Blackfin: bf537-stamp: move ADF7021 MAC storage into platform resources
[linux-2.6/kvm.git] / drivers / usb / gadget / amd5536udc.c
blob731150d4b1d9d0e646e34ca03f7cbaa0ac85e398
1 /*
2 * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
4 * Copyright (C) 2005-2007 AMD (http://www.amd.com)
5 * Author: Thomas Dahlmann
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
24 * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
25 * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
27 * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
28 * be used as host port) and UOC bits PAD_EN and APU are set (should be done
29 * by BIOS init).
31 * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
32 * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
33 * can be used with gadget ether.
36 /* debug control */
37 /* #define UDC_VERBOSE */
39 /* Driver strings */
40 #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
41 #define UDC_DRIVER_VERSION_STRING "01.00.0206 - $Revision: #3 $"
43 /* system */
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/kernel.h>
47 #include <linux/delay.h>
48 #include <linux/ioport.h>
49 #include <linux/sched.h>
50 #include <linux/slab.h>
51 #include <linux/errno.h>
52 #include <linux/init.h>
53 #include <linux/timer.h>
54 #include <linux/list.h>
55 #include <linux/interrupt.h>
56 #include <linux/ioctl.h>
57 #include <linux/fs.h>
58 #include <linux/dmapool.h>
59 #include <linux/moduleparam.h>
60 #include <linux/device.h>
61 #include <linux/io.h>
62 #include <linux/irq.h>
64 #include <asm/byteorder.h>
65 #include <asm/system.h>
66 #include <asm/unaligned.h>
68 /* gadget stack */
69 #include <linux/usb/ch9.h>
70 #include <linux/usb/gadget.h>
72 /* udc specific */
73 #include "amd5536udc.h"
76 static void udc_tasklet_disconnect(unsigned long);
77 static void empty_req_queue(struct udc_ep *);
78 static int udc_probe(struct udc *dev);
79 static void udc_basic_init(struct udc *dev);
80 static void udc_setup_endpoints(struct udc *dev);
81 static void udc_soft_reset(struct udc *dev);
82 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
83 static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
84 static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
85 static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
86 unsigned long buf_len, gfp_t gfp_flags);
87 static int udc_remote_wakeup(struct udc *dev);
88 static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
89 static void udc_pci_remove(struct pci_dev *pdev);
91 /* description */
92 static const char mod_desc[] = UDC_MOD_DESCRIPTION;
93 static const char name[] = "amd5536udc";
95 /* structure to hold endpoint function pointers */
96 static const struct usb_ep_ops udc_ep_ops;
98 /* received setup data */
99 static union udc_setup_data setup_data;
101 /* pointer to device object */
102 static struct udc *udc;
104 /* irq spin lock for soft reset */
105 static DEFINE_SPINLOCK(udc_irq_spinlock);
106 /* stall spin lock */
107 static DEFINE_SPINLOCK(udc_stall_spinlock);
110 * slave mode: pending bytes in rx fifo after nyet,
111 * used if EPIN irq came but no req was available
113 static unsigned int udc_rxfifo_pending;
115 /* count soft resets after suspend to avoid loop */
116 static int soft_reset_occured;
117 static int soft_reset_after_usbreset_occured;
119 /* timer */
120 static struct timer_list udc_timer;
121 static int stop_timer;
123 /* set_rde -- Is used to control enabling of RX DMA. Problem is
124 * that UDC has only one bit (RDE) to enable/disable RX DMA for
125 * all OUT endpoints. So we have to handle race conditions like
126 * when OUT data reaches the fifo but no request was queued yet.
127 * This cannot be solved by letting the RX DMA disabled until a
128 * request gets queued because there may be other OUT packets
129 * in the FIFO (important for not blocking control traffic).
130 * The value of set_rde controls the correspondig timer.
132 * set_rde -1 == not used, means it is alloed to be set to 0 or 1
133 * set_rde 0 == do not touch RDE, do no start the RDE timer
134 * set_rde 1 == timer function will look whether FIFO has data
135 * set_rde 2 == set by timer function to enable RX DMA on next call
137 static int set_rde = -1;
139 static DECLARE_COMPLETION(on_exit);
140 static struct timer_list udc_pollstall_timer;
141 static int stop_pollstall_timer;
142 static DECLARE_COMPLETION(on_pollstall_exit);
144 /* tasklet for usb disconnect */
145 static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
146 (unsigned long) &udc);
149 /* endpoint names used for print */
150 static const char ep0_string[] = "ep0in";
151 static const char *ep_string[] = {
152 ep0_string,
153 "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
154 "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
155 "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
156 "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
157 "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
158 "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
159 "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
162 /* DMA usage flag */
163 static int use_dma = 1;
164 /* packet per buffer dma */
165 static int use_dma_ppb = 1;
166 /* with per descr. update */
167 static int use_dma_ppb_du;
168 /* buffer fill mode */
169 static int use_dma_bufferfill_mode;
170 /* full speed only mode */
171 static int use_fullspeed;
172 /* tx buffer size for high speed */
173 static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
175 /* module parameters */
176 module_param(use_dma, bool, S_IRUGO);
177 MODULE_PARM_DESC(use_dma, "true for DMA");
178 module_param(use_dma_ppb, bool, S_IRUGO);
179 MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
180 module_param(use_dma_ppb_du, bool, S_IRUGO);
181 MODULE_PARM_DESC(use_dma_ppb_du,
182 "true for DMA in packet per buffer mode with descriptor update");
183 module_param(use_fullspeed, bool, S_IRUGO);
184 MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
186 /*---------------------------------------------------------------------------*/
187 /* Prints UDC device registers and endpoint irq registers */
188 static void print_regs(struct udc *dev)
190 DBG(dev, "------- Device registers -------\n");
191 DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
192 DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
193 DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
194 DBG(dev, "\n");
195 DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
196 DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
197 DBG(dev, "\n");
198 DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
199 DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
200 DBG(dev, "\n");
201 DBG(dev, "USE DMA = %d\n", use_dma);
202 if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
203 DBG(dev, "DMA mode = PPBNDU (packet per buffer "
204 "WITHOUT desc. update)\n");
205 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
206 } else if (use_dma && use_dma_ppb_du && use_dma_ppb_du) {
207 DBG(dev, "DMA mode = PPBDU (packet per buffer "
208 "WITH desc. update)\n");
209 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
211 if (use_dma && use_dma_bufferfill_mode) {
212 DBG(dev, "DMA mode = BF (buffer fill mode)\n");
213 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
215 if (!use_dma) {
216 dev_info(&dev->pdev->dev, "FIFO mode\n");
218 DBG(dev, "-------------------------------------------------------\n");
221 /* Masks unused interrupts */
222 static int udc_mask_unused_interrupts(struct udc *dev)
224 u32 tmp;
226 /* mask all dev interrupts */
227 tmp = AMD_BIT(UDC_DEVINT_SVC) |
228 AMD_BIT(UDC_DEVINT_ENUM) |
229 AMD_BIT(UDC_DEVINT_US) |
230 AMD_BIT(UDC_DEVINT_UR) |
231 AMD_BIT(UDC_DEVINT_ES) |
232 AMD_BIT(UDC_DEVINT_SI) |
233 AMD_BIT(UDC_DEVINT_SOF)|
234 AMD_BIT(UDC_DEVINT_SC);
235 writel(tmp, &dev->regs->irqmsk);
237 /* mask all ep interrupts */
238 writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
240 return 0;
243 /* Enables endpoint 0 interrupts */
244 static int udc_enable_ep0_interrupts(struct udc *dev)
246 u32 tmp;
248 DBG(dev, "udc_enable_ep0_interrupts()\n");
250 /* read irq mask */
251 tmp = readl(&dev->regs->ep_irqmsk);
252 /* enable ep0 irq's */
253 tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
254 & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
255 writel(tmp, &dev->regs->ep_irqmsk);
257 return 0;
260 /* Enables device interrupts for SET_INTF and SET_CONFIG */
261 static int udc_enable_dev_setup_interrupts(struct udc *dev)
263 u32 tmp;
265 DBG(dev, "enable device interrupts for setup data\n");
267 /* read irq mask */
268 tmp = readl(&dev->regs->irqmsk);
270 /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
271 tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
272 & AMD_UNMASK_BIT(UDC_DEVINT_SC)
273 & AMD_UNMASK_BIT(UDC_DEVINT_UR)
274 & AMD_UNMASK_BIT(UDC_DEVINT_SVC)
275 & AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
276 writel(tmp, &dev->regs->irqmsk);
278 return 0;
281 /* Calculates fifo start of endpoint based on preceeding endpoints */
282 static int udc_set_txfifo_addr(struct udc_ep *ep)
284 struct udc *dev;
285 u32 tmp;
286 int i;
288 if (!ep || !(ep->in))
289 return -EINVAL;
291 dev = ep->dev;
292 ep->txfifo = dev->txfifo;
294 /* traverse ep's */
295 for (i = 0; i < ep->num; i++) {
296 if (dev->ep[i].regs) {
297 /* read fifo size */
298 tmp = readl(&dev->ep[i].regs->bufin_framenum);
299 tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
300 ep->txfifo += tmp;
303 return 0;
306 /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
307 static u32 cnak_pending;
309 static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
311 if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
312 DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
313 cnak_pending |= 1 << (num);
314 ep->naking = 1;
315 } else
316 cnak_pending = cnak_pending & (~(1 << (num)));
320 /* Enables endpoint, is called by gadget driver */
321 static int
322 udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
324 struct udc_ep *ep;
325 struct udc *dev;
326 u32 tmp;
327 unsigned long iflags;
328 u8 udc_csr_epix;
329 unsigned maxpacket;
331 if (!usbep
332 || usbep->name == ep0_string
333 || !desc
334 || desc->bDescriptorType != USB_DT_ENDPOINT)
335 return -EINVAL;
337 ep = container_of(usbep, struct udc_ep, ep);
338 dev = ep->dev;
340 DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
342 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
343 return -ESHUTDOWN;
345 spin_lock_irqsave(&dev->lock, iflags);
346 ep->desc = desc;
348 ep->halted = 0;
350 /* set traffic type */
351 tmp = readl(&dev->ep[ep->num].regs->ctl);
352 tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
353 writel(tmp, &dev->ep[ep->num].regs->ctl);
355 /* set max packet size */
356 maxpacket = le16_to_cpu(desc->wMaxPacketSize);
357 tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
358 tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
359 ep->ep.maxpacket = maxpacket;
360 writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
362 /* IN ep */
363 if (ep->in) {
365 /* ep ix in UDC CSR register space */
366 udc_csr_epix = ep->num;
368 /* set buffer size (tx fifo entries) */
369 tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
370 /* double buffering: fifo size = 2 x max packet size */
371 tmp = AMD_ADDBITS(
372 tmp,
373 maxpacket * UDC_EPIN_BUFF_SIZE_MULT
374 / UDC_DWORD_BYTES,
375 UDC_EPIN_BUFF_SIZE);
376 writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
378 /* calc. tx fifo base addr */
379 udc_set_txfifo_addr(ep);
381 /* flush fifo */
382 tmp = readl(&ep->regs->ctl);
383 tmp |= AMD_BIT(UDC_EPCTL_F);
384 writel(tmp, &ep->regs->ctl);
386 /* OUT ep */
387 } else {
388 /* ep ix in UDC CSR register space */
389 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
391 /* set max packet size UDC CSR */
392 tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
393 tmp = AMD_ADDBITS(tmp, maxpacket,
394 UDC_CSR_NE_MAX_PKT);
395 writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
397 if (use_dma && !ep->in) {
398 /* alloc and init BNA dummy request */
399 ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
400 ep->bna_occurred = 0;
403 if (ep->num != UDC_EP0OUT_IX)
404 dev->data_ep_enabled = 1;
407 /* set ep values */
408 tmp = readl(&dev->csr->ne[udc_csr_epix]);
409 /* max packet */
410 tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
411 /* ep number */
412 tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
413 /* ep direction */
414 tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
415 /* ep type */
416 tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
417 /* ep config */
418 tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
419 /* ep interface */
420 tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
421 /* ep alt */
422 tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
423 /* write reg */
424 writel(tmp, &dev->csr->ne[udc_csr_epix]);
426 /* enable ep irq */
427 tmp = readl(&dev->regs->ep_irqmsk);
428 tmp &= AMD_UNMASK_BIT(ep->num);
429 writel(tmp, &dev->regs->ep_irqmsk);
432 * clear NAK by writing CNAK
433 * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
435 if (!use_dma || ep->in) {
436 tmp = readl(&ep->regs->ctl);
437 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
438 writel(tmp, &ep->regs->ctl);
439 ep->naking = 0;
440 UDC_QUEUE_CNAK(ep, ep->num);
442 tmp = desc->bEndpointAddress;
443 DBG(dev, "%s enabled\n", usbep->name);
445 spin_unlock_irqrestore(&dev->lock, iflags);
446 return 0;
449 /* Resets endpoint */
450 static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
452 u32 tmp;
454 VDBG(ep->dev, "ep-%d reset\n", ep->num);
455 ep->desc = NULL;
456 ep->ep.ops = &udc_ep_ops;
457 INIT_LIST_HEAD(&ep->queue);
459 ep->ep.maxpacket = (u16) ~0;
460 /* set NAK */
461 tmp = readl(&ep->regs->ctl);
462 tmp |= AMD_BIT(UDC_EPCTL_SNAK);
463 writel(tmp, &ep->regs->ctl);
464 ep->naking = 1;
466 /* disable interrupt */
467 tmp = readl(&regs->ep_irqmsk);
468 tmp |= AMD_BIT(ep->num);
469 writel(tmp, &regs->ep_irqmsk);
471 if (ep->in) {
472 /* unset P and IN bit of potential former DMA */
473 tmp = readl(&ep->regs->ctl);
474 tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
475 writel(tmp, &ep->regs->ctl);
477 tmp = readl(&ep->regs->sts);
478 tmp |= AMD_BIT(UDC_EPSTS_IN);
479 writel(tmp, &ep->regs->sts);
481 /* flush the fifo */
482 tmp = readl(&ep->regs->ctl);
483 tmp |= AMD_BIT(UDC_EPCTL_F);
484 writel(tmp, &ep->regs->ctl);
487 /* reset desc pointer */
488 writel(0, &ep->regs->desptr);
491 /* Disables endpoint, is called by gadget driver */
492 static int udc_ep_disable(struct usb_ep *usbep)
494 struct udc_ep *ep = NULL;
495 unsigned long iflags;
497 if (!usbep)
498 return -EINVAL;
500 ep = container_of(usbep, struct udc_ep, ep);
501 if (usbep->name == ep0_string || !ep->desc)
502 return -EINVAL;
504 DBG(ep->dev, "Disable ep-%d\n", ep->num);
506 spin_lock_irqsave(&ep->dev->lock, iflags);
507 udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
508 empty_req_queue(ep);
509 ep_init(ep->dev->regs, ep);
510 spin_unlock_irqrestore(&ep->dev->lock, iflags);
512 return 0;
515 /* Allocates request packet, called by gadget driver */
516 static struct usb_request *
517 udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
519 struct udc_request *req;
520 struct udc_data_dma *dma_desc;
521 struct udc_ep *ep;
523 if (!usbep)
524 return NULL;
526 ep = container_of(usbep, struct udc_ep, ep);
528 VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
529 req = kzalloc(sizeof(struct udc_request), gfp);
530 if (!req)
531 return NULL;
533 req->req.dma = DMA_DONT_USE;
534 INIT_LIST_HEAD(&req->queue);
536 if (ep->dma) {
537 /* ep0 in requests are allocated from data pool here */
538 dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
539 &req->td_phys);
540 if (!dma_desc) {
541 kfree(req);
542 return NULL;
545 VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
546 "td_phys = %lx\n",
547 req, dma_desc,
548 (unsigned long)req->td_phys);
549 /* prevent from using desc. - set HOST BUSY */
550 dma_desc->status = AMD_ADDBITS(dma_desc->status,
551 UDC_DMA_STP_STS_BS_HOST_BUSY,
552 UDC_DMA_STP_STS_BS);
553 dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
554 req->td_data = dma_desc;
555 req->td_data_last = NULL;
556 req->chain_len = 1;
559 return &req->req;
562 /* Frees request packet, called by gadget driver */
563 static void
564 udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
566 struct udc_ep *ep;
567 struct udc_request *req;
569 if (!usbep || !usbreq)
570 return;
572 ep = container_of(usbep, struct udc_ep, ep);
573 req = container_of(usbreq, struct udc_request, req);
574 VDBG(ep->dev, "free_req req=%p\n", req);
575 BUG_ON(!list_empty(&req->queue));
576 if (req->td_data) {
577 VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
579 /* free dma chain if created */
580 if (req->chain_len > 1) {
581 udc_free_dma_chain(ep->dev, req);
584 pci_pool_free(ep->dev->data_requests, req->td_data,
585 req->td_phys);
587 kfree(req);
590 /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
591 static void udc_init_bna_dummy(struct udc_request *req)
593 if (req) {
594 /* set last bit */
595 req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
596 /* set next pointer to itself */
597 req->td_data->next = req->td_phys;
598 /* set HOST BUSY */
599 req->td_data->status
600 = AMD_ADDBITS(req->td_data->status,
601 UDC_DMA_STP_STS_BS_DMA_DONE,
602 UDC_DMA_STP_STS_BS);
603 #ifdef UDC_VERBOSE
604 pr_debug("bna desc = %p, sts = %08x\n",
605 req->td_data, req->td_data->status);
606 #endif
610 /* Allocate BNA dummy descriptor */
611 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
613 struct udc_request *req = NULL;
614 struct usb_request *_req = NULL;
616 /* alloc the dummy request */
617 _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
618 if (_req) {
619 req = container_of(_req, struct udc_request, req);
620 ep->bna_dummy_req = req;
621 udc_init_bna_dummy(req);
623 return req;
626 /* Write data to TX fifo for IN packets */
627 static void
628 udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
630 u8 *req_buf;
631 u32 *buf;
632 int i, j;
633 unsigned bytes = 0;
634 unsigned remaining = 0;
636 if (!req || !ep)
637 return;
639 req_buf = req->buf + req->actual;
640 prefetch(req_buf);
641 remaining = req->length - req->actual;
643 buf = (u32 *) req_buf;
645 bytes = ep->ep.maxpacket;
646 if (bytes > remaining)
647 bytes = remaining;
649 /* dwords first */
650 for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
651 writel(*(buf + i), ep->txfifo);
654 /* remaining bytes must be written by byte access */
655 for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
656 writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
657 ep->txfifo);
660 /* dummy write confirm */
661 writel(0, &ep->regs->confirm);
664 /* Read dwords from RX fifo for OUT transfers */
665 static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
667 int i;
669 VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
671 for (i = 0; i < dwords; i++) {
672 *(buf + i) = readl(dev->rxfifo);
674 return 0;
677 /* Read bytes from RX fifo for OUT transfers */
678 static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
680 int i, j;
681 u32 tmp;
683 VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
685 /* dwords first */
686 for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
687 *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
690 /* remaining bytes must be read by byte access */
691 if (bytes % UDC_DWORD_BYTES) {
692 tmp = readl(dev->rxfifo);
693 for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
694 *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
695 tmp = tmp >> UDC_BITS_PER_BYTE;
699 return 0;
702 /* Read data from RX fifo for OUT transfers */
703 static int
704 udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
706 u8 *buf;
707 unsigned buf_space;
708 unsigned bytes = 0;
709 unsigned finished = 0;
711 /* received number bytes */
712 bytes = readl(&ep->regs->sts);
713 bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
715 buf_space = req->req.length - req->req.actual;
716 buf = req->req.buf + req->req.actual;
717 if (bytes > buf_space) {
718 if ((buf_space % ep->ep.maxpacket) != 0) {
719 DBG(ep->dev,
720 "%s: rx %d bytes, rx-buf space = %d bytesn\n",
721 ep->ep.name, bytes, buf_space);
722 req->req.status = -EOVERFLOW;
724 bytes = buf_space;
726 req->req.actual += bytes;
728 /* last packet ? */
729 if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
730 || ((req->req.actual == req->req.length) && !req->req.zero))
731 finished = 1;
733 /* read rx fifo bytes */
734 VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
735 udc_rxfifo_read_bytes(ep->dev, buf, bytes);
737 return finished;
740 /* create/re-init a DMA descriptor or a DMA descriptor chain */
741 static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
743 int retval = 0;
744 u32 tmp;
746 VDBG(ep->dev, "prep_dma\n");
747 VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
748 ep->num, req->td_data);
750 /* set buffer pointer */
751 req->td_data->bufptr = req->req.dma;
753 /* set last bit */
754 req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
756 /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
757 if (use_dma_ppb) {
759 retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
760 if (retval != 0) {
761 if (retval == -ENOMEM)
762 DBG(ep->dev, "Out of DMA memory\n");
763 return retval;
765 if (ep->in) {
766 if (req->req.length == ep->ep.maxpacket) {
767 /* write tx bytes */
768 req->td_data->status =
769 AMD_ADDBITS(req->td_data->status,
770 ep->ep.maxpacket,
771 UDC_DMA_IN_STS_TXBYTES);
778 if (ep->in) {
779 VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
780 "maxpacket=%d ep%d\n",
781 use_dma_ppb, req->req.length,
782 ep->ep.maxpacket, ep->num);
784 * if bytes < max packet then tx bytes must
785 * be written in packet per buffer mode
787 if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
788 || ep->num == UDC_EP0OUT_IX
789 || ep->num == UDC_EP0IN_IX) {
790 /* write tx bytes */
791 req->td_data->status =
792 AMD_ADDBITS(req->td_data->status,
793 req->req.length,
794 UDC_DMA_IN_STS_TXBYTES);
795 /* reset frame num */
796 req->td_data->status =
797 AMD_ADDBITS(req->td_data->status,
799 UDC_DMA_IN_STS_FRAMENUM);
801 /* set HOST BUSY */
802 req->td_data->status =
803 AMD_ADDBITS(req->td_data->status,
804 UDC_DMA_STP_STS_BS_HOST_BUSY,
805 UDC_DMA_STP_STS_BS);
806 } else {
807 VDBG(ep->dev, "OUT set host ready\n");
808 /* set HOST READY */
809 req->td_data->status =
810 AMD_ADDBITS(req->td_data->status,
811 UDC_DMA_STP_STS_BS_HOST_READY,
812 UDC_DMA_STP_STS_BS);
815 /* clear NAK by writing CNAK */
816 if (ep->naking) {
817 tmp = readl(&ep->regs->ctl);
818 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
819 writel(tmp, &ep->regs->ctl);
820 ep->naking = 0;
821 UDC_QUEUE_CNAK(ep, ep->num);
826 return retval;
829 /* Completes request packet ... caller MUST hold lock */
830 static void
831 complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
832 __releases(ep->dev->lock)
833 __acquires(ep->dev->lock)
835 struct udc *dev;
836 unsigned halted;
838 VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
840 dev = ep->dev;
841 /* unmap DMA */
842 if (req->dma_mapping) {
843 if (ep->in)
844 pci_unmap_single(dev->pdev,
845 req->req.dma,
846 req->req.length,
847 PCI_DMA_TODEVICE);
848 else
849 pci_unmap_single(dev->pdev,
850 req->req.dma,
851 req->req.length,
852 PCI_DMA_FROMDEVICE);
853 req->dma_mapping = 0;
854 req->req.dma = DMA_DONT_USE;
857 halted = ep->halted;
858 ep->halted = 1;
860 /* set new status if pending */
861 if (req->req.status == -EINPROGRESS)
862 req->req.status = sts;
864 /* remove from ep queue */
865 list_del_init(&req->queue);
867 VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
868 &req->req, req->req.length, ep->ep.name, sts);
870 spin_unlock(&dev->lock);
871 req->req.complete(&ep->ep, &req->req);
872 spin_lock(&dev->lock);
873 ep->halted = halted;
876 /* frees pci pool descriptors of a DMA chain */
877 static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
880 int ret_val = 0;
881 struct udc_data_dma *td;
882 struct udc_data_dma *td_last = NULL;
883 unsigned int i;
885 DBG(dev, "free chain req = %p\n", req);
887 /* do not free first desc., will be done by free for request */
888 td_last = req->td_data;
889 td = phys_to_virt(td_last->next);
891 for (i = 1; i < req->chain_len; i++) {
893 pci_pool_free(dev->data_requests, td,
894 (dma_addr_t) td_last->next);
895 td_last = td;
896 td = phys_to_virt(td_last->next);
899 return ret_val;
902 /* Iterates to the end of a DMA chain and returns last descriptor */
903 static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
905 struct udc_data_dma *td;
907 td = req->td_data;
908 while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
909 td = phys_to_virt(td->next);
912 return td;
916 /* Iterates to the end of a DMA chain and counts bytes received */
917 static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
919 struct udc_data_dma *td;
920 u32 count;
922 td = req->td_data;
923 /* received number bytes */
924 count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
926 while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
927 td = phys_to_virt(td->next);
928 /* received number bytes */
929 if (td) {
930 count += AMD_GETBITS(td->status,
931 UDC_DMA_OUT_STS_RXBYTES);
935 return count;
939 /* Creates or re-inits a DMA chain */
940 static int udc_create_dma_chain(
941 struct udc_ep *ep,
942 struct udc_request *req,
943 unsigned long buf_len, gfp_t gfp_flags
946 unsigned long bytes = req->req.length;
947 unsigned int i;
948 dma_addr_t dma_addr;
949 struct udc_data_dma *td = NULL;
950 struct udc_data_dma *last = NULL;
951 unsigned long txbytes;
952 unsigned create_new_chain = 0;
953 unsigned len;
955 VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
956 bytes, buf_len);
957 dma_addr = DMA_DONT_USE;
959 /* unset L bit in first desc for OUT */
960 if (!ep->in) {
961 req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
964 /* alloc only new desc's if not already available */
965 len = req->req.length / ep->ep.maxpacket;
966 if (req->req.length % ep->ep.maxpacket) {
967 len++;
970 if (len > req->chain_len) {
971 /* shorter chain already allocated before */
972 if (req->chain_len > 1) {
973 udc_free_dma_chain(ep->dev, req);
975 req->chain_len = len;
976 create_new_chain = 1;
979 td = req->td_data;
980 /* gen. required number of descriptors and buffers */
981 for (i = buf_len; i < bytes; i += buf_len) {
982 /* create or determine next desc. */
983 if (create_new_chain) {
985 td = pci_pool_alloc(ep->dev->data_requests,
986 gfp_flags, &dma_addr);
987 if (!td)
988 return -ENOMEM;
990 td->status = 0;
991 } else if (i == buf_len) {
992 /* first td */
993 td = (struct udc_data_dma *) phys_to_virt(
994 req->td_data->next);
995 td->status = 0;
996 } else {
997 td = (struct udc_data_dma *) phys_to_virt(last->next);
998 td->status = 0;
1002 if (td)
1003 td->bufptr = req->req.dma + i; /* assign buffer */
1004 else
1005 break;
1007 /* short packet ? */
1008 if ((bytes - i) >= buf_len) {
1009 txbytes = buf_len;
1010 } else {
1011 /* short packet */
1012 txbytes = bytes - i;
1015 /* link td and assign tx bytes */
1016 if (i == buf_len) {
1017 if (create_new_chain) {
1018 req->td_data->next = dma_addr;
1019 } else {
1020 /* req->td_data->next = virt_to_phys(td); */
1022 /* write tx bytes */
1023 if (ep->in) {
1024 /* first desc */
1025 req->td_data->status =
1026 AMD_ADDBITS(req->td_data->status,
1027 ep->ep.maxpacket,
1028 UDC_DMA_IN_STS_TXBYTES);
1029 /* second desc */
1030 td->status = AMD_ADDBITS(td->status,
1031 txbytes,
1032 UDC_DMA_IN_STS_TXBYTES);
1034 } else {
1035 if (create_new_chain) {
1036 last->next = dma_addr;
1037 } else {
1038 /* last->next = virt_to_phys(td); */
1040 if (ep->in) {
1041 /* write tx bytes */
1042 td->status = AMD_ADDBITS(td->status,
1043 txbytes,
1044 UDC_DMA_IN_STS_TXBYTES);
1047 last = td;
1049 /* set last bit */
1050 if (td) {
1051 td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
1052 /* last desc. points to itself */
1053 req->td_data_last = td;
1056 return 0;
1059 /* Enabling RX DMA */
1060 static void udc_set_rde(struct udc *dev)
1062 u32 tmp;
1064 VDBG(dev, "udc_set_rde()\n");
1065 /* stop RDE timer */
1066 if (timer_pending(&udc_timer)) {
1067 set_rde = 0;
1068 mod_timer(&udc_timer, jiffies - 1);
1070 /* set RDE */
1071 tmp = readl(&dev->regs->ctl);
1072 tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1073 writel(tmp, &dev->regs->ctl);
1076 /* Queues a request packet, called by gadget driver */
1077 static int
1078 udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
1080 int retval = 0;
1081 u8 open_rxfifo = 0;
1082 unsigned long iflags;
1083 struct udc_ep *ep;
1084 struct udc_request *req;
1085 struct udc *dev;
1086 u32 tmp;
1088 /* check the inputs */
1089 req = container_of(usbreq, struct udc_request, req);
1091 if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
1092 || !list_empty(&req->queue))
1093 return -EINVAL;
1095 ep = container_of(usbep, struct udc_ep, ep);
1096 if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1097 return -EINVAL;
1099 VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
1100 dev = ep->dev;
1102 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
1103 return -ESHUTDOWN;
1105 /* map dma (usually done before) */
1106 if (ep->dma && usbreq->length != 0
1107 && (usbreq->dma == DMA_DONT_USE || usbreq->dma == 0)) {
1108 VDBG(dev, "DMA map req %p\n", req);
1109 if (ep->in)
1110 usbreq->dma = pci_map_single(dev->pdev,
1111 usbreq->buf,
1112 usbreq->length,
1113 PCI_DMA_TODEVICE);
1114 else
1115 usbreq->dma = pci_map_single(dev->pdev,
1116 usbreq->buf,
1117 usbreq->length,
1118 PCI_DMA_FROMDEVICE);
1119 req->dma_mapping = 1;
1122 VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
1123 usbep->name, usbreq, usbreq->length,
1124 req->td_data, usbreq->buf);
1126 spin_lock_irqsave(&dev->lock, iflags);
1127 usbreq->actual = 0;
1128 usbreq->status = -EINPROGRESS;
1129 req->dma_done = 0;
1131 /* on empty queue just do first transfer */
1132 if (list_empty(&ep->queue)) {
1133 /* zlp */
1134 if (usbreq->length == 0) {
1135 /* IN zlp's are handled by hardware */
1136 complete_req(ep, req, 0);
1137 VDBG(dev, "%s: zlp\n", ep->ep.name);
1139 * if set_config or set_intf is waiting for ack by zlp
1140 * then set CSR_DONE
1142 if (dev->set_cfg_not_acked) {
1143 tmp = readl(&dev->regs->ctl);
1144 tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
1145 writel(tmp, &dev->regs->ctl);
1146 dev->set_cfg_not_acked = 0;
1148 /* setup command is ACK'ed now by zlp */
1149 if (dev->waiting_zlp_ack_ep0in) {
1150 /* clear NAK by writing CNAK in EP0_IN */
1151 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1152 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1153 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1154 dev->ep[UDC_EP0IN_IX].naking = 0;
1155 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
1156 UDC_EP0IN_IX);
1157 dev->waiting_zlp_ack_ep0in = 0;
1159 goto finished;
1161 if (ep->dma) {
1162 retval = prep_dma(ep, req, gfp);
1163 if (retval != 0)
1164 goto finished;
1165 /* write desc pointer to enable DMA */
1166 if (ep->in) {
1167 /* set HOST READY */
1168 req->td_data->status =
1169 AMD_ADDBITS(req->td_data->status,
1170 UDC_DMA_IN_STS_BS_HOST_READY,
1171 UDC_DMA_IN_STS_BS);
1174 /* disabled rx dma while descriptor update */
1175 if (!ep->in) {
1176 /* stop RDE timer */
1177 if (timer_pending(&udc_timer)) {
1178 set_rde = 0;
1179 mod_timer(&udc_timer, jiffies - 1);
1181 /* clear RDE */
1182 tmp = readl(&dev->regs->ctl);
1183 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1184 writel(tmp, &dev->regs->ctl);
1185 open_rxfifo = 1;
1188 * if BNA occurred then let BNA dummy desc.
1189 * point to current desc.
1191 if (ep->bna_occurred) {
1192 VDBG(dev, "copy to BNA dummy desc.\n");
1193 memcpy(ep->bna_dummy_req->td_data,
1194 req->td_data,
1195 sizeof(struct udc_data_dma));
1198 /* write desc pointer */
1199 writel(req->td_phys, &ep->regs->desptr);
1201 /* clear NAK by writing CNAK */
1202 if (ep->naking) {
1203 tmp = readl(&ep->regs->ctl);
1204 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1205 writel(tmp, &ep->regs->ctl);
1206 ep->naking = 0;
1207 UDC_QUEUE_CNAK(ep, ep->num);
1210 if (ep->in) {
1211 /* enable ep irq */
1212 tmp = readl(&dev->regs->ep_irqmsk);
1213 tmp &= AMD_UNMASK_BIT(ep->num);
1214 writel(tmp, &dev->regs->ep_irqmsk);
1216 } else if (ep->in) {
1217 /* enable ep irq */
1218 tmp = readl(&dev->regs->ep_irqmsk);
1219 tmp &= AMD_UNMASK_BIT(ep->num);
1220 writel(tmp, &dev->regs->ep_irqmsk);
1223 } else if (ep->dma) {
1226 * prep_dma not used for OUT ep's, this is not possible
1227 * for PPB modes, because of chain creation reasons
1229 if (ep->in) {
1230 retval = prep_dma(ep, req, gfp);
1231 if (retval != 0)
1232 goto finished;
1235 VDBG(dev, "list_add\n");
1236 /* add request to ep queue */
1237 if (req) {
1239 list_add_tail(&req->queue, &ep->queue);
1241 /* open rxfifo if out data queued */
1242 if (open_rxfifo) {
1243 /* enable DMA */
1244 req->dma_going = 1;
1245 udc_set_rde(dev);
1246 if (ep->num != UDC_EP0OUT_IX)
1247 dev->data_ep_queued = 1;
1249 /* stop OUT naking */
1250 if (!ep->in) {
1251 if (!use_dma && udc_rxfifo_pending) {
1252 DBG(dev, "udc_queue(): pending bytes in "
1253 "rxfifo after nyet\n");
1255 * read pending bytes afer nyet:
1256 * referring to isr
1258 if (udc_rxfifo_read(ep, req)) {
1259 /* finish */
1260 complete_req(ep, req, 0);
1262 udc_rxfifo_pending = 0;
1268 finished:
1269 spin_unlock_irqrestore(&dev->lock, iflags);
1270 return retval;
1273 /* Empty request queue of an endpoint; caller holds spinlock */
1274 static void empty_req_queue(struct udc_ep *ep)
1276 struct udc_request *req;
1278 ep->halted = 1;
1279 while (!list_empty(&ep->queue)) {
1280 req = list_entry(ep->queue.next,
1281 struct udc_request,
1282 queue);
1283 complete_req(ep, req, -ESHUTDOWN);
1287 /* Dequeues a request packet, called by gadget driver */
1288 static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
1290 struct udc_ep *ep;
1291 struct udc_request *req;
1292 unsigned halted;
1293 unsigned long iflags;
1295 ep = container_of(usbep, struct udc_ep, ep);
1296 if (!usbep || !usbreq || (!ep->desc && (ep->num != 0
1297 && ep->num != UDC_EP0OUT_IX)))
1298 return -EINVAL;
1300 req = container_of(usbreq, struct udc_request, req);
1302 spin_lock_irqsave(&ep->dev->lock, iflags);
1303 halted = ep->halted;
1304 ep->halted = 1;
1305 /* request in processing or next one */
1306 if (ep->queue.next == &req->queue) {
1307 if (ep->dma && req->dma_going) {
1308 if (ep->in)
1309 ep->cancel_transfer = 1;
1310 else {
1311 u32 tmp;
1312 u32 dma_sts;
1313 /* stop potential receive DMA */
1314 tmp = readl(&udc->regs->ctl);
1315 writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
1316 &udc->regs->ctl);
1318 * Cancel transfer later in ISR
1319 * if descriptor was touched.
1321 dma_sts = AMD_GETBITS(req->td_data->status,
1322 UDC_DMA_OUT_STS_BS);
1323 if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
1324 ep->cancel_transfer = 1;
1325 else {
1326 udc_init_bna_dummy(ep->req);
1327 writel(ep->bna_dummy_req->td_phys,
1328 &ep->regs->desptr);
1330 writel(tmp, &udc->regs->ctl);
1334 complete_req(ep, req, -ECONNRESET);
1335 ep->halted = halted;
1337 spin_unlock_irqrestore(&ep->dev->lock, iflags);
1338 return 0;
1341 /* Halt or clear halt of endpoint */
1342 static int
1343 udc_set_halt(struct usb_ep *usbep, int halt)
1345 struct udc_ep *ep;
1346 u32 tmp;
1347 unsigned long iflags;
1348 int retval = 0;
1350 if (!usbep)
1351 return -EINVAL;
1353 pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
1355 ep = container_of(usbep, struct udc_ep, ep);
1356 if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1357 return -EINVAL;
1358 if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
1359 return -ESHUTDOWN;
1361 spin_lock_irqsave(&udc_stall_spinlock, iflags);
1362 /* halt or clear halt */
1363 if (halt) {
1364 if (ep->num == 0)
1365 ep->dev->stall_ep0in = 1;
1366 else {
1368 * set STALL
1369 * rxfifo empty not taken into acount
1371 tmp = readl(&ep->regs->ctl);
1372 tmp |= AMD_BIT(UDC_EPCTL_S);
1373 writel(tmp, &ep->regs->ctl);
1374 ep->halted = 1;
1376 /* setup poll timer */
1377 if (!timer_pending(&udc_pollstall_timer)) {
1378 udc_pollstall_timer.expires = jiffies +
1379 HZ * UDC_POLLSTALL_TIMER_USECONDS
1380 / (1000 * 1000);
1381 if (!stop_pollstall_timer) {
1382 DBG(ep->dev, "start polltimer\n");
1383 add_timer(&udc_pollstall_timer);
1387 } else {
1388 /* ep is halted by set_halt() before */
1389 if (ep->halted) {
1390 tmp = readl(&ep->regs->ctl);
1391 /* clear stall bit */
1392 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
1393 /* clear NAK by writing CNAK */
1394 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1395 writel(tmp, &ep->regs->ctl);
1396 ep->halted = 0;
1397 UDC_QUEUE_CNAK(ep, ep->num);
1400 spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1401 return retval;
1404 /* gadget interface */
1405 static const struct usb_ep_ops udc_ep_ops = {
1406 .enable = udc_ep_enable,
1407 .disable = udc_ep_disable,
1409 .alloc_request = udc_alloc_request,
1410 .free_request = udc_free_request,
1412 .queue = udc_queue,
1413 .dequeue = udc_dequeue,
1415 .set_halt = udc_set_halt,
1416 /* fifo ops not implemented */
1419 /*-------------------------------------------------------------------------*/
1421 /* Get frame counter (not implemented) */
1422 static int udc_get_frame(struct usb_gadget *gadget)
1424 return -EOPNOTSUPP;
1427 /* Remote wakeup gadget interface */
1428 static int udc_wakeup(struct usb_gadget *gadget)
1430 struct udc *dev;
1432 if (!gadget)
1433 return -EINVAL;
1434 dev = container_of(gadget, struct udc, gadget);
1435 udc_remote_wakeup(dev);
1437 return 0;
1440 /* gadget operations */
1441 static const struct usb_gadget_ops udc_ops = {
1442 .wakeup = udc_wakeup,
1443 .get_frame = udc_get_frame,
1446 /* Setups endpoint parameters, adds endpoints to linked list */
1447 static void make_ep_lists(struct udc *dev)
1449 /* make gadget ep lists */
1450 INIT_LIST_HEAD(&dev->gadget.ep_list);
1451 list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
1452 &dev->gadget.ep_list);
1453 list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
1454 &dev->gadget.ep_list);
1455 list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
1456 &dev->gadget.ep_list);
1458 /* fifo config */
1459 dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
1460 if (dev->gadget.speed == USB_SPEED_FULL)
1461 dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
1462 else if (dev->gadget.speed == USB_SPEED_HIGH)
1463 dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
1464 dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
1467 /* init registers at driver load time */
1468 static int startup_registers(struct udc *dev)
1470 u32 tmp;
1472 /* init controller by soft reset */
1473 udc_soft_reset(dev);
1475 /* mask not needed interrupts */
1476 udc_mask_unused_interrupts(dev);
1478 /* put into initial config */
1479 udc_basic_init(dev);
1480 /* link up all endpoints */
1481 udc_setup_endpoints(dev);
1483 /* program speed */
1484 tmp = readl(&dev->regs->cfg);
1485 if (use_fullspeed) {
1486 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1487 } else {
1488 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
1490 writel(tmp, &dev->regs->cfg);
1492 return 0;
1495 /* Inits UDC context */
1496 static void udc_basic_init(struct udc *dev)
1498 u32 tmp;
1500 DBG(dev, "udc_basic_init()\n");
1502 dev->gadget.speed = USB_SPEED_UNKNOWN;
1504 /* stop RDE timer */
1505 if (timer_pending(&udc_timer)) {
1506 set_rde = 0;
1507 mod_timer(&udc_timer, jiffies - 1);
1509 /* stop poll stall timer */
1510 if (timer_pending(&udc_pollstall_timer)) {
1511 mod_timer(&udc_pollstall_timer, jiffies - 1);
1513 /* disable DMA */
1514 tmp = readl(&dev->regs->ctl);
1515 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1516 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
1517 writel(tmp, &dev->regs->ctl);
1519 /* enable dynamic CSR programming */
1520 tmp = readl(&dev->regs->cfg);
1521 tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
1522 /* set self powered */
1523 tmp |= AMD_BIT(UDC_DEVCFG_SP);
1524 /* set remote wakeupable */
1525 tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
1526 writel(tmp, &dev->regs->cfg);
1528 make_ep_lists(dev);
1530 dev->data_ep_enabled = 0;
1531 dev->data_ep_queued = 0;
1534 /* Sets initial endpoint parameters */
1535 static void udc_setup_endpoints(struct udc *dev)
1537 struct udc_ep *ep;
1538 u32 tmp;
1539 u32 reg;
1541 DBG(dev, "udc_setup_endpoints()\n");
1543 /* read enum speed */
1544 tmp = readl(&dev->regs->sts);
1545 tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
1546 if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH) {
1547 dev->gadget.speed = USB_SPEED_HIGH;
1548 } else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL) {
1549 dev->gadget.speed = USB_SPEED_FULL;
1552 /* set basic ep parameters */
1553 for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
1554 ep = &dev->ep[tmp];
1555 ep->dev = dev;
1556 ep->ep.name = ep_string[tmp];
1557 ep->num = tmp;
1558 /* txfifo size is calculated at enable time */
1559 ep->txfifo = dev->txfifo;
1561 /* fifo size */
1562 if (tmp < UDC_EPIN_NUM) {
1563 ep->fifo_depth = UDC_TXFIFO_SIZE;
1564 ep->in = 1;
1565 } else {
1566 ep->fifo_depth = UDC_RXFIFO_SIZE;
1567 ep->in = 0;
1570 ep->regs = &dev->ep_regs[tmp];
1572 * ep will be reset only if ep was not enabled before to avoid
1573 * disabling ep interrupts when ENUM interrupt occurs but ep is
1574 * not enabled by gadget driver
1576 if (!ep->desc) {
1577 ep_init(dev->regs, ep);
1580 if (use_dma) {
1582 * ep->dma is not really used, just to indicate that
1583 * DMA is active: remove this
1584 * dma regs = dev control regs
1586 ep->dma = &dev->regs->ctl;
1588 /* nak OUT endpoints until enable - not for ep0 */
1589 if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
1590 && tmp > UDC_EPIN_NUM) {
1591 /* set NAK */
1592 reg = readl(&dev->ep[tmp].regs->ctl);
1593 reg |= AMD_BIT(UDC_EPCTL_SNAK);
1594 writel(reg, &dev->ep[tmp].regs->ctl);
1595 dev->ep[tmp].naking = 1;
1600 /* EP0 max packet */
1601 if (dev->gadget.speed == USB_SPEED_FULL) {
1602 dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_FS_EP0IN_MAX_PKT_SIZE;
1603 dev->ep[UDC_EP0OUT_IX].ep.maxpacket =
1604 UDC_FS_EP0OUT_MAX_PKT_SIZE;
1605 } else if (dev->gadget.speed == USB_SPEED_HIGH) {
1606 dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
1607 dev->ep[UDC_EP0OUT_IX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
1611 * with suspend bug workaround, ep0 params for gadget driver
1612 * are set at gadget driver bind() call
1614 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
1615 dev->ep[UDC_EP0IN_IX].halted = 0;
1616 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1618 /* init cfg/alt/int */
1619 dev->cur_config = 0;
1620 dev->cur_intf = 0;
1621 dev->cur_alt = 0;
1624 /* Bringup after Connect event, initial bringup to be ready for ep0 events */
1625 static void usb_connect(struct udc *dev)
1628 dev_info(&dev->pdev->dev, "USB Connect\n");
1630 dev->connected = 1;
1632 /* put into initial config */
1633 udc_basic_init(dev);
1635 /* enable device setup interrupts */
1636 udc_enable_dev_setup_interrupts(dev);
1640 * Calls gadget with disconnect event and resets the UDC and makes
1641 * initial bringup to be ready for ep0 events
1643 static void usb_disconnect(struct udc *dev)
1646 dev_info(&dev->pdev->dev, "USB Disconnect\n");
1648 dev->connected = 0;
1650 /* mask interrupts */
1651 udc_mask_unused_interrupts(dev);
1653 /* REVISIT there doesn't seem to be a point to having this
1654 * talk to a tasklet ... do it directly, we already hold
1655 * the spinlock needed to process the disconnect.
1658 tasklet_schedule(&disconnect_tasklet);
1661 /* Tasklet for disconnect to be outside of interrupt context */
1662 static void udc_tasklet_disconnect(unsigned long par)
1664 struct udc *dev = (struct udc *)(*((struct udc **) par));
1665 u32 tmp;
1667 DBG(dev, "Tasklet disconnect\n");
1668 spin_lock_irq(&dev->lock);
1670 if (dev->driver) {
1671 spin_unlock(&dev->lock);
1672 dev->driver->disconnect(&dev->gadget);
1673 spin_lock(&dev->lock);
1675 /* empty queues */
1676 for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
1677 empty_req_queue(&dev->ep[tmp]);
1682 /* disable ep0 */
1683 ep_init(dev->regs,
1684 &dev->ep[UDC_EP0IN_IX]);
1687 if (!soft_reset_occured) {
1688 /* init controller by soft reset */
1689 udc_soft_reset(dev);
1690 soft_reset_occured++;
1693 /* re-enable dev interrupts */
1694 udc_enable_dev_setup_interrupts(dev);
1695 /* back to full speed ? */
1696 if (use_fullspeed) {
1697 tmp = readl(&dev->regs->cfg);
1698 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1699 writel(tmp, &dev->regs->cfg);
1702 spin_unlock_irq(&dev->lock);
1705 /* Reset the UDC core */
1706 static void udc_soft_reset(struct udc *dev)
1708 unsigned long flags;
1710 DBG(dev, "Soft reset\n");
1712 * reset possible waiting interrupts, because int.
1713 * status is lost after soft reset,
1714 * ep int. status reset
1716 writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
1717 /* device int. status reset */
1718 writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
1720 spin_lock_irqsave(&udc_irq_spinlock, flags);
1721 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
1722 readl(&dev->regs->cfg);
1723 spin_unlock_irqrestore(&udc_irq_spinlock, flags);
1727 /* RDE timer callback to set RDE bit */
1728 static void udc_timer_function(unsigned long v)
1730 u32 tmp;
1732 spin_lock_irq(&udc_irq_spinlock);
1734 if (set_rde > 0) {
1736 * open the fifo if fifo was filled on last timer call
1737 * conditionally
1739 if (set_rde > 1) {
1740 /* set RDE to receive setup data */
1741 tmp = readl(&udc->regs->ctl);
1742 tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1743 writel(tmp, &udc->regs->ctl);
1744 set_rde = -1;
1745 } else if (readl(&udc->regs->sts)
1746 & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
1748 * if fifo empty setup polling, do not just
1749 * open the fifo
1751 udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
1752 if (!stop_timer) {
1753 add_timer(&udc_timer);
1755 } else {
1757 * fifo contains data now, setup timer for opening
1758 * the fifo when timer expires to be able to receive
1759 * setup packets, when data packets gets queued by
1760 * gadget layer then timer will forced to expire with
1761 * set_rde=0 (RDE is set in udc_queue())
1763 set_rde++;
1764 /* debug: lhadmot_timer_start = 221070 */
1765 udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
1766 if (!stop_timer) {
1767 add_timer(&udc_timer);
1771 } else
1772 set_rde = -1; /* RDE was set by udc_queue() */
1773 spin_unlock_irq(&udc_irq_spinlock);
1774 if (stop_timer)
1775 complete(&on_exit);
1779 /* Handle halt state, used in stall poll timer */
1780 static void udc_handle_halt_state(struct udc_ep *ep)
1782 u32 tmp;
1783 /* set stall as long not halted */
1784 if (ep->halted == 1) {
1785 tmp = readl(&ep->regs->ctl);
1786 /* STALL cleared ? */
1787 if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
1789 * FIXME: MSC spec requires that stall remains
1790 * even on receivng of CLEAR_FEATURE HALT. So
1791 * we would set STALL again here to be compliant.
1792 * But with current mass storage drivers this does
1793 * not work (would produce endless host retries).
1794 * So we clear halt on CLEAR_FEATURE.
1796 DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
1797 tmp |= AMD_BIT(UDC_EPCTL_S);
1798 writel(tmp, &ep->regs->ctl);*/
1800 /* clear NAK by writing CNAK */
1801 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1802 writel(tmp, &ep->regs->ctl);
1803 ep->halted = 0;
1804 UDC_QUEUE_CNAK(ep, ep->num);
1809 /* Stall timer callback to poll S bit and set it again after */
1810 static void udc_pollstall_timer_function(unsigned long v)
1812 struct udc_ep *ep;
1813 int halted = 0;
1815 spin_lock_irq(&udc_stall_spinlock);
1817 * only one IN and OUT endpoints are handled
1818 * IN poll stall
1820 ep = &udc->ep[UDC_EPIN_IX];
1821 udc_handle_halt_state(ep);
1822 if (ep->halted)
1823 halted = 1;
1824 /* OUT poll stall */
1825 ep = &udc->ep[UDC_EPOUT_IX];
1826 udc_handle_halt_state(ep);
1827 if (ep->halted)
1828 halted = 1;
1830 /* setup timer again when still halted */
1831 if (!stop_pollstall_timer && halted) {
1832 udc_pollstall_timer.expires = jiffies +
1833 HZ * UDC_POLLSTALL_TIMER_USECONDS
1834 / (1000 * 1000);
1835 add_timer(&udc_pollstall_timer);
1837 spin_unlock_irq(&udc_stall_spinlock);
1839 if (stop_pollstall_timer)
1840 complete(&on_pollstall_exit);
1843 /* Inits endpoint 0 so that SETUP packets are processed */
1844 static void activate_control_endpoints(struct udc *dev)
1846 u32 tmp;
1848 DBG(dev, "activate_control_endpoints\n");
1850 /* flush fifo */
1851 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1852 tmp |= AMD_BIT(UDC_EPCTL_F);
1853 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1855 /* set ep0 directions */
1856 dev->ep[UDC_EP0IN_IX].in = 1;
1857 dev->ep[UDC_EP0OUT_IX].in = 0;
1859 /* set buffer size (tx fifo entries) of EP0_IN */
1860 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1861 if (dev->gadget.speed == USB_SPEED_FULL)
1862 tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
1863 UDC_EPIN_BUFF_SIZE);
1864 else if (dev->gadget.speed == USB_SPEED_HIGH)
1865 tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
1866 UDC_EPIN_BUFF_SIZE);
1867 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1869 /* set max packet size of EP0_IN */
1870 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1871 if (dev->gadget.speed == USB_SPEED_FULL)
1872 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
1873 UDC_EP_MAX_PKT_SIZE);
1874 else if (dev->gadget.speed == USB_SPEED_HIGH)
1875 tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
1876 UDC_EP_MAX_PKT_SIZE);
1877 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1879 /* set max packet size of EP0_OUT */
1880 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1881 if (dev->gadget.speed == USB_SPEED_FULL)
1882 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1883 UDC_EP_MAX_PKT_SIZE);
1884 else if (dev->gadget.speed == USB_SPEED_HIGH)
1885 tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1886 UDC_EP_MAX_PKT_SIZE);
1887 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1889 /* set max packet size of EP0 in UDC CSR */
1890 tmp = readl(&dev->csr->ne[0]);
1891 if (dev->gadget.speed == USB_SPEED_FULL)
1892 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1893 UDC_CSR_NE_MAX_PKT);
1894 else if (dev->gadget.speed == USB_SPEED_HIGH)
1895 tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1896 UDC_CSR_NE_MAX_PKT);
1897 writel(tmp, &dev->csr->ne[0]);
1899 if (use_dma) {
1900 dev->ep[UDC_EP0OUT_IX].td->status |=
1901 AMD_BIT(UDC_DMA_OUT_STS_L);
1902 /* write dma desc address */
1903 writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
1904 &dev->ep[UDC_EP0OUT_IX].regs->subptr);
1905 writel(dev->ep[UDC_EP0OUT_IX].td_phys,
1906 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
1907 /* stop RDE timer */
1908 if (timer_pending(&udc_timer)) {
1909 set_rde = 0;
1910 mod_timer(&udc_timer, jiffies - 1);
1912 /* stop pollstall timer */
1913 if (timer_pending(&udc_pollstall_timer)) {
1914 mod_timer(&udc_pollstall_timer, jiffies - 1);
1916 /* enable DMA */
1917 tmp = readl(&dev->regs->ctl);
1918 tmp |= AMD_BIT(UDC_DEVCTL_MODE)
1919 | AMD_BIT(UDC_DEVCTL_RDE)
1920 | AMD_BIT(UDC_DEVCTL_TDE);
1921 if (use_dma_bufferfill_mode) {
1922 tmp |= AMD_BIT(UDC_DEVCTL_BF);
1923 } else if (use_dma_ppb_du) {
1924 tmp |= AMD_BIT(UDC_DEVCTL_DU);
1926 writel(tmp, &dev->regs->ctl);
1929 /* clear NAK by writing CNAK for EP0IN */
1930 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1931 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1932 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1933 dev->ep[UDC_EP0IN_IX].naking = 0;
1934 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
1936 /* clear NAK by writing CNAK for EP0OUT */
1937 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
1938 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1939 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
1940 dev->ep[UDC_EP0OUT_IX].naking = 0;
1941 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
1944 /* Make endpoint 0 ready for control traffic */
1945 static int setup_ep0(struct udc *dev)
1947 activate_control_endpoints(dev);
1948 /* enable ep0 interrupts */
1949 udc_enable_ep0_interrupts(dev);
1950 /* enable device setup interrupts */
1951 udc_enable_dev_setup_interrupts(dev);
1953 return 0;
1956 /* Called by gadget driver to register itself */
1957 int usb_gadget_register_driver(struct usb_gadget_driver *driver)
1959 struct udc *dev = udc;
1960 int retval;
1961 u32 tmp;
1963 if (!driver || !driver->bind || !driver->setup
1964 || driver->speed != USB_SPEED_HIGH)
1965 return -EINVAL;
1966 if (!dev)
1967 return -ENODEV;
1968 if (dev->driver)
1969 return -EBUSY;
1971 driver->driver.bus = NULL;
1972 dev->driver = driver;
1973 dev->gadget.dev.driver = &driver->driver;
1975 retval = driver->bind(&dev->gadget);
1977 /* Some gadget drivers use both ep0 directions.
1978 * NOTE: to gadget driver, ep0 is just one endpoint...
1980 dev->ep[UDC_EP0OUT_IX].ep.driver_data =
1981 dev->ep[UDC_EP0IN_IX].ep.driver_data;
1983 if (retval) {
1984 DBG(dev, "binding to %s returning %d\n",
1985 driver->driver.name, retval);
1986 dev->driver = NULL;
1987 dev->gadget.dev.driver = NULL;
1988 return retval;
1991 /* get ready for ep0 traffic */
1992 setup_ep0(dev);
1994 /* clear SD */
1995 tmp = readl(&dev->regs->ctl);
1996 tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
1997 writel(tmp, &dev->regs->ctl);
1999 usb_connect(dev);
2001 return 0;
2003 EXPORT_SYMBOL(usb_gadget_register_driver);
2005 /* shutdown requests and disconnect from gadget */
2006 static void
2007 shutdown(struct udc *dev, struct usb_gadget_driver *driver)
2008 __releases(dev->lock)
2009 __acquires(dev->lock)
2011 int tmp;
2013 if (dev->gadget.speed != USB_SPEED_UNKNOWN) {
2014 spin_unlock(&dev->lock);
2015 driver->disconnect(&dev->gadget);
2016 spin_lock(&dev->lock);
2019 /* empty queues and init hardware */
2020 udc_basic_init(dev);
2021 for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
2022 empty_req_queue(&dev->ep[tmp]);
2024 udc_setup_endpoints(dev);
2027 /* Called by gadget driver to unregister itself */
2028 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
2030 struct udc *dev = udc;
2031 unsigned long flags;
2032 u32 tmp;
2034 if (!dev)
2035 return -ENODEV;
2036 if (!driver || driver != dev->driver || !driver->unbind)
2037 return -EINVAL;
2039 spin_lock_irqsave(&dev->lock, flags);
2040 udc_mask_unused_interrupts(dev);
2041 shutdown(dev, driver);
2042 spin_unlock_irqrestore(&dev->lock, flags);
2044 driver->unbind(&dev->gadget);
2045 dev->gadget.dev.driver = NULL;
2046 dev->driver = NULL;
2048 /* set SD */
2049 tmp = readl(&dev->regs->ctl);
2050 tmp |= AMD_BIT(UDC_DEVCTL_SD);
2051 writel(tmp, &dev->regs->ctl);
2054 DBG(dev, "%s: unregistered\n", driver->driver.name);
2056 return 0;
2058 EXPORT_SYMBOL(usb_gadget_unregister_driver);
2061 /* Clear pending NAK bits */
2062 static void udc_process_cnak_queue(struct udc *dev)
2064 u32 tmp;
2065 u32 reg;
2067 /* check epin's */
2068 DBG(dev, "CNAK pending queue processing\n");
2069 for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
2070 if (cnak_pending & (1 << tmp)) {
2071 DBG(dev, "CNAK pending for ep%d\n", tmp);
2072 /* clear NAK by writing CNAK */
2073 reg = readl(&dev->ep[tmp].regs->ctl);
2074 reg |= AMD_BIT(UDC_EPCTL_CNAK);
2075 writel(reg, &dev->ep[tmp].regs->ctl);
2076 dev->ep[tmp].naking = 0;
2077 UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
2080 /* ... and ep0out */
2081 if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
2082 DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
2083 /* clear NAK by writing CNAK */
2084 reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2085 reg |= AMD_BIT(UDC_EPCTL_CNAK);
2086 writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2087 dev->ep[UDC_EP0OUT_IX].naking = 0;
2088 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
2089 dev->ep[UDC_EP0OUT_IX].num);
2093 /* Enabling RX DMA after setup packet */
2094 static void udc_ep0_set_rde(struct udc *dev)
2096 if (use_dma) {
2098 * only enable RXDMA when no data endpoint enabled
2099 * or data is queued
2101 if (!dev->data_ep_enabled || dev->data_ep_queued) {
2102 udc_set_rde(dev);
2103 } else {
2105 * setup timer for enabling RDE (to not enable
2106 * RXFIFO DMA for data endpoints to early)
2108 if (set_rde != 0 && !timer_pending(&udc_timer)) {
2109 udc_timer.expires =
2110 jiffies + HZ/UDC_RDE_TIMER_DIV;
2111 set_rde = 1;
2112 if (!stop_timer) {
2113 add_timer(&udc_timer);
2121 /* Interrupt handler for data OUT traffic */
2122 static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
2124 irqreturn_t ret_val = IRQ_NONE;
2125 u32 tmp;
2126 struct udc_ep *ep;
2127 struct udc_request *req;
2128 unsigned int count;
2129 struct udc_data_dma *td = NULL;
2130 unsigned dma_done;
2132 VDBG(dev, "ep%d irq\n", ep_ix);
2133 ep = &dev->ep[ep_ix];
2135 tmp = readl(&ep->regs->sts);
2136 if (use_dma) {
2137 /* BNA event ? */
2138 if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2139 DBG(dev, "BNA ep%dout occured - DESPTR = %x \n",
2140 ep->num, readl(&ep->regs->desptr));
2141 /* clear BNA */
2142 writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
2143 if (!ep->cancel_transfer)
2144 ep->bna_occurred = 1;
2145 else
2146 ep->cancel_transfer = 0;
2147 ret_val = IRQ_HANDLED;
2148 goto finished;
2151 /* HE event ? */
2152 if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
2153 dev_err(&dev->pdev->dev, "HE ep%dout occured\n", ep->num);
2155 /* clear HE */
2156 writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2157 ret_val = IRQ_HANDLED;
2158 goto finished;
2161 if (!list_empty(&ep->queue)) {
2163 /* next request */
2164 req = list_entry(ep->queue.next,
2165 struct udc_request, queue);
2166 } else {
2167 req = NULL;
2168 udc_rxfifo_pending = 1;
2170 VDBG(dev, "req = %p\n", req);
2171 /* fifo mode */
2172 if (!use_dma) {
2174 /* read fifo */
2175 if (req && udc_rxfifo_read(ep, req)) {
2176 ret_val = IRQ_HANDLED;
2178 /* finish */
2179 complete_req(ep, req, 0);
2180 /* next request */
2181 if (!list_empty(&ep->queue) && !ep->halted) {
2182 req = list_entry(ep->queue.next,
2183 struct udc_request, queue);
2184 } else
2185 req = NULL;
2188 /* DMA */
2189 } else if (!ep->cancel_transfer && req != NULL) {
2190 ret_val = IRQ_HANDLED;
2192 /* check for DMA done */
2193 if (!use_dma_ppb) {
2194 dma_done = AMD_GETBITS(req->td_data->status,
2195 UDC_DMA_OUT_STS_BS);
2196 /* packet per buffer mode - rx bytes */
2197 } else {
2199 * if BNA occurred then recover desc. from
2200 * BNA dummy desc.
2202 if (ep->bna_occurred) {
2203 VDBG(dev, "Recover desc. from BNA dummy\n");
2204 memcpy(req->td_data, ep->bna_dummy_req->td_data,
2205 sizeof(struct udc_data_dma));
2206 ep->bna_occurred = 0;
2207 udc_init_bna_dummy(ep->req);
2209 td = udc_get_last_dma_desc(req);
2210 dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
2212 if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
2213 /* buffer fill mode - rx bytes */
2214 if (!use_dma_ppb) {
2215 /* received number bytes */
2216 count = AMD_GETBITS(req->td_data->status,
2217 UDC_DMA_OUT_STS_RXBYTES);
2218 VDBG(dev, "rx bytes=%u\n", count);
2219 /* packet per buffer mode - rx bytes */
2220 } else {
2221 VDBG(dev, "req->td_data=%p\n", req->td_data);
2222 VDBG(dev, "last desc = %p\n", td);
2223 /* received number bytes */
2224 if (use_dma_ppb_du) {
2225 /* every desc. counts bytes */
2226 count = udc_get_ppbdu_rxbytes(req);
2227 } else {
2228 /* last desc. counts bytes */
2229 count = AMD_GETBITS(td->status,
2230 UDC_DMA_OUT_STS_RXBYTES);
2231 if (!count && req->req.length
2232 == UDC_DMA_MAXPACKET) {
2234 * on 64k packets the RXBYTES
2235 * field is zero
2237 count = UDC_DMA_MAXPACKET;
2240 VDBG(dev, "last desc rx bytes=%u\n", count);
2243 tmp = req->req.length - req->req.actual;
2244 if (count > tmp) {
2245 if ((tmp % ep->ep.maxpacket) != 0) {
2246 DBG(dev, "%s: rx %db, space=%db\n",
2247 ep->ep.name, count, tmp);
2248 req->req.status = -EOVERFLOW;
2250 count = tmp;
2252 req->req.actual += count;
2253 req->dma_going = 0;
2254 /* complete request */
2255 complete_req(ep, req, 0);
2257 /* next request */
2258 if (!list_empty(&ep->queue) && !ep->halted) {
2259 req = list_entry(ep->queue.next,
2260 struct udc_request,
2261 queue);
2263 * DMA may be already started by udc_queue()
2264 * called by gadget drivers completion
2265 * routine. This happens when queue
2266 * holds one request only.
2268 if (req->dma_going == 0) {
2269 /* next dma */
2270 if (prep_dma(ep, req, GFP_ATOMIC) != 0)
2271 goto finished;
2272 /* write desc pointer */
2273 writel(req->td_phys,
2274 &ep->regs->desptr);
2275 req->dma_going = 1;
2276 /* enable DMA */
2277 udc_set_rde(dev);
2279 } else {
2281 * implant BNA dummy descriptor to allow
2282 * RXFIFO opening by RDE
2284 if (ep->bna_dummy_req) {
2285 /* write desc pointer */
2286 writel(ep->bna_dummy_req->td_phys,
2287 &ep->regs->desptr);
2288 ep->bna_occurred = 0;
2292 * schedule timer for setting RDE if queue
2293 * remains empty to allow ep0 packets pass
2294 * through
2296 if (set_rde != 0
2297 && !timer_pending(&udc_timer)) {
2298 udc_timer.expires =
2299 jiffies
2300 + HZ*UDC_RDE_TIMER_SECONDS;
2301 set_rde = 1;
2302 if (!stop_timer) {
2303 add_timer(&udc_timer);
2306 if (ep->num != UDC_EP0OUT_IX)
2307 dev->data_ep_queued = 0;
2310 } else {
2312 * RX DMA must be reenabled for each desc in PPBDU mode
2313 * and must be enabled for PPBNDU mode in case of BNA
2315 udc_set_rde(dev);
2318 } else if (ep->cancel_transfer) {
2319 ret_val = IRQ_HANDLED;
2320 ep->cancel_transfer = 0;
2323 /* check pending CNAKS */
2324 if (cnak_pending) {
2325 /* CNAk processing when rxfifo empty only */
2326 if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
2327 udc_process_cnak_queue(dev);
2331 /* clear OUT bits in ep status */
2332 writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
2333 finished:
2334 return ret_val;
2337 /* Interrupt handler for data IN traffic */
2338 static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
2340 irqreturn_t ret_val = IRQ_NONE;
2341 u32 tmp;
2342 u32 epsts;
2343 struct udc_ep *ep;
2344 struct udc_request *req;
2345 struct udc_data_dma *td;
2346 unsigned dma_done;
2347 unsigned len;
2349 ep = &dev->ep[ep_ix];
2351 epsts = readl(&ep->regs->sts);
2352 if (use_dma) {
2353 /* BNA ? */
2354 if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
2355 dev_err(&dev->pdev->dev,
2356 "BNA ep%din occured - DESPTR = %08lx \n",
2357 ep->num,
2358 (unsigned long) readl(&ep->regs->desptr));
2360 /* clear BNA */
2361 writel(epsts, &ep->regs->sts);
2362 ret_val = IRQ_HANDLED;
2363 goto finished;
2366 /* HE event ? */
2367 if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
2368 dev_err(&dev->pdev->dev,
2369 "HE ep%dn occured - DESPTR = %08lx \n",
2370 ep->num, (unsigned long) readl(&ep->regs->desptr));
2372 /* clear HE */
2373 writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2374 ret_val = IRQ_HANDLED;
2375 goto finished;
2378 /* DMA completion */
2379 if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
2380 VDBG(dev, "TDC set- completion\n");
2381 ret_val = IRQ_HANDLED;
2382 if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
2383 req = list_entry(ep->queue.next,
2384 struct udc_request, queue);
2386 * length bytes transfered
2387 * check dma done of last desc. in PPBDU mode
2389 if (use_dma_ppb_du) {
2390 td = udc_get_last_dma_desc(req);
2391 if (td) {
2392 dma_done =
2393 AMD_GETBITS(td->status,
2394 UDC_DMA_IN_STS_BS);
2395 /* don't care DMA done */
2396 req->req.actual = req->req.length;
2398 } else {
2399 /* assume all bytes transferred */
2400 req->req.actual = req->req.length;
2403 if (req->req.actual == req->req.length) {
2404 /* complete req */
2405 complete_req(ep, req, 0);
2406 req->dma_going = 0;
2407 /* further request available ? */
2408 if (list_empty(&ep->queue)) {
2409 /* disable interrupt */
2410 tmp = readl(&dev->regs->ep_irqmsk);
2411 tmp |= AMD_BIT(ep->num);
2412 writel(tmp, &dev->regs->ep_irqmsk);
2416 ep->cancel_transfer = 0;
2420 * status reg has IN bit set and TDC not set (if TDC was handled,
2421 * IN must not be handled (UDC defect) ?
2423 if ((epsts & AMD_BIT(UDC_EPSTS_IN))
2424 && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
2425 ret_val = IRQ_HANDLED;
2426 if (!list_empty(&ep->queue)) {
2427 /* next request */
2428 req = list_entry(ep->queue.next,
2429 struct udc_request, queue);
2430 /* FIFO mode */
2431 if (!use_dma) {
2432 /* write fifo */
2433 udc_txfifo_write(ep, &req->req);
2434 len = req->req.length - req->req.actual;
2435 if (len > ep->ep.maxpacket)
2436 len = ep->ep.maxpacket;
2437 req->req.actual += len;
2438 if (req->req.actual == req->req.length
2439 || (len != ep->ep.maxpacket)) {
2440 /* complete req */
2441 complete_req(ep, req, 0);
2443 /* DMA */
2444 } else if (req && !req->dma_going) {
2445 VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
2446 req, req->td_data);
2447 if (req->td_data) {
2449 req->dma_going = 1;
2452 * unset L bit of first desc.
2453 * for chain
2455 if (use_dma_ppb && req->req.length >
2456 ep->ep.maxpacket) {
2457 req->td_data->status &=
2458 AMD_CLEAR_BIT(
2459 UDC_DMA_IN_STS_L);
2462 /* write desc pointer */
2463 writel(req->td_phys, &ep->regs->desptr);
2465 /* set HOST READY */
2466 req->td_data->status =
2467 AMD_ADDBITS(
2468 req->td_data->status,
2469 UDC_DMA_IN_STS_BS_HOST_READY,
2470 UDC_DMA_IN_STS_BS);
2472 /* set poll demand bit */
2473 tmp = readl(&ep->regs->ctl);
2474 tmp |= AMD_BIT(UDC_EPCTL_P);
2475 writel(tmp, &ep->regs->ctl);
2479 } else if (!use_dma && ep->in) {
2480 /* disable interrupt */
2481 tmp = readl(
2482 &dev->regs->ep_irqmsk);
2483 tmp |= AMD_BIT(ep->num);
2484 writel(tmp,
2485 &dev->regs->ep_irqmsk);
2488 /* clear status bits */
2489 writel(epsts, &ep->regs->sts);
2491 finished:
2492 return ret_val;
2496 /* Interrupt handler for Control OUT traffic */
2497 static irqreturn_t udc_control_out_isr(struct udc *dev)
2498 __releases(dev->lock)
2499 __acquires(dev->lock)
2501 irqreturn_t ret_val = IRQ_NONE;
2502 u32 tmp;
2503 int setup_supported;
2504 u32 count;
2505 int set = 0;
2506 struct udc_ep *ep;
2507 struct udc_ep *ep_tmp;
2509 ep = &dev->ep[UDC_EP0OUT_IX];
2511 /* clear irq */
2512 writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
2514 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2515 /* check BNA and clear if set */
2516 if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2517 VDBG(dev, "ep0: BNA set\n");
2518 writel(AMD_BIT(UDC_EPSTS_BNA),
2519 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2520 ep->bna_occurred = 1;
2521 ret_val = IRQ_HANDLED;
2522 goto finished;
2525 /* type of data: SETUP or DATA 0 bytes */
2526 tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
2527 VDBG(dev, "data_typ = %x\n", tmp);
2529 /* setup data */
2530 if (tmp == UDC_EPSTS_OUT_SETUP) {
2531 ret_val = IRQ_HANDLED;
2533 ep->dev->stall_ep0in = 0;
2534 dev->waiting_zlp_ack_ep0in = 0;
2536 /* set NAK for EP0_IN */
2537 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2538 tmp |= AMD_BIT(UDC_EPCTL_SNAK);
2539 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2540 dev->ep[UDC_EP0IN_IX].naking = 1;
2541 /* get setup data */
2542 if (use_dma) {
2544 /* clear OUT bits in ep status */
2545 writel(UDC_EPSTS_OUT_CLEAR,
2546 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2548 setup_data.data[0] =
2549 dev->ep[UDC_EP0OUT_IX].td_stp->data12;
2550 setup_data.data[1] =
2551 dev->ep[UDC_EP0OUT_IX].td_stp->data34;
2552 /* set HOST READY */
2553 dev->ep[UDC_EP0OUT_IX].td_stp->status =
2554 UDC_DMA_STP_STS_BS_HOST_READY;
2555 } else {
2556 /* read fifo */
2557 udc_rxfifo_read_dwords(dev, setup_data.data, 2);
2560 /* determine direction of control data */
2561 if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
2562 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
2563 /* enable RDE */
2564 udc_ep0_set_rde(dev);
2565 set = 0;
2566 } else {
2567 dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
2569 * implant BNA dummy descriptor to allow RXFIFO opening
2570 * by RDE
2572 if (ep->bna_dummy_req) {
2573 /* write desc pointer */
2574 writel(ep->bna_dummy_req->td_phys,
2575 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
2576 ep->bna_occurred = 0;
2579 set = 1;
2580 dev->ep[UDC_EP0OUT_IX].naking = 1;
2582 * setup timer for enabling RDE (to not enable
2583 * RXFIFO DMA for data to early)
2585 set_rde = 1;
2586 if (!timer_pending(&udc_timer)) {
2587 udc_timer.expires = jiffies +
2588 HZ/UDC_RDE_TIMER_DIV;
2589 if (!stop_timer) {
2590 add_timer(&udc_timer);
2596 * mass storage reset must be processed here because
2597 * next packet may be a CLEAR_FEATURE HALT which would not
2598 * clear the stall bit when no STALL handshake was received
2599 * before (autostall can cause this)
2601 if (setup_data.data[0] == UDC_MSCRES_DWORD0
2602 && setup_data.data[1] == UDC_MSCRES_DWORD1) {
2603 DBG(dev, "MSC Reset\n");
2605 * clear stall bits
2606 * only one IN and OUT endpoints are handled
2608 ep_tmp = &udc->ep[UDC_EPIN_IX];
2609 udc_set_halt(&ep_tmp->ep, 0);
2610 ep_tmp = &udc->ep[UDC_EPOUT_IX];
2611 udc_set_halt(&ep_tmp->ep, 0);
2614 /* call gadget with setup data received */
2615 spin_unlock(&dev->lock);
2616 setup_supported = dev->driver->setup(&dev->gadget,
2617 &setup_data.request);
2618 spin_lock(&dev->lock);
2620 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2621 /* ep0 in returns data (not zlp) on IN phase */
2622 if (setup_supported >= 0 && setup_supported <
2623 UDC_EP0IN_MAXPACKET) {
2624 /* clear NAK by writing CNAK in EP0_IN */
2625 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2626 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2627 dev->ep[UDC_EP0IN_IX].naking = 0;
2628 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
2630 /* if unsupported request then stall */
2631 } else if (setup_supported < 0) {
2632 tmp |= AMD_BIT(UDC_EPCTL_S);
2633 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2634 } else
2635 dev->waiting_zlp_ack_ep0in = 1;
2638 /* clear NAK by writing CNAK in EP0_OUT */
2639 if (!set) {
2640 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2641 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2642 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2643 dev->ep[UDC_EP0OUT_IX].naking = 0;
2644 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
2647 if (!use_dma) {
2648 /* clear OUT bits in ep status */
2649 writel(UDC_EPSTS_OUT_CLEAR,
2650 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2653 /* data packet 0 bytes */
2654 } else if (tmp == UDC_EPSTS_OUT_DATA) {
2655 /* clear OUT bits in ep status */
2656 writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
2658 /* get setup data: only 0 packet */
2659 if (use_dma) {
2660 /* no req if 0 packet, just reactivate */
2661 if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
2662 VDBG(dev, "ZLP\n");
2664 /* set HOST READY */
2665 dev->ep[UDC_EP0OUT_IX].td->status =
2666 AMD_ADDBITS(
2667 dev->ep[UDC_EP0OUT_IX].td->status,
2668 UDC_DMA_OUT_STS_BS_HOST_READY,
2669 UDC_DMA_OUT_STS_BS);
2670 /* enable RDE */
2671 udc_ep0_set_rde(dev);
2672 ret_val = IRQ_HANDLED;
2674 } else {
2675 /* control write */
2676 ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2677 /* re-program desc. pointer for possible ZLPs */
2678 writel(dev->ep[UDC_EP0OUT_IX].td_phys,
2679 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
2680 /* enable RDE */
2681 udc_ep0_set_rde(dev);
2683 } else {
2685 /* received number bytes */
2686 count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2687 count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
2688 /* out data for fifo mode not working */
2689 count = 0;
2691 /* 0 packet or real data ? */
2692 if (count != 0) {
2693 ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2694 } else {
2695 /* dummy read confirm */
2696 readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
2697 ret_val = IRQ_HANDLED;
2702 /* check pending CNAKS */
2703 if (cnak_pending) {
2704 /* CNAk processing when rxfifo empty only */
2705 if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
2706 udc_process_cnak_queue(dev);
2710 finished:
2711 return ret_val;
2714 /* Interrupt handler for Control IN traffic */
2715 static irqreturn_t udc_control_in_isr(struct udc *dev)
2717 irqreturn_t ret_val = IRQ_NONE;
2718 u32 tmp;
2719 struct udc_ep *ep;
2720 struct udc_request *req;
2721 unsigned len;
2723 ep = &dev->ep[UDC_EP0IN_IX];
2725 /* clear irq */
2726 writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
2728 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
2729 /* DMA completion */
2730 if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
2731 VDBG(dev, "isr: TDC clear \n");
2732 ret_val = IRQ_HANDLED;
2734 /* clear TDC bit */
2735 writel(AMD_BIT(UDC_EPSTS_TDC),
2736 &dev->ep[UDC_EP0IN_IX].regs->sts);
2738 /* status reg has IN bit set ? */
2739 } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
2740 ret_val = IRQ_HANDLED;
2742 if (ep->dma) {
2743 /* clear IN bit */
2744 writel(AMD_BIT(UDC_EPSTS_IN),
2745 &dev->ep[UDC_EP0IN_IX].regs->sts);
2747 if (dev->stall_ep0in) {
2748 DBG(dev, "stall ep0in\n");
2749 /* halt ep0in */
2750 tmp = readl(&ep->regs->ctl);
2751 tmp |= AMD_BIT(UDC_EPCTL_S);
2752 writel(tmp, &ep->regs->ctl);
2753 } else {
2754 if (!list_empty(&ep->queue)) {
2755 /* next request */
2756 req = list_entry(ep->queue.next,
2757 struct udc_request, queue);
2759 if (ep->dma) {
2760 /* write desc pointer */
2761 writel(req->td_phys, &ep->regs->desptr);
2762 /* set HOST READY */
2763 req->td_data->status =
2764 AMD_ADDBITS(
2765 req->td_data->status,
2766 UDC_DMA_STP_STS_BS_HOST_READY,
2767 UDC_DMA_STP_STS_BS);
2769 /* set poll demand bit */
2770 tmp =
2771 readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2772 tmp |= AMD_BIT(UDC_EPCTL_P);
2773 writel(tmp,
2774 &dev->ep[UDC_EP0IN_IX].regs->ctl);
2776 /* all bytes will be transferred */
2777 req->req.actual = req->req.length;
2779 /* complete req */
2780 complete_req(ep, req, 0);
2782 } else {
2783 /* write fifo */
2784 udc_txfifo_write(ep, &req->req);
2786 /* lengh bytes transfered */
2787 len = req->req.length - req->req.actual;
2788 if (len > ep->ep.maxpacket)
2789 len = ep->ep.maxpacket;
2791 req->req.actual += len;
2792 if (req->req.actual == req->req.length
2793 || (len != ep->ep.maxpacket)) {
2794 /* complete req */
2795 complete_req(ep, req, 0);
2801 ep->halted = 0;
2802 dev->stall_ep0in = 0;
2803 if (!ep->dma) {
2804 /* clear IN bit */
2805 writel(AMD_BIT(UDC_EPSTS_IN),
2806 &dev->ep[UDC_EP0IN_IX].regs->sts);
2810 return ret_val;
2814 /* Interrupt handler for global device events */
2815 static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
2816 __releases(dev->lock)
2817 __acquires(dev->lock)
2819 irqreturn_t ret_val = IRQ_NONE;
2820 u32 tmp;
2821 u32 cfg;
2822 struct udc_ep *ep;
2823 u16 i;
2824 u8 udc_csr_epix;
2826 /* SET_CONFIG irq ? */
2827 if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
2828 ret_val = IRQ_HANDLED;
2830 /* read config value */
2831 tmp = readl(&dev->regs->sts);
2832 cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
2833 DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
2834 dev->cur_config = cfg;
2835 dev->set_cfg_not_acked = 1;
2837 /* make usb request for gadget driver */
2838 memset(&setup_data, 0 , sizeof(union udc_setup_data));
2839 setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
2840 setup_data.request.wValue = cpu_to_le16(dev->cur_config);
2842 /* programm the NE registers */
2843 for (i = 0; i < UDC_EP_NUM; i++) {
2844 ep = &dev->ep[i];
2845 if (ep->in) {
2847 /* ep ix in UDC CSR register space */
2848 udc_csr_epix = ep->num;
2851 /* OUT ep */
2852 } else {
2853 /* ep ix in UDC CSR register space */
2854 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2857 tmp = readl(&dev->csr->ne[udc_csr_epix]);
2858 /* ep cfg */
2859 tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
2860 UDC_CSR_NE_CFG);
2861 /* write reg */
2862 writel(tmp, &dev->csr->ne[udc_csr_epix]);
2864 /* clear stall bits */
2865 ep->halted = 0;
2866 tmp = readl(&ep->regs->ctl);
2867 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2868 writel(tmp, &ep->regs->ctl);
2870 /* call gadget zero with setup data received */
2871 spin_unlock(&dev->lock);
2872 tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2873 spin_lock(&dev->lock);
2875 } /* SET_INTERFACE ? */
2876 if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
2877 ret_val = IRQ_HANDLED;
2879 dev->set_cfg_not_acked = 1;
2880 /* read interface and alt setting values */
2881 tmp = readl(&dev->regs->sts);
2882 dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
2883 dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
2885 /* make usb request for gadget driver */
2886 memset(&setup_data, 0 , sizeof(union udc_setup_data));
2887 setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
2888 setup_data.request.bRequestType = USB_RECIP_INTERFACE;
2889 setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
2890 setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
2892 DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
2893 dev->cur_alt, dev->cur_intf);
2895 /* programm the NE registers */
2896 for (i = 0; i < UDC_EP_NUM; i++) {
2897 ep = &dev->ep[i];
2898 if (ep->in) {
2900 /* ep ix in UDC CSR register space */
2901 udc_csr_epix = ep->num;
2904 /* OUT ep */
2905 } else {
2906 /* ep ix in UDC CSR register space */
2907 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2910 /* UDC CSR reg */
2911 /* set ep values */
2912 tmp = readl(&dev->csr->ne[udc_csr_epix]);
2913 /* ep interface */
2914 tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
2915 UDC_CSR_NE_INTF);
2916 /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
2917 /* ep alt */
2918 tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
2919 UDC_CSR_NE_ALT);
2920 /* write reg */
2921 writel(tmp, &dev->csr->ne[udc_csr_epix]);
2923 /* clear stall bits */
2924 ep->halted = 0;
2925 tmp = readl(&ep->regs->ctl);
2926 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2927 writel(tmp, &ep->regs->ctl);
2930 /* call gadget zero with setup data received */
2931 spin_unlock(&dev->lock);
2932 tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2933 spin_lock(&dev->lock);
2935 } /* USB reset */
2936 if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
2937 DBG(dev, "USB Reset interrupt\n");
2938 ret_val = IRQ_HANDLED;
2940 /* allow soft reset when suspend occurs */
2941 soft_reset_occured = 0;
2943 dev->waiting_zlp_ack_ep0in = 0;
2944 dev->set_cfg_not_acked = 0;
2946 /* mask not needed interrupts */
2947 udc_mask_unused_interrupts(dev);
2949 /* call gadget to resume and reset configs etc. */
2950 spin_unlock(&dev->lock);
2951 if (dev->sys_suspended && dev->driver->resume) {
2952 dev->driver->resume(&dev->gadget);
2953 dev->sys_suspended = 0;
2955 dev->driver->disconnect(&dev->gadget);
2956 spin_lock(&dev->lock);
2958 /* disable ep0 to empty req queue */
2959 empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2960 ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2962 /* soft reset when rxfifo not empty */
2963 tmp = readl(&dev->regs->sts);
2964 if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2965 && !soft_reset_after_usbreset_occured) {
2966 udc_soft_reset(dev);
2967 soft_reset_after_usbreset_occured++;
2971 * DMA reset to kill potential old DMA hw hang,
2972 * POLL bit is already reset by ep_init() through
2973 * disconnect()
2975 DBG(dev, "DMA machine reset\n");
2976 tmp = readl(&dev->regs->cfg);
2977 writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
2978 writel(tmp, &dev->regs->cfg);
2980 /* put into initial config */
2981 udc_basic_init(dev);
2983 /* enable device setup interrupts */
2984 udc_enable_dev_setup_interrupts(dev);
2986 /* enable suspend interrupt */
2987 tmp = readl(&dev->regs->irqmsk);
2988 tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
2989 writel(tmp, &dev->regs->irqmsk);
2991 } /* USB suspend */
2992 if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
2993 DBG(dev, "USB Suspend interrupt\n");
2994 ret_val = IRQ_HANDLED;
2995 if (dev->driver->suspend) {
2996 spin_unlock(&dev->lock);
2997 dev->sys_suspended = 1;
2998 dev->driver->suspend(&dev->gadget);
2999 spin_lock(&dev->lock);
3001 } /* new speed ? */
3002 if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
3003 DBG(dev, "ENUM interrupt\n");
3004 ret_val = IRQ_HANDLED;
3005 soft_reset_after_usbreset_occured = 0;
3007 /* disable ep0 to empty req queue */
3008 empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
3009 ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
3011 /* link up all endpoints */
3012 udc_setup_endpoints(dev);
3013 if (dev->gadget.speed == USB_SPEED_HIGH) {
3014 dev_info(&dev->pdev->dev, "Connect: speed = %s\n",
3015 "high");
3016 } else if (dev->gadget.speed == USB_SPEED_FULL) {
3017 dev_info(&dev->pdev->dev, "Connect: speed = %s\n",
3018 "full");
3021 /* init ep 0 */
3022 activate_control_endpoints(dev);
3024 /* enable ep0 interrupts */
3025 udc_enable_ep0_interrupts(dev);
3027 /* session valid change interrupt */
3028 if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
3029 DBG(dev, "USB SVC interrupt\n");
3030 ret_val = IRQ_HANDLED;
3032 /* check that session is not valid to detect disconnect */
3033 tmp = readl(&dev->regs->sts);
3034 if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
3035 /* disable suspend interrupt */
3036 tmp = readl(&dev->regs->irqmsk);
3037 tmp |= AMD_BIT(UDC_DEVINT_US);
3038 writel(tmp, &dev->regs->irqmsk);
3039 DBG(dev, "USB Disconnect (session valid low)\n");
3040 /* cleanup on disconnect */
3041 usb_disconnect(udc);
3046 return ret_val;
3049 /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
3050 static irqreturn_t udc_irq(int irq, void *pdev)
3052 struct udc *dev = pdev;
3053 u32 reg;
3054 u16 i;
3055 u32 ep_irq;
3056 irqreturn_t ret_val = IRQ_NONE;
3058 spin_lock(&dev->lock);
3060 /* check for ep irq */
3061 reg = readl(&dev->regs->ep_irqsts);
3062 if (reg) {
3063 if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
3064 ret_val |= udc_control_out_isr(dev);
3065 if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
3066 ret_val |= udc_control_in_isr(dev);
3069 * data endpoint
3070 * iterate ep's
3072 for (i = 1; i < UDC_EP_NUM; i++) {
3073 ep_irq = 1 << i;
3074 if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
3075 continue;
3077 /* clear irq status */
3078 writel(ep_irq, &dev->regs->ep_irqsts);
3080 /* irq for out ep ? */
3081 if (i > UDC_EPIN_NUM)
3082 ret_val |= udc_data_out_isr(dev, i);
3083 else
3084 ret_val |= udc_data_in_isr(dev, i);
3090 /* check for dev irq */
3091 reg = readl(&dev->regs->irqsts);
3092 if (reg) {
3093 /* clear irq */
3094 writel(reg, &dev->regs->irqsts);
3095 ret_val |= udc_dev_isr(dev, reg);
3099 spin_unlock(&dev->lock);
3100 return ret_val;
3103 /* Tears down device */
3104 static void gadget_release(struct device *pdev)
3106 struct amd5536udc *dev = dev_get_drvdata(pdev);
3107 kfree(dev);
3110 /* Cleanup on device remove */
3111 static void udc_remove(struct udc *dev)
3113 /* remove timer */
3114 stop_timer++;
3115 if (timer_pending(&udc_timer))
3116 wait_for_completion(&on_exit);
3117 if (udc_timer.data)
3118 del_timer_sync(&udc_timer);
3119 /* remove pollstall timer */
3120 stop_pollstall_timer++;
3121 if (timer_pending(&udc_pollstall_timer))
3122 wait_for_completion(&on_pollstall_exit);
3123 if (udc_pollstall_timer.data)
3124 del_timer_sync(&udc_pollstall_timer);
3125 udc = NULL;
3128 /* Reset all pci context */
3129 static void udc_pci_remove(struct pci_dev *pdev)
3131 struct udc *dev;
3133 dev = pci_get_drvdata(pdev);
3135 /* gadget driver must not be registered */
3136 BUG_ON(dev->driver != NULL);
3138 /* dma pool cleanup */
3139 if (dev->data_requests)
3140 pci_pool_destroy(dev->data_requests);
3142 if (dev->stp_requests) {
3143 /* cleanup DMA desc's for ep0in */
3144 pci_pool_free(dev->stp_requests,
3145 dev->ep[UDC_EP0OUT_IX].td_stp,
3146 dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3147 pci_pool_free(dev->stp_requests,
3148 dev->ep[UDC_EP0OUT_IX].td,
3149 dev->ep[UDC_EP0OUT_IX].td_phys);
3151 pci_pool_destroy(dev->stp_requests);
3154 /* reset controller */
3155 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
3156 if (dev->irq_registered)
3157 free_irq(pdev->irq, dev);
3158 if (dev->regs)
3159 iounmap(dev->regs);
3160 if (dev->mem_region)
3161 release_mem_region(pci_resource_start(pdev, 0),
3162 pci_resource_len(pdev, 0));
3163 if (dev->active)
3164 pci_disable_device(pdev);
3166 device_unregister(&dev->gadget.dev);
3167 pci_set_drvdata(pdev, NULL);
3169 udc_remove(dev);
3172 /* create dma pools on init */
3173 static int init_dma_pools(struct udc *dev)
3175 struct udc_stp_dma *td_stp;
3176 struct udc_data_dma *td_data;
3177 int retval;
3179 /* consistent DMA mode setting ? */
3180 if (use_dma_ppb) {
3181 use_dma_bufferfill_mode = 0;
3182 } else {
3183 use_dma_ppb_du = 0;
3184 use_dma_bufferfill_mode = 1;
3187 /* DMA setup */
3188 dev->data_requests = dma_pool_create("data_requests", NULL,
3189 sizeof(struct udc_data_dma), 0, 0);
3190 if (!dev->data_requests) {
3191 DBG(dev, "can't get request data pool\n");
3192 retval = -ENOMEM;
3193 goto finished;
3196 /* EP0 in dma regs = dev control regs */
3197 dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
3199 /* dma desc for setup data */
3200 dev->stp_requests = dma_pool_create("setup requests", NULL,
3201 sizeof(struct udc_stp_dma), 0, 0);
3202 if (!dev->stp_requests) {
3203 DBG(dev, "can't get stp request pool\n");
3204 retval = -ENOMEM;
3205 goto finished;
3207 /* setup */
3208 td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3209 &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3210 if (td_stp == NULL) {
3211 retval = -ENOMEM;
3212 goto finished;
3214 dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
3216 /* data: 0 packets !? */
3217 td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3218 &dev->ep[UDC_EP0OUT_IX].td_phys);
3219 if (td_data == NULL) {
3220 retval = -ENOMEM;
3221 goto finished;
3223 dev->ep[UDC_EP0OUT_IX].td = td_data;
3224 return 0;
3226 finished:
3227 return retval;
3230 /* Called by pci bus driver to init pci context */
3231 static int udc_pci_probe(
3232 struct pci_dev *pdev,
3233 const struct pci_device_id *id
3236 struct udc *dev;
3237 unsigned long resource;
3238 unsigned long len;
3239 int retval = 0;
3241 /* one udc only */
3242 if (udc) {
3243 dev_dbg(&pdev->dev, "already probed\n");
3244 return -EBUSY;
3247 /* init */
3248 dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
3249 if (!dev) {
3250 retval = -ENOMEM;
3251 goto finished;
3254 /* pci setup */
3255 if (pci_enable_device(pdev) < 0) {
3256 kfree(dev);
3257 dev = NULL;
3258 retval = -ENODEV;
3259 goto finished;
3261 dev->active = 1;
3263 /* PCI resource allocation */
3264 resource = pci_resource_start(pdev, 0);
3265 len = pci_resource_len(pdev, 0);
3267 if (!request_mem_region(resource, len, name)) {
3268 dev_dbg(&pdev->dev, "pci device used already\n");
3269 kfree(dev);
3270 dev = NULL;
3271 retval = -EBUSY;
3272 goto finished;
3274 dev->mem_region = 1;
3276 dev->virt_addr = ioremap_nocache(resource, len);
3277 if (dev->virt_addr == NULL) {
3278 dev_dbg(&pdev->dev, "start address cannot be mapped\n");
3279 kfree(dev);
3280 dev = NULL;
3281 retval = -EFAULT;
3282 goto finished;
3285 if (!pdev->irq) {
3286 dev_err(&dev->pdev->dev, "irq not set\n");
3287 kfree(dev);
3288 dev = NULL;
3289 retval = -ENODEV;
3290 goto finished;
3293 spin_lock_init(&dev->lock);
3294 /* udc csr registers base */
3295 dev->csr = dev->virt_addr + UDC_CSR_ADDR;
3296 /* dev registers base */
3297 dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
3298 /* ep registers base */
3299 dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
3300 /* fifo's base */
3301 dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
3302 dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
3304 if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
3305 dev_dbg(&dev->pdev->dev, "request_irq(%d) fail\n", pdev->irq);
3306 kfree(dev);
3307 dev = NULL;
3308 retval = -EBUSY;
3309 goto finished;
3311 dev->irq_registered = 1;
3313 pci_set_drvdata(pdev, dev);
3315 /* chip revision for Hs AMD5536 */
3316 dev->chiprev = pdev->revision;
3318 pci_set_master(pdev);
3319 pci_try_set_mwi(pdev);
3321 /* init dma pools */
3322 if (use_dma) {
3323 retval = init_dma_pools(dev);
3324 if (retval != 0)
3325 goto finished;
3328 dev->phys_addr = resource;
3329 dev->irq = pdev->irq;
3330 dev->pdev = pdev;
3331 dev->gadget.dev.parent = &pdev->dev;
3332 dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
3334 /* general probing */
3335 if (udc_probe(dev) == 0)
3336 return 0;
3338 finished:
3339 if (dev)
3340 udc_pci_remove(pdev);
3341 return retval;
3344 /* general probe */
3345 static int udc_probe(struct udc *dev)
3347 char tmp[128];
3348 u32 reg;
3349 int retval;
3351 /* mark timer as not initialized */
3352 udc_timer.data = 0;
3353 udc_pollstall_timer.data = 0;
3355 /* device struct setup */
3356 dev->gadget.ops = &udc_ops;
3358 dev_set_name(&dev->gadget.dev, "gadget");
3359 dev->gadget.dev.release = gadget_release;
3360 dev->gadget.name = name;
3361 dev->gadget.name = name;
3362 dev->gadget.is_dualspeed = 1;
3364 /* init registers, interrupts, ... */
3365 startup_registers(dev);
3367 dev_info(&dev->pdev->dev, "%s\n", mod_desc);
3369 snprintf(tmp, sizeof tmp, "%d", dev->irq);
3370 dev_info(&dev->pdev->dev,
3371 "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
3372 tmp, dev->phys_addr, dev->chiprev,
3373 (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
3374 strcpy(tmp, UDC_DRIVER_VERSION_STRING);
3375 if (dev->chiprev == UDC_HSA0_REV) {
3376 dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
3377 retval = -ENODEV;
3378 goto finished;
3380 dev_info(&dev->pdev->dev,
3381 "driver version: %s(for Geode5536 B1)\n", tmp);
3382 udc = dev;
3384 retval = device_register(&dev->gadget.dev);
3385 if (retval)
3386 goto finished;
3388 /* timer init */
3389 init_timer(&udc_timer);
3390 udc_timer.function = udc_timer_function;
3391 udc_timer.data = 1;
3392 /* timer pollstall init */
3393 init_timer(&udc_pollstall_timer);
3394 udc_pollstall_timer.function = udc_pollstall_timer_function;
3395 udc_pollstall_timer.data = 1;
3397 /* set SD */
3398 reg = readl(&dev->regs->ctl);
3399 reg |= AMD_BIT(UDC_DEVCTL_SD);
3400 writel(reg, &dev->regs->ctl);
3402 /* print dev register info */
3403 print_regs(dev);
3405 return 0;
3407 finished:
3408 return retval;
3411 /* Initiates a remote wakeup */
3412 static int udc_remote_wakeup(struct udc *dev)
3414 unsigned long flags;
3415 u32 tmp;
3417 DBG(dev, "UDC initiates remote wakeup\n");
3419 spin_lock_irqsave(&dev->lock, flags);
3421 tmp = readl(&dev->regs->ctl);
3422 tmp |= AMD_BIT(UDC_DEVCTL_RES);
3423 writel(tmp, &dev->regs->ctl);
3424 tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
3425 writel(tmp, &dev->regs->ctl);
3427 spin_unlock_irqrestore(&dev->lock, flags);
3428 return 0;
3431 /* PCI device parameters */
3432 static const struct pci_device_id pci_id[] = {
3434 PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
3435 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
3436 .class_mask = 0xffffffff,
3440 MODULE_DEVICE_TABLE(pci, pci_id);
3442 /* PCI functions */
3443 static struct pci_driver udc_pci_driver = {
3444 .name = (char *) name,
3445 .id_table = pci_id,
3446 .probe = udc_pci_probe,
3447 .remove = udc_pci_remove,
3450 /* Inits driver */
3451 static int __init init(void)
3453 return pci_register_driver(&udc_pci_driver);
3455 module_init(init);
3457 /* Cleans driver */
3458 static void __exit cleanup(void)
3460 pci_unregister_driver(&udc_pci_driver);
3462 module_exit(cleanup);
3464 MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
3465 MODULE_AUTHOR("Thomas Dahlmann");
3466 MODULE_LICENSE("GPL");