[POWERPC] support ibm,extended-*-frequency properties
[linux-2.6/kvm.git] / arch / powerpc / kernel / time.c
blobd20907561f46478faaf8efc67cc048a9bf24431c
1 /*
2 * Common time routines among all ppc machines.
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
35 #include <linux/config.h>
36 #include <linux/errno.h>
37 #include <linux/module.h>
38 #include <linux/sched.h>
39 #include <linux/kernel.h>
40 #include <linux/param.h>
41 #include <linux/string.h>
42 #include <linux/mm.h>
43 #include <linux/interrupt.h>
44 #include <linux/timex.h>
45 #include <linux/kernel_stat.h>
46 #include <linux/time.h>
47 #include <linux/init.h>
48 #include <linux/profile.h>
49 #include <linux/cpu.h>
50 #include <linux/security.h>
51 #include <linux/percpu.h>
52 #include <linux/rtc.h>
53 #include <linux/jiffies.h>
54 #include <linux/posix-timers.h>
56 #include <asm/io.h>
57 #include <asm/processor.h>
58 #include <asm/nvram.h>
59 #include <asm/cache.h>
60 #include <asm/machdep.h>
61 #include <asm/uaccess.h>
62 #include <asm/time.h>
63 #include <asm/prom.h>
64 #include <asm/irq.h>
65 #include <asm/div64.h>
66 #include <asm/smp.h>
67 #include <asm/vdso_datapage.h>
68 #ifdef CONFIG_PPC64
69 #include <asm/firmware.h>
70 #endif
71 #ifdef CONFIG_PPC_ISERIES
72 #include <asm/iseries/it_lp_queue.h>
73 #include <asm/iseries/hv_call_xm.h>
74 #endif
75 #include <asm/smp.h>
77 /* keep track of when we need to update the rtc */
78 time_t last_rtc_update;
79 #ifdef CONFIG_PPC_ISERIES
80 unsigned long iSeries_recal_titan = 0;
81 unsigned long iSeries_recal_tb = 0;
82 static unsigned long first_settimeofday = 1;
83 #endif
85 /* The decrementer counts down by 128 every 128ns on a 601. */
86 #define DECREMENTER_COUNT_601 (1000000000 / HZ)
88 #define XSEC_PER_SEC (1024*1024)
90 #ifdef CONFIG_PPC64
91 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
92 #else
93 /* compute ((xsec << 12) * max) >> 32 */
94 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
95 #endif
97 unsigned long tb_ticks_per_jiffy;
98 unsigned long tb_ticks_per_usec = 100; /* sane default */
99 EXPORT_SYMBOL(tb_ticks_per_usec);
100 unsigned long tb_ticks_per_sec;
101 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
102 u64 tb_to_xs;
103 unsigned tb_to_us;
105 #define TICKLEN_SCALE (SHIFT_SCALE - 10)
106 u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
107 u64 ticklen_to_xs; /* 0.64 fraction */
109 /* If last_tick_len corresponds to about 1/HZ seconds, then
110 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
111 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
113 DEFINE_SPINLOCK(rtc_lock);
114 EXPORT_SYMBOL_GPL(rtc_lock);
116 u64 tb_to_ns_scale;
117 unsigned tb_to_ns_shift;
119 struct gettimeofday_struct do_gtod;
121 extern unsigned long wall_jiffies;
123 extern struct timezone sys_tz;
124 static long timezone_offset;
126 unsigned long ppc_proc_freq;
127 unsigned long ppc_tb_freq;
129 u64 tb_last_jiffy __cacheline_aligned_in_smp;
130 unsigned long tb_last_stamp;
133 * Note that on ppc32 this only stores the bottom 32 bits of
134 * the timebase value, but that's enough to tell when a jiffy
135 * has passed.
137 DEFINE_PER_CPU(unsigned long, last_jiffy);
139 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
141 * Factors for converting from cputime_t (timebase ticks) to
142 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
143 * These are all stored as 0.64 fixed-point binary fractions.
145 u64 __cputime_jiffies_factor;
146 EXPORT_SYMBOL(__cputime_jiffies_factor);
147 u64 __cputime_msec_factor;
148 EXPORT_SYMBOL(__cputime_msec_factor);
149 u64 __cputime_sec_factor;
150 EXPORT_SYMBOL(__cputime_sec_factor);
151 u64 __cputime_clockt_factor;
152 EXPORT_SYMBOL(__cputime_clockt_factor);
154 static void calc_cputime_factors(void)
156 struct div_result res;
158 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
159 __cputime_jiffies_factor = res.result_low;
160 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
161 __cputime_msec_factor = res.result_low;
162 div128_by_32(1, 0, tb_ticks_per_sec, &res);
163 __cputime_sec_factor = res.result_low;
164 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
165 __cputime_clockt_factor = res.result_low;
169 * Read the PURR on systems that have it, otherwise the timebase.
171 static u64 read_purr(void)
173 if (cpu_has_feature(CPU_FTR_PURR))
174 return mfspr(SPRN_PURR);
175 return mftb();
179 * Account time for a transition between system, hard irq
180 * or soft irq state.
182 void account_system_vtime(struct task_struct *tsk)
184 u64 now, delta;
185 unsigned long flags;
187 local_irq_save(flags);
188 now = read_purr();
189 delta = now - get_paca()->startpurr;
190 get_paca()->startpurr = now;
191 if (!in_interrupt()) {
192 delta += get_paca()->system_time;
193 get_paca()->system_time = 0;
195 account_system_time(tsk, 0, delta);
196 local_irq_restore(flags);
200 * Transfer the user and system times accumulated in the paca
201 * by the exception entry and exit code to the generic process
202 * user and system time records.
203 * Must be called with interrupts disabled.
205 void account_process_vtime(struct task_struct *tsk)
207 cputime_t utime;
209 utime = get_paca()->user_time;
210 get_paca()->user_time = 0;
211 account_user_time(tsk, utime);
214 static void account_process_time(struct pt_regs *regs)
216 int cpu = smp_processor_id();
218 account_process_vtime(current);
219 run_local_timers();
220 if (rcu_pending(cpu))
221 rcu_check_callbacks(cpu, user_mode(regs));
222 scheduler_tick();
223 run_posix_cpu_timers(current);
226 #ifdef CONFIG_PPC_SPLPAR
228 * Stuff for accounting stolen time.
230 struct cpu_purr_data {
231 int initialized; /* thread is running */
232 u64 tb0; /* timebase at origin time */
233 u64 purr0; /* PURR at origin time */
234 u64 tb; /* last TB value read */
235 u64 purr; /* last PURR value read */
236 u64 stolen; /* stolen time so far */
237 spinlock_t lock;
240 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
242 static void snapshot_tb_and_purr(void *data)
244 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
246 p->tb0 = mftb();
247 p->purr0 = mfspr(SPRN_PURR);
248 p->tb = p->tb0;
249 p->purr = 0;
250 wmb();
251 p->initialized = 1;
255 * Called during boot when all cpus have come up.
257 void snapshot_timebases(void)
259 int cpu;
261 if (!cpu_has_feature(CPU_FTR_PURR))
262 return;
263 for_each_possible_cpu(cpu)
264 spin_lock_init(&per_cpu(cpu_purr_data, cpu).lock);
265 on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
268 void calculate_steal_time(void)
270 u64 tb, purr, t0;
271 s64 stolen;
272 struct cpu_purr_data *p0, *pme, *phim;
273 int cpu;
275 if (!cpu_has_feature(CPU_FTR_PURR))
276 return;
277 cpu = smp_processor_id();
278 pme = &per_cpu(cpu_purr_data, cpu);
279 if (!pme->initialized)
280 return; /* this can happen in early boot */
281 p0 = &per_cpu(cpu_purr_data, cpu & ~1);
282 phim = &per_cpu(cpu_purr_data, cpu ^ 1);
283 spin_lock(&p0->lock);
284 tb = mftb();
285 purr = mfspr(SPRN_PURR) - pme->purr0;
286 if (!phim->initialized || !cpu_online(cpu ^ 1)) {
287 stolen = (tb - pme->tb) - (purr - pme->purr);
288 } else {
289 t0 = pme->tb0;
290 if (phim->tb0 < t0)
291 t0 = phim->tb0;
292 stolen = phim->tb - t0 - phim->purr - purr - p0->stolen;
294 if (stolen > 0) {
295 account_steal_time(current, stolen);
296 p0->stolen += stolen;
298 pme->tb = tb;
299 pme->purr = purr;
300 spin_unlock(&p0->lock);
304 * Must be called before the cpu is added to the online map when
305 * a cpu is being brought up at runtime.
307 static void snapshot_purr(void)
309 int cpu;
310 u64 purr;
311 struct cpu_purr_data *p0, *pme, *phim;
312 unsigned long flags;
314 if (!cpu_has_feature(CPU_FTR_PURR))
315 return;
316 cpu = smp_processor_id();
317 pme = &per_cpu(cpu_purr_data, cpu);
318 p0 = &per_cpu(cpu_purr_data, cpu & ~1);
319 phim = &per_cpu(cpu_purr_data, cpu ^ 1);
320 spin_lock_irqsave(&p0->lock, flags);
321 pme->tb = pme->tb0 = mftb();
322 purr = mfspr(SPRN_PURR);
323 if (!phim->initialized) {
324 pme->purr = 0;
325 pme->purr0 = purr;
326 } else {
327 /* set p->purr and p->purr0 for no change in p0->stolen */
328 pme->purr = phim->tb - phim->tb0 - phim->purr - p0->stolen;
329 pme->purr0 = purr - pme->purr;
331 pme->initialized = 1;
332 spin_unlock_irqrestore(&p0->lock, flags);
335 #endif /* CONFIG_PPC_SPLPAR */
337 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
338 #define calc_cputime_factors()
339 #define account_process_time(regs) update_process_times(user_mode(regs))
340 #define calculate_steal_time() do { } while (0)
341 #endif
343 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
344 #define snapshot_purr() do { } while (0)
345 #endif
348 * Called when a cpu comes up after the system has finished booting,
349 * i.e. as a result of a hotplug cpu action.
351 void snapshot_timebase(void)
353 __get_cpu_var(last_jiffy) = get_tb();
354 snapshot_purr();
357 void __delay(unsigned long loops)
359 unsigned long start;
360 int diff;
362 if (__USE_RTC()) {
363 start = get_rtcl();
364 do {
365 /* the RTCL register wraps at 1000000000 */
366 diff = get_rtcl() - start;
367 if (diff < 0)
368 diff += 1000000000;
369 } while (diff < loops);
370 } else {
371 start = get_tbl();
372 while (get_tbl() - start < loops)
373 HMT_low();
374 HMT_medium();
377 EXPORT_SYMBOL(__delay);
379 void udelay(unsigned long usecs)
381 __delay(tb_ticks_per_usec * usecs);
383 EXPORT_SYMBOL(udelay);
385 static __inline__ void timer_check_rtc(void)
388 * update the rtc when needed, this should be performed on the
389 * right fraction of a second. Half or full second ?
390 * Full second works on mk48t59 clocks, others need testing.
391 * Note that this update is basically only used through
392 * the adjtimex system calls. Setting the HW clock in
393 * any other way is a /dev/rtc and userland business.
394 * This is still wrong by -0.5/+1.5 jiffies because of the
395 * timer interrupt resolution and possible delay, but here we
396 * hit a quantization limit which can only be solved by higher
397 * resolution timers and decoupling time management from timer
398 * interrupts. This is also wrong on the clocks
399 * which require being written at the half second boundary.
400 * We should have an rtc call that only sets the minutes and
401 * seconds like on Intel to avoid problems with non UTC clocks.
403 if (ppc_md.set_rtc_time && ntp_synced() &&
404 xtime.tv_sec - last_rtc_update >= 659 &&
405 abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
406 struct rtc_time tm;
407 to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
408 tm.tm_year -= 1900;
409 tm.tm_mon -= 1;
410 if (ppc_md.set_rtc_time(&tm) == 0)
411 last_rtc_update = xtime.tv_sec + 1;
412 else
413 /* Try again one minute later */
414 last_rtc_update += 60;
419 * This version of gettimeofday has microsecond resolution.
421 static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val)
423 unsigned long sec, usec;
424 u64 tb_ticks, xsec;
425 struct gettimeofday_vars *temp_varp;
426 u64 temp_tb_to_xs, temp_stamp_xsec;
429 * These calculations are faster (gets rid of divides)
430 * if done in units of 1/2^20 rather than microseconds.
431 * The conversion to microseconds at the end is done
432 * without a divide (and in fact, without a multiply)
434 temp_varp = do_gtod.varp;
435 tb_ticks = tb_val - temp_varp->tb_orig_stamp;
436 temp_tb_to_xs = temp_varp->tb_to_xs;
437 temp_stamp_xsec = temp_varp->stamp_xsec;
438 xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
439 sec = xsec / XSEC_PER_SEC;
440 usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
441 usec = SCALE_XSEC(usec, 1000000);
443 tv->tv_sec = sec;
444 tv->tv_usec = usec;
447 void do_gettimeofday(struct timeval *tv)
449 if (__USE_RTC()) {
450 /* do this the old way */
451 unsigned long flags, seq;
452 unsigned int sec, nsec, usec;
454 do {
455 seq = read_seqbegin_irqsave(&xtime_lock, flags);
456 sec = xtime.tv_sec;
457 nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp);
458 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
459 usec = nsec / 1000;
460 while (usec >= 1000000) {
461 usec -= 1000000;
462 ++sec;
464 tv->tv_sec = sec;
465 tv->tv_usec = usec;
466 return;
468 __do_gettimeofday(tv, get_tb());
471 EXPORT_SYMBOL(do_gettimeofday);
474 * There are two copies of tb_to_xs and stamp_xsec so that no
475 * lock is needed to access and use these values in
476 * do_gettimeofday. We alternate the copies and as long as a
477 * reasonable time elapses between changes, there will never
478 * be inconsistent values. ntpd has a minimum of one minute
479 * between updates.
481 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
482 u64 new_tb_to_xs)
484 unsigned temp_idx;
485 struct gettimeofday_vars *temp_varp;
487 temp_idx = (do_gtod.var_idx == 0);
488 temp_varp = &do_gtod.vars[temp_idx];
490 temp_varp->tb_to_xs = new_tb_to_xs;
491 temp_varp->tb_orig_stamp = new_tb_stamp;
492 temp_varp->stamp_xsec = new_stamp_xsec;
493 smp_mb();
494 do_gtod.varp = temp_varp;
495 do_gtod.var_idx = temp_idx;
498 * tb_update_count is used to allow the userspace gettimeofday code
499 * to assure itself that it sees a consistent view of the tb_to_xs and
500 * stamp_xsec variables. It reads the tb_update_count, then reads
501 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
502 * the two values of tb_update_count match and are even then the
503 * tb_to_xs and stamp_xsec values are consistent. If not, then it
504 * loops back and reads them again until this criteria is met.
505 * We expect the caller to have done the first increment of
506 * vdso_data->tb_update_count already.
508 vdso_data->tb_orig_stamp = new_tb_stamp;
509 vdso_data->stamp_xsec = new_stamp_xsec;
510 vdso_data->tb_to_xs = new_tb_to_xs;
511 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
512 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
513 smp_wmb();
514 ++(vdso_data->tb_update_count);
518 * When the timebase - tb_orig_stamp gets too big, we do a manipulation
519 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
520 * difference tb - tb_orig_stamp small enough to always fit inside a
521 * 32 bits number. This is a requirement of our fast 32 bits userland
522 * implementation in the vdso. If we "miss" a call to this function
523 * (interrupt latency, CPU locked in a spinlock, ...) and we end up
524 * with a too big difference, then the vdso will fallback to calling
525 * the syscall
527 static __inline__ void timer_recalc_offset(u64 cur_tb)
529 unsigned long offset;
530 u64 new_stamp_xsec;
531 u64 tlen, t2x;
532 u64 tb, xsec_old, xsec_new;
533 struct gettimeofday_vars *varp;
535 if (__USE_RTC())
536 return;
537 tlen = current_tick_length();
538 offset = cur_tb - do_gtod.varp->tb_orig_stamp;
539 if (tlen == last_tick_len && offset < 0x80000000u)
540 return;
541 if (tlen != last_tick_len) {
542 t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
543 last_tick_len = tlen;
544 } else
545 t2x = do_gtod.varp->tb_to_xs;
546 new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
547 do_div(new_stamp_xsec, 1000000000);
548 new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
550 ++vdso_data->tb_update_count;
551 smp_mb();
554 * Make sure time doesn't go backwards for userspace gettimeofday.
556 tb = get_tb();
557 varp = do_gtod.varp;
558 xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
559 + varp->stamp_xsec;
560 xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
561 if (xsec_new < xsec_old)
562 new_stamp_xsec += xsec_old - xsec_new;
564 update_gtod(cur_tb, new_stamp_xsec, t2x);
567 #ifdef CONFIG_SMP
568 unsigned long profile_pc(struct pt_regs *regs)
570 unsigned long pc = instruction_pointer(regs);
572 if (in_lock_functions(pc))
573 return regs->link;
575 return pc;
577 EXPORT_SYMBOL(profile_pc);
578 #endif
580 #ifdef CONFIG_PPC_ISERIES
583 * This function recalibrates the timebase based on the 49-bit time-of-day
584 * value in the Titan chip. The Titan is much more accurate than the value
585 * returned by the service processor for the timebase frequency.
588 static void iSeries_tb_recal(void)
590 struct div_result divres;
591 unsigned long titan, tb;
592 tb = get_tb();
593 titan = HvCallXm_loadTod();
594 if ( iSeries_recal_titan ) {
595 unsigned long tb_ticks = tb - iSeries_recal_tb;
596 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
597 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
598 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
599 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
600 char sign = '+';
601 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
602 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
604 if ( tick_diff < 0 ) {
605 tick_diff = -tick_diff;
606 sign = '-';
608 if ( tick_diff ) {
609 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
610 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
611 new_tb_ticks_per_jiffy, sign, tick_diff );
612 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
613 tb_ticks_per_sec = new_tb_ticks_per_sec;
614 calc_cputime_factors();
615 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
616 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
617 tb_to_xs = divres.result_low;
618 do_gtod.varp->tb_to_xs = tb_to_xs;
619 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
620 vdso_data->tb_to_xs = tb_to_xs;
622 else {
623 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
624 " new tb_ticks_per_jiffy = %lu\n"
625 " old tb_ticks_per_jiffy = %lu\n",
626 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
630 iSeries_recal_titan = titan;
631 iSeries_recal_tb = tb;
633 #endif
636 * For iSeries shared processors, we have to let the hypervisor
637 * set the hardware decrementer. We set a virtual decrementer
638 * in the lppaca and call the hypervisor if the virtual
639 * decrementer is less than the current value in the hardware
640 * decrementer. (almost always the new decrementer value will
641 * be greater than the current hardware decementer so the hypervisor
642 * call will not be needed)
646 * timer_interrupt - gets called when the decrementer overflows,
647 * with interrupts disabled.
649 void timer_interrupt(struct pt_regs * regs)
651 int next_dec;
652 int cpu = smp_processor_id();
653 unsigned long ticks;
655 #ifdef CONFIG_PPC32
656 if (atomic_read(&ppc_n_lost_interrupts) != 0)
657 do_IRQ(regs);
658 #endif
660 irq_enter();
662 profile_tick(CPU_PROFILING, regs);
663 calculate_steal_time();
665 #ifdef CONFIG_PPC_ISERIES
666 get_lppaca()->int_dword.fields.decr_int = 0;
667 #endif
669 while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
670 >= tb_ticks_per_jiffy) {
671 /* Update last_jiffy */
672 per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
673 /* Handle RTCL overflow on 601 */
674 if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
675 per_cpu(last_jiffy, cpu) -= 1000000000;
678 * We cannot disable the decrementer, so in the period
679 * between this cpu's being marked offline in cpu_online_map
680 * and calling stop-self, it is taking timer interrupts.
681 * Avoid calling into the scheduler rebalancing code if this
682 * is the case.
684 if (!cpu_is_offline(cpu))
685 account_process_time(regs);
688 * No need to check whether cpu is offline here; boot_cpuid
689 * should have been fixed up by now.
691 if (cpu != boot_cpuid)
692 continue;
694 write_seqlock(&xtime_lock);
695 tb_last_jiffy += tb_ticks_per_jiffy;
696 tb_last_stamp = per_cpu(last_jiffy, cpu);
697 do_timer(regs);
698 timer_recalc_offset(tb_last_jiffy);
699 timer_check_rtc();
700 write_sequnlock(&xtime_lock);
703 next_dec = tb_ticks_per_jiffy - ticks;
704 set_dec(next_dec);
706 #ifdef CONFIG_PPC_ISERIES
707 if (hvlpevent_is_pending())
708 process_hvlpevents(regs);
709 #endif
711 #ifdef CONFIG_PPC64
712 /* collect purr register values often, for accurate calculations */
713 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
714 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
715 cu->current_tb = mfspr(SPRN_PURR);
717 #endif
719 irq_exit();
722 void wakeup_decrementer(void)
724 unsigned long ticks;
727 * The timebase gets saved on sleep and restored on wakeup,
728 * so all we need to do is to reset the decrementer.
730 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
731 if (ticks < tb_ticks_per_jiffy)
732 ticks = tb_ticks_per_jiffy - ticks;
733 else
734 ticks = 1;
735 set_dec(ticks);
738 #ifdef CONFIG_SMP
739 void __init smp_space_timers(unsigned int max_cpus)
741 int i;
742 unsigned long half = tb_ticks_per_jiffy / 2;
743 unsigned long offset = tb_ticks_per_jiffy / max_cpus;
744 unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid);
746 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
747 previous_tb -= tb_ticks_per_jiffy;
749 * The stolen time calculation for POWER5 shared-processor LPAR
750 * systems works better if the two threads' timebase interrupts
751 * are staggered by half a jiffy with respect to each other.
753 for_each_possible_cpu(i) {
754 if (i == boot_cpuid)
755 continue;
756 if (i == (boot_cpuid ^ 1))
757 per_cpu(last_jiffy, i) =
758 per_cpu(last_jiffy, boot_cpuid) - half;
759 else if (i & 1)
760 per_cpu(last_jiffy, i) =
761 per_cpu(last_jiffy, i ^ 1) + half;
762 else {
763 previous_tb += offset;
764 per_cpu(last_jiffy, i) = previous_tb;
768 #endif
771 * Scheduler clock - returns current time in nanosec units.
773 * Note: mulhdu(a, b) (multiply high double unsigned) returns
774 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
775 * are 64-bit unsigned numbers.
777 unsigned long long sched_clock(void)
779 if (__USE_RTC())
780 return get_rtc();
781 return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
784 int do_settimeofday(struct timespec *tv)
786 time_t wtm_sec, new_sec = tv->tv_sec;
787 long wtm_nsec, new_nsec = tv->tv_nsec;
788 unsigned long flags;
789 u64 new_xsec;
790 unsigned long tb_delta;
792 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
793 return -EINVAL;
795 write_seqlock_irqsave(&xtime_lock, flags);
798 * Updating the RTC is not the job of this code. If the time is
799 * stepped under NTP, the RTC will be updated after STA_UNSYNC
800 * is cleared. Tools like clock/hwclock either copy the RTC
801 * to the system time, in which case there is no point in writing
802 * to the RTC again, or write to the RTC but then they don't call
803 * settimeofday to perform this operation.
805 #ifdef CONFIG_PPC_ISERIES
806 if (first_settimeofday) {
807 iSeries_tb_recal();
808 first_settimeofday = 0;
810 #endif
812 /* Make userspace gettimeofday spin until we're done. */
813 ++vdso_data->tb_update_count;
814 smp_mb();
817 * Subtract off the number of nanoseconds since the
818 * beginning of the last tick.
819 * Note that since we don't increment jiffies_64 anywhere other
820 * than in do_timer (since we don't have a lost tick problem),
821 * wall_jiffies will always be the same as jiffies,
822 * and therefore the (jiffies - wall_jiffies) computation
823 * has been removed.
825 tb_delta = tb_ticks_since(tb_last_stamp);
826 tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
827 new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
829 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
830 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
832 set_normalized_timespec(&xtime, new_sec, new_nsec);
833 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
835 /* In case of a large backwards jump in time with NTP, we want the
836 * clock to be updated as soon as the PLL is again in lock.
838 last_rtc_update = new_sec - 658;
840 ntp_clear();
842 new_xsec = xtime.tv_nsec;
843 if (new_xsec != 0) {
844 new_xsec *= XSEC_PER_SEC;
845 do_div(new_xsec, NSEC_PER_SEC);
847 new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
848 update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
850 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
851 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
853 write_sequnlock_irqrestore(&xtime_lock, flags);
854 clock_was_set();
855 return 0;
858 EXPORT_SYMBOL(do_settimeofday);
860 static int __init get_freq(char *name, int cells, unsigned long *val)
862 struct device_node *cpu;
863 unsigned int *fp;
864 int found = 0;
866 /* The cpu node should have timebase and clock frequency properties */
867 cpu = of_find_node_by_type(NULL, "cpu");
869 if (cpu) {
870 fp = (unsigned int *)get_property(cpu, name, NULL);
871 if (fp) {
872 found = 1;
873 *val = 0;
874 while (cells--)
875 *val = (*val << 32) | *fp++;
878 of_node_put(cpu);
881 return found;
884 void __init generic_calibrate_decr(void)
886 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
888 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
889 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
891 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
892 "(not found)\n");
895 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
897 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
898 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
900 printk(KERN_ERR "WARNING: Estimating processor frequency "
901 "(not found)\n");
904 #ifdef CONFIG_BOOKE
905 /* Set the time base to zero */
906 mtspr(SPRN_TBWL, 0);
907 mtspr(SPRN_TBWU, 0);
909 /* Clear any pending timer interrupts */
910 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
912 /* Enable decrementer interrupt */
913 mtspr(SPRN_TCR, TCR_DIE);
914 #endif
917 unsigned long get_boot_time(void)
919 struct rtc_time tm;
921 if (ppc_md.get_boot_time)
922 return ppc_md.get_boot_time();
923 if (!ppc_md.get_rtc_time)
924 return 0;
925 ppc_md.get_rtc_time(&tm);
926 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
927 tm.tm_hour, tm.tm_min, tm.tm_sec);
930 /* This function is only called on the boot processor */
931 void __init time_init(void)
933 unsigned long flags;
934 unsigned long tm = 0;
935 struct div_result res;
936 u64 scale, x;
937 unsigned shift;
939 if (ppc_md.time_init != NULL)
940 timezone_offset = ppc_md.time_init();
942 if (__USE_RTC()) {
943 /* 601 processor: dec counts down by 128 every 128ns */
944 ppc_tb_freq = 1000000000;
945 tb_last_stamp = get_rtcl();
946 tb_last_jiffy = tb_last_stamp;
947 } else {
948 /* Normal PowerPC with timebase register */
949 ppc_md.calibrate_decr();
950 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
951 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
952 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
953 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
954 tb_last_stamp = tb_last_jiffy = get_tb();
957 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
958 tb_ticks_per_sec = ppc_tb_freq;
959 tb_ticks_per_usec = ppc_tb_freq / 1000000;
960 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
961 calc_cputime_factors();
964 * Calculate the length of each tick in ns. It will not be
965 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
966 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
967 * rounded up.
969 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
970 do_div(x, ppc_tb_freq);
971 tick_nsec = x;
972 last_tick_len = x << TICKLEN_SCALE;
975 * Compute ticklen_to_xs, which is a factor which gets multiplied
976 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
977 * It is computed as:
978 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
979 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
980 * which turns out to be N = 51 - SHIFT_HZ.
981 * This gives the result as a 0.64 fixed-point fraction.
982 * That value is reduced by an offset amounting to 1 xsec per
983 * 2^31 timebase ticks to avoid problems with time going backwards
984 * by 1 xsec when we do timer_recalc_offset due to losing the
985 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
986 * since there are 2^20 xsec in a second.
988 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
989 tb_ticks_per_jiffy << SHIFT_HZ, &res);
990 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
991 ticklen_to_xs = res.result_low;
993 /* Compute tb_to_xs from tick_nsec */
994 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
997 * Compute scale factor for sched_clock.
998 * The calibrate_decr() function has set tb_ticks_per_sec,
999 * which is the timebase frequency.
1000 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1001 * the 128-bit result as a 64.64 fixed-point number.
1002 * We then shift that number right until it is less than 1.0,
1003 * giving us the scale factor and shift count to use in
1004 * sched_clock().
1006 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1007 scale = res.result_low;
1008 for (shift = 0; res.result_high != 0; ++shift) {
1009 scale = (scale >> 1) | (res.result_high << 63);
1010 res.result_high >>= 1;
1012 tb_to_ns_scale = scale;
1013 tb_to_ns_shift = shift;
1015 tm = get_boot_time();
1017 write_seqlock_irqsave(&xtime_lock, flags);
1019 /* If platform provided a timezone (pmac), we correct the time */
1020 if (timezone_offset) {
1021 sys_tz.tz_minuteswest = -timezone_offset / 60;
1022 sys_tz.tz_dsttime = 0;
1023 tm -= timezone_offset;
1026 xtime.tv_sec = tm;
1027 xtime.tv_nsec = 0;
1028 do_gtod.varp = &do_gtod.vars[0];
1029 do_gtod.var_idx = 0;
1030 do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
1031 __get_cpu_var(last_jiffy) = tb_last_stamp;
1032 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1033 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
1034 do_gtod.varp->tb_to_xs = tb_to_xs;
1035 do_gtod.tb_to_us = tb_to_us;
1037 vdso_data->tb_orig_stamp = tb_last_jiffy;
1038 vdso_data->tb_update_count = 0;
1039 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1040 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1041 vdso_data->tb_to_xs = tb_to_xs;
1043 time_freq = 0;
1045 last_rtc_update = xtime.tv_sec;
1046 set_normalized_timespec(&wall_to_monotonic,
1047 -xtime.tv_sec, -xtime.tv_nsec);
1048 write_sequnlock_irqrestore(&xtime_lock, flags);
1050 /* Not exact, but the timer interrupt takes care of this */
1051 set_dec(tb_ticks_per_jiffy);
1055 #define FEBRUARY 2
1056 #define STARTOFTIME 1970
1057 #define SECDAY 86400L
1058 #define SECYR (SECDAY * 365)
1059 #define leapyear(year) ((year) % 4 == 0 && \
1060 ((year) % 100 != 0 || (year) % 400 == 0))
1061 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1062 #define days_in_month(a) (month_days[(a) - 1])
1064 static int month_days[12] = {
1065 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1069 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1071 void GregorianDay(struct rtc_time * tm)
1073 int leapsToDate;
1074 int lastYear;
1075 int day;
1076 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1078 lastYear = tm->tm_year - 1;
1081 * Number of leap corrections to apply up to end of last year
1083 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1086 * This year is a leap year if it is divisible by 4 except when it is
1087 * divisible by 100 unless it is divisible by 400
1089 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1091 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1093 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1094 tm->tm_mday;
1096 tm->tm_wday = day % 7;
1099 void to_tm(int tim, struct rtc_time * tm)
1101 register int i;
1102 register long hms, day;
1104 day = tim / SECDAY;
1105 hms = tim % SECDAY;
1107 /* Hours, minutes, seconds are easy */
1108 tm->tm_hour = hms / 3600;
1109 tm->tm_min = (hms % 3600) / 60;
1110 tm->tm_sec = (hms % 3600) % 60;
1112 /* Number of years in days */
1113 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1114 day -= days_in_year(i);
1115 tm->tm_year = i;
1117 /* Number of months in days left */
1118 if (leapyear(tm->tm_year))
1119 days_in_month(FEBRUARY) = 29;
1120 for (i = 1; day >= days_in_month(i); i++)
1121 day -= days_in_month(i);
1122 days_in_month(FEBRUARY) = 28;
1123 tm->tm_mon = i;
1125 /* Days are what is left over (+1) from all that. */
1126 tm->tm_mday = day + 1;
1129 * Determine the day of week
1131 GregorianDay(tm);
1134 /* Auxiliary function to compute scaling factors */
1135 /* Actually the choice of a timebase running at 1/4 the of the bus
1136 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1137 * It makes this computation very precise (27-28 bits typically) which
1138 * is optimistic considering the stability of most processor clock
1139 * oscillators and the precision with which the timebase frequency
1140 * is measured but does not harm.
1142 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1144 unsigned mlt=0, tmp, err;
1145 /* No concern for performance, it's done once: use a stupid
1146 * but safe and compact method to find the multiplier.
1149 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1150 if (mulhwu(inscale, mlt|tmp) < outscale)
1151 mlt |= tmp;
1154 /* We might still be off by 1 for the best approximation.
1155 * A side effect of this is that if outscale is too large
1156 * the returned value will be zero.
1157 * Many corner cases have been checked and seem to work,
1158 * some might have been forgotten in the test however.
1161 err = inscale * (mlt+1);
1162 if (err <= inscale/2)
1163 mlt++;
1164 return mlt;
1168 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1169 * result.
1171 void div128_by_32(u64 dividend_high, u64 dividend_low,
1172 unsigned divisor, struct div_result *dr)
1174 unsigned long a, b, c, d;
1175 unsigned long w, x, y, z;
1176 u64 ra, rb, rc;
1178 a = dividend_high >> 32;
1179 b = dividend_high & 0xffffffff;
1180 c = dividend_low >> 32;
1181 d = dividend_low & 0xffffffff;
1183 w = a / divisor;
1184 ra = ((u64)(a - (w * divisor)) << 32) + b;
1186 rb = ((u64) do_div(ra, divisor) << 32) + c;
1187 x = ra;
1189 rc = ((u64) do_div(rb, divisor) << 32) + d;
1190 y = rb;
1192 do_div(rc, divisor);
1193 z = rc;
1195 dr->result_high = ((u64)w << 32) + x;
1196 dr->result_low = ((u64)y << 32) + z;