE;
2568 mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
2569 mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
2570 t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
2571 m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
2572 mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
2573 mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
2574 mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
2575 mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
2577 m = (m + 4095) & ~0xfff;
2578 t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
2579 t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
2581 tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
2582 m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
2583 adap->params.mc5.nfilters - adap->params.mc5.nroutes;
2584 if (tids < m)
2585 adap->params.mc5.nservers += m - tids;
2588 static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
2589 u32 val)
2591 t3_write_reg(adap, A_TP_PIO_ADDR, addr);
2592 t3_write_reg(adap, A_TP_PIO_DATA, val);
2595 static void tp_config(struct adapter *adap, const struct tp_params *p)
2597 t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
2598 F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
2599 F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
2600 t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
2601 F_MTUENABLE | V_WINDOWSCALEMODE(1) |
2602 V_TIMESTAMPSMODE(0) | V_SACKMODE(1) | V_SACKRX(1));
2603 t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
2604 V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
2605 V_BYTETHRESHOLD(16384) | V_MSSTHRESHOLD(2) |
2606 F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
2607 t3_set_reg_field(adap, A_TP_IN_CONFIG, F_RXFBARBPRIO | F_TXFBARBPRIO,
2608 F_IPV6ENABLE | F_NICMODE);
2609 t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
2610 t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
2611 t3_set_reg_field(adap, A_TP_PARA_REG6, 0,
2612 adap->params.rev > 0 ? F_ENABLEESND :
2613 F_T3A_ENABLEESND);
2615 t3_set_reg_field(adap, A_TP_PC_CONFIG,
2616 F_ENABLEEPCMDAFULL,
2617 F_ENABLEOCSPIFULL |F_TXDEFERENABLE | F_HEARBEATDACK |
2618 F_TXCONGESTIONMODE | F_RXCONGESTIONMODE);
2619 t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL,
2620 F_ENABLEIPV6RSS | F_ENABLENONOFDTNLSYN |
2621 F_ENABLEARPMISS | F_DISBLEDAPARBIT0);
2622 t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1080);
2623 t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1000);
2625 if (adap->params.rev > 0) {
2626 tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
2627 t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
2628 F_TXPACEAUTO);
2629 t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
2630 t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
2631 } else
2632 t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
2634 if (adap->params.rev == T3_REV_C)
2635 t3_set_reg_field(adap, A_TP_PC_CONFIG,
2636 V_TABLELATENCYDELTA(M_TABLELATENCYDELTA),
2637 V_TABLELATENCYDELTA(4));
2639 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0);
2640 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0);
2641 t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0);
2642 t3_write_reg(adap, A_TP_MOD_RATE_LIMIT, 0xf2200000);
2645 /* Desired TP timer resolution in usec */
2646 #define TP_TMR_RES 50
2648 /* TCP timer values in ms */
2649 #define TP_DACK_TIMER 50
2650 #define TP_RTO_MIN 250
2653 * tp_set_timers - set TP timing parameters
2654 * @adap: the adapter to set
2655 * @core_clk: the core clock frequency in Hz
2657 * Set TP's timing parameters, such as the various timer resolutions and
2658 * the TCP timer values.
2660 static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
2662 unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
2663 unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */
2664 unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */
2665 unsigned int tps = core_clk >> tre;
2667 t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
2668 V_DELAYEDACKRESOLUTION(dack_re) |
2669 V_TIMESTAMPRESOLUTION(tstamp_re));
2670 t3_write_reg(adap, A_TP_DACK_TIMER,
2671 (core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
2672 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
2673 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
2674 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
2675 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
2676 t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
2677 V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
2678 V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
2679 V_KEEPALIVEMAX(9));
2681 #define SECONDS * tps
2683 t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
2684 t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
2685 t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
2686 t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
2687 t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
2688 t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
2689 t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
2690 t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
2691 t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
2693 #undef SECONDS
2697 * t3_tp_set_coalescing_size - set receive coalescing size
2698 * @adap: the adapter
2699 * @size: the receive coalescing size
2700 * @psh: whether a set PSH bit should deliver coalesced data
2702 * Set the receive coalescing size and PSH bit handling.
2704 int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh)
2706 u32 val;
2708 if (size > MAX_RX_COALESCING_LEN)
2709 return -EINVAL;
2711 val = t3_read_reg(adap, A_TP_PARA_REG3);
2712 val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
2714 if (size) {
2715 val |= F_RXCOALESCEENABLE;
2716 if (psh)
2717 val |= F_RXCOALESCEPSHEN;
2718 size = min(MAX_RX_COALESCING_LEN, size);
2719 t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
2720 V_MAXRXDATA(MAX_RX_COALESCING_LEN));
2722 t3_write_reg(adap, A_TP_PARA_REG3, val);
2723 return 0;
2727 * t3_tp_set_max_rxsize - set the max receive size
2728 * @adap: the adapter
2729 * @size: the max receive size
2731 * Set TP's max receive size. This is the limit that applies when
2732 * receive coalescing is disabled.
2734 void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
2736 t3_write_reg(adap, A_TP_PARA_REG7,
2737 V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
2740 static void init_mtus(unsigned short mtus[])
2743 * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so
2744 * it can accomodate max size TCP/IP headers when SACK and timestamps
2745 * are enabled and still have at least 8 bytes of payload.
2747 mtus[0] = 88;
2748 mtus[1] = 88;
2749 mtus[2] = 256;
2750 mtus[3] = 512;
2751 mtus[4] = 576;
2752 mtus[5] = 1024;
2753 mtus[6] = 1280;
2754 mtus[7] = 1492;
2755 mtus[8] = 1500;
2756 mtus[9] = 2002;
2757 mtus[10] = 2048;
2758 mtus[11] = 4096;
2759 mtus[12] = 4352;
2760 mtus[13] = 8192;
2761 mtus[14] = 9000;
2762 mtus[15] = 9600;
2766 * Initial congestion control parameters.
2768 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
2770 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
2771 a[9] = 2;
2772 a[10] = 3;
2773 a[11] = 4;
2774 a[12] = 5;
2775 a[13] = 6;
2776 a[14] = 7;
2777 a[15] = 8;
2778 a[16] = 9;
2779 a[17] = 10;
2780 a[18] = 14;
2781 a[19] = 17;
2782 a[20] = 21;
2783 a[21] = 25;
2784 a[22] = 30;
2785 a[23] = 35;
2786 a[24] = 45;
2787 a[25] = 60;
2788 a[26] = 80;
2789 a[27] = 100;
2790 a[28] = 200;
2791 a[29] = 300;
2792 a[30] = 400;
2793 a[31] = 500;
2795 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
2796 b[9] = b[10] = 1;
2797 b[11] = b[12] = 2;
2798 b[13] = b[14] = b[15] = b[16] = 3;
2799 b[17] = b[18] = b[19] = b[20] = b[21] = 4;
2800 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
2801 b[28] = b[29] = 6;
2802 b[30] = b[31] = 7;
2805 /* The minimum additive increment value for the congestion control table */
2806 #define CC_MIN_INCR 2U
2809 * t3_load_mtus - write the MTU and congestion control HW tables
2810 * @adap: the adapter
2811 * @mtus: the unrestricted values for the MTU table
2812 * @alphs: the values for the congestion control alpha parameter
2813 * @beta: the values for the congestion control beta parameter
2814 * @mtu_cap: the maximum permitted effective MTU
2816 * Write the MTU table with the supplied MTUs capping each at &mtu_cap.
2817 * Update the high-speed congestion control table with the supplied alpha,
2818 * beta, and MTUs.
2820 void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
2821 unsigned short alpha[NCCTRL_WIN],
2822 unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
2824 static const unsigned int avg_pkts[NCCTRL_WIN] = {
2825 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
2826 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
2827 28672, 40960, 57344, 81920, 114688, 163840, 229376
2830 unsigned int i, w;
2832 for (i = 0; i < NMTUS; ++i) {
2833 unsigned int mtu = min(mtus[i], mtu_cap);
2834 unsigned int log2 = fls(mtu);
2836 if (!(mtu & ((1 << log2) >> 2))) /* round */
2837 log2--;
2838 t3_write_reg(adap, A_TP_MTU_TABLE,
2839 (i << 24) | (log2 << 16) | mtu);
2841 for (w = 0; w < NCCTRL_WIN; ++w) {
2842 unsigned int inc;
2844 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
2845 CC_MIN_INCR);
2847 t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
2848 (w << 16) | (beta[w] << 13) | inc);
2854 * t3_read_hw_mtus - returns the values in the HW MTU table
2855 * @adap: the adapter
2856 * @mtus: where to store the HW MTU values
2858 * Reads the HW MTU table.
2860 void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS])
2862 int i;
2864 for (i = 0; i < NMTUS; ++i) {
2865 unsigned int val;
2867 t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i);
2868 val = t3_read_reg(adap, A_TP_MTU_TABLE);
2869 mtus[i] = val & 0x3fff;
2874 * t3_get_cong_cntl_tab - reads the congestion control table
2875 * @adap: the adapter
2876 * @incr: where to store the alpha values
2878 * Reads the additive increments programmed into the HW congestion
2879 * control table.
2881 void t3_get_cong_cntl_tab(struct adapter *adap,
2882 unsigned short incr[NMTUS][NCCTRL_WIN])
2884 unsigned int mtu, w;
2886 for (mtu = 0; mtu < NMTUS; ++mtu)
2887 for (w = 0; w < NCCTRL_WIN; ++w) {
2888 t3_write_reg(adap, A_TP_CCTRL_TABLE,
2889 0xffff0000 | (mtu << 5) | w);
2890 incr[mtu][w] = t3_read_reg(adap, A_TP_CCTRL_TABLE) &
2891 0x1fff;
2896 * t3_tp_get_mib_stats - read TP's MIB counters
2897 * @adap: the adapter
2898 * @tps: holds the returned counter values
2900 * Returns the values of TP's MIB counters.
2902 void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
2904 t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
2905 sizeof(*tps) / sizeof(u32), 0);
2908 #define ulp_region(adap, name, start, len) \
2909 t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
2910 t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
2911 (start) + (len) - 1); \
2912 start += len
2914 #define ulptx_region(adap, name, start, len) \
2915 t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
2916 t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
2917 (start) + (len) - 1)
2919 static void ulp_config(struct adapter *adap, const struct tp_params *p)
2921 unsigned int m = p->chan_rx_size;
2923 ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
2924 ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
2925 ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
2926 ulp_region(adap, STAG, m, p->chan_rx_size / 4);
2927 ulp_region(adap, RQ, m, p->chan_rx_size / 4);
2928 ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
2929 ulp_region(adap, PBL, m, p->chan_rx_size / 4);
2930 t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
2934 * t3_set_proto_sram - set the contents of the protocol sram
2935 * @adapter: the adapter
2936 * @data: the protocol image
2938 * Write the contents of the protocol SRAM.
2940 int t3_set_proto_sram(struct adapter *adap, const u8 *data)
2942 int i;
2943 const __be32 *buf = (const __be32 *)data;
2945 for (i = 0; i < PROTO_SRAM_LINES; i++) {
2946 t3_write_reg(adap, A_TP_EMBED_OP_FIELD5, be32_to_cpu(*buf++));
2947 t3_write_reg(adap, A_TP_EMBED_OP_FIELD4, be32_to_cpu(*buf++));
2948 t3_write_reg(adap, A_TP_EMBED_OP_FIELD3, be32_to_cpu(*buf++));
2949 t3_write_reg(adap, A_TP_EMBED_OP_FIELD2, be32_to_cpu(*buf++));
2950 t3_write_reg(adap, A_TP_EMBED_OP_FIELD1, be32_to_cpu(*buf++));
2952 t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, i << 1 | 1 << 31);
2953 if (t3_wait_op_done(adap, A_TP_EMBED_OP_FIELD0, 1, 1, 5, 1))
2954 return -EIO;
2956 t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, 0);
2958 return 0;
2961 void t3_config_trace_filter(struct adapter *adapter,
2962 const struct trace_params *tp, int filter_index,
2963 int invert, int enable)
2965 u32 addr, key[4], mask[4];
2967 key[0] = tp->sport | (tp->sip << 16);
2968 key[1] = (tp->sip >> 16) | (tp->dport << 16);
2969 key[2] = tp->dip;
2970 key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
2972 mask[0] = tp->sport_mask | (tp->sip_mask << 16);
2973 mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
2974 mask[2] = tp->dip_mask;
2975 mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
2977 if (invert)
2978 key[3] |= (1 << 29);
2979 if (enable)
2980 key[3] |= (1 << 28);
2982 addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
2983 tp_wr_indirect(adapter, addr++, key[0]);
2984 tp_wr_indirect(adapter, addr++, mask[0]);
2985 tp_wr_indirect(adapter, addr++, key[1]);
2986 tp_wr_indirect(adapter, addr++, mask[1]);
2987 tp_wr_indirect(adapter, addr++, key[2]);
2988 tp_wr_indirect(adapter, addr++, mask[2]);
2989 tp_wr_indirect(adapter, addr++, key[3]);
2990 tp_wr_indirect(adapter, addr, mask[3]);
2991 t3_read_reg(adapter, A_TP_PIO_DATA);
2995 * t3_config_sched - configure a HW traffic scheduler
2996 * @adap: the adapter
2997 * @kbps: target rate in Kbps
2998 * @sched: the scheduler index
3000 * Configure a HW scheduler for the target rate
3002 int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
3004 unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
3005 unsigned int clk = adap->params.vpd.cclk * 1000;
3006 unsigned int selected_cpt = 0, selected_bpt = 0;
3008 if (kbps > 0) {
3009 kbps *= 125; /* -> bytes */
3010 for (cpt = 1; cpt <= 255; cpt++) {
3011 tps = clk / cpt;
3012 bpt = (kbps + tps / 2) / tps;
3013 if (bpt > 0 && bpt <= 255) {
3014 v = bpt * tps;
3015 delta = v >= kbps ? v - kbps : kbps - v;
3016 if (delta <= mindelta) {
3017 mindelta = delta;
3018 selected_cpt = cpt;
3019 selected_bpt = bpt;
3021 } else if (selected_cpt)
3022 break;
3024 if (!selected_cpt)
3025 return -EINVAL;
3027 t3_write_reg(adap, A_TP_TM_PIO_ADDR,
3028 A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
3029 v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
3030 if (sched & 1)
3031 v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
3032 else
3033 v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
3034 t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
3035 return 0;
3038 static int tp_init(struct adapter *adap, const struct tp_params *p)
3040 int busy = 0;
3042 tp_config(adap, p);
3043 t3_set_vlan_accel(adap, 3, 0);
3045 if (is_offload(adap)) {
3046 tp_set_timers(adap, adap->params.vpd.cclk * 1000);
3047 t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
3048 busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
3049 0, 1000, 5);
3050 if (busy)
3051 CH_ERR(adap, "TP initialization timed out\n");
3054 if (!busy)
3055 t3_write_reg(adap, A_TP_RESET, F_TPRESET);
3056 return busy;
3059 int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask)
3061 if (port_mask & ~((1 << adap->params.nports) - 1))
3062 return -EINVAL;
3063 t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE,
3064 port_mask << S_PORT0ACTIVE);
3065 return 0;
3069 * Perform the bits of HW initialization that are dependent on the number
3070 * of available ports.
3072 static void init_hw_for_avail_ports(struct adapter *adap, int nports)
3074 int i;
3076 if (nports == 1) {
3077 t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
3078 t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
3079 t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_TPTXPORT0EN |
3080 F_PORT0ACTIVE | F_ENFORCEPKT);
3081 t3_write_reg(adap, A_PM1_TX_CFG, 0xffffffff);
3082 } else {
3083 t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
3084 t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
3085 t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
3086 V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
3087 t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
3088 F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
3089 F_ENFORCEPKT);
3090 t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
3091 t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
3092 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
3093 V_TX_MOD_QUEUE_REQ_MAP(0xaa));
3094 for (i = 0; i < 16; i++)
3095 t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
3096 (i << 16) | 0x1010);
3100 static int calibrate_xgm(struct adapter *adapter)
3102 if (uses_xaui(adapter)) {
3103 unsigned int v, i;
3105 for (i = 0; i < 5; ++i) {
3106 t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
3107 t3_read_reg(adapter, A_XGM_XAUI_IMP);
3108 msleep(1);
3109 v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
3110 if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
3111 t3_write_reg(adapter, A_XGM_XAUI_IMP,
3112 V_XAUIIMP(G_CALIMP(v) >> 2));
3113 return 0;
3116 CH_ERR(adapter, "MAC calibration failed\n");
3117 return -1;
3118 } else {
3119 t3_write_reg(adapter, A_XGM_RGMII_IMP,
3120 V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
3121 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
3122 F_XGM_IMPSETUPDATE);
3124 return 0;
3127 static void calibrate_xgm_t3b(struct adapter *adapter)
3129 if (!uses_xaui(adapter)) {
3130 t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
3131 F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
3132 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
3133 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
3134 F_XGM_IMPSETUPDATE);
3135 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
3137 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
3138 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
3142 struct mc7_timing_params {
3143 unsigned char ActToPreDly;
3144 unsigned char ActToRdWrDly;
3145 unsigned char PreCyc;
3146 unsigned char RefCyc[5];
3147 unsigned char BkCyc;
3148 unsigned char WrToRdDly;
3149 unsigned char RdToWrDly;
3153 * Write a value to a register and check that the write completed. These
3154 * writes normally complete in a cycle or two, so one read should suffice.
3155 * The very first read exists to flush the posted write to the device.
3157 static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
3159 t3_write_reg(adapter, addr, val);
3160 t3_read_reg(adapter, addr); /* flush */
3161 if (!(t3_read_reg(adapter, addr) & F_BUSY))
3162 return 0;
3163 CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
3164 return -EIO;
3167 static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
3169 static const unsigned int mc7_mode[] = {
3170 0x632, 0x642, 0x652, 0x432, 0x442
3172 static const struct mc7_timing_params mc7_timings[] = {
3173 {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
3174 {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
3175 {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
3176 {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
3177 {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
3180 u32 val;
3181 unsigned int width, density, slow, attempts;
3182 struct adapter *adapter = mc7->adapter;
3183 const struct mc7_timing_params *p = &mc7_timings[mem_type];
3185 if (!mc7->size)
3186 return 0;
3188 val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
3189 slow = val & F_SLOW;
3190 width = G_WIDTH(val);
3191 density = G_DEN(val);
3193 t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
3194 val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
3195 msleep(1);
3197 if (!slow) {
3198 t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
3199 t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
3200 msleep(1);
3201 if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
3202 (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
3203 CH_ERR(adapter, "%s MC7 calibration timed out\n",
3204 mc7->name);
3205 goto out_fail;
3209 t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
3210 V_ACTTOPREDLY(p->ActToPreDly) |
3211 V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
3212 V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
3213 V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
3215 t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
3216 val | F_CLKEN | F_TERM150);
3217 t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
3219 if (!slow)
3220 t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
3221 F_DLLENB);
3222 udelay(1);
3224 val = slow ? 3 : 6;
3225 if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
3226 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
3227 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
3228 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
3229 goto out_fail;
3231 if (!slow) {
3232 t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
3233 t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
3234 udelay(5);
3237 if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
3238 wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
3239 wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
3240 wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
3241 mc7_mode[mem_type]) ||
3242 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
3243 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
3244 goto out_fail;
3246 /* clock value is in KHz */
3247 mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */
3248 mc7_clock /= 1000000; /* KHz->MHz, ns->us */
3250 t3_write_reg(adapter, mc7->offset + A_MC7_REF,
3251 F_PERREFEN | V_PREREFDIV(mc7_clock));
3252 t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */
3254 t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
3255 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
3256 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
3257 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
3258 (mc7->size << width) - 1);
3259 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
3260 t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */
3262 attempts = 50;
3263 do {
3264 msleep(250);
3265 val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
3266 } while ((val & F_BUSY) && --attempts);
3267 if (val & F_BUSY) {
3268 CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
3269 goto out_fail;
3272 /* Enable normal memory accesses. */
3273 t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
3274 return 0;
3276 out_fail:
3277 return -1;
3280 static void config_pcie(struct adapter *adap)
3282 static const u16 ack_lat[4][6] = {
3283 {237, 416, 559, 1071, 2095, 4143},
3284 {128, 217, 289, 545, 1057, 2081},
3285 {73, 118, 154, 282, 538, 1050},
3286 {67, 107, 86, 150, 278, 534}
3288 static const u16 rpl_tmr[4][6] = {
3289 {711, 1248, 1677, 3213, 6285, 12429},
3290 {384, 651, 867, 1635, 3171, 6243},
3291 {219, 354, 462, 846, 1614, 3150},
3292 {201, 321, 258, 450, 834, 1602}
3295 u16 val;
3296 unsigned int log2_width, pldsize;
3297 unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
3299 pci_read_config_word(adap->pdev,
3300 adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL,
3301 &val);
3302 pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
3303 pci_read_config_word(adap->pdev,
3304 adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL,
3305 &val);
3307 fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
3308 fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
3309 G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
3310 log2_width = fls(adap->params.pci.width) - 1;
3311 acklat = ack_lat[log2_width][pldsize];
3312 if (val & 1) /* check LOsEnable */
3313 acklat += fst_trn_tx * 4;
3314 rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
3316 if (adap->params.rev == 0)
3317 t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
3318 V_T3A_ACKLAT(M_T3A_ACKLAT),
3319 V_T3A_ACKLAT(acklat));
3320 else
3321 t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
3322 V_ACKLAT(acklat));
3324 t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
3325 V_REPLAYLMT(rpllmt));
3327 t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
3328 t3_set_reg_field(adap, A_PCIE_CFG, 0,
3329 F_ENABLELINKDWNDRST | F_ENABLELINKDOWNRST |
3330 F_PCIE_DMASTOPEN | F_PCIE_CLIDECEN);
3334 * Initialize and configure T3 HW modules. This performs the
3335 * initialization steps that need to be done once after a card is reset.
3336 * MAC and PHY initialization is handled separarely whenever a port is enabled.
3338 * fw_params are passed to FW and their value is platform dependent. Only the
3339 * top 8 bits are available for use, the rest must be 0.
3341 int t3_init_hw(struct adapter *adapter, u32 fw_params)
3343 int err = -EIO, attempts, i;
3344 const struct vpd_params *vpd = &adapter->params.vpd;
3346 if (adapter->params.rev > 0)
3347 calibrate_xgm_t3b(adapter);
3348 else if (calibrate_xgm(adapter))
3349 goto out_err;
3351 if (vpd->mclk) {
3352 partition_mem(adapter, &adapter->params.tp);
3354 if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
3355 mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
3356 mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
3357 t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
3358 adapter->params.mc5.nfilters,
3359 adapter->params.mc5.nroutes))
3360 goto out_err;
3362 for (i = 0; i < 32; i++)
3363 if (clear_sge_ctxt(adapter, i, F_CQ))
3364 goto out_err;
3367 if (tp_init(adapter, &adapter->params.tp))
3368 goto out_err;
3370 t3_tp_set_coalescing_size(adapter,
3371 min(adapter->params.sge.max_pkt_size,
3372 MAX_RX_COALESCING_LEN), 1);
3373 t3_tp_set_max_rxsize(adapter,
3374 min(adapter->params.sge.max_pkt_size, 16384U));
3375 ulp_config(adapter, &adapter->params.tp);
3377 if (is_pcie(adapter))
3378 config_pcie(adapter);
3379 else
3380 t3_set_reg_field(adapter, A_PCIX_CFG, 0,
3381 F_DMASTOPEN | F_CLIDECEN);
3383 if (adapter->params.rev == T3_REV_C)
3384 t3_set_reg_field(adapter, A_ULPTX_CONFIG, 0,
3385 F_CFG_CQE_SOP_MASK);
3387 t3_write_reg(adapter, A_PM1_RX_CFG, 0xffffffff);
3388 t3_write_reg(adapter, A_PM1_RX_MODE, 0);
3389 t3_write_reg(adapter, A_PM1_TX_MODE, 0);
3390 init_hw_for_avail_ports(adapter, adapter->params.nports);
3391 t3_sge_init(adapter, &adapter->params.sge);
3393 t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW, calc_gpio_intr(adapter));
3395 t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
3396 t3_write_reg(adapter, A_CIM_BOOT_CFG,
3397 V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
3398 t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */
3400 attempts = 100;
3401 do { /* wait for uP to initialize */
3402 msleep(20);
3403 } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
3404 if (!attempts) {
3405 CH_ERR(adapter, "uP initialization timed out\n");
3406 goto out_err;
3409 err = 0;
3410 out_err:
3411 return err;
3415 * get_pci_mode - determine a card's PCI mode
3416 * @adapter: the adapter
3417 * @p: where to store the PCI settings
3419 * Determines a card's PCI mode and associated parameters, such as speed
3420 * and width.
3422 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
3424 static unsigned short speed_map[] = { 33, 66, 100, 133 };
3425 u32 pci_mode, pcie_cap;
3427 pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
3428 if (pcie_cap) {
3429 u16 val;
3431 p->variant = PCI_VARIANT_PCIE;
3432 p->pcie_cap_addr = pcie_cap;
3433 pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
3434 &val);
3435 p->width = (val >> 4) & 0x3f;
3436 return;
3439 pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
3440 p->speed = speed_map[G_PCLKRANGE(pci_mode)];
3441 p->width = (pci_mode & F_64BIT) ? 64 : 32;
3442 pci_mode = G_PCIXINITPAT(pci_mode);
3443 if (pci_mode == 0)
3444 p->variant = PCI_VARIANT_PCI;
3445 else if (pci_mode < 4)
3446 p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
3447 else if (pci_mode < 8)
3448 p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
3449 else
3450 p->variant = PCI_VARIANT_PCIX_266_MODE2;
3454 * init_link_config - initialize a link's SW state
3455 * @lc: structure holding the link state
3456 * @ai: information about the current card
3458 * Initializes the SW state maintained for each link, including the link's
3459 * capabilities and default speed/duplex/flow-control/autonegotiation
3460 * settings.
3462 static void init_link_config(struct link_config *lc, unsigned int caps)
3464 lc->supported = caps;
3465 lc->requested_speed = lc->speed = SPEED_INVALID;
3466 lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
3467 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
3468 if (lc->supported & SUPPORTED_Autoneg) {
3469 lc->advertising = lc->supported;
3470 lc->autoneg = AUTONEG_ENABLE;
3471 lc->requested_fc |= PAUSE_AUTONEG;
3472 } else {
3473 lc->advertising = 0;
3474 lc->autoneg = AUTONEG_DISABLE;
3479 * mc7_calc_size - calculate MC7 memory size
3480 * @cfg: the MC7 configuration
3482 * Calculates the size of an MC7 memory in bytes from the value of its
3483 * configuration register.
3485 static unsigned int mc7_calc_size(u32 cfg)
3487 unsigned int width = G_WIDTH(cfg);
3488 unsigned int banks = !!(cfg & F_BKS) + 1;
3489 unsigned int org = !!(cfg & F_ORG) + 1;
3490 unsigned int density = G_DEN(cfg);
3491 unsigned int MBs = ((256 << density) * banks) / (org << width);
3493 return MBs << 20;
3496 static void mc7_prep(struct adapter *adapter, struct mc7 *mc7,
3497 unsigned int base_addr, const char *name)
3499 u32 cfg;
3501 mc7->adapter = adapter;
3502 mc7->name = name;
3503 mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
3504 cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
3505 mc7->size = mc7->size = G_DEN(cfg) == M_DEN ? 0 : mc7_calc_size(cfg);
3506 mc7->width = G_WIDTH(cfg);
3509 void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
3511 mac->adapter = adapter;
3512 mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
3513 mac->nucast = 1;
3515 if (adapter->params.rev == 0 && uses_xaui(adapter)) {
3516 t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
3517 is_10G(adapter) ? 0x2901c04 : 0x2301c04);
3518 t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
3519 F_ENRGMII, 0);
3523 void early_hw_init(struct adapter *adapter, const struct adapter_info *ai)
3525 u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
3527 mi1_init(adapter, ai);
3528 t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */
3529 V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
3530 t3_write_reg(adapter, A_T3DBG_GPIO_EN,
3531 ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
3532 t3_write_reg(adapter, A_MC5_DB_SERVER_INDEX, 0);
3533 t3_write_reg(adapter, A_SG_OCO_BASE, V_BASE1(0xfff));
3535 if (adapter->params.rev == 0 || !uses_xaui(adapter))
3536 val |= F_ENRGMII;
3538 /* Enable MAC clocks so we can access the registers */
3539 t3_write_reg(adapter, A_XGM_PORT_CFG, val);
3540 t3_read_reg(adapter, A_XGM_PORT_CFG);
3542 val |= F_CLKDIVRESET_;
3543 t3_write_reg(adapter, A_XGM_PORT_CFG, val);
3544 t3_read_reg(adapter, A_XGM_PORT_CFG);
3545 t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
3546 t3_read_reg(adapter, A_XGM_PORT_CFG);
3550 * Reset the adapter.
3551 * Older PCIe cards lose their config space during reset, PCI-X
3552 * ones don't.
3554 int t3_reset_adapter(struct adapter *adapter)
3556 int i, save_and_restore_pcie =
3557 adapter->params.rev < T3_REV_B2 && is_pcie(adapter);
3558 uint16_t devid = 0;
3560 if (save_and_restore_pcie)
3561 pci_save_state(adapter->pdev);
3562 t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
3565 * Delay. Give Some time to device to reset fully.
3566 * XXX The delay time should be modified.
3568 for (i = 0; i < 10; i++) {
3569 msleep(50);
3570 pci_read_config_word(adapter->pdev, 0x00, &devid);
3571 if (devid == 0x1425)
3572 break;
3575 if (devid != 0x1425)
3576 return -1;
3578 if (save_and_restore_pcie)
3579 pci_restore_state(adapter->pdev);
3580 return 0;
3583 static int init_parity(struct adapter *adap)
3585 int i, err, addr;
3587 if (t3_read_reg(adap, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
3588 return -EBUSY;
3590 for (err = i = 0; !err && i < 16; i++)
3591 err = clear_sge_ctxt(adap, i, F_EGRESS);
3592 for (i = 0xfff0; !err && i <= 0xffff; i++)
3593 err = clear_sge_ctxt(adap, i, F_EGRESS);
3594 for (i = 0; !err && i < SGE_QSETS; i++)
3595 err = clear_sge_ctxt(adap, i, F_RESPONSEQ);
3596 if (err)
3597 return err;
3599 t3_write_reg(adap, A_CIM_IBQ_DBG_DATA, 0);
3600 for (i = 0; i < 4; i++)
3601 for (addr = 0; addr <= M_IBQDBGADDR; addr++) {
3602 t3_write_reg(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGEN |
3603 F_IBQDBGWR | V_IBQDBGQID(i) |
3604 V_IBQDBGADDR(addr));
3605 err = t3_wait_op_done(adap, A_CIM_IBQ_DBG_CFG,
3606 F_IBQDBGBUSY, 0, 2, 1);
3607 if (err)
3608 return err;
3610 return 0;
3614 * Initialize adapter SW state for the various HW modules, set initial values
3615 * for some adapter tunables, take PHYs out of reset, and initialize the MDIO
3616 * interface.
3618 int t3_prep_adapter(struct adapter *adapter, const struct adapter_info *ai,
3619 int reset)
3621 int ret;
3622 unsigned int i, j = -1;
3624 get_pci_mode(adapter, &adapter->params.pci);
3626 adapter->params.info = ai;
3627 adapter->params.nports = ai->nports;
3628 adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
3629 adapter->params.linkpoll_period = 0;
3630 adapter->params.stats_update_period = is_10G(adapter) ?
3631 MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
3632 adapter->params.pci.vpd_cap_addr =
3633 pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
3634 ret = get_vpd_params(adapter, &adapter->params.vpd);
3635 if (ret < 0)
3636 return ret;
3638 if (reset && t3_reset_adapter(adapter))
3639 return -1;
3641 t3_sge_prep(adapter, &adapter->params.sge);
3643 if (adapter->params.vpd.mclk) {
3644 struct tp_params *p = &adapter->params.tp;
3646 mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
3647 mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
3648 mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
3650 p->nchan = ai->nports;
3651 p->pmrx_size = t3_mc7_size(&adapter->pmrx);
3652 p->pmtx_size = t3_mc7_size(&adapter->pmtx);
3653 p->cm_size = t3_mc7_size(&adapter->cm);
3654 p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */
3655 p->chan_tx_size = p->pmtx_size / p->nchan;
3656 p->rx_pg_size = 64 * 1024;
3657 p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
3658 p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
3659 p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
3660 p->ntimer_qs = p->cm_size >= (128 << 20) ||
3661 adapter->params.rev > 0 ? 12 : 6;
3664 adapter->params.offload = t3_mc7_size(&adapter->pmrx) &&
3665 t3_mc7_size(&adapter->pmtx) &&
3666 t3_mc7_size(&adapter->cm);
3668 if (is_offload(adapter)) {
3669 adapter->params.mc5.nservers = DEFAULT_NSERVERS;
3670 adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
3671 DEFAULT_NFILTERS : 0;
3672 adapter->params.mc5.nroutes = 0;
3673 t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
3675 init_mtus(adapter->params.mtus);
3676 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
3679 early_hw_init(adapter, ai);
3680 ret = init_parity(adapter);
3681 if (ret)
3682 return ret;
3684 for_each_port(adapter, i) {
3685 u8 hw_addr[6];
3686 const struct port_type_info *pti;
3687 struct port_info *p = adap2pinfo(adapter, i);
3689 while (!adapter->params.vpd.port_type[++j])
3692 pti = &port_types[adapter->params.vpd.port_type[j]];
3693 ret = pti->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
3694 ai->mdio_ops);
3695 if (ret)
3696 return ret;
3697 mac_prep(&p->mac, adapter, j);
3700 * The VPD EEPROM stores the base Ethernet address for the
3701 * card. A port's address is derived from the base by adding
3702 * the port's index to the base's low octet.
3704 memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
3705 hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
3707 memcpy(adapter->port[i]->dev_addr, hw_addr,
3708 ETH_ALEN);
3709 memcpy(adapter->port[i]->perm_addr, hw_addr,
3710 ETH_ALEN);
3711 init_link_config(&p->link_config, p->phy.caps);
3712 p->phy.ops->power_down(&p->phy, 1);
3713 if (!(p->phy.caps & SUPPORTED_IRQ))
3714 adapter->params.linkpoll_period = 10;
3717 return 0;
3720 void t3_led_ready(struct adapter *adapter)
3722 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
3723 F_GPIO0_OUT_VAL);
3726 int t3_replay_prep_adapter(struct adapter *adapter)
3728 const struct adapter_info *ai = adapter->params.info;
3729 unsigned int i, j = -1;
3730 int ret;
3732 early_hw_init(adapter, ai);
3733 ret = init_parity(adapter);
3734 if (ret)
3735 return ret;
3737 for_each_port(adapter, i) {
3738 const struct port_type_info *pti;
3739 struct port_info *p = adap2pinfo(adapter, i);
3741 while (!adapter->params.vpd.port_type[++j])
3744 pti = &port_types[adapter->params.vpd.port_type[j]];
3745 ret = pti->phy_prep(&p->phy, adapter, p->phy.addr, NULL);
3746 if (ret)
3747 return ret;
3748 p->phy.ops->power_down(&p->phy, 1);
3751 return 0;