KVM: Do not report TPR write to userspace if new value bigger or equal to a previous...
[linux-2.6/kvm.git] / arch / x86 / kvm / vmx.c
blob51f804c8fe79d54a571348f66145c12ff44821f6
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "irq.h"
19 #include "mmu.h"
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include "kvm_cache_regs.h"
29 #include "x86.h"
31 #include <asm/io.h>
32 #include <asm/desc.h>
33 #include <asm/vmx.h>
34 #include <asm/virtext.h>
36 #define __ex(x) __kvm_handle_fault_on_reboot(x)
38 MODULE_AUTHOR("Qumranet");
39 MODULE_LICENSE("GPL");
41 static int __read_mostly bypass_guest_pf = 1;
42 module_param(bypass_guest_pf, bool, S_IRUGO);
44 static int __read_mostly enable_vpid = 1;
45 module_param_named(vpid, enable_vpid, bool, 0444);
47 static int __read_mostly flexpriority_enabled = 1;
48 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
50 static int __read_mostly enable_ept = 1;
51 module_param_named(ept, enable_ept, bool, S_IRUGO);
53 static int __read_mostly emulate_invalid_guest_state = 0;
54 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
56 struct vmcs {
57 u32 revision_id;
58 u32 abort;
59 char data[0];
62 struct vcpu_vmx {
63 struct kvm_vcpu vcpu;
64 struct list_head local_vcpus_link;
65 unsigned long host_rsp;
66 int launched;
67 u8 fail;
68 u32 idt_vectoring_info;
69 struct kvm_msr_entry *guest_msrs;
70 struct kvm_msr_entry *host_msrs;
71 int nmsrs;
72 int save_nmsrs;
73 int msr_offset_efer;
74 #ifdef CONFIG_X86_64
75 int msr_offset_kernel_gs_base;
76 #endif
77 struct vmcs *vmcs;
78 struct {
79 int loaded;
80 u16 fs_sel, gs_sel, ldt_sel;
81 int gs_ldt_reload_needed;
82 int fs_reload_needed;
83 int guest_efer_loaded;
84 } host_state;
85 struct {
86 struct {
87 bool pending;
88 u8 vector;
89 unsigned rip;
90 } irq;
91 } rmode;
92 int vpid;
93 bool emulation_required;
94 enum emulation_result invalid_state_emulation_result;
96 /* Support for vnmi-less CPUs */
97 int soft_vnmi_blocked;
98 ktime_t entry_time;
99 s64 vnmi_blocked_time;
102 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
104 return container_of(vcpu, struct vcpu_vmx, vcpu);
107 static int init_rmode(struct kvm *kvm);
108 static u64 construct_eptp(unsigned long root_hpa);
110 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
111 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
112 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
114 static unsigned long *vmx_io_bitmap_a;
115 static unsigned long *vmx_io_bitmap_b;
116 static unsigned long *vmx_msr_bitmap_legacy;
117 static unsigned long *vmx_msr_bitmap_longmode;
119 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
120 static DEFINE_SPINLOCK(vmx_vpid_lock);
122 static struct vmcs_config {
123 int size;
124 int order;
125 u32 revision_id;
126 u32 pin_based_exec_ctrl;
127 u32 cpu_based_exec_ctrl;
128 u32 cpu_based_2nd_exec_ctrl;
129 u32 vmexit_ctrl;
130 u32 vmentry_ctrl;
131 } vmcs_config;
133 static struct vmx_capability {
134 u32 ept;
135 u32 vpid;
136 } vmx_capability;
138 #define VMX_SEGMENT_FIELD(seg) \
139 [VCPU_SREG_##seg] = { \
140 .selector = GUEST_##seg##_SELECTOR, \
141 .base = GUEST_##seg##_BASE, \
142 .limit = GUEST_##seg##_LIMIT, \
143 .ar_bytes = GUEST_##seg##_AR_BYTES, \
146 static struct kvm_vmx_segment_field {
147 unsigned selector;
148 unsigned base;
149 unsigned limit;
150 unsigned ar_bytes;
151 } kvm_vmx_segment_fields[] = {
152 VMX_SEGMENT_FIELD(CS),
153 VMX_SEGMENT_FIELD(DS),
154 VMX_SEGMENT_FIELD(ES),
155 VMX_SEGMENT_FIELD(FS),
156 VMX_SEGMENT_FIELD(GS),
157 VMX_SEGMENT_FIELD(SS),
158 VMX_SEGMENT_FIELD(TR),
159 VMX_SEGMENT_FIELD(LDTR),
163 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
164 * away by decrementing the array size.
166 static const u32 vmx_msr_index[] = {
167 #ifdef CONFIG_X86_64
168 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
169 #endif
170 MSR_EFER, MSR_K6_STAR,
172 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
174 static void load_msrs(struct kvm_msr_entry *e, int n)
176 int i;
178 for (i = 0; i < n; ++i)
179 wrmsrl(e[i].index, e[i].data);
182 static void save_msrs(struct kvm_msr_entry *e, int n)
184 int i;
186 for (i = 0; i < n; ++i)
187 rdmsrl(e[i].index, e[i].data);
190 static inline int is_page_fault(u32 intr_info)
192 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
193 INTR_INFO_VALID_MASK)) ==
194 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
197 static inline int is_no_device(u32 intr_info)
199 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
200 INTR_INFO_VALID_MASK)) ==
201 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
204 static inline int is_invalid_opcode(u32 intr_info)
206 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
207 INTR_INFO_VALID_MASK)) ==
208 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
211 static inline int is_external_interrupt(u32 intr_info)
213 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
214 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
217 static inline int cpu_has_vmx_msr_bitmap(void)
219 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
222 static inline int cpu_has_vmx_tpr_shadow(void)
224 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
227 static inline int vm_need_tpr_shadow(struct kvm *kvm)
229 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
232 static inline int cpu_has_secondary_exec_ctrls(void)
234 return vmcs_config.cpu_based_exec_ctrl &
235 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
238 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
240 return vmcs_config.cpu_based_2nd_exec_ctrl &
241 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
244 static inline bool cpu_has_vmx_flexpriority(void)
246 return cpu_has_vmx_tpr_shadow() &&
247 cpu_has_vmx_virtualize_apic_accesses();
250 static inline int cpu_has_vmx_invept_individual_addr(void)
252 return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
255 static inline int cpu_has_vmx_invept_context(void)
257 return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
260 static inline int cpu_has_vmx_invept_global(void)
262 return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
265 static inline int cpu_has_vmx_ept(void)
267 return vmcs_config.cpu_based_2nd_exec_ctrl &
268 SECONDARY_EXEC_ENABLE_EPT;
271 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
273 return flexpriority_enabled &&
274 (cpu_has_vmx_virtualize_apic_accesses()) &&
275 (irqchip_in_kernel(kvm));
278 static inline int cpu_has_vmx_vpid(void)
280 return vmcs_config.cpu_based_2nd_exec_ctrl &
281 SECONDARY_EXEC_ENABLE_VPID;
284 static inline int cpu_has_virtual_nmis(void)
286 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
289 static inline bool report_flexpriority(void)
291 return flexpriority_enabled;
294 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
296 int i;
298 for (i = 0; i < vmx->nmsrs; ++i)
299 if (vmx->guest_msrs[i].index == msr)
300 return i;
301 return -1;
304 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
306 struct {
307 u64 vpid : 16;
308 u64 rsvd : 48;
309 u64 gva;
310 } operand = { vpid, 0, gva };
312 asm volatile (__ex(ASM_VMX_INVVPID)
313 /* CF==1 or ZF==1 --> rc = -1 */
314 "; ja 1f ; ud2 ; 1:"
315 : : "a"(&operand), "c"(ext) : "cc", "memory");
318 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
320 struct {
321 u64 eptp, gpa;
322 } operand = {eptp, gpa};
324 asm volatile (__ex(ASM_VMX_INVEPT)
325 /* CF==1 or ZF==1 --> rc = -1 */
326 "; ja 1f ; ud2 ; 1:\n"
327 : : "a" (&operand), "c" (ext) : "cc", "memory");
330 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
332 int i;
334 i = __find_msr_index(vmx, msr);
335 if (i >= 0)
336 return &vmx->guest_msrs[i];
337 return NULL;
340 static void vmcs_clear(struct vmcs *vmcs)
342 u64 phys_addr = __pa(vmcs);
343 u8 error;
345 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
346 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
347 : "cc", "memory");
348 if (error)
349 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
350 vmcs, phys_addr);
353 static void __vcpu_clear(void *arg)
355 struct vcpu_vmx *vmx = arg;
356 int cpu = raw_smp_processor_id();
358 if (vmx->vcpu.cpu == cpu)
359 vmcs_clear(vmx->vmcs);
360 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
361 per_cpu(current_vmcs, cpu) = NULL;
362 rdtscll(vmx->vcpu.arch.host_tsc);
363 list_del(&vmx->local_vcpus_link);
364 vmx->vcpu.cpu = -1;
365 vmx->launched = 0;
368 static void vcpu_clear(struct vcpu_vmx *vmx)
370 if (vmx->vcpu.cpu == -1)
371 return;
372 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
375 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
377 if (vmx->vpid == 0)
378 return;
380 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
383 static inline void ept_sync_global(void)
385 if (cpu_has_vmx_invept_global())
386 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
389 static inline void ept_sync_context(u64 eptp)
391 if (enable_ept) {
392 if (cpu_has_vmx_invept_context())
393 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
394 else
395 ept_sync_global();
399 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
401 if (enable_ept) {
402 if (cpu_has_vmx_invept_individual_addr())
403 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
404 eptp, gpa);
405 else
406 ept_sync_context(eptp);
410 static unsigned long vmcs_readl(unsigned long field)
412 unsigned long value;
414 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
415 : "=a"(value) : "d"(field) : "cc");
416 return value;
419 static u16 vmcs_read16(unsigned long field)
421 return vmcs_readl(field);
424 static u32 vmcs_read32(unsigned long field)
426 return vmcs_readl(field);
429 static u64 vmcs_read64(unsigned long field)
431 #ifdef CONFIG_X86_64
432 return vmcs_readl(field);
433 #else
434 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
435 #endif
438 static noinline void vmwrite_error(unsigned long field, unsigned long value)
440 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
441 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
442 dump_stack();
445 static void vmcs_writel(unsigned long field, unsigned long value)
447 u8 error;
449 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
450 : "=q"(error) : "a"(value), "d"(field) : "cc");
451 if (unlikely(error))
452 vmwrite_error(field, value);
455 static void vmcs_write16(unsigned long field, u16 value)
457 vmcs_writel(field, value);
460 static void vmcs_write32(unsigned long field, u32 value)
462 vmcs_writel(field, value);
465 static void vmcs_write64(unsigned long field, u64 value)
467 vmcs_writel(field, value);
468 #ifndef CONFIG_X86_64
469 asm volatile ("");
470 vmcs_writel(field+1, value >> 32);
471 #endif
474 static void vmcs_clear_bits(unsigned long field, u32 mask)
476 vmcs_writel(field, vmcs_readl(field) & ~mask);
479 static void vmcs_set_bits(unsigned long field, u32 mask)
481 vmcs_writel(field, vmcs_readl(field) | mask);
484 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
486 u32 eb;
488 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
489 if (!vcpu->fpu_active)
490 eb |= 1u << NM_VECTOR;
491 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
492 if (vcpu->guest_debug &
493 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
494 eb |= 1u << DB_VECTOR;
495 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
496 eb |= 1u << BP_VECTOR;
498 if (vcpu->arch.rmode.active)
499 eb = ~0;
500 if (enable_ept)
501 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
502 vmcs_write32(EXCEPTION_BITMAP, eb);
505 static void reload_tss(void)
508 * VT restores TR but not its size. Useless.
510 struct descriptor_table gdt;
511 struct desc_struct *descs;
513 kvm_get_gdt(&gdt);
514 descs = (void *)gdt.base;
515 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
516 load_TR_desc();
519 static void load_transition_efer(struct vcpu_vmx *vmx)
521 int efer_offset = vmx->msr_offset_efer;
522 u64 host_efer = vmx->host_msrs[efer_offset].data;
523 u64 guest_efer = vmx->guest_msrs[efer_offset].data;
524 u64 ignore_bits;
526 if (efer_offset < 0)
527 return;
529 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
530 * outside long mode
532 ignore_bits = EFER_NX | EFER_SCE;
533 #ifdef CONFIG_X86_64
534 ignore_bits |= EFER_LMA | EFER_LME;
535 /* SCE is meaningful only in long mode on Intel */
536 if (guest_efer & EFER_LMA)
537 ignore_bits &= ~(u64)EFER_SCE;
538 #endif
539 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
540 return;
542 vmx->host_state.guest_efer_loaded = 1;
543 guest_efer &= ~ignore_bits;
544 guest_efer |= host_efer & ignore_bits;
545 wrmsrl(MSR_EFER, guest_efer);
546 vmx->vcpu.stat.efer_reload++;
549 static void reload_host_efer(struct vcpu_vmx *vmx)
551 if (vmx->host_state.guest_efer_loaded) {
552 vmx->host_state.guest_efer_loaded = 0;
553 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
557 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
559 struct vcpu_vmx *vmx = to_vmx(vcpu);
561 if (vmx->host_state.loaded)
562 return;
564 vmx->host_state.loaded = 1;
566 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
567 * allow segment selectors with cpl > 0 or ti == 1.
569 vmx->host_state.ldt_sel = kvm_read_ldt();
570 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
571 vmx->host_state.fs_sel = kvm_read_fs();
572 if (!(vmx->host_state.fs_sel & 7)) {
573 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
574 vmx->host_state.fs_reload_needed = 0;
575 } else {
576 vmcs_write16(HOST_FS_SELECTOR, 0);
577 vmx->host_state.fs_reload_needed = 1;
579 vmx->host_state.gs_sel = kvm_read_gs();
580 if (!(vmx->host_state.gs_sel & 7))
581 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
582 else {
583 vmcs_write16(HOST_GS_SELECTOR, 0);
584 vmx->host_state.gs_ldt_reload_needed = 1;
587 #ifdef CONFIG_X86_64
588 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
589 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
590 #else
591 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
592 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
593 #endif
595 #ifdef CONFIG_X86_64
596 if (is_long_mode(&vmx->vcpu))
597 save_msrs(vmx->host_msrs +
598 vmx->msr_offset_kernel_gs_base, 1);
600 #endif
601 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
602 load_transition_efer(vmx);
605 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
607 unsigned long flags;
609 if (!vmx->host_state.loaded)
610 return;
612 ++vmx->vcpu.stat.host_state_reload;
613 vmx->host_state.loaded = 0;
614 if (vmx->host_state.fs_reload_needed)
615 kvm_load_fs(vmx->host_state.fs_sel);
616 if (vmx->host_state.gs_ldt_reload_needed) {
617 kvm_load_ldt(vmx->host_state.ldt_sel);
619 * If we have to reload gs, we must take care to
620 * preserve our gs base.
622 local_irq_save(flags);
623 kvm_load_gs(vmx->host_state.gs_sel);
624 #ifdef CONFIG_X86_64
625 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
626 #endif
627 local_irq_restore(flags);
629 reload_tss();
630 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
631 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
632 reload_host_efer(vmx);
635 static void vmx_load_host_state(struct vcpu_vmx *vmx)
637 preempt_disable();
638 __vmx_load_host_state(vmx);
639 preempt_enable();
643 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
644 * vcpu mutex is already taken.
646 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
648 struct vcpu_vmx *vmx = to_vmx(vcpu);
649 u64 phys_addr = __pa(vmx->vmcs);
650 u64 tsc_this, delta, new_offset;
652 if (vcpu->cpu != cpu) {
653 vcpu_clear(vmx);
654 kvm_migrate_timers(vcpu);
655 vpid_sync_vcpu_all(vmx);
656 local_irq_disable();
657 list_add(&vmx->local_vcpus_link,
658 &per_cpu(vcpus_on_cpu, cpu));
659 local_irq_enable();
662 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
663 u8 error;
665 per_cpu(current_vmcs, cpu) = vmx->vmcs;
666 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
667 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
668 : "cc");
669 if (error)
670 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
671 vmx->vmcs, phys_addr);
674 if (vcpu->cpu != cpu) {
675 struct descriptor_table dt;
676 unsigned long sysenter_esp;
678 vcpu->cpu = cpu;
680 * Linux uses per-cpu TSS and GDT, so set these when switching
681 * processors.
683 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
684 kvm_get_gdt(&dt);
685 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
687 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
688 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
691 * Make sure the time stamp counter is monotonous.
693 rdtscll(tsc_this);
694 if (tsc_this < vcpu->arch.host_tsc) {
695 delta = vcpu->arch.host_tsc - tsc_this;
696 new_offset = vmcs_read64(TSC_OFFSET) + delta;
697 vmcs_write64(TSC_OFFSET, new_offset);
702 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
704 __vmx_load_host_state(to_vmx(vcpu));
707 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
709 if (vcpu->fpu_active)
710 return;
711 vcpu->fpu_active = 1;
712 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
713 if (vcpu->arch.cr0 & X86_CR0_TS)
714 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
715 update_exception_bitmap(vcpu);
718 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
720 if (!vcpu->fpu_active)
721 return;
722 vcpu->fpu_active = 0;
723 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
724 update_exception_bitmap(vcpu);
727 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
729 return vmcs_readl(GUEST_RFLAGS);
732 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
734 if (vcpu->arch.rmode.active)
735 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
736 vmcs_writel(GUEST_RFLAGS, rflags);
739 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
741 unsigned long rip;
742 u32 interruptibility;
744 rip = kvm_rip_read(vcpu);
745 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
746 kvm_rip_write(vcpu, rip);
749 * We emulated an instruction, so temporary interrupt blocking
750 * should be removed, if set.
752 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
753 if (interruptibility & 3)
754 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
755 interruptibility & ~3);
756 vcpu->arch.interrupt_window_open = 1;
759 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
760 bool has_error_code, u32 error_code)
762 struct vcpu_vmx *vmx = to_vmx(vcpu);
763 u32 intr_info = nr | INTR_INFO_VALID_MASK;
765 if (has_error_code) {
766 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
767 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
770 if (vcpu->arch.rmode.active) {
771 vmx->rmode.irq.pending = true;
772 vmx->rmode.irq.vector = nr;
773 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
774 if (nr == BP_VECTOR || nr == OF_VECTOR)
775 vmx->rmode.irq.rip++;
776 intr_info |= INTR_TYPE_SOFT_INTR;
777 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
778 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
779 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
780 return;
783 if (nr == BP_VECTOR || nr == OF_VECTOR) {
784 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
785 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
786 } else
787 intr_info |= INTR_TYPE_HARD_EXCEPTION;
789 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
793 * Swap MSR entry in host/guest MSR entry array.
795 #ifdef CONFIG_X86_64
796 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
798 struct kvm_msr_entry tmp;
800 tmp = vmx->guest_msrs[to];
801 vmx->guest_msrs[to] = vmx->guest_msrs[from];
802 vmx->guest_msrs[from] = tmp;
803 tmp = vmx->host_msrs[to];
804 vmx->host_msrs[to] = vmx->host_msrs[from];
805 vmx->host_msrs[from] = tmp;
807 #endif
810 * Set up the vmcs to automatically save and restore system
811 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
812 * mode, as fiddling with msrs is very expensive.
814 static void setup_msrs(struct vcpu_vmx *vmx)
816 int save_nmsrs;
817 unsigned long *msr_bitmap;
819 vmx_load_host_state(vmx);
820 save_nmsrs = 0;
821 #ifdef CONFIG_X86_64
822 if (is_long_mode(&vmx->vcpu)) {
823 int index;
825 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
826 if (index >= 0)
827 move_msr_up(vmx, index, save_nmsrs++);
828 index = __find_msr_index(vmx, MSR_LSTAR);
829 if (index >= 0)
830 move_msr_up(vmx, index, save_nmsrs++);
831 index = __find_msr_index(vmx, MSR_CSTAR);
832 if (index >= 0)
833 move_msr_up(vmx, index, save_nmsrs++);
834 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
835 if (index >= 0)
836 move_msr_up(vmx, index, save_nmsrs++);
838 * MSR_K6_STAR is only needed on long mode guests, and only
839 * if efer.sce is enabled.
841 index = __find_msr_index(vmx, MSR_K6_STAR);
842 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
843 move_msr_up(vmx, index, save_nmsrs++);
845 #endif
846 vmx->save_nmsrs = save_nmsrs;
848 #ifdef CONFIG_X86_64
849 vmx->msr_offset_kernel_gs_base =
850 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
851 #endif
852 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
854 if (cpu_has_vmx_msr_bitmap()) {
855 if (is_long_mode(&vmx->vcpu))
856 msr_bitmap = vmx_msr_bitmap_longmode;
857 else
858 msr_bitmap = vmx_msr_bitmap_legacy;
860 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
865 * reads and returns guest's timestamp counter "register"
866 * guest_tsc = host_tsc + tsc_offset -- 21.3
868 static u64 guest_read_tsc(void)
870 u64 host_tsc, tsc_offset;
872 rdtscll(host_tsc);
873 tsc_offset = vmcs_read64(TSC_OFFSET);
874 return host_tsc + tsc_offset;
878 * writes 'guest_tsc' into guest's timestamp counter "register"
879 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
881 static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
883 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
887 * Reads an msr value (of 'msr_index') into 'pdata'.
888 * Returns 0 on success, non-0 otherwise.
889 * Assumes vcpu_load() was already called.
891 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
893 u64 data;
894 struct kvm_msr_entry *msr;
896 if (!pdata) {
897 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
898 return -EINVAL;
901 switch (msr_index) {
902 #ifdef CONFIG_X86_64
903 case MSR_FS_BASE:
904 data = vmcs_readl(GUEST_FS_BASE);
905 break;
906 case MSR_GS_BASE:
907 data = vmcs_readl(GUEST_GS_BASE);
908 break;
909 case MSR_EFER:
910 return kvm_get_msr_common(vcpu, msr_index, pdata);
911 #endif
912 case MSR_IA32_TIME_STAMP_COUNTER:
913 data = guest_read_tsc();
914 break;
915 case MSR_IA32_SYSENTER_CS:
916 data = vmcs_read32(GUEST_SYSENTER_CS);
917 break;
918 case MSR_IA32_SYSENTER_EIP:
919 data = vmcs_readl(GUEST_SYSENTER_EIP);
920 break;
921 case MSR_IA32_SYSENTER_ESP:
922 data = vmcs_readl(GUEST_SYSENTER_ESP);
923 break;
924 default:
925 vmx_load_host_state(to_vmx(vcpu));
926 msr = find_msr_entry(to_vmx(vcpu), msr_index);
927 if (msr) {
928 data = msr->data;
929 break;
931 return kvm_get_msr_common(vcpu, msr_index, pdata);
934 *pdata = data;
935 return 0;
939 * Writes msr value into into the appropriate "register".
940 * Returns 0 on success, non-0 otherwise.
941 * Assumes vcpu_load() was already called.
943 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
945 struct vcpu_vmx *vmx = to_vmx(vcpu);
946 struct kvm_msr_entry *msr;
947 u64 host_tsc;
948 int ret = 0;
950 switch (msr_index) {
951 case MSR_EFER:
952 vmx_load_host_state(vmx);
953 ret = kvm_set_msr_common(vcpu, msr_index, data);
954 break;
955 #ifdef CONFIG_X86_64
956 case MSR_FS_BASE:
957 vmcs_writel(GUEST_FS_BASE, data);
958 break;
959 case MSR_GS_BASE:
960 vmcs_writel(GUEST_GS_BASE, data);
961 break;
962 #endif
963 case MSR_IA32_SYSENTER_CS:
964 vmcs_write32(GUEST_SYSENTER_CS, data);
965 break;
966 case MSR_IA32_SYSENTER_EIP:
967 vmcs_writel(GUEST_SYSENTER_EIP, data);
968 break;
969 case MSR_IA32_SYSENTER_ESP:
970 vmcs_writel(GUEST_SYSENTER_ESP, data);
971 break;
972 case MSR_IA32_TIME_STAMP_COUNTER:
973 rdtscll(host_tsc);
974 guest_write_tsc(data, host_tsc);
975 break;
976 case MSR_P6_PERFCTR0:
977 case MSR_P6_PERFCTR1:
978 case MSR_P6_EVNTSEL0:
979 case MSR_P6_EVNTSEL1:
981 * Just discard all writes to the performance counters; this
982 * should keep both older linux and windows 64-bit guests
983 * happy
985 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
987 break;
988 case MSR_IA32_CR_PAT:
989 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
990 vmcs_write64(GUEST_IA32_PAT, data);
991 vcpu->arch.pat = data;
992 break;
994 /* Otherwise falls through to kvm_set_msr_common */
995 default:
996 vmx_load_host_state(vmx);
997 msr = find_msr_entry(vmx, msr_index);
998 if (msr) {
999 msr->data = data;
1000 break;
1002 ret = kvm_set_msr_common(vcpu, msr_index, data);
1005 return ret;
1008 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1010 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1011 switch (reg) {
1012 case VCPU_REGS_RSP:
1013 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1014 break;
1015 case VCPU_REGS_RIP:
1016 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1017 break;
1018 default:
1019 break;
1023 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1025 int old_debug = vcpu->guest_debug;
1026 unsigned long flags;
1028 vcpu->guest_debug = dbg->control;
1029 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
1030 vcpu->guest_debug = 0;
1032 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1033 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1034 else
1035 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1037 flags = vmcs_readl(GUEST_RFLAGS);
1038 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
1039 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1040 else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
1041 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1042 vmcs_writel(GUEST_RFLAGS, flags);
1044 update_exception_bitmap(vcpu);
1046 return 0;
1049 static int vmx_get_irq(struct kvm_vcpu *vcpu)
1051 if (!vcpu->arch.interrupt.pending)
1052 return -1;
1053 return vcpu->arch.interrupt.nr;
1056 static __init int cpu_has_kvm_support(void)
1058 return cpu_has_vmx();
1061 static __init int vmx_disabled_by_bios(void)
1063 u64 msr;
1065 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1066 return (msr & (FEATURE_CONTROL_LOCKED |
1067 FEATURE_CONTROL_VMXON_ENABLED))
1068 == FEATURE_CONTROL_LOCKED;
1069 /* locked but not enabled */
1072 static void hardware_enable(void *garbage)
1074 int cpu = raw_smp_processor_id();
1075 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1076 u64 old;
1078 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1079 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1080 if ((old & (FEATURE_CONTROL_LOCKED |
1081 FEATURE_CONTROL_VMXON_ENABLED))
1082 != (FEATURE_CONTROL_LOCKED |
1083 FEATURE_CONTROL_VMXON_ENABLED))
1084 /* enable and lock */
1085 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1086 FEATURE_CONTROL_LOCKED |
1087 FEATURE_CONTROL_VMXON_ENABLED);
1088 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1089 asm volatile (ASM_VMX_VMXON_RAX
1090 : : "a"(&phys_addr), "m"(phys_addr)
1091 : "memory", "cc");
1094 static void vmclear_local_vcpus(void)
1096 int cpu = raw_smp_processor_id();
1097 struct vcpu_vmx *vmx, *n;
1099 list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1100 local_vcpus_link)
1101 __vcpu_clear(vmx);
1105 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1106 * tricks.
1108 static void kvm_cpu_vmxoff(void)
1110 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1111 write_cr4(read_cr4() & ~X86_CR4_VMXE);
1114 static void hardware_disable(void *garbage)
1116 vmclear_local_vcpus();
1117 kvm_cpu_vmxoff();
1120 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1121 u32 msr, u32 *result)
1123 u32 vmx_msr_low, vmx_msr_high;
1124 u32 ctl = ctl_min | ctl_opt;
1126 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1128 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1129 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1131 /* Ensure minimum (required) set of control bits are supported. */
1132 if (ctl_min & ~ctl)
1133 return -EIO;
1135 *result = ctl;
1136 return 0;
1139 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1141 u32 vmx_msr_low, vmx_msr_high;
1142 u32 min, opt, min2, opt2;
1143 u32 _pin_based_exec_control = 0;
1144 u32 _cpu_based_exec_control = 0;
1145 u32 _cpu_based_2nd_exec_control = 0;
1146 u32 _vmexit_control = 0;
1147 u32 _vmentry_control = 0;
1149 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1150 opt = PIN_BASED_VIRTUAL_NMIS;
1151 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1152 &_pin_based_exec_control) < 0)
1153 return -EIO;
1155 min = CPU_BASED_HLT_EXITING |
1156 #ifdef CONFIG_X86_64
1157 CPU_BASED_CR8_LOAD_EXITING |
1158 CPU_BASED_CR8_STORE_EXITING |
1159 #endif
1160 CPU_BASED_CR3_LOAD_EXITING |
1161 CPU_BASED_CR3_STORE_EXITING |
1162 CPU_BASED_USE_IO_BITMAPS |
1163 CPU_BASED_MOV_DR_EXITING |
1164 CPU_BASED_USE_TSC_OFFSETING |
1165 CPU_BASED_INVLPG_EXITING;
1166 opt = CPU_BASED_TPR_SHADOW |
1167 CPU_BASED_USE_MSR_BITMAPS |
1168 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1169 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1170 &_cpu_based_exec_control) < 0)
1171 return -EIO;
1172 #ifdef CONFIG_X86_64
1173 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1174 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1175 ~CPU_BASED_CR8_STORE_EXITING;
1176 #endif
1177 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1178 min2 = 0;
1179 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1180 SECONDARY_EXEC_WBINVD_EXITING |
1181 SECONDARY_EXEC_ENABLE_VPID |
1182 SECONDARY_EXEC_ENABLE_EPT;
1183 if (adjust_vmx_controls(min2, opt2,
1184 MSR_IA32_VMX_PROCBASED_CTLS2,
1185 &_cpu_based_2nd_exec_control) < 0)
1186 return -EIO;
1188 #ifndef CONFIG_X86_64
1189 if (!(_cpu_based_2nd_exec_control &
1190 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1191 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1192 #endif
1193 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1194 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1195 enabled */
1196 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1197 CPU_BASED_CR3_STORE_EXITING |
1198 CPU_BASED_INVLPG_EXITING);
1199 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1200 &_cpu_based_exec_control) < 0)
1201 return -EIO;
1202 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1203 vmx_capability.ept, vmx_capability.vpid);
1206 min = 0;
1207 #ifdef CONFIG_X86_64
1208 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1209 #endif
1210 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1211 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1212 &_vmexit_control) < 0)
1213 return -EIO;
1215 min = 0;
1216 opt = VM_ENTRY_LOAD_IA32_PAT;
1217 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1218 &_vmentry_control) < 0)
1219 return -EIO;
1221 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1223 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1224 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1225 return -EIO;
1227 #ifdef CONFIG_X86_64
1228 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1229 if (vmx_msr_high & (1u<<16))
1230 return -EIO;
1231 #endif
1233 /* Require Write-Back (WB) memory type for VMCS accesses. */
1234 if (((vmx_msr_high >> 18) & 15) != 6)
1235 return -EIO;
1237 vmcs_conf->size = vmx_msr_high & 0x1fff;
1238 vmcs_conf->order = get_order(vmcs_config.size);
1239 vmcs_conf->revision_id = vmx_msr_low;
1241 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1242 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1243 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1244 vmcs_conf->vmexit_ctrl = _vmexit_control;
1245 vmcs_conf->vmentry_ctrl = _vmentry_control;
1247 return 0;
1250 static struct vmcs *alloc_vmcs_cpu(int cpu)
1252 int node = cpu_to_node(cpu);
1253 struct page *pages;
1254 struct vmcs *vmcs;
1256 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1257 if (!pages)
1258 return NULL;
1259 vmcs = page_address(pages);
1260 memset(vmcs, 0, vmcs_config.size);
1261 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1262 return vmcs;
1265 static struct vmcs *alloc_vmcs(void)
1267 return alloc_vmcs_cpu(raw_smp_processor_id());
1270 static void free_vmcs(struct vmcs *vmcs)
1272 free_pages((unsigned long)vmcs, vmcs_config.order);
1275 static void free_kvm_area(void)
1277 int cpu;
1279 for_each_online_cpu(cpu)
1280 free_vmcs(per_cpu(vmxarea, cpu));
1283 static __init int alloc_kvm_area(void)
1285 int cpu;
1287 for_each_online_cpu(cpu) {
1288 struct vmcs *vmcs;
1290 vmcs = alloc_vmcs_cpu(cpu);
1291 if (!vmcs) {
1292 free_kvm_area();
1293 return -ENOMEM;
1296 per_cpu(vmxarea, cpu) = vmcs;
1298 return 0;
1301 static __init int hardware_setup(void)
1303 if (setup_vmcs_config(&vmcs_config) < 0)
1304 return -EIO;
1306 if (boot_cpu_has(X86_FEATURE_NX))
1307 kvm_enable_efer_bits(EFER_NX);
1309 if (!cpu_has_vmx_vpid())
1310 enable_vpid = 0;
1312 if (!cpu_has_vmx_ept())
1313 enable_ept = 0;
1315 if (!cpu_has_vmx_flexpriority())
1316 flexpriority_enabled = 0;
1318 return alloc_kvm_area();
1321 static __exit void hardware_unsetup(void)
1323 free_kvm_area();
1326 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1328 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1330 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1331 vmcs_write16(sf->selector, save->selector);
1332 vmcs_writel(sf->base, save->base);
1333 vmcs_write32(sf->limit, save->limit);
1334 vmcs_write32(sf->ar_bytes, save->ar);
1335 } else {
1336 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1337 << AR_DPL_SHIFT;
1338 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1342 static void enter_pmode(struct kvm_vcpu *vcpu)
1344 unsigned long flags;
1345 struct vcpu_vmx *vmx = to_vmx(vcpu);
1347 vmx->emulation_required = 1;
1348 vcpu->arch.rmode.active = 0;
1350 vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1351 vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1352 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1354 flags = vmcs_readl(GUEST_RFLAGS);
1355 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1356 flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1357 vmcs_writel(GUEST_RFLAGS, flags);
1359 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1360 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1362 update_exception_bitmap(vcpu);
1364 if (emulate_invalid_guest_state)
1365 return;
1367 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1368 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1369 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1370 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1372 vmcs_write16(GUEST_SS_SELECTOR, 0);
1373 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1375 vmcs_write16(GUEST_CS_SELECTOR,
1376 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1377 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1380 static gva_t rmode_tss_base(struct kvm *kvm)
1382 if (!kvm->arch.tss_addr) {
1383 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1384 kvm->memslots[0].npages - 3;
1385 return base_gfn << PAGE_SHIFT;
1387 return kvm->arch.tss_addr;
1390 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1392 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1394 save->selector = vmcs_read16(sf->selector);
1395 save->base = vmcs_readl(sf->base);
1396 save->limit = vmcs_read32(sf->limit);
1397 save->ar = vmcs_read32(sf->ar_bytes);
1398 vmcs_write16(sf->selector, save->base >> 4);
1399 vmcs_write32(sf->base, save->base & 0xfffff);
1400 vmcs_write32(sf->limit, 0xffff);
1401 vmcs_write32(sf->ar_bytes, 0xf3);
1404 static void enter_rmode(struct kvm_vcpu *vcpu)
1406 unsigned long flags;
1407 struct vcpu_vmx *vmx = to_vmx(vcpu);
1409 vmx->emulation_required = 1;
1410 vcpu->arch.rmode.active = 1;
1412 vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1413 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1415 vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1416 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1418 vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1419 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1421 flags = vmcs_readl(GUEST_RFLAGS);
1422 vcpu->arch.rmode.save_iopl
1423 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1425 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1427 vmcs_writel(GUEST_RFLAGS, flags);
1428 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1429 update_exception_bitmap(vcpu);
1431 if (emulate_invalid_guest_state)
1432 goto continue_rmode;
1434 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1435 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1436 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1438 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1439 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1440 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1441 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1442 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1444 fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1445 fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1446 fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1447 fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1449 continue_rmode:
1450 kvm_mmu_reset_context(vcpu);
1451 init_rmode(vcpu->kvm);
1454 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1456 struct vcpu_vmx *vmx = to_vmx(vcpu);
1457 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1459 vcpu->arch.shadow_efer = efer;
1460 if (!msr)
1461 return;
1462 if (efer & EFER_LMA) {
1463 vmcs_write32(VM_ENTRY_CONTROLS,
1464 vmcs_read32(VM_ENTRY_CONTROLS) |
1465 VM_ENTRY_IA32E_MODE);
1466 msr->data = efer;
1467 } else {
1468 vmcs_write32(VM_ENTRY_CONTROLS,
1469 vmcs_read32(VM_ENTRY_CONTROLS) &
1470 ~VM_ENTRY_IA32E_MODE);
1472 msr->data = efer & ~EFER_LME;
1474 setup_msrs(vmx);
1477 #ifdef CONFIG_X86_64
1479 static void enter_lmode(struct kvm_vcpu *vcpu)
1481 u32 guest_tr_ar;
1483 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1484 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1485 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1486 __func__);
1487 vmcs_write32(GUEST_TR_AR_BYTES,
1488 (guest_tr_ar & ~AR_TYPE_MASK)
1489 | AR_TYPE_BUSY_64_TSS);
1491 vcpu->arch.shadow_efer |= EFER_LMA;
1492 vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
1495 static void exit_lmode(struct kvm_vcpu *vcpu)
1497 vcpu->arch.shadow_efer &= ~EFER_LMA;
1499 vmcs_write32(VM_ENTRY_CONTROLS,
1500 vmcs_read32(VM_ENTRY_CONTROLS)
1501 & ~VM_ENTRY_IA32E_MODE);
1504 #endif
1506 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1508 vpid_sync_vcpu_all(to_vmx(vcpu));
1509 if (enable_ept)
1510 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1513 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1515 vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1516 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1519 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1521 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1522 if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
1523 printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
1524 return;
1526 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1527 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1528 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1529 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1533 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1535 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1536 unsigned long cr0,
1537 struct kvm_vcpu *vcpu)
1539 if (!(cr0 & X86_CR0_PG)) {
1540 /* From paging/starting to nonpaging */
1541 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1542 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1543 (CPU_BASED_CR3_LOAD_EXITING |
1544 CPU_BASED_CR3_STORE_EXITING));
1545 vcpu->arch.cr0 = cr0;
1546 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1547 *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
1548 *hw_cr0 &= ~X86_CR0_WP;
1549 } else if (!is_paging(vcpu)) {
1550 /* From nonpaging to paging */
1551 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1552 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1553 ~(CPU_BASED_CR3_LOAD_EXITING |
1554 CPU_BASED_CR3_STORE_EXITING));
1555 vcpu->arch.cr0 = cr0;
1556 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1557 if (!(vcpu->arch.cr0 & X86_CR0_WP))
1558 *hw_cr0 &= ~X86_CR0_WP;
1562 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1563 struct kvm_vcpu *vcpu)
1565 if (!is_paging(vcpu)) {
1566 *hw_cr4 &= ~X86_CR4_PAE;
1567 *hw_cr4 |= X86_CR4_PSE;
1568 } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1569 *hw_cr4 &= ~X86_CR4_PAE;
1572 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1574 unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
1575 KVM_VM_CR0_ALWAYS_ON;
1577 vmx_fpu_deactivate(vcpu);
1579 if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1580 enter_pmode(vcpu);
1582 if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1583 enter_rmode(vcpu);
1585 #ifdef CONFIG_X86_64
1586 if (vcpu->arch.shadow_efer & EFER_LME) {
1587 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1588 enter_lmode(vcpu);
1589 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1590 exit_lmode(vcpu);
1592 #endif
1594 if (enable_ept)
1595 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1597 vmcs_writel(CR0_READ_SHADOW, cr0);
1598 vmcs_writel(GUEST_CR0, hw_cr0);
1599 vcpu->arch.cr0 = cr0;
1601 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1602 vmx_fpu_activate(vcpu);
1605 static u64 construct_eptp(unsigned long root_hpa)
1607 u64 eptp;
1609 /* TODO write the value reading from MSR */
1610 eptp = VMX_EPT_DEFAULT_MT |
1611 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1612 eptp |= (root_hpa & PAGE_MASK);
1614 return eptp;
1617 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1619 unsigned long guest_cr3;
1620 u64 eptp;
1622 guest_cr3 = cr3;
1623 if (enable_ept) {
1624 eptp = construct_eptp(cr3);
1625 vmcs_write64(EPT_POINTER, eptp);
1626 ept_sync_context(eptp);
1627 ept_load_pdptrs(vcpu);
1628 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1629 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1632 vmx_flush_tlb(vcpu);
1633 vmcs_writel(GUEST_CR3, guest_cr3);
1634 if (vcpu->arch.cr0 & X86_CR0_PE)
1635 vmx_fpu_deactivate(vcpu);
1638 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1640 unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
1641 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1643 vcpu->arch.cr4 = cr4;
1644 if (enable_ept)
1645 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1647 vmcs_writel(CR4_READ_SHADOW, cr4);
1648 vmcs_writel(GUEST_CR4, hw_cr4);
1651 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1653 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1655 return vmcs_readl(sf->base);
1658 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1659 struct kvm_segment *var, int seg)
1661 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1662 u32 ar;
1664 var->base = vmcs_readl(sf->base);
1665 var->limit = vmcs_read32(sf->limit);
1666 var->selector = vmcs_read16(sf->selector);
1667 ar = vmcs_read32(sf->ar_bytes);
1668 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
1669 ar = 0;
1670 var->type = ar & 15;
1671 var->s = (ar >> 4) & 1;
1672 var->dpl = (ar >> 5) & 3;
1673 var->present = (ar >> 7) & 1;
1674 var->avl = (ar >> 12) & 1;
1675 var->l = (ar >> 13) & 1;
1676 var->db = (ar >> 14) & 1;
1677 var->g = (ar >> 15) & 1;
1678 var->unusable = (ar >> 16) & 1;
1681 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1683 struct kvm_segment kvm_seg;
1685 if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1686 return 0;
1688 if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1689 return 3;
1691 vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
1692 return kvm_seg.selector & 3;
1695 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1697 u32 ar;
1699 if (var->unusable)
1700 ar = 1 << 16;
1701 else {
1702 ar = var->type & 15;
1703 ar |= (var->s & 1) << 4;
1704 ar |= (var->dpl & 3) << 5;
1705 ar |= (var->present & 1) << 7;
1706 ar |= (var->avl & 1) << 12;
1707 ar |= (var->l & 1) << 13;
1708 ar |= (var->db & 1) << 14;
1709 ar |= (var->g & 1) << 15;
1711 if (ar == 0) /* a 0 value means unusable */
1712 ar = AR_UNUSABLE_MASK;
1714 return ar;
1717 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1718 struct kvm_segment *var, int seg)
1720 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1721 u32 ar;
1723 if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1724 vcpu->arch.rmode.tr.selector = var->selector;
1725 vcpu->arch.rmode.tr.base = var->base;
1726 vcpu->arch.rmode.tr.limit = var->limit;
1727 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1728 return;
1730 vmcs_writel(sf->base, var->base);
1731 vmcs_write32(sf->limit, var->limit);
1732 vmcs_write16(sf->selector, var->selector);
1733 if (vcpu->arch.rmode.active && var->s) {
1735 * Hack real-mode segments into vm86 compatibility.
1737 if (var->base == 0xffff0000 && var->selector == 0xf000)
1738 vmcs_writel(sf->base, 0xf0000);
1739 ar = 0xf3;
1740 } else
1741 ar = vmx_segment_access_rights(var);
1742 vmcs_write32(sf->ar_bytes, ar);
1745 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1747 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1749 *db = (ar >> 14) & 1;
1750 *l = (ar >> 13) & 1;
1753 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1755 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1756 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1759 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1761 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1762 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1765 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1767 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1768 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1771 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1773 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1774 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1777 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1779 struct kvm_segment var;
1780 u32 ar;
1782 vmx_get_segment(vcpu, &var, seg);
1783 ar = vmx_segment_access_rights(&var);
1785 if (var.base != (var.selector << 4))
1786 return false;
1787 if (var.limit != 0xffff)
1788 return false;
1789 if (ar != 0xf3)
1790 return false;
1792 return true;
1795 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1797 struct kvm_segment cs;
1798 unsigned int cs_rpl;
1800 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1801 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1803 if (cs.unusable)
1804 return false;
1805 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1806 return false;
1807 if (!cs.s)
1808 return false;
1809 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
1810 if (cs.dpl > cs_rpl)
1811 return false;
1812 } else {
1813 if (cs.dpl != cs_rpl)
1814 return false;
1816 if (!cs.present)
1817 return false;
1819 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1820 return true;
1823 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1825 struct kvm_segment ss;
1826 unsigned int ss_rpl;
1828 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1829 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
1831 if (ss.unusable)
1832 return true;
1833 if (ss.type != 3 && ss.type != 7)
1834 return false;
1835 if (!ss.s)
1836 return false;
1837 if (ss.dpl != ss_rpl) /* DPL != RPL */
1838 return false;
1839 if (!ss.present)
1840 return false;
1842 return true;
1845 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
1847 struct kvm_segment var;
1848 unsigned int rpl;
1850 vmx_get_segment(vcpu, &var, seg);
1851 rpl = var.selector & SELECTOR_RPL_MASK;
1853 if (var.unusable)
1854 return true;
1855 if (!var.s)
1856 return false;
1857 if (!var.present)
1858 return false;
1859 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
1860 if (var.dpl < rpl) /* DPL < RPL */
1861 return false;
1864 /* TODO: Add other members to kvm_segment_field to allow checking for other access
1865 * rights flags
1867 return true;
1870 static bool tr_valid(struct kvm_vcpu *vcpu)
1872 struct kvm_segment tr;
1874 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
1876 if (tr.unusable)
1877 return false;
1878 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
1879 return false;
1880 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
1881 return false;
1882 if (!tr.present)
1883 return false;
1885 return true;
1888 static bool ldtr_valid(struct kvm_vcpu *vcpu)
1890 struct kvm_segment ldtr;
1892 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
1894 if (ldtr.unusable)
1895 return true;
1896 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
1897 return false;
1898 if (ldtr.type != 2)
1899 return false;
1900 if (!ldtr.present)
1901 return false;
1903 return true;
1906 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
1908 struct kvm_segment cs, ss;
1910 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1911 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1913 return ((cs.selector & SELECTOR_RPL_MASK) ==
1914 (ss.selector & SELECTOR_RPL_MASK));
1918 * Check if guest state is valid. Returns true if valid, false if
1919 * not.
1920 * We assume that registers are always usable
1922 static bool guest_state_valid(struct kvm_vcpu *vcpu)
1924 /* real mode guest state checks */
1925 if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
1926 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
1927 return false;
1928 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
1929 return false;
1930 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
1931 return false;
1932 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
1933 return false;
1934 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
1935 return false;
1936 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
1937 return false;
1938 } else {
1939 /* protected mode guest state checks */
1940 if (!cs_ss_rpl_check(vcpu))
1941 return false;
1942 if (!code_segment_valid(vcpu))
1943 return false;
1944 if (!stack_segment_valid(vcpu))
1945 return false;
1946 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
1947 return false;
1948 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
1949 return false;
1950 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
1951 return false;
1952 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
1953 return false;
1954 if (!tr_valid(vcpu))
1955 return false;
1956 if (!ldtr_valid(vcpu))
1957 return false;
1959 /* TODO:
1960 * - Add checks on RIP
1961 * - Add checks on RFLAGS
1964 return true;
1967 static int init_rmode_tss(struct kvm *kvm)
1969 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1970 u16 data = 0;
1971 int ret = 0;
1972 int r;
1974 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1975 if (r < 0)
1976 goto out;
1977 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1978 r = kvm_write_guest_page(kvm, fn++, &data,
1979 TSS_IOPB_BASE_OFFSET, sizeof(u16));
1980 if (r < 0)
1981 goto out;
1982 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1983 if (r < 0)
1984 goto out;
1985 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1986 if (r < 0)
1987 goto out;
1988 data = ~0;
1989 r = kvm_write_guest_page(kvm, fn, &data,
1990 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1991 sizeof(u8));
1992 if (r < 0)
1993 goto out;
1995 ret = 1;
1996 out:
1997 return ret;
2000 static int init_rmode_identity_map(struct kvm *kvm)
2002 int i, r, ret;
2003 pfn_t identity_map_pfn;
2004 u32 tmp;
2006 if (!enable_ept)
2007 return 1;
2008 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2009 printk(KERN_ERR "EPT: identity-mapping pagetable "
2010 "haven't been allocated!\n");
2011 return 0;
2013 if (likely(kvm->arch.ept_identity_pagetable_done))
2014 return 1;
2015 ret = 0;
2016 identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
2017 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2018 if (r < 0)
2019 goto out;
2020 /* Set up identity-mapping pagetable for EPT in real mode */
2021 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2022 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2023 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2024 r = kvm_write_guest_page(kvm, identity_map_pfn,
2025 &tmp, i * sizeof(tmp), sizeof(tmp));
2026 if (r < 0)
2027 goto out;
2029 kvm->arch.ept_identity_pagetable_done = true;
2030 ret = 1;
2031 out:
2032 return ret;
2035 static void seg_setup(int seg)
2037 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2039 vmcs_write16(sf->selector, 0);
2040 vmcs_writel(sf->base, 0);
2041 vmcs_write32(sf->limit, 0xffff);
2042 vmcs_write32(sf->ar_bytes, 0xf3);
2045 static int alloc_apic_access_page(struct kvm *kvm)
2047 struct kvm_userspace_memory_region kvm_userspace_mem;
2048 int r = 0;
2050 down_write(&kvm->slots_lock);
2051 if (kvm->arch.apic_access_page)
2052 goto out;
2053 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2054 kvm_userspace_mem.flags = 0;
2055 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2056 kvm_userspace_mem.memory_size = PAGE_SIZE;
2057 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2058 if (r)
2059 goto out;
2061 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2062 out:
2063 up_write(&kvm->slots_lock);
2064 return r;
2067 static int alloc_identity_pagetable(struct kvm *kvm)
2069 struct kvm_userspace_memory_region kvm_userspace_mem;
2070 int r = 0;
2072 down_write(&kvm->slots_lock);
2073 if (kvm->arch.ept_identity_pagetable)
2074 goto out;
2075 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2076 kvm_userspace_mem.flags = 0;
2077 kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
2078 kvm_userspace_mem.memory_size = PAGE_SIZE;
2079 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2080 if (r)
2081 goto out;
2083 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2084 VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
2085 out:
2086 up_write(&kvm->slots_lock);
2087 return r;
2090 static void allocate_vpid(struct vcpu_vmx *vmx)
2092 int vpid;
2094 vmx->vpid = 0;
2095 if (!enable_vpid)
2096 return;
2097 spin_lock(&vmx_vpid_lock);
2098 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2099 if (vpid < VMX_NR_VPIDS) {
2100 vmx->vpid = vpid;
2101 __set_bit(vpid, vmx_vpid_bitmap);
2103 spin_unlock(&vmx_vpid_lock);
2106 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2108 int f = sizeof(unsigned long);
2110 if (!cpu_has_vmx_msr_bitmap())
2111 return;
2114 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2115 * have the write-low and read-high bitmap offsets the wrong way round.
2116 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2118 if (msr <= 0x1fff) {
2119 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2120 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2121 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2122 msr &= 0x1fff;
2123 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2124 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2128 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2130 if (!longmode_only)
2131 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2132 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2136 * Sets up the vmcs for emulated real mode.
2138 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2140 u32 host_sysenter_cs, msr_low, msr_high;
2141 u32 junk;
2142 u64 host_pat, tsc_this, tsc_base;
2143 unsigned long a;
2144 struct descriptor_table dt;
2145 int i;
2146 unsigned long kvm_vmx_return;
2147 u32 exec_control;
2149 /* I/O */
2150 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2151 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2153 if (cpu_has_vmx_msr_bitmap())
2154 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2156 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2158 /* Control */
2159 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2160 vmcs_config.pin_based_exec_ctrl);
2162 exec_control = vmcs_config.cpu_based_exec_ctrl;
2163 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2164 exec_control &= ~CPU_BASED_TPR_SHADOW;
2165 #ifdef CONFIG_X86_64
2166 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2167 CPU_BASED_CR8_LOAD_EXITING;
2168 #endif
2170 if (!enable_ept)
2171 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2172 CPU_BASED_CR3_LOAD_EXITING |
2173 CPU_BASED_INVLPG_EXITING;
2174 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2176 if (cpu_has_secondary_exec_ctrls()) {
2177 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2178 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2179 exec_control &=
2180 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2181 if (vmx->vpid == 0)
2182 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2183 if (!enable_ept)
2184 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2185 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2188 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2189 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2190 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
2192 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
2193 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
2194 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
2196 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
2197 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2198 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2199 vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
2200 vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
2201 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2202 #ifdef CONFIG_X86_64
2203 rdmsrl(MSR_FS_BASE, a);
2204 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2205 rdmsrl(MSR_GS_BASE, a);
2206 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2207 #else
2208 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2209 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2210 #endif
2212 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
2214 kvm_get_idt(&dt);
2215 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
2217 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2218 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2219 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2220 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2221 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2223 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2224 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2225 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2226 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
2227 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2228 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
2230 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2231 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2232 host_pat = msr_low | ((u64) msr_high << 32);
2233 vmcs_write64(HOST_IA32_PAT, host_pat);
2235 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2236 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2237 host_pat = msr_low | ((u64) msr_high << 32);
2238 /* Write the default value follow host pat */
2239 vmcs_write64(GUEST_IA32_PAT, host_pat);
2240 /* Keep arch.pat sync with GUEST_IA32_PAT */
2241 vmx->vcpu.arch.pat = host_pat;
2244 for (i = 0; i < NR_VMX_MSR; ++i) {
2245 u32 index = vmx_msr_index[i];
2246 u32 data_low, data_high;
2247 u64 data;
2248 int j = vmx->nmsrs;
2250 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2251 continue;
2252 if (wrmsr_safe(index, data_low, data_high) < 0)
2253 continue;
2254 data = data_low | ((u64)data_high << 32);
2255 vmx->host_msrs[j].index = index;
2256 vmx->host_msrs[j].reserved = 0;
2257 vmx->host_msrs[j].data = data;
2258 vmx->guest_msrs[j] = vmx->host_msrs[j];
2259 ++vmx->nmsrs;
2262 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2264 /* 22.2.1, 20.8.1 */
2265 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2267 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2268 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
2270 tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
2271 rdtscll(tsc_this);
2272 if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
2273 tsc_base = tsc_this;
2275 guest_write_tsc(0, tsc_base);
2277 return 0;
2280 static int init_rmode(struct kvm *kvm)
2282 if (!init_rmode_tss(kvm))
2283 return 0;
2284 if (!init_rmode_identity_map(kvm))
2285 return 0;
2286 return 1;
2289 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2291 struct vcpu_vmx *vmx = to_vmx(vcpu);
2292 u64 msr;
2293 int ret;
2295 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2296 down_read(&vcpu->kvm->slots_lock);
2297 if (!init_rmode(vmx->vcpu.kvm)) {
2298 ret = -ENOMEM;
2299 goto out;
2302 vmx->vcpu.arch.rmode.active = 0;
2304 vmx->soft_vnmi_blocked = 0;
2306 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2307 kvm_set_cr8(&vmx->vcpu, 0);
2308 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2309 if (vmx->vcpu.vcpu_id == 0)
2310 msr |= MSR_IA32_APICBASE_BSP;
2311 kvm_set_apic_base(&vmx->vcpu, msr);
2313 fx_init(&vmx->vcpu);
2315 seg_setup(VCPU_SREG_CS);
2317 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2318 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2320 if (vmx->vcpu.vcpu_id == 0) {
2321 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2322 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2323 } else {
2324 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2325 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2328 seg_setup(VCPU_SREG_DS);
2329 seg_setup(VCPU_SREG_ES);
2330 seg_setup(VCPU_SREG_FS);
2331 seg_setup(VCPU_SREG_GS);
2332 seg_setup(VCPU_SREG_SS);
2334 vmcs_write16(GUEST_TR_SELECTOR, 0);
2335 vmcs_writel(GUEST_TR_BASE, 0);
2336 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2337 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2339 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2340 vmcs_writel(GUEST_LDTR_BASE, 0);
2341 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2342 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2344 vmcs_write32(GUEST_SYSENTER_CS, 0);
2345 vmcs_writel(GUEST_SYSENTER_ESP, 0);
2346 vmcs_writel(GUEST_SYSENTER_EIP, 0);
2348 vmcs_writel(GUEST_RFLAGS, 0x02);
2349 if (vmx->vcpu.vcpu_id == 0)
2350 kvm_rip_write(vcpu, 0xfff0);
2351 else
2352 kvm_rip_write(vcpu, 0);
2353 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2355 vmcs_writel(GUEST_DR7, 0x400);
2357 vmcs_writel(GUEST_GDTR_BASE, 0);
2358 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2360 vmcs_writel(GUEST_IDTR_BASE, 0);
2361 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2363 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2364 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2365 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2367 /* Special registers */
2368 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2370 setup_msrs(vmx);
2372 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
2374 if (cpu_has_vmx_tpr_shadow()) {
2375 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2376 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2377 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2378 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2379 vmcs_write32(TPR_THRESHOLD, 0);
2382 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2383 vmcs_write64(APIC_ACCESS_ADDR,
2384 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2386 if (vmx->vpid != 0)
2387 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2389 vmx->vcpu.arch.cr0 = 0x60000010;
2390 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2391 vmx_set_cr4(&vmx->vcpu, 0);
2392 vmx_set_efer(&vmx->vcpu, 0);
2393 vmx_fpu_activate(&vmx->vcpu);
2394 update_exception_bitmap(&vmx->vcpu);
2396 vpid_sync_vcpu_all(vmx);
2398 ret = 0;
2400 /* HACK: Don't enable emulation on guest boot/reset */
2401 vmx->emulation_required = 0;
2403 out:
2404 up_read(&vcpu->kvm->slots_lock);
2405 return ret;
2408 static void enable_irq_window(struct kvm_vcpu *vcpu)
2410 u32 cpu_based_vm_exec_control;
2412 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2413 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2414 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2417 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2419 u32 cpu_based_vm_exec_control;
2421 if (!cpu_has_virtual_nmis()) {
2422 enable_irq_window(vcpu);
2423 return;
2426 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2427 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2428 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2431 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
2433 struct vcpu_vmx *vmx = to_vmx(vcpu);
2435 KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
2437 ++vcpu->stat.irq_injections;
2438 if (vcpu->arch.rmode.active) {
2439 vmx->rmode.irq.pending = true;
2440 vmx->rmode.irq.vector = irq;
2441 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2442 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2443 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2444 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2445 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2446 return;
2448 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2449 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
2452 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2454 struct vcpu_vmx *vmx = to_vmx(vcpu);
2456 if (!cpu_has_virtual_nmis()) {
2458 * Tracking the NMI-blocked state in software is built upon
2459 * finding the next open IRQ window. This, in turn, depends on
2460 * well-behaving guests: They have to keep IRQs disabled at
2461 * least as long as the NMI handler runs. Otherwise we may
2462 * cause NMI nesting, maybe breaking the guest. But as this is
2463 * highly unlikely, we can live with the residual risk.
2465 vmx->soft_vnmi_blocked = 1;
2466 vmx->vnmi_blocked_time = 0;
2469 ++vcpu->stat.nmi_injections;
2470 if (vcpu->arch.rmode.active) {
2471 vmx->rmode.irq.pending = true;
2472 vmx->rmode.irq.vector = NMI_VECTOR;
2473 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2474 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2475 NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2476 INTR_INFO_VALID_MASK);
2477 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2478 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2479 return;
2481 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2482 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2485 static void vmx_update_window_states(struct kvm_vcpu *vcpu)
2487 u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2489 vcpu->arch.nmi_window_open =
2490 !(guest_intr & (GUEST_INTR_STATE_STI |
2491 GUEST_INTR_STATE_MOV_SS |
2492 GUEST_INTR_STATE_NMI));
2493 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2494 vcpu->arch.nmi_window_open = 0;
2496 vcpu->arch.interrupt_window_open =
2497 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2498 !(guest_intr & (GUEST_INTR_STATE_STI |
2499 GUEST_INTR_STATE_MOV_SS)));
2502 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2504 vmx_update_window_states(vcpu);
2505 return vcpu->arch.interrupt_window_open;
2508 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2510 int ret;
2511 struct kvm_userspace_memory_region tss_mem = {
2512 .slot = TSS_PRIVATE_MEMSLOT,
2513 .guest_phys_addr = addr,
2514 .memory_size = PAGE_SIZE * 3,
2515 .flags = 0,
2518 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2519 if (ret)
2520 return ret;
2521 kvm->arch.tss_addr = addr;
2522 return 0;
2525 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2526 int vec, u32 err_code)
2529 * Instruction with address size override prefix opcode 0x67
2530 * Cause the #SS fault with 0 error code in VM86 mode.
2532 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2533 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2534 return 1;
2536 * Forward all other exceptions that are valid in real mode.
2537 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2538 * the required debugging infrastructure rework.
2540 switch (vec) {
2541 case DB_VECTOR:
2542 if (vcpu->guest_debug &
2543 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2544 return 0;
2545 kvm_queue_exception(vcpu, vec);
2546 return 1;
2547 case BP_VECTOR:
2548 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2549 return 0;
2550 /* fall through */
2551 case DE_VECTOR:
2552 case OF_VECTOR:
2553 case BR_VECTOR:
2554 case UD_VECTOR:
2555 case DF_VECTOR:
2556 case SS_VECTOR:
2557 case GP_VECTOR:
2558 case MF_VECTOR:
2559 kvm_queue_exception(vcpu, vec);
2560 return 1;
2562 return 0;
2565 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2567 struct vcpu_vmx *vmx = to_vmx(vcpu);
2568 u32 intr_info, ex_no, error_code;
2569 unsigned long cr2, rip, dr6;
2570 u32 vect_info;
2571 enum emulation_result er;
2573 vect_info = vmx->idt_vectoring_info;
2574 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2576 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2577 !is_page_fault(intr_info))
2578 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2579 "intr info 0x%x\n", __func__, vect_info, intr_info);
2581 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2582 return 1; /* already handled by vmx_vcpu_run() */
2584 if (is_no_device(intr_info)) {
2585 vmx_fpu_activate(vcpu);
2586 return 1;
2589 if (is_invalid_opcode(intr_info)) {
2590 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2591 if (er != EMULATE_DONE)
2592 kvm_queue_exception(vcpu, UD_VECTOR);
2593 return 1;
2596 error_code = 0;
2597 rip = kvm_rip_read(vcpu);
2598 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2599 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2600 if (is_page_fault(intr_info)) {
2601 /* EPT won't cause page fault directly */
2602 if (enable_ept)
2603 BUG();
2604 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2605 KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
2606 (u32)((u64)cr2 >> 32), handler);
2607 if (vcpu->arch.interrupt.pending || vcpu->arch.exception.pending)
2608 kvm_mmu_unprotect_page_virt(vcpu, cr2);
2609 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2612 if (vcpu->arch.rmode.active &&
2613 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2614 error_code)) {
2615 if (vcpu->arch.halt_request) {
2616 vcpu->arch.halt_request = 0;
2617 return kvm_emulate_halt(vcpu);
2619 return 1;
2622 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
2623 switch (ex_no) {
2624 case DB_VECTOR:
2625 dr6 = vmcs_readl(EXIT_QUALIFICATION);
2626 if (!(vcpu->guest_debug &
2627 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
2628 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
2629 kvm_queue_exception(vcpu, DB_VECTOR);
2630 return 1;
2632 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
2633 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
2634 /* fall through */
2635 case BP_VECTOR:
2636 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2637 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
2638 kvm_run->debug.arch.exception = ex_no;
2639 break;
2640 default:
2641 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2642 kvm_run->ex.exception = ex_no;
2643 kvm_run->ex.error_code = error_code;
2644 break;
2646 return 0;
2649 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2650 struct kvm_run *kvm_run)
2652 ++vcpu->stat.irq_exits;
2653 KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
2654 return 1;
2657 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2659 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2660 return 0;
2663 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2665 unsigned long exit_qualification;
2666 int size, in, string;
2667 unsigned port;
2669 ++vcpu->stat.io_exits;
2670 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2671 string = (exit_qualification & 16) != 0;
2673 if (string) {
2674 if (emulate_instruction(vcpu,
2675 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2676 return 0;
2677 return 1;
2680 size = (exit_qualification & 7) + 1;
2681 in = (exit_qualification & 8) != 0;
2682 port = exit_qualification >> 16;
2684 skip_emulated_instruction(vcpu);
2685 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2688 static void
2689 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2692 * Patch in the VMCALL instruction:
2694 hypercall[0] = 0x0f;
2695 hypercall[1] = 0x01;
2696 hypercall[2] = 0xc1;
2699 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2701 unsigned long exit_qualification;
2702 int cr;
2703 int reg;
2705 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2706 cr = exit_qualification & 15;
2707 reg = (exit_qualification >> 8) & 15;
2708 switch ((exit_qualification >> 4) & 3) {
2709 case 0: /* mov to cr */
2710 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
2711 (u32)kvm_register_read(vcpu, reg),
2712 (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2713 handler);
2714 switch (cr) {
2715 case 0:
2716 kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
2717 skip_emulated_instruction(vcpu);
2718 return 1;
2719 case 3:
2720 kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
2721 skip_emulated_instruction(vcpu);
2722 return 1;
2723 case 4:
2724 kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
2725 skip_emulated_instruction(vcpu);
2726 return 1;
2727 case 8: {
2728 u8 cr8_prev = kvm_get_cr8(vcpu);
2729 u8 cr8 = kvm_register_read(vcpu, reg);
2730 kvm_set_cr8(vcpu, cr8);
2731 skip_emulated_instruction(vcpu);
2732 if (irqchip_in_kernel(vcpu->kvm))
2733 return 1;
2734 if (cr8_prev <= cr8)
2735 return 1;
2736 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2737 return 0;
2740 break;
2741 case 2: /* clts */
2742 vmx_fpu_deactivate(vcpu);
2743 vcpu->arch.cr0 &= ~X86_CR0_TS;
2744 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2745 vmx_fpu_activate(vcpu);
2746 KVMTRACE_0D(CLTS, vcpu, handler);
2747 skip_emulated_instruction(vcpu);
2748 return 1;
2749 case 1: /*mov from cr*/
2750 switch (cr) {
2751 case 3:
2752 kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2753 KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
2754 (u32)kvm_register_read(vcpu, reg),
2755 (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2756 handler);
2757 skip_emulated_instruction(vcpu);
2758 return 1;
2759 case 8:
2760 kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
2761 KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
2762 (u32)kvm_register_read(vcpu, reg), handler);
2763 skip_emulated_instruction(vcpu);
2764 return 1;
2766 break;
2767 case 3: /* lmsw */
2768 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2770 skip_emulated_instruction(vcpu);
2771 return 1;
2772 default:
2773 break;
2775 kvm_run->exit_reason = 0;
2776 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2777 (int)(exit_qualification >> 4) & 3, cr);
2778 return 0;
2781 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2783 unsigned long exit_qualification;
2784 unsigned long val;
2785 int dr, reg;
2787 dr = vmcs_readl(GUEST_DR7);
2788 if (dr & DR7_GD) {
2790 * As the vm-exit takes precedence over the debug trap, we
2791 * need to emulate the latter, either for the host or the
2792 * guest debugging itself.
2794 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
2795 kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
2796 kvm_run->debug.arch.dr7 = dr;
2797 kvm_run->debug.arch.pc =
2798 vmcs_readl(GUEST_CS_BASE) +
2799 vmcs_readl(GUEST_RIP);
2800 kvm_run->debug.arch.exception = DB_VECTOR;
2801 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2802 return 0;
2803 } else {
2804 vcpu->arch.dr7 &= ~DR7_GD;
2805 vcpu->arch.dr6 |= DR6_BD;
2806 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2807 kvm_queue_exception(vcpu, DB_VECTOR);
2808 return 1;
2812 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2813 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
2814 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
2815 if (exit_qualification & TYPE_MOV_FROM_DR) {
2816 switch (dr) {
2817 case 0 ... 3:
2818 val = vcpu->arch.db[dr];
2819 break;
2820 case 6:
2821 val = vcpu->arch.dr6;
2822 break;
2823 case 7:
2824 val = vcpu->arch.dr7;
2825 break;
2826 default:
2827 val = 0;
2829 kvm_register_write(vcpu, reg, val);
2830 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
2831 } else {
2832 val = vcpu->arch.regs[reg];
2833 switch (dr) {
2834 case 0 ... 3:
2835 vcpu->arch.db[dr] = val;
2836 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
2837 vcpu->arch.eff_db[dr] = val;
2838 break;
2839 case 4 ... 5:
2840 if (vcpu->arch.cr4 & X86_CR4_DE)
2841 kvm_queue_exception(vcpu, UD_VECTOR);
2842 break;
2843 case 6:
2844 if (val & 0xffffffff00000000ULL) {
2845 kvm_queue_exception(vcpu, GP_VECTOR);
2846 break;
2848 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
2849 break;
2850 case 7:
2851 if (val & 0xffffffff00000000ULL) {
2852 kvm_queue_exception(vcpu, GP_VECTOR);
2853 break;
2855 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
2856 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
2857 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2858 vcpu->arch.switch_db_regs =
2859 (val & DR7_BP_EN_MASK);
2861 break;
2863 KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)val, handler);
2865 skip_emulated_instruction(vcpu);
2866 return 1;
2869 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2871 kvm_emulate_cpuid(vcpu);
2872 return 1;
2875 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2877 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2878 u64 data;
2880 if (vmx_get_msr(vcpu, ecx, &data)) {
2881 kvm_inject_gp(vcpu, 0);
2882 return 1;
2885 KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
2886 handler);
2888 /* FIXME: handling of bits 32:63 of rax, rdx */
2889 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2890 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2891 skip_emulated_instruction(vcpu);
2892 return 1;
2895 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2897 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2898 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2899 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2901 KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
2902 handler);
2904 if (vmx_set_msr(vcpu, ecx, data) != 0) {
2905 kvm_inject_gp(vcpu, 0);
2906 return 1;
2909 skip_emulated_instruction(vcpu);
2910 return 1;
2913 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2914 struct kvm_run *kvm_run)
2916 return 1;
2919 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2920 struct kvm_run *kvm_run)
2922 u32 cpu_based_vm_exec_control;
2924 /* clear pending irq */
2925 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2926 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2927 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2929 KVMTRACE_0D(PEND_INTR, vcpu, handler);
2930 ++vcpu->stat.irq_window_exits;
2933 * If the user space waits to inject interrupts, exit as soon as
2934 * possible
2936 if (!irqchip_in_kernel(vcpu->kvm) &&
2937 kvm_run->request_interrupt_window &&
2938 !kvm_cpu_has_interrupt(vcpu)) {
2939 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2940 return 0;
2942 return 1;
2945 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2947 skip_emulated_instruction(vcpu);
2948 return kvm_emulate_halt(vcpu);
2951 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2953 skip_emulated_instruction(vcpu);
2954 kvm_emulate_hypercall(vcpu);
2955 return 1;
2958 static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2960 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2962 kvm_mmu_invlpg(vcpu, exit_qualification);
2963 skip_emulated_instruction(vcpu);
2964 return 1;
2967 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2969 skip_emulated_instruction(vcpu);
2970 /* TODO: Add support for VT-d/pass-through device */
2971 return 1;
2974 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2976 unsigned long exit_qualification;
2977 enum emulation_result er;
2978 unsigned long offset;
2980 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2981 offset = exit_qualification & 0xffful;
2983 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2985 if (er != EMULATE_DONE) {
2986 printk(KERN_ERR
2987 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2988 offset);
2989 return -ENOTSUPP;
2991 return 1;
2994 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2996 struct vcpu_vmx *vmx = to_vmx(vcpu);
2997 unsigned long exit_qualification;
2998 u16 tss_selector;
2999 int reason, type, idt_v;
3001 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3002 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3004 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3006 reason = (u32)exit_qualification >> 30;
3007 if (reason == TASK_SWITCH_GATE && idt_v) {
3008 switch (type) {
3009 case INTR_TYPE_NMI_INTR:
3010 vcpu->arch.nmi_injected = false;
3011 if (cpu_has_virtual_nmis())
3012 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3013 GUEST_INTR_STATE_NMI);
3014 break;
3015 case INTR_TYPE_EXT_INTR:
3016 kvm_clear_interrupt_queue(vcpu);
3017 break;
3018 case INTR_TYPE_HARD_EXCEPTION:
3019 case INTR_TYPE_SOFT_EXCEPTION:
3020 kvm_clear_exception_queue(vcpu);
3021 break;
3022 default:
3023 break;
3026 tss_selector = exit_qualification;
3028 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3029 type != INTR_TYPE_EXT_INTR &&
3030 type != INTR_TYPE_NMI_INTR))
3031 skip_emulated_instruction(vcpu);
3033 if (!kvm_task_switch(vcpu, tss_selector, reason))
3034 return 0;
3036 /* clear all local breakpoint enable flags */
3037 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3040 * TODO: What about debug traps on tss switch?
3041 * Are we supposed to inject them and update dr6?
3044 return 1;
3047 static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3049 unsigned long exit_qualification;
3050 gpa_t gpa;
3051 int gla_validity;
3053 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3055 if (exit_qualification & (1 << 6)) {
3056 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3057 return -ENOTSUPP;
3060 gla_validity = (exit_qualification >> 7) & 0x3;
3061 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3062 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3063 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3064 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3065 vmcs_readl(GUEST_LINEAR_ADDRESS));
3066 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3067 (long unsigned int)exit_qualification);
3068 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3069 kvm_run->hw.hardware_exit_reason = 0;
3070 return -ENOTSUPP;
3073 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3074 return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3077 static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3079 u32 cpu_based_vm_exec_control;
3081 /* clear pending NMI */
3082 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3083 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3084 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3085 ++vcpu->stat.nmi_window_exits;
3087 return 1;
3090 static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
3091 struct kvm_run *kvm_run)
3093 struct vcpu_vmx *vmx = to_vmx(vcpu);
3094 enum emulation_result err = EMULATE_DONE;
3096 preempt_enable();
3097 local_irq_enable();
3099 while (!guest_state_valid(vcpu)) {
3100 err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3102 if (err == EMULATE_DO_MMIO)
3103 break;
3105 if (err != EMULATE_DONE) {
3106 kvm_report_emulation_failure(vcpu, "emulation failure");
3107 return;
3110 if (signal_pending(current))
3111 break;
3112 if (need_resched())
3113 schedule();
3116 local_irq_disable();
3117 preempt_disable();
3119 vmx->invalid_state_emulation_result = err;
3123 * The exit handlers return 1 if the exit was handled fully and guest execution
3124 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
3125 * to be done to userspace and return 0.
3127 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
3128 struct kvm_run *kvm_run) = {
3129 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
3130 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
3131 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
3132 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
3133 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
3134 [EXIT_REASON_CR_ACCESS] = handle_cr,
3135 [EXIT_REASON_DR_ACCESS] = handle_dr,
3136 [EXIT_REASON_CPUID] = handle_cpuid,
3137 [EXIT_REASON_MSR_READ] = handle_rdmsr,
3138 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
3139 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
3140 [EXIT_REASON_HLT] = handle_halt,
3141 [EXIT_REASON_INVLPG] = handle_invlpg,
3142 [EXIT_REASON_VMCALL] = handle_vmcall,
3143 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
3144 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
3145 [EXIT_REASON_WBINVD] = handle_wbinvd,
3146 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
3147 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
3150 static const int kvm_vmx_max_exit_handlers =
3151 ARRAY_SIZE(kvm_vmx_exit_handlers);
3154 * The guest has exited. See if we can fix it or if we need userspace
3155 * assistance.
3157 static int vmx_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3159 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
3160 struct vcpu_vmx *vmx = to_vmx(vcpu);
3161 u32 vectoring_info = vmx->idt_vectoring_info;
3163 KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
3164 (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
3166 /* If we need to emulate an MMIO from handle_invalid_guest_state
3167 * we just return 0 */
3168 if (vmx->emulation_required && emulate_invalid_guest_state) {
3169 if (guest_state_valid(vcpu))
3170 vmx->emulation_required = 0;
3171 return vmx->invalid_state_emulation_result != EMULATE_DO_MMIO;
3174 /* Access CR3 don't cause VMExit in paging mode, so we need
3175 * to sync with guest real CR3. */
3176 if (enable_ept && is_paging(vcpu)) {
3177 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3178 ept_load_pdptrs(vcpu);
3181 if (unlikely(vmx->fail)) {
3182 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3183 kvm_run->fail_entry.hardware_entry_failure_reason
3184 = vmcs_read32(VM_INSTRUCTION_ERROR);
3185 return 0;
3188 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3189 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3190 exit_reason != EXIT_REASON_EPT_VIOLATION &&
3191 exit_reason != EXIT_REASON_TASK_SWITCH))
3192 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3193 "(0x%x) and exit reason is 0x%x\n",
3194 __func__, vectoring_info, exit_reason);
3196 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3197 if (vcpu->arch.interrupt_window_open) {
3198 vmx->soft_vnmi_blocked = 0;
3199 vcpu->arch.nmi_window_open = 1;
3200 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3201 vcpu->arch.nmi_pending) {
3203 * This CPU don't support us in finding the end of an
3204 * NMI-blocked window if the guest runs with IRQs
3205 * disabled. So we pull the trigger after 1 s of
3206 * futile waiting, but inform the user about this.
3208 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3209 "state on VCPU %d after 1 s timeout\n",
3210 __func__, vcpu->vcpu_id);
3211 vmx->soft_vnmi_blocked = 0;
3212 vmx->vcpu.arch.nmi_window_open = 1;
3216 if (exit_reason < kvm_vmx_max_exit_handlers
3217 && kvm_vmx_exit_handlers[exit_reason])
3218 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
3219 else {
3220 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3221 kvm_run->hw.hardware_exit_reason = exit_reason;
3223 return 0;
3226 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
3228 int max_irr, tpr;
3230 if (!vm_need_tpr_shadow(vcpu->kvm))
3231 return;
3233 if (!kvm_lapic_enabled(vcpu) ||
3234 ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
3235 vmcs_write32(TPR_THRESHOLD, 0);
3236 return;
3239 tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
3240 vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
3243 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3245 u32 exit_intr_info;
3246 u32 idt_vectoring_info = vmx->idt_vectoring_info;
3247 bool unblock_nmi;
3248 u8 vector;
3249 int type;
3250 bool idtv_info_valid;
3252 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3253 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3254 if (cpu_has_virtual_nmis()) {
3255 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3256 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3258 * SDM 3: 27.7.1.2 (September 2008)
3259 * Re-set bit "block by NMI" before VM entry if vmexit caused by
3260 * a guest IRET fault.
3261 * SDM 3: 23.2.2 (September 2008)
3262 * Bit 12 is undefined in any of the following cases:
3263 * If the VM exit sets the valid bit in the IDT-vectoring
3264 * information field.
3265 * If the VM exit is due to a double fault.
3267 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3268 vector != DF_VECTOR && !idtv_info_valid)
3269 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3270 GUEST_INTR_STATE_NMI);
3271 } else if (unlikely(vmx->soft_vnmi_blocked))
3272 vmx->vnmi_blocked_time +=
3273 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3275 vmx->vcpu.arch.nmi_injected = false;
3276 kvm_clear_exception_queue(&vmx->vcpu);
3277 kvm_clear_interrupt_queue(&vmx->vcpu);
3279 if (!idtv_info_valid)
3280 return;
3282 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3283 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3285 switch (type) {
3286 case INTR_TYPE_NMI_INTR:
3287 vmx->vcpu.arch.nmi_injected = true;
3289 * SDM 3: 27.7.1.2 (September 2008)
3290 * Clear bit "block by NMI" before VM entry if a NMI
3291 * delivery faulted.
3293 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3294 GUEST_INTR_STATE_NMI);
3295 break;
3296 case INTR_TYPE_HARD_EXCEPTION:
3297 case INTR_TYPE_SOFT_EXCEPTION:
3298 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3299 u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3300 kvm_queue_exception_e(&vmx->vcpu, vector, err);
3301 } else
3302 kvm_queue_exception(&vmx->vcpu, vector);
3303 break;
3304 case INTR_TYPE_EXT_INTR:
3305 kvm_queue_interrupt(&vmx->vcpu, vector);
3306 break;
3307 default:
3308 break;
3312 static void vmx_intr_inject(struct kvm_vcpu *vcpu)
3314 /* try to reinject previous events if any */
3315 if (vcpu->arch.nmi_injected) {
3316 vmx_inject_nmi(vcpu);
3317 return;
3320 if (vcpu->arch.interrupt.pending) {
3321 vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
3322 return;
3325 /* try to inject new event if pending */
3326 if (vcpu->arch.nmi_pending) {
3327 if (vcpu->arch.nmi_window_open) {
3328 vcpu->arch.nmi_pending = false;
3329 vcpu->arch.nmi_injected = true;
3330 vmx_inject_nmi(vcpu);
3332 } else if (kvm_cpu_has_interrupt(vcpu)) {
3333 if (vcpu->arch.interrupt_window_open) {
3334 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
3335 vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
3340 static void vmx_intr_assist(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3342 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3343 kvm_run->request_interrupt_window;
3345 update_tpr_threshold(vcpu);
3347 vmx_update_window_states(vcpu);
3349 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3350 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3351 GUEST_INTR_STATE_STI |
3352 GUEST_INTR_STATE_MOV_SS);
3354 vmx_intr_inject(vcpu);
3356 /* enable NMI/IRQ window open exits if needed */
3357 if (vcpu->arch.nmi_pending)
3358 enable_nmi_window(vcpu);
3359 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3360 enable_irq_window(vcpu);
3364 * Failure to inject an interrupt should give us the information
3365 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
3366 * when fetching the interrupt redirection bitmap in the real-mode
3367 * tss, this doesn't happen. So we do it ourselves.
3369 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3371 vmx->rmode.irq.pending = 0;
3372 if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3373 return;
3374 kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3375 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3376 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3377 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3378 return;
3380 vmx->idt_vectoring_info =
3381 VECTORING_INFO_VALID_MASK
3382 | INTR_TYPE_EXT_INTR
3383 | vmx->rmode.irq.vector;
3386 #ifdef CONFIG_X86_64
3387 #define R "r"
3388 #define Q "q"
3389 #else
3390 #define R "e"
3391 #define Q "l"
3392 #endif
3394 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3396 struct vcpu_vmx *vmx = to_vmx(vcpu);
3397 u32 intr_info;
3399 /* Record the guest's net vcpu time for enforced NMI injections. */
3400 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3401 vmx->entry_time = ktime_get();
3403 /* Handle invalid guest state instead of entering VMX */
3404 if (vmx->emulation_required && emulate_invalid_guest_state) {
3405 handle_invalid_guest_state(vcpu, kvm_run);
3406 return;
3409 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3410 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3411 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3412 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3415 * Loading guest fpu may have cleared host cr0.ts
3417 vmcs_writel(HOST_CR0, read_cr0());
3419 set_debugreg(vcpu->arch.dr6, 6);
3421 asm(
3422 /* Store host registers */
3423 "push %%"R"dx; push %%"R"bp;"
3424 "push %%"R"cx \n\t"
3425 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3426 "je 1f \n\t"
3427 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3428 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3429 "1: \n\t"
3430 /* Check if vmlaunch of vmresume is needed */
3431 "cmpl $0, %c[launched](%0) \n\t"
3432 /* Load guest registers. Don't clobber flags. */
3433 "mov %c[cr2](%0), %%"R"ax \n\t"
3434 "mov %%"R"ax, %%cr2 \n\t"
3435 "mov %c[rax](%0), %%"R"ax \n\t"
3436 "mov %c[rbx](%0), %%"R"bx \n\t"
3437 "mov %c[rdx](%0), %%"R"dx \n\t"
3438 "mov %c[rsi](%0), %%"R"si \n\t"
3439 "mov %c[rdi](%0), %%"R"di \n\t"
3440 "mov %c[rbp](%0), %%"R"bp \n\t"
3441 #ifdef CONFIG_X86_64
3442 "mov %c[r8](%0), %%r8 \n\t"
3443 "mov %c[r9](%0), %%r9 \n\t"
3444 "mov %c[r10](%0), %%r10 \n\t"
3445 "mov %c[r11](%0), %%r11 \n\t"
3446 "mov %c[r12](%0), %%r12 \n\t"
3447 "mov %c[r13](%0), %%r13 \n\t"
3448 "mov %c[r14](%0), %%r14 \n\t"
3449 "mov %c[r15](%0), %%r15 \n\t"
3450 #endif
3451 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3453 /* Enter guest mode */
3454 "jne .Llaunched \n\t"
3455 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3456 "jmp .Lkvm_vmx_return \n\t"
3457 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3458 ".Lkvm_vmx_return: "
3459 /* Save guest registers, load host registers, keep flags */
3460 "xchg %0, (%%"R"sp) \n\t"
3461 "mov %%"R"ax, %c[rax](%0) \n\t"
3462 "mov %%"R"bx, %c[rbx](%0) \n\t"
3463 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3464 "mov %%"R"dx, %c[rdx](%0) \n\t"
3465 "mov %%"R"si, %c[rsi](%0) \n\t"
3466 "mov %%"R"di, %c[rdi](%0) \n\t"
3467 "mov %%"R"bp, %c[rbp](%0) \n\t"
3468 #ifdef CONFIG_X86_64
3469 "mov %%r8, %c[r8](%0) \n\t"
3470 "mov %%r9, %c[r9](%0) \n\t"
3471 "mov %%r10, %c[r10](%0) \n\t"
3472 "mov %%r11, %c[r11](%0) \n\t"
3473 "mov %%r12, %c[r12](%0) \n\t"
3474 "mov %%r13, %c[r13](%0) \n\t"
3475 "mov %%r14, %c[r14](%0) \n\t"
3476 "mov %%r15, %c[r15](%0) \n\t"
3477 #endif
3478 "mov %%cr2, %%"R"ax \n\t"
3479 "mov %%"R"ax, %c[cr2](%0) \n\t"
3481 "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
3482 "setbe %c[fail](%0) \n\t"
3483 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3484 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3485 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3486 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3487 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3488 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3489 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3490 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3491 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3492 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3493 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3494 #ifdef CONFIG_X86_64
3495 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3496 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3497 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3498 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3499 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3500 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3501 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3502 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3503 #endif
3504 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3505 : "cc", "memory"
3506 , R"bx", R"di", R"si"
3507 #ifdef CONFIG_X86_64
3508 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3509 #endif
3512 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3513 vcpu->arch.regs_dirty = 0;
3515 get_debugreg(vcpu->arch.dr6, 6);
3517 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3518 if (vmx->rmode.irq.pending)
3519 fixup_rmode_irq(vmx);
3521 vmx_update_window_states(vcpu);
3523 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3524 vmx->launched = 1;
3526 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3528 /* We need to handle NMIs before interrupts are enabled */
3529 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3530 (intr_info & INTR_INFO_VALID_MASK)) {
3531 KVMTRACE_0D(NMI, vcpu, handler);
3532 asm("int $2");
3535 vmx_complete_interrupts(vmx);
3538 #undef R
3539 #undef Q
3541 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3543 struct vcpu_vmx *vmx = to_vmx(vcpu);
3545 if (vmx->vmcs) {
3546 vcpu_clear(vmx);
3547 free_vmcs(vmx->vmcs);
3548 vmx->vmcs = NULL;
3552 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3554 struct vcpu_vmx *vmx = to_vmx(vcpu);
3556 spin_lock(&vmx_vpid_lock);
3557 if (vmx->vpid != 0)
3558 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3559 spin_unlock(&vmx_vpid_lock);
3560 vmx_free_vmcs(vcpu);
3561 kfree(vmx->host_msrs);
3562 kfree(vmx->guest_msrs);
3563 kvm_vcpu_uninit(vcpu);
3564 kmem_cache_free(kvm_vcpu_cache, vmx);
3567 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3569 int err;
3570 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3571 int cpu;
3573 if (!vmx)
3574 return ERR_PTR(-ENOMEM);
3576 allocate_vpid(vmx);
3578 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3579 if (err)
3580 goto free_vcpu;
3582 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3583 if (!vmx->guest_msrs) {
3584 err = -ENOMEM;
3585 goto uninit_vcpu;
3588 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3589 if (!vmx->host_msrs)
3590 goto free_guest_msrs;
3592 vmx->vmcs = alloc_vmcs();
3593 if (!vmx->vmcs)
3594 goto free_msrs;
3596 vmcs_clear(vmx->vmcs);
3598 cpu = get_cpu();
3599 vmx_vcpu_load(&vmx->vcpu, cpu);
3600 err = vmx_vcpu_setup(vmx);
3601 vmx_vcpu_put(&vmx->vcpu);
3602 put_cpu();
3603 if (err)
3604 goto free_vmcs;
3605 if (vm_need_virtualize_apic_accesses(kvm))
3606 if (alloc_apic_access_page(kvm) != 0)
3607 goto free_vmcs;
3609 if (enable_ept)
3610 if (alloc_identity_pagetable(kvm) != 0)
3611 goto free_vmcs;
3613 return &vmx->vcpu;
3615 free_vmcs:
3616 free_vmcs(vmx->vmcs);
3617 free_msrs:
3618 kfree(vmx->host_msrs);
3619 free_guest_msrs:
3620 kfree(vmx->guest_msrs);
3621 uninit_vcpu:
3622 kvm_vcpu_uninit(&vmx->vcpu);
3623 free_vcpu:
3624 kmem_cache_free(kvm_vcpu_cache, vmx);
3625 return ERR_PTR(err);
3628 static void __init vmx_check_processor_compat(void *rtn)
3630 struct vmcs_config vmcs_conf;
3632 *(int *)rtn = 0;
3633 if (setup_vmcs_config(&vmcs_conf) < 0)
3634 *(int *)rtn = -EIO;
3635 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3636 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3637 smp_processor_id());
3638 *(int *)rtn = -EIO;
3642 static int get_ept_level(void)
3644 return VMX_EPT_DEFAULT_GAW + 1;
3647 static int vmx_get_mt_mask_shift(void)
3649 return VMX_EPT_MT_EPTE_SHIFT;
3652 static struct kvm_x86_ops vmx_x86_ops = {
3653 .cpu_has_kvm_support = cpu_has_kvm_support,
3654 .disabled_by_bios = vmx_disabled_by_bios,
3655 .hardware_setup = hardware_setup,
3656 .hardware_unsetup = hardware_unsetup,
3657 .check_processor_compatibility = vmx_check_processor_compat,
3658 .hardware_enable = hardware_enable,
3659 .hardware_disable = hardware_disable,
3660 .cpu_has_accelerated_tpr = report_flexpriority,
3662 .vcpu_create = vmx_create_vcpu,
3663 .vcpu_free = vmx_free_vcpu,
3664 .vcpu_reset = vmx_vcpu_reset,
3666 .prepare_guest_switch = vmx_save_host_state,
3667 .vcpu_load = vmx_vcpu_load,
3668 .vcpu_put = vmx_vcpu_put,
3670 .set_guest_debug = set_guest_debug,
3671 .get_msr = vmx_get_msr,
3672 .set_msr = vmx_set_msr,
3673 .get_segment_base = vmx_get_segment_base,
3674 .get_segment = vmx_get_segment,
3675 .set_segment = vmx_set_segment,
3676 .get_cpl = vmx_get_cpl,
3677 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3678 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3679 .set_cr0 = vmx_set_cr0,
3680 .set_cr3 = vmx_set_cr3,
3681 .set_cr4 = vmx_set_cr4,
3682 .set_efer = vmx_set_efer,
3683 .get_idt = vmx_get_idt,
3684 .set_idt = vmx_set_idt,
3685 .get_gdt = vmx_get_gdt,
3686 .set_gdt = vmx_set_gdt,
3687 .cache_reg = vmx_cache_reg,
3688 .get_rflags = vmx_get_rflags,
3689 .set_rflags = vmx_set_rflags,
3691 .tlb_flush = vmx_flush_tlb,
3693 .run = vmx_vcpu_run,
3694 .handle_exit = vmx_handle_exit,
3695 .skip_emulated_instruction = skip_emulated_instruction,
3696 .patch_hypercall = vmx_patch_hypercall,
3697 .get_irq = vmx_get_irq,
3698 .set_irq = vmx_inject_irq,
3699 .queue_exception = vmx_queue_exception,
3700 .inject_pending_irq = vmx_intr_assist,
3701 .interrupt_allowed = vmx_interrupt_allowed,
3702 .set_tss_addr = vmx_set_tss_addr,
3703 .get_tdp_level = get_ept_level,
3704 .get_mt_mask_shift = vmx_get_mt_mask_shift,
3707 static int __init vmx_init(void)
3709 int r;
3711 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
3712 if (!vmx_io_bitmap_a)
3713 return -ENOMEM;
3715 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
3716 if (!vmx_io_bitmap_b) {
3717 r = -ENOMEM;
3718 goto out;
3721 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
3722 if (!vmx_msr_bitmap_legacy) {
3723 r = -ENOMEM;
3724 goto out1;
3727 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
3728 if (!vmx_msr_bitmap_longmode) {
3729 r = -ENOMEM;
3730 goto out2;
3734 * Allow direct access to the PC debug port (it is often used for I/O
3735 * delays, but the vmexits simply slow things down).
3737 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
3738 clear_bit(0x80, vmx_io_bitmap_a);
3740 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
3742 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
3743 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
3745 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
3747 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
3748 if (r)
3749 goto out3;
3751 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
3752 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
3753 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
3754 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
3755 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
3756 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
3758 if (enable_ept) {
3759 bypass_guest_pf = 0;
3760 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
3761 VMX_EPT_WRITABLE_MASK);
3762 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
3763 VMX_EPT_EXECUTABLE_MASK,
3764 VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
3765 kvm_enable_tdp();
3766 } else
3767 kvm_disable_tdp();
3769 if (bypass_guest_pf)
3770 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
3772 ept_sync_global();
3774 return 0;
3776 out3:
3777 free_page((unsigned long)vmx_msr_bitmap_longmode);
3778 out2:
3779 free_page((unsigned long)vmx_msr_bitmap_legacy);
3780 out1:
3781 free_page((unsigned long)vmx_io_bitmap_b);
3782 out:
3783 free_page((unsigned long)vmx_io_bitmap_a);
3784 return r;
3787 static void __exit vmx_exit(void)
3789 free_page((unsigned long)vmx_msr_bitmap_legacy);
3790 free_page((unsigned long)vmx_msr_bitmap_longmode);
3791 free_page((unsigned long)vmx_io_bitmap_b);
3792 free_page((unsigned long)vmx_io_bitmap_a);
3794 kvm_exit();
3797 module_init(vmx_init)
3798 module_exit(vmx_exit)