[SCSI] megaraid_sas: return sync cache call with success
[linux-2.6/kvm.git] / drivers / video / aty / aty128fb.c
blob2e976ffcde0fa53a3977da6e05ed1f61884f99c3
1 /* $Id: aty128fb.c,v 1.1.1.1.36.1 1999/12/11 09:03:05 Exp $
2 * linux/drivers/video/aty128fb.c -- Frame buffer device for ATI Rage128
4 * Copyright (C) 1999-2003, Brad Douglas <brad@neruo.com>
5 * Copyright (C) 1999, Anthony Tong <atong@uiuc.edu>
7 * Ani Joshi / Jeff Garzik
8 * - Code cleanup
10 * Michel Danzer <michdaen@iiic.ethz.ch>
11 * - 15/16 bit cleanup
12 * - fix panning
14 * Benjamin Herrenschmidt
15 * - pmac-specific PM stuff
16 * - various fixes & cleanups
18 * Andreas Hundt <andi@convergence.de>
19 * - FB_ACTIVATE fixes
21 * Paul Mackerras <paulus@samba.org>
22 * - Convert to new framebuffer API,
23 * fix colormap setting at 16 bits/pixel (565)
25 * Paul Mundt
26 * - PCI hotplug
28 * Jon Smirl <jonsmirl@yahoo.com>
29 * - PCI ID update
30 * - replace ROM BIOS search
32 * Based off of Geert's atyfb.c and vfb.c.
34 * TODO:
35 * - monitor sensing (DDC)
36 * - virtual display
37 * - other platform support (only ppc/x86 supported)
38 * - hardware cursor support
40 * Please cc: your patches to brad@neruo.com.
44 * A special note of gratitude to ATI's devrel for providing documentation,
45 * example code and hardware. Thanks Nitya. -atong and brad
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/kernel.h>
52 #include <linux/errno.h>
53 #include <linux/string.h>
54 #include <linux/mm.h>
55 #include <linux/slab.h>
56 #include <linux/vmalloc.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <asm/uaccess.h>
60 #include <linux/fb.h>
61 #include <linux/init.h>
62 #include <linux/pci.h>
63 #include <linux/ioport.h>
64 #include <linux/console.h>
65 #include <linux/backlight.h>
66 #include <asm/io.h>
68 #ifdef CONFIG_PPC_PMAC
69 #include <asm/machdep.h>
70 #include <asm/pmac_feature.h>
71 #include <asm/prom.h>
72 #include <asm/pci-bridge.h>
73 #include "../macmodes.h"
74 #endif
76 #ifdef CONFIG_PMAC_BACKLIGHT
77 #include <asm/backlight.h>
78 #endif
80 #ifdef CONFIG_BOOTX_TEXT
81 #include <asm/btext.h>
82 #endif /* CONFIG_BOOTX_TEXT */
84 #ifdef CONFIG_MTRR
85 #include <asm/mtrr.h>
86 #endif
88 #include <video/aty128.h>
90 /* Debug flag */
91 #undef DEBUG
93 #ifdef DEBUG
94 #define DBG(fmt, args...) printk(KERN_DEBUG "aty128fb: %s " fmt, __FUNCTION__, ##args);
95 #else
96 #define DBG(fmt, args...)
97 #endif
99 #ifndef CONFIG_PPC_PMAC
100 /* default mode */
101 static struct fb_var_screeninfo default_var __devinitdata = {
102 /* 640x480, 60 Hz, Non-Interlaced (25.175 MHz dotclock) */
103 640, 480, 640, 480, 0, 0, 8, 0,
104 {0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
105 0, 0, -1, -1, 0, 39722, 48, 16, 33, 10, 96, 2,
106 0, FB_VMODE_NONINTERLACED
109 #else /* CONFIG_PPC_PMAC */
110 /* default to 1024x768 at 75Hz on PPC - this will work
111 * on the iMac, the usual 640x480 @ 60Hz doesn't. */
112 static struct fb_var_screeninfo default_var = {
113 /* 1024x768, 75 Hz, Non-Interlaced (78.75 MHz dotclock) */
114 1024, 768, 1024, 768, 0, 0, 8, 0,
115 {0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
116 0, 0, -1, -1, 0, 12699, 160, 32, 28, 1, 96, 3,
117 FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
118 FB_VMODE_NONINTERLACED
120 #endif /* CONFIG_PPC_PMAC */
122 /* default modedb mode */
123 /* 640x480, 60 Hz, Non-Interlaced (25.172 MHz dotclock) */
124 static struct fb_videomode defaultmode __devinitdata = {
125 .refresh = 60,
126 .xres = 640,
127 .yres = 480,
128 .pixclock = 39722,
129 .left_margin = 48,
130 .right_margin = 16,
131 .upper_margin = 33,
132 .lower_margin = 10,
133 .hsync_len = 96,
134 .vsync_len = 2,
135 .sync = 0,
136 .vmode = FB_VMODE_NONINTERLACED
139 /* Chip generations */
140 enum {
141 rage_128,
142 rage_128_pci,
143 rage_128_pro,
144 rage_128_pro_pci,
145 rage_M3,
146 rage_M3_pci,
147 rage_M4,
148 rage_128_ultra,
151 /* Must match above enum */
152 static const char *r128_family[] __devinitdata = {
153 "AGP",
154 "PCI",
155 "PRO AGP",
156 "PRO PCI",
157 "M3 AGP",
158 "M3 PCI",
159 "M4 AGP",
160 "Ultra AGP",
164 * PCI driver prototypes
166 static int aty128_probe(struct pci_dev *pdev,
167 const struct pci_device_id *ent);
168 static void aty128_remove(struct pci_dev *pdev);
169 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state);
170 static int aty128_pci_resume(struct pci_dev *pdev);
171 static int aty128_do_resume(struct pci_dev *pdev);
173 /* supported Rage128 chipsets */
174 static struct pci_device_id aty128_pci_tbl[] = {
175 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LE,
176 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3_pci },
177 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LF,
178 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3 },
179 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_MF,
180 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
181 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_ML,
182 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
183 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PA,
184 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
185 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PB,
186 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
187 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PC,
188 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
189 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PD,
190 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
191 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PE,
192 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
193 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PF,
194 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
195 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PG,
196 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
197 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PH,
198 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
199 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PI,
200 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
201 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PJ,
202 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
203 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PK,
204 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
205 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PL,
206 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
207 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PM,
208 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
209 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PN,
210 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
211 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PO,
212 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
213 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PP,
214 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
215 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PQ,
216 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
217 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PR,
218 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
219 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PS,
220 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
221 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PT,
222 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
223 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PU,
224 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
225 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PV,
226 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
227 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PW,
228 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
229 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PX,
230 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
231 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RE,
232 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
233 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RF,
234 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
235 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RG,
236 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
237 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RK,
238 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
239 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RL,
240 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
241 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SE,
242 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
243 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SF,
244 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
245 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SG,
246 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
247 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SH,
248 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
249 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SK,
250 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
251 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SL,
252 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
253 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SM,
254 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
255 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SN,
256 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
257 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TF,
258 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
259 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TL,
260 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
261 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TR,
262 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
263 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TS,
264 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
265 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TT,
266 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
267 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TU,
268 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
269 { 0, }
272 MODULE_DEVICE_TABLE(pci, aty128_pci_tbl);
274 static struct pci_driver aty128fb_driver = {
275 .name = "aty128fb",
276 .id_table = aty128_pci_tbl,
277 .probe = aty128_probe,
278 .remove = __devexit_p(aty128_remove),
279 .suspend = aty128_pci_suspend,
280 .resume = aty128_pci_resume,
283 /* packed BIOS settings */
284 #ifndef CONFIG_PPC
285 typedef struct {
286 u8 clock_chip_type;
287 u8 struct_size;
288 u8 accelerator_entry;
289 u8 VGA_entry;
290 u16 VGA_table_offset;
291 u16 POST_table_offset;
292 u16 XCLK;
293 u16 MCLK;
294 u8 num_PLL_blocks;
295 u8 size_PLL_blocks;
296 u16 PCLK_ref_freq;
297 u16 PCLK_ref_divider;
298 u32 PCLK_min_freq;
299 u32 PCLK_max_freq;
300 u16 MCLK_ref_freq;
301 u16 MCLK_ref_divider;
302 u32 MCLK_min_freq;
303 u32 MCLK_max_freq;
304 u16 XCLK_ref_freq;
305 u16 XCLK_ref_divider;
306 u32 XCLK_min_freq;
307 u32 XCLK_max_freq;
308 } __attribute__ ((packed)) PLL_BLOCK;
309 #endif /* !CONFIG_PPC */
311 /* onboard memory information */
312 struct aty128_meminfo {
313 u8 ML;
314 u8 MB;
315 u8 Trcd;
316 u8 Trp;
317 u8 Twr;
318 u8 CL;
319 u8 Tr2w;
320 u8 LoopLatency;
321 u8 DspOn;
322 u8 Rloop;
323 const char *name;
326 /* various memory configurations */
327 static const struct aty128_meminfo sdr_128 =
328 { 4, 4, 3, 3, 1, 3, 1, 16, 30, 16, "128-bit SDR SGRAM (1:1)" };
329 static const struct aty128_meminfo sdr_64 =
330 { 4, 8, 3, 3, 1, 3, 1, 17, 46, 17, "64-bit SDR SGRAM (1:1)" };
331 static const struct aty128_meminfo sdr_sgram =
332 { 4, 4, 1, 2, 1, 2, 1, 16, 24, 16, "64-bit SDR SGRAM (2:1)" };
333 static const struct aty128_meminfo ddr_sgram =
334 { 4, 4, 3, 3, 2, 3, 1, 16, 31, 16, "64-bit DDR SGRAM" };
336 static struct fb_fix_screeninfo aty128fb_fix __devinitdata = {
337 .id = "ATY Rage128",
338 .type = FB_TYPE_PACKED_PIXELS,
339 .visual = FB_VISUAL_PSEUDOCOLOR,
340 .xpanstep = 8,
341 .ypanstep = 1,
342 .mmio_len = 0x2000,
343 .accel = FB_ACCEL_ATI_RAGE128,
346 static char *mode_option __devinitdata = NULL;
348 #ifdef CONFIG_PPC_PMAC
349 static int default_vmode __devinitdata = VMODE_1024_768_60;
350 static int default_cmode __devinitdata = CMODE_8;
351 #endif
353 static int default_crt_on __devinitdata = 0;
354 static int default_lcd_on __devinitdata = 1;
356 #ifdef CONFIG_MTRR
357 static int mtrr = 1;
358 #endif
360 /* PLL constants */
361 struct aty128_constants {
362 u32 ref_clk;
363 u32 ppll_min;
364 u32 ppll_max;
365 u32 ref_divider;
366 u32 xclk;
367 u32 fifo_width;
368 u32 fifo_depth;
371 struct aty128_crtc {
372 u32 gen_cntl;
373 u32 h_total, h_sync_strt_wid;
374 u32 v_total, v_sync_strt_wid;
375 u32 pitch;
376 u32 offset, offset_cntl;
377 u32 xoffset, yoffset;
378 u32 vxres, vyres;
379 u32 depth, bpp;
382 struct aty128_pll {
383 u32 post_divider;
384 u32 feedback_divider;
385 u32 vclk;
388 struct aty128_ddafifo {
389 u32 dda_config;
390 u32 dda_on_off;
393 /* register values for a specific mode */
394 struct aty128fb_par {
395 struct aty128_crtc crtc;
396 struct aty128_pll pll;
397 struct aty128_ddafifo fifo_reg;
398 u32 accel_flags;
399 struct aty128_constants constants; /* PLL and others */
400 void __iomem *regbase; /* remapped mmio */
401 u32 vram_size; /* onboard video ram */
402 int chip_gen;
403 const struct aty128_meminfo *mem; /* onboard mem info */
404 #ifdef CONFIG_MTRR
405 struct { int vram; int vram_valid; } mtrr;
406 #endif
407 int blitter_may_be_busy;
408 int fifo_slots; /* free slots in FIFO (64 max) */
410 int pm_reg;
411 int crt_on, lcd_on;
412 struct pci_dev *pdev;
413 struct fb_info *next;
414 int asleep;
415 int lock_blank;
417 u8 red[32]; /* see aty128fb_setcolreg */
418 u8 green[64];
419 u8 blue[32];
420 u32 pseudo_palette[16]; /* used for TRUECOLOR */
424 #define round_div(n, d) ((n+(d/2))/d)
426 static int aty128fb_check_var(struct fb_var_screeninfo *var,
427 struct fb_info *info);
428 static int aty128fb_set_par(struct fb_info *info);
429 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
430 u_int transp, struct fb_info *info);
431 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
432 struct fb_info *fb);
433 static int aty128fb_blank(int blank, struct fb_info *fb);
434 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, unsigned long arg);
435 static int aty128fb_sync(struct fb_info *info);
438 * Internal routines
441 static int aty128_encode_var(struct fb_var_screeninfo *var,
442 const struct aty128fb_par *par);
443 static int aty128_decode_var(struct fb_var_screeninfo *var,
444 struct aty128fb_par *par);
445 #if 0
446 static void __devinit aty128_get_pllinfo(struct aty128fb_par *par,
447 void __iomem *bios);
448 static void __devinit __iomem *aty128_map_ROM(struct pci_dev *pdev, const struct aty128fb_par *par);
449 #endif
450 static void aty128_timings(struct aty128fb_par *par);
451 static void aty128_init_engine(struct aty128fb_par *par);
452 static void aty128_reset_engine(const struct aty128fb_par *par);
453 static void aty128_flush_pixel_cache(const struct aty128fb_par *par);
454 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par);
455 static void wait_for_fifo(u16 entries, struct aty128fb_par *par);
456 static void wait_for_idle(struct aty128fb_par *par);
457 static u32 depth_to_dst(u32 depth);
459 #ifdef CONFIG_FB_ATY128_BACKLIGHT
460 static void aty128_bl_set_power(struct fb_info *info, int power);
461 #endif
463 #define BIOS_IN8(v) (readb(bios + (v)))
464 #define BIOS_IN16(v) (readb(bios + (v)) | \
465 (readb(bios + (v) + 1) << 8))
466 #define BIOS_IN32(v) (readb(bios + (v)) | \
467 (readb(bios + (v) + 1) << 8) | \
468 (readb(bios + (v) + 2) << 16) | \
469 (readb(bios + (v) + 3) << 24))
472 static struct fb_ops aty128fb_ops = {
473 .owner = THIS_MODULE,
474 .fb_check_var = aty128fb_check_var,
475 .fb_set_par = aty128fb_set_par,
476 .fb_setcolreg = aty128fb_setcolreg,
477 .fb_pan_display = aty128fb_pan_display,
478 .fb_blank = aty128fb_blank,
479 .fb_ioctl = aty128fb_ioctl,
480 .fb_sync = aty128fb_sync,
481 .fb_fillrect = cfb_fillrect,
482 .fb_copyarea = cfb_copyarea,
483 .fb_imageblit = cfb_imageblit,
487 * Functions to read from/write to the mmio registers
488 * - endian conversions may possibly be avoided by
489 * using the other register aperture. TODO.
491 static inline u32 _aty_ld_le32(volatile unsigned int regindex,
492 const struct aty128fb_par *par)
494 return readl (par->regbase + regindex);
497 static inline void _aty_st_le32(volatile unsigned int regindex, u32 val,
498 const struct aty128fb_par *par)
500 writel (val, par->regbase + regindex);
503 static inline u8 _aty_ld_8(unsigned int regindex,
504 const struct aty128fb_par *par)
506 return readb (par->regbase + regindex);
509 static inline void _aty_st_8(unsigned int regindex, u8 val,
510 const struct aty128fb_par *par)
512 writeb (val, par->regbase + regindex);
515 #define aty_ld_le32(regindex) _aty_ld_le32(regindex, par)
516 #define aty_st_le32(regindex, val) _aty_st_le32(regindex, val, par)
517 #define aty_ld_8(regindex) _aty_ld_8(regindex, par)
518 #define aty_st_8(regindex, val) _aty_st_8(regindex, val, par)
521 * Functions to read from/write to the pll registers
524 #define aty_ld_pll(pll_index) _aty_ld_pll(pll_index, par)
525 #define aty_st_pll(pll_index, val) _aty_st_pll(pll_index, val, par)
528 static u32 _aty_ld_pll(unsigned int pll_index,
529 const struct aty128fb_par *par)
531 aty_st_8(CLOCK_CNTL_INDEX, pll_index & 0x3F);
532 return aty_ld_le32(CLOCK_CNTL_DATA);
536 static void _aty_st_pll(unsigned int pll_index, u32 val,
537 const struct aty128fb_par *par)
539 aty_st_8(CLOCK_CNTL_INDEX, (pll_index & 0x3F) | PLL_WR_EN);
540 aty_st_le32(CLOCK_CNTL_DATA, val);
544 /* return true when the PLL has completed an atomic update */
545 static int aty_pll_readupdate(const struct aty128fb_par *par)
547 return !(aty_ld_pll(PPLL_REF_DIV) & PPLL_ATOMIC_UPDATE_R);
551 static void aty_pll_wait_readupdate(const struct aty128fb_par *par)
553 unsigned long timeout = jiffies + HZ/100; // should be more than enough
554 int reset = 1;
556 while (time_before(jiffies, timeout))
557 if (aty_pll_readupdate(par)) {
558 reset = 0;
559 break;
562 if (reset) /* reset engine?? */
563 printk(KERN_DEBUG "aty128fb: PLL write timeout!\n");
567 /* tell PLL to update */
568 static void aty_pll_writeupdate(const struct aty128fb_par *par)
570 aty_pll_wait_readupdate(par);
572 aty_st_pll(PPLL_REF_DIV,
573 aty_ld_pll(PPLL_REF_DIV) | PPLL_ATOMIC_UPDATE_W);
577 /* write to the scratch register to test r/w functionality */
578 static int __devinit register_test(const struct aty128fb_par *par)
580 u32 val;
581 int flag = 0;
583 val = aty_ld_le32(BIOS_0_SCRATCH);
585 aty_st_le32(BIOS_0_SCRATCH, 0x55555555);
586 if (aty_ld_le32(BIOS_0_SCRATCH) == 0x55555555) {
587 aty_st_le32(BIOS_0_SCRATCH, 0xAAAAAAAA);
589 if (aty_ld_le32(BIOS_0_SCRATCH) == 0xAAAAAAAA)
590 flag = 1;
593 aty_st_le32(BIOS_0_SCRATCH, val); // restore value
594 return flag;
599 * Accelerator engine functions
601 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par)
603 int i;
605 for (;;) {
606 for (i = 0; i < 2000000; i++) {
607 par->fifo_slots = aty_ld_le32(GUI_STAT) & 0x0fff;
608 if (par->fifo_slots >= entries)
609 return;
611 aty128_reset_engine(par);
616 static void wait_for_idle(struct aty128fb_par *par)
618 int i;
620 do_wait_for_fifo(64, par);
622 for (;;) {
623 for (i = 0; i < 2000000; i++) {
624 if (!(aty_ld_le32(GUI_STAT) & (1 << 31))) {
625 aty128_flush_pixel_cache(par);
626 par->blitter_may_be_busy = 0;
627 return;
630 aty128_reset_engine(par);
635 static void wait_for_fifo(u16 entries, struct aty128fb_par *par)
637 if (par->fifo_slots < entries)
638 do_wait_for_fifo(64, par);
639 par->fifo_slots -= entries;
643 static void aty128_flush_pixel_cache(const struct aty128fb_par *par)
645 int i;
646 u32 tmp;
648 tmp = aty_ld_le32(PC_NGUI_CTLSTAT);
649 tmp &= ~(0x00ff);
650 tmp |= 0x00ff;
651 aty_st_le32(PC_NGUI_CTLSTAT, tmp);
653 for (i = 0; i < 2000000; i++)
654 if (!(aty_ld_le32(PC_NGUI_CTLSTAT) & PC_BUSY))
655 break;
659 static void aty128_reset_engine(const struct aty128fb_par *par)
661 u32 gen_reset_cntl, clock_cntl_index, mclk_cntl;
663 aty128_flush_pixel_cache(par);
665 clock_cntl_index = aty_ld_le32(CLOCK_CNTL_INDEX);
666 mclk_cntl = aty_ld_pll(MCLK_CNTL);
668 aty_st_pll(MCLK_CNTL, mclk_cntl | 0x00030000);
670 gen_reset_cntl = aty_ld_le32(GEN_RESET_CNTL);
671 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl | SOFT_RESET_GUI);
672 aty_ld_le32(GEN_RESET_CNTL);
673 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl & ~(SOFT_RESET_GUI));
674 aty_ld_le32(GEN_RESET_CNTL);
676 aty_st_pll(MCLK_CNTL, mclk_cntl);
677 aty_st_le32(CLOCK_CNTL_INDEX, clock_cntl_index);
678 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl);
680 /* use old pio mode */
681 aty_st_le32(PM4_BUFFER_CNTL, PM4_BUFFER_CNTL_NONPM4);
683 DBG("engine reset");
687 static void aty128_init_engine(struct aty128fb_par *par)
689 u32 pitch_value;
691 wait_for_idle(par);
693 /* 3D scaler not spoken here */
694 wait_for_fifo(1, par);
695 aty_st_le32(SCALE_3D_CNTL, 0x00000000);
697 aty128_reset_engine(par);
699 pitch_value = par->crtc.pitch;
700 if (par->crtc.bpp == 24) {
701 pitch_value = pitch_value * 3;
704 wait_for_fifo(4, par);
705 /* setup engine offset registers */
706 aty_st_le32(DEFAULT_OFFSET, 0x00000000);
708 /* setup engine pitch registers */
709 aty_st_le32(DEFAULT_PITCH, pitch_value);
711 /* set the default scissor register to max dimensions */
712 aty_st_le32(DEFAULT_SC_BOTTOM_RIGHT, (0x1FFF << 16) | 0x1FFF);
714 /* set the drawing controls registers */
715 aty_st_le32(DP_GUI_MASTER_CNTL,
716 GMC_SRC_PITCH_OFFSET_DEFAULT |
717 GMC_DST_PITCH_OFFSET_DEFAULT |
718 GMC_SRC_CLIP_DEFAULT |
719 GMC_DST_CLIP_DEFAULT |
720 GMC_BRUSH_SOLIDCOLOR |
721 (depth_to_dst(par->crtc.depth) << 8) |
722 GMC_SRC_DSTCOLOR |
723 GMC_BYTE_ORDER_MSB_TO_LSB |
724 GMC_DP_CONVERSION_TEMP_6500 |
725 ROP3_PATCOPY |
726 GMC_DP_SRC_RECT |
727 GMC_3D_FCN_EN_CLR |
728 GMC_DST_CLR_CMP_FCN_CLEAR |
729 GMC_AUX_CLIP_CLEAR |
730 GMC_WRITE_MASK_SET);
732 wait_for_fifo(8, par);
733 /* clear the line drawing registers */
734 aty_st_le32(DST_BRES_ERR, 0);
735 aty_st_le32(DST_BRES_INC, 0);
736 aty_st_le32(DST_BRES_DEC, 0);
738 /* set brush color registers */
739 aty_st_le32(DP_BRUSH_FRGD_CLR, 0xFFFFFFFF); /* white */
740 aty_st_le32(DP_BRUSH_BKGD_CLR, 0x00000000); /* black */
742 /* set source color registers */
743 aty_st_le32(DP_SRC_FRGD_CLR, 0xFFFFFFFF); /* white */
744 aty_st_le32(DP_SRC_BKGD_CLR, 0x00000000); /* black */
746 /* default write mask */
747 aty_st_le32(DP_WRITE_MASK, 0xFFFFFFFF);
749 /* Wait for all the writes to be completed before returning */
750 wait_for_idle(par);
754 /* convert depth values to their register representation */
755 static u32 depth_to_dst(u32 depth)
757 if (depth <= 8)
758 return DST_8BPP;
759 else if (depth <= 15)
760 return DST_15BPP;
761 else if (depth == 16)
762 return DST_16BPP;
763 else if (depth <= 24)
764 return DST_24BPP;
765 else if (depth <= 32)
766 return DST_32BPP;
768 return -EINVAL;
772 * PLL informations retreival
776 #ifndef __sparc__
777 static void __iomem * __devinit aty128_map_ROM(const struct aty128fb_par *par, struct pci_dev *dev)
779 u16 dptr;
780 u8 rom_type;
781 void __iomem *bios;
782 size_t rom_size;
784 /* Fix from ATI for problem with Rage128 hardware not leaving ROM enabled */
785 unsigned int temp;
786 temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
787 temp &= 0x00ffffffu;
788 temp |= 0x04 << 24;
789 aty_st_le32(RAGE128_MPP_TB_CONFIG, temp);
790 temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
792 bios = pci_map_rom(dev, &rom_size);
794 if (!bios) {
795 printk(KERN_ERR "aty128fb: ROM failed to map\n");
796 return NULL;
799 /* Very simple test to make sure it appeared */
800 if (BIOS_IN16(0) != 0xaa55) {
801 printk(KERN_DEBUG "aty128fb: Invalid ROM signature %x should "
802 " be 0xaa55\n", BIOS_IN16(0));
803 goto failed;
806 /* Look for the PCI data to check the ROM type */
807 dptr = BIOS_IN16(0x18);
809 /* Check the PCI data signature. If it's wrong, we still assume a normal x86 ROM
810 * for now, until I've verified this works everywhere. The goal here is more
811 * to phase out Open Firmware images.
813 * Currently, we only look at the first PCI data, we could iteratre and deal with
814 * them all, and we should use fb_bios_start relative to start of image and not
815 * relative start of ROM, but so far, I never found a dual-image ATI card
817 * typedef struct {
818 * u32 signature; + 0x00
819 * u16 vendor; + 0x04
820 * u16 device; + 0x06
821 * u16 reserved_1; + 0x08
822 * u16 dlen; + 0x0a
823 * u8 drevision; + 0x0c
824 * u8 class_hi; + 0x0d
825 * u16 class_lo; + 0x0e
826 * u16 ilen; + 0x10
827 * u16 irevision; + 0x12
828 * u8 type; + 0x14
829 * u8 indicator; + 0x15
830 * u16 reserved_2; + 0x16
831 * } pci_data_t;
833 if (BIOS_IN32(dptr) != (('R' << 24) | ('I' << 16) | ('C' << 8) | 'P')) {
834 printk(KERN_WARNING "aty128fb: PCI DATA signature in ROM incorrect: %08x\n",
835 BIOS_IN32(dptr));
836 goto anyway;
838 rom_type = BIOS_IN8(dptr + 0x14);
839 switch(rom_type) {
840 case 0:
841 printk(KERN_INFO "aty128fb: Found Intel x86 BIOS ROM Image\n");
842 break;
843 case 1:
844 printk(KERN_INFO "aty128fb: Found Open Firmware ROM Image\n");
845 goto failed;
846 case 2:
847 printk(KERN_INFO "aty128fb: Found HP PA-RISC ROM Image\n");
848 goto failed;
849 default:
850 printk(KERN_INFO "aty128fb: Found unknown type %d ROM Image\n", rom_type);
851 goto failed;
853 anyway:
854 return bios;
856 failed:
857 pci_unmap_rom(dev, bios);
858 return NULL;
861 static void __devinit aty128_get_pllinfo(struct aty128fb_par *par, unsigned char __iomem *bios)
863 unsigned int bios_hdr;
864 unsigned int bios_pll;
866 bios_hdr = BIOS_IN16(0x48);
867 bios_pll = BIOS_IN16(bios_hdr + 0x30);
869 par->constants.ppll_max = BIOS_IN32(bios_pll + 0x16);
870 par->constants.ppll_min = BIOS_IN32(bios_pll + 0x12);
871 par->constants.xclk = BIOS_IN16(bios_pll + 0x08);
872 par->constants.ref_divider = BIOS_IN16(bios_pll + 0x10);
873 par->constants.ref_clk = BIOS_IN16(bios_pll + 0x0e);
875 DBG("ppll_max %d ppll_min %d xclk %d ref_divider %d ref clock %d\n",
876 par->constants.ppll_max, par->constants.ppll_min,
877 par->constants.xclk, par->constants.ref_divider,
878 par->constants.ref_clk);
882 #ifdef CONFIG_X86
883 static void __iomem * __devinit aty128_find_mem_vbios(struct aty128fb_par *par)
885 /* I simplified this code as we used to miss the signatures in
886 * a lot of case. It's now closer to XFree, we just don't check
887 * for signatures at all... Something better will have to be done
888 * if we end up having conflicts
890 u32 segstart;
891 unsigned char __iomem *rom_base = NULL;
893 for (segstart=0x000c0000; segstart<0x000f0000; segstart+=0x00001000) {
894 rom_base = ioremap(segstart, 0x10000);
895 if (rom_base == NULL)
896 return NULL;
897 if (readb(rom_base) == 0x55 && readb(rom_base + 1) == 0xaa)
898 break;
899 iounmap(rom_base);
900 rom_base = NULL;
902 return rom_base;
904 #endif
905 #endif /* ndef(__sparc__) */
907 /* fill in known card constants if pll_block is not available */
908 static void __devinit aty128_timings(struct aty128fb_par *par)
910 #ifdef CONFIG_PPC_OF
911 /* instead of a table lookup, assume OF has properly
912 * setup the PLL registers and use their values
913 * to set the XCLK values and reference divider values */
915 u32 x_mpll_ref_fb_div;
916 u32 xclk_cntl;
917 u32 Nx, M;
918 unsigned PostDivSet[] = { 0, 1, 2, 4, 8, 3, 6, 12 };
919 #endif
921 if (!par->constants.ref_clk)
922 par->constants.ref_clk = 2950;
924 #ifdef CONFIG_PPC_OF
925 x_mpll_ref_fb_div = aty_ld_pll(X_MPLL_REF_FB_DIV);
926 xclk_cntl = aty_ld_pll(XCLK_CNTL) & 0x7;
927 Nx = (x_mpll_ref_fb_div & 0x00ff00) >> 8;
928 M = x_mpll_ref_fb_div & 0x0000ff;
930 par->constants.xclk = round_div((2 * Nx * par->constants.ref_clk),
931 (M * PostDivSet[xclk_cntl]));
933 par->constants.ref_divider =
934 aty_ld_pll(PPLL_REF_DIV) & PPLL_REF_DIV_MASK;
935 #endif
937 if (!par->constants.ref_divider) {
938 par->constants.ref_divider = 0x3b;
940 aty_st_pll(X_MPLL_REF_FB_DIV, 0x004c4c1e);
941 aty_pll_writeupdate(par);
943 aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider);
944 aty_pll_writeupdate(par);
946 /* from documentation */
947 if (!par->constants.ppll_min)
948 par->constants.ppll_min = 12500;
949 if (!par->constants.ppll_max)
950 par->constants.ppll_max = 25000; /* 23000 on some cards? */
951 if (!par->constants.xclk)
952 par->constants.xclk = 0x1d4d; /* same as mclk */
954 par->constants.fifo_width = 128;
955 par->constants.fifo_depth = 32;
957 switch (aty_ld_le32(MEM_CNTL) & 0x3) {
958 case 0:
959 par->mem = &sdr_128;
960 break;
961 case 1:
962 par->mem = &sdr_sgram;
963 break;
964 case 2:
965 par->mem = &ddr_sgram;
966 break;
967 default:
968 par->mem = &sdr_sgram;
975 * CRTC programming
978 /* Program the CRTC registers */
979 static void aty128_set_crtc(const struct aty128_crtc *crtc,
980 const struct aty128fb_par *par)
982 aty_st_le32(CRTC_GEN_CNTL, crtc->gen_cntl);
983 aty_st_le32(CRTC_H_TOTAL_DISP, crtc->h_total);
984 aty_st_le32(CRTC_H_SYNC_STRT_WID, crtc->h_sync_strt_wid);
985 aty_st_le32(CRTC_V_TOTAL_DISP, crtc->v_total);
986 aty_st_le32(CRTC_V_SYNC_STRT_WID, crtc->v_sync_strt_wid);
987 aty_st_le32(CRTC_PITCH, crtc->pitch);
988 aty_st_le32(CRTC_OFFSET, crtc->offset);
989 aty_st_le32(CRTC_OFFSET_CNTL, crtc->offset_cntl);
990 /* Disable ATOMIC updating. Is this the right place? */
991 aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~(0x00030000));
995 static int aty128_var_to_crtc(const struct fb_var_screeninfo *var,
996 struct aty128_crtc *crtc,
997 const struct aty128fb_par *par)
999 u32 xres, yres, vxres, vyres, xoffset, yoffset, bpp, dst;
1000 u32 left, right, upper, lower, hslen, vslen, sync, vmode;
1001 u32 h_total, h_disp, h_sync_strt, h_sync_wid, h_sync_pol;
1002 u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1003 u32 depth, bytpp;
1004 u8 mode_bytpp[7] = { 0, 0, 1, 2, 2, 3, 4 };
1006 /* input */
1007 xres = var->xres;
1008 yres = var->yres;
1009 vxres = var->xres_virtual;
1010 vyres = var->yres_virtual;
1011 xoffset = var->xoffset;
1012 yoffset = var->yoffset;
1013 bpp = var->bits_per_pixel;
1014 left = var->left_margin;
1015 right = var->right_margin;
1016 upper = var->upper_margin;
1017 lower = var->lower_margin;
1018 hslen = var->hsync_len;
1019 vslen = var->vsync_len;
1020 sync = var->sync;
1021 vmode = var->vmode;
1023 if (bpp != 16)
1024 depth = bpp;
1025 else
1026 depth = (var->green.length == 6) ? 16 : 15;
1028 /* check for mode eligibility
1029 * accept only non interlaced modes */
1030 if ((vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
1031 return -EINVAL;
1033 /* convert (and round up) and validate */
1034 xres = (xres + 7) & ~7;
1035 xoffset = (xoffset + 7) & ~7;
1037 if (vxres < xres + xoffset)
1038 vxres = xres + xoffset;
1040 if (vyres < yres + yoffset)
1041 vyres = yres + yoffset;
1043 /* convert depth into ATI register depth */
1044 dst = depth_to_dst(depth);
1046 if (dst == -EINVAL) {
1047 printk(KERN_ERR "aty128fb: Invalid depth or RGBA\n");
1048 return -EINVAL;
1051 /* convert register depth to bytes per pixel */
1052 bytpp = mode_bytpp[dst];
1054 /* make sure there is enough video ram for the mode */
1055 if ((u32)(vxres * vyres * bytpp) > par->vram_size) {
1056 printk(KERN_ERR "aty128fb: Not enough memory for mode\n");
1057 return -EINVAL;
1060 h_disp = (xres >> 3) - 1;
1061 h_total = (((xres + right + hslen + left) >> 3) - 1) & 0xFFFFL;
1063 v_disp = yres - 1;
1064 v_total = (yres + upper + vslen + lower - 1) & 0xFFFFL;
1066 /* check to make sure h_total and v_total are in range */
1067 if (((h_total >> 3) - 1) > 0x1ff || (v_total - 1) > 0x7FF) {
1068 printk(KERN_ERR "aty128fb: invalid width ranges\n");
1069 return -EINVAL;
1072 h_sync_wid = (hslen + 7) >> 3;
1073 if (h_sync_wid == 0)
1074 h_sync_wid = 1;
1075 else if (h_sync_wid > 0x3f) /* 0x3f = max hwidth */
1076 h_sync_wid = 0x3f;
1078 h_sync_strt = (h_disp << 3) + right;
1080 v_sync_wid = vslen;
1081 if (v_sync_wid == 0)
1082 v_sync_wid = 1;
1083 else if (v_sync_wid > 0x1f) /* 0x1f = max vwidth */
1084 v_sync_wid = 0x1f;
1086 v_sync_strt = v_disp + lower;
1088 h_sync_pol = sync & FB_SYNC_HOR_HIGH_ACT ? 0 : 1;
1089 v_sync_pol = sync & FB_SYNC_VERT_HIGH_ACT ? 0 : 1;
1091 c_sync = sync & FB_SYNC_COMP_HIGH_ACT ? (1 << 4) : 0;
1093 crtc->gen_cntl = 0x3000000L | c_sync | (dst << 8);
1095 crtc->h_total = h_total | (h_disp << 16);
1096 crtc->v_total = v_total | (v_disp << 16);
1098 crtc->h_sync_strt_wid = h_sync_strt | (h_sync_wid << 16) |
1099 (h_sync_pol << 23);
1100 crtc->v_sync_strt_wid = v_sync_strt | (v_sync_wid << 16) |
1101 (v_sync_pol << 23);
1103 crtc->pitch = vxres >> 3;
1105 crtc->offset = 0;
1107 if ((var->activate & FB_ACTIVATE_MASK) == FB_ACTIVATE_NOW)
1108 crtc->offset_cntl = 0x00010000;
1109 else
1110 crtc->offset_cntl = 0;
1112 crtc->vxres = vxres;
1113 crtc->vyres = vyres;
1114 crtc->xoffset = xoffset;
1115 crtc->yoffset = yoffset;
1116 crtc->depth = depth;
1117 crtc->bpp = bpp;
1119 return 0;
1123 static int aty128_pix_width_to_var(int pix_width, struct fb_var_screeninfo *var)
1126 /* fill in pixel info */
1127 var->red.msb_right = 0;
1128 var->green.msb_right = 0;
1129 var->blue.offset = 0;
1130 var->blue.msb_right = 0;
1131 var->transp.offset = 0;
1132 var->transp.length = 0;
1133 var->transp.msb_right = 0;
1134 switch (pix_width) {
1135 case CRTC_PIX_WIDTH_8BPP:
1136 var->bits_per_pixel = 8;
1137 var->red.offset = 0;
1138 var->red.length = 8;
1139 var->green.offset = 0;
1140 var->green.length = 8;
1141 var->blue.length = 8;
1142 break;
1143 case CRTC_PIX_WIDTH_15BPP:
1144 var->bits_per_pixel = 16;
1145 var->red.offset = 10;
1146 var->red.length = 5;
1147 var->green.offset = 5;
1148 var->green.length = 5;
1149 var->blue.length = 5;
1150 break;
1151 case CRTC_PIX_WIDTH_16BPP:
1152 var->bits_per_pixel = 16;
1153 var->red.offset = 11;
1154 var->red.length = 5;
1155 var->green.offset = 5;
1156 var->green.length = 6;
1157 var->blue.length = 5;
1158 break;
1159 case CRTC_PIX_WIDTH_24BPP:
1160 var->bits_per_pixel = 24;
1161 var->red.offset = 16;
1162 var->red.length = 8;
1163 var->green.offset = 8;
1164 var->green.length = 8;
1165 var->blue.length = 8;
1166 break;
1167 case CRTC_PIX_WIDTH_32BPP:
1168 var->bits_per_pixel = 32;
1169 var->red.offset = 16;
1170 var->red.length = 8;
1171 var->green.offset = 8;
1172 var->green.length = 8;
1173 var->blue.length = 8;
1174 var->transp.offset = 24;
1175 var->transp.length = 8;
1176 break;
1177 default:
1178 printk(KERN_ERR "aty128fb: Invalid pixel width\n");
1179 return -EINVAL;
1182 return 0;
1186 static int aty128_crtc_to_var(const struct aty128_crtc *crtc,
1187 struct fb_var_screeninfo *var)
1189 u32 xres, yres, left, right, upper, lower, hslen, vslen, sync;
1190 u32 h_total, h_disp, h_sync_strt, h_sync_dly, h_sync_wid, h_sync_pol;
1191 u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1192 u32 pix_width;
1194 /* fun with masking */
1195 h_total = crtc->h_total & 0x1ff;
1196 h_disp = (crtc->h_total >> 16) & 0xff;
1197 h_sync_strt = (crtc->h_sync_strt_wid >> 3) & 0x1ff;
1198 h_sync_dly = crtc->h_sync_strt_wid & 0x7;
1199 h_sync_wid = (crtc->h_sync_strt_wid >> 16) & 0x3f;
1200 h_sync_pol = (crtc->h_sync_strt_wid >> 23) & 0x1;
1201 v_total = crtc->v_total & 0x7ff;
1202 v_disp = (crtc->v_total >> 16) & 0x7ff;
1203 v_sync_strt = crtc->v_sync_strt_wid & 0x7ff;
1204 v_sync_wid = (crtc->v_sync_strt_wid >> 16) & 0x1f;
1205 v_sync_pol = (crtc->v_sync_strt_wid >> 23) & 0x1;
1206 c_sync = crtc->gen_cntl & CRTC_CSYNC_EN ? 1 : 0;
1207 pix_width = crtc->gen_cntl & CRTC_PIX_WIDTH_MASK;
1209 /* do conversions */
1210 xres = (h_disp + 1) << 3;
1211 yres = v_disp + 1;
1212 left = ((h_total - h_sync_strt - h_sync_wid) << 3) - h_sync_dly;
1213 right = ((h_sync_strt - h_disp) << 3) + h_sync_dly;
1214 hslen = h_sync_wid << 3;
1215 upper = v_total - v_sync_strt - v_sync_wid;
1216 lower = v_sync_strt - v_disp;
1217 vslen = v_sync_wid;
1218 sync = (h_sync_pol ? 0 : FB_SYNC_HOR_HIGH_ACT) |
1219 (v_sync_pol ? 0 : FB_SYNC_VERT_HIGH_ACT) |
1220 (c_sync ? FB_SYNC_COMP_HIGH_ACT : 0);
1222 aty128_pix_width_to_var(pix_width, var);
1224 var->xres = xres;
1225 var->yres = yres;
1226 var->xres_virtual = crtc->vxres;
1227 var->yres_virtual = crtc->vyres;
1228 var->xoffset = crtc->xoffset;
1229 var->yoffset = crtc->yoffset;
1230 var->left_margin = left;
1231 var->right_margin = right;
1232 var->upper_margin = upper;
1233 var->lower_margin = lower;
1234 var->hsync_len = hslen;
1235 var->vsync_len = vslen;
1236 var->sync = sync;
1237 var->vmode = FB_VMODE_NONINTERLACED;
1239 return 0;
1242 static void aty128_set_crt_enable(struct aty128fb_par *par, int on)
1244 if (on) {
1245 aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) | CRT_CRTC_ON);
1246 aty_st_le32(DAC_CNTL, (aty_ld_le32(DAC_CNTL) | DAC_PALETTE2_SNOOP_EN));
1247 } else
1248 aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) & ~CRT_CRTC_ON);
1251 static void aty128_set_lcd_enable(struct aty128fb_par *par, int on)
1253 u32 reg;
1254 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1255 struct fb_info *info = pci_get_drvdata(par->pdev);
1256 #endif
1258 if (on) {
1259 reg = aty_ld_le32(LVDS_GEN_CNTL);
1260 reg |= LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION;
1261 reg &= ~LVDS_DISPLAY_DIS;
1262 aty_st_le32(LVDS_GEN_CNTL, reg);
1263 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1264 aty128_bl_set_power(info, FB_BLANK_UNBLANK);
1265 #endif
1266 } else {
1267 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1268 aty128_bl_set_power(info, FB_BLANK_POWERDOWN);
1269 #endif
1270 reg = aty_ld_le32(LVDS_GEN_CNTL);
1271 reg |= LVDS_DISPLAY_DIS;
1272 aty_st_le32(LVDS_GEN_CNTL, reg);
1273 mdelay(100);
1274 reg &= ~(LVDS_ON /*| LVDS_EN*/);
1275 aty_st_le32(LVDS_GEN_CNTL, reg);
1279 static void aty128_set_pll(struct aty128_pll *pll, const struct aty128fb_par *par)
1281 u32 div3;
1283 unsigned char post_conv[] = /* register values for post dividers */
1284 { 2, 0, 1, 4, 2, 2, 6, 2, 3, 2, 2, 2, 7 };
1286 /* select PPLL_DIV_3 */
1287 aty_st_le32(CLOCK_CNTL_INDEX, aty_ld_le32(CLOCK_CNTL_INDEX) | (3 << 8));
1289 /* reset PLL */
1290 aty_st_pll(PPLL_CNTL,
1291 aty_ld_pll(PPLL_CNTL) | PPLL_RESET | PPLL_ATOMIC_UPDATE_EN);
1293 /* write the reference divider */
1294 aty_pll_wait_readupdate(par);
1295 aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider & 0x3ff);
1296 aty_pll_writeupdate(par);
1298 div3 = aty_ld_pll(PPLL_DIV_3);
1299 div3 &= ~PPLL_FB3_DIV_MASK;
1300 div3 |= pll->feedback_divider;
1301 div3 &= ~PPLL_POST3_DIV_MASK;
1302 div3 |= post_conv[pll->post_divider] << 16;
1304 /* write feedback and post dividers */
1305 aty_pll_wait_readupdate(par);
1306 aty_st_pll(PPLL_DIV_3, div3);
1307 aty_pll_writeupdate(par);
1309 aty_pll_wait_readupdate(par);
1310 aty_st_pll(HTOTAL_CNTL, 0); /* no horiz crtc adjustment */
1311 aty_pll_writeupdate(par);
1313 /* clear the reset, just in case */
1314 aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~PPLL_RESET);
1318 static int aty128_var_to_pll(u32 period_in_ps, struct aty128_pll *pll,
1319 const struct aty128fb_par *par)
1321 const struct aty128_constants c = par->constants;
1322 unsigned char post_dividers[] = {1,2,4,8,3,6,12};
1323 u32 output_freq;
1324 u32 vclk; /* in .01 MHz */
1325 int i = 0;
1326 u32 n, d;
1328 vclk = 100000000 / period_in_ps; /* convert units to 10 kHz */
1330 /* adjust pixel clock if necessary */
1331 if (vclk > c.ppll_max)
1332 vclk = c.ppll_max;
1333 if (vclk * 12 < c.ppll_min)
1334 vclk = c.ppll_min/12;
1336 pll->post_divider = -1;
1338 /* now, find an acceptable divider */
1339 for (i = 0; i < sizeof(post_dividers); i++) {
1340 output_freq = post_dividers[i] * vclk;
1341 if (output_freq >= c.ppll_min && output_freq <= c.ppll_max) {
1342 pll->post_divider = post_dividers[i];
1343 break;
1347 if (pll->post_divider < 0)
1348 return -EINVAL;
1350 /* calculate feedback divider */
1351 n = c.ref_divider * output_freq;
1352 d = c.ref_clk;
1354 pll->feedback_divider = round_div(n, d);
1355 pll->vclk = vclk;
1357 DBG("post %d feedback %d vlck %d output %d ref_divider %d "
1358 "vclk_per: %d\n", pll->post_divider,
1359 pll->feedback_divider, vclk, output_freq,
1360 c.ref_divider, period_in_ps);
1362 return 0;
1366 static int aty128_pll_to_var(const struct aty128_pll *pll, struct fb_var_screeninfo *var)
1368 var->pixclock = 100000000 / pll->vclk;
1370 return 0;
1374 static void aty128_set_fifo(const struct aty128_ddafifo *dsp,
1375 const struct aty128fb_par *par)
1377 aty_st_le32(DDA_CONFIG, dsp->dda_config);
1378 aty_st_le32(DDA_ON_OFF, dsp->dda_on_off);
1382 static int aty128_ddafifo(struct aty128_ddafifo *dsp,
1383 const struct aty128_pll *pll,
1384 u32 depth,
1385 const struct aty128fb_par *par)
1387 const struct aty128_meminfo *m = par->mem;
1388 u32 xclk = par->constants.xclk;
1389 u32 fifo_width = par->constants.fifo_width;
1390 u32 fifo_depth = par->constants.fifo_depth;
1391 s32 x, b, p, ron, roff;
1392 u32 n, d, bpp;
1394 /* round up to multiple of 8 */
1395 bpp = (depth+7) & ~7;
1397 n = xclk * fifo_width;
1398 d = pll->vclk * bpp;
1399 x = round_div(n, d);
1401 ron = 4 * m->MB +
1402 3 * ((m->Trcd - 2 > 0) ? m->Trcd - 2 : 0) +
1403 2 * m->Trp +
1404 m->Twr +
1405 m->CL +
1406 m->Tr2w +
1409 DBG("x %x\n", x);
1411 b = 0;
1412 while (x) {
1413 x >>= 1;
1414 b++;
1416 p = b + 1;
1418 ron <<= (11 - p);
1420 n <<= (11 - p);
1421 x = round_div(n, d);
1422 roff = x * (fifo_depth - 4);
1424 if ((ron + m->Rloop) >= roff) {
1425 printk(KERN_ERR "aty128fb: Mode out of range!\n");
1426 return -EINVAL;
1429 DBG("p: %x rloop: %x x: %x ron: %x roff: %x\n",
1430 p, m->Rloop, x, ron, roff);
1432 dsp->dda_config = p << 16 | m->Rloop << 20 | x;
1433 dsp->dda_on_off = ron << 16 | roff;
1435 return 0;
1440 * This actually sets the video mode.
1442 static int aty128fb_set_par(struct fb_info *info)
1444 struct aty128fb_par *par = info->par;
1445 u32 config;
1446 int err;
1448 if ((err = aty128_decode_var(&info->var, par)) != 0)
1449 return err;
1451 if (par->blitter_may_be_busy)
1452 wait_for_idle(par);
1454 /* clear all registers that may interfere with mode setting */
1455 aty_st_le32(OVR_CLR, 0);
1456 aty_st_le32(OVR_WID_LEFT_RIGHT, 0);
1457 aty_st_le32(OVR_WID_TOP_BOTTOM, 0);
1458 aty_st_le32(OV0_SCALE_CNTL, 0);
1459 aty_st_le32(MPP_TB_CONFIG, 0);
1460 aty_st_le32(MPP_GP_CONFIG, 0);
1461 aty_st_le32(SUBPIC_CNTL, 0);
1462 aty_st_le32(VIPH_CONTROL, 0);
1463 aty_st_le32(I2C_CNTL_1, 0); /* turn off i2c */
1464 aty_st_le32(GEN_INT_CNTL, 0); /* turn off interrupts */
1465 aty_st_le32(CAP0_TRIG_CNTL, 0);
1466 aty_st_le32(CAP1_TRIG_CNTL, 0);
1468 aty_st_8(CRTC_EXT_CNTL + 1, 4); /* turn video off */
1470 aty128_set_crtc(&par->crtc, par);
1471 aty128_set_pll(&par->pll, par);
1472 aty128_set_fifo(&par->fifo_reg, par);
1474 config = aty_ld_le32(CONFIG_CNTL) & ~3;
1476 #if defined(__BIG_ENDIAN)
1477 if (par->crtc.bpp == 32)
1478 config |= 2; /* make aperture do 32 bit swapping */
1479 else if (par->crtc.bpp == 16)
1480 config |= 1; /* make aperture do 16 bit swapping */
1481 #endif
1483 aty_st_le32(CONFIG_CNTL, config);
1484 aty_st_8(CRTC_EXT_CNTL + 1, 0); /* turn the video back on */
1486 info->fix.line_length = (par->crtc.vxres * par->crtc.bpp) >> 3;
1487 info->fix.visual = par->crtc.bpp == 8 ? FB_VISUAL_PSEUDOCOLOR
1488 : FB_VISUAL_DIRECTCOLOR;
1490 if (par->chip_gen == rage_M3) {
1491 aty128_set_crt_enable(par, par->crt_on);
1492 aty128_set_lcd_enable(par, par->lcd_on);
1494 if (par->accel_flags & FB_ACCELF_TEXT)
1495 aty128_init_engine(par);
1497 #ifdef CONFIG_BOOTX_TEXT
1498 btext_update_display(info->fix.smem_start,
1499 (((par->crtc.h_total>>16) & 0xff)+1)*8,
1500 ((par->crtc.v_total>>16) & 0x7ff)+1,
1501 par->crtc.bpp,
1502 par->crtc.vxres*par->crtc.bpp/8);
1503 #endif /* CONFIG_BOOTX_TEXT */
1505 return 0;
1509 * encode/decode the User Defined Part of the Display
1512 static int aty128_decode_var(struct fb_var_screeninfo *var, struct aty128fb_par *par)
1514 int err;
1515 struct aty128_crtc crtc;
1516 struct aty128_pll pll;
1517 struct aty128_ddafifo fifo_reg;
1519 if ((err = aty128_var_to_crtc(var, &crtc, par)))
1520 return err;
1522 if ((err = aty128_var_to_pll(var->pixclock, &pll, par)))
1523 return err;
1525 if ((err = aty128_ddafifo(&fifo_reg, &pll, crtc.depth, par)))
1526 return err;
1528 par->crtc = crtc;
1529 par->pll = pll;
1530 par->fifo_reg = fifo_reg;
1531 par->accel_flags = var->accel_flags;
1533 return 0;
1537 static int aty128_encode_var(struct fb_var_screeninfo *var,
1538 const struct aty128fb_par *par)
1540 int err;
1542 if ((err = aty128_crtc_to_var(&par->crtc, var)))
1543 return err;
1545 if ((err = aty128_pll_to_var(&par->pll, var)))
1546 return err;
1548 var->nonstd = 0;
1549 var->activate = 0;
1551 var->height = -1;
1552 var->width = -1;
1553 var->accel_flags = par->accel_flags;
1555 return 0;
1559 static int aty128fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
1561 struct aty128fb_par par;
1562 int err;
1564 par = *(struct aty128fb_par *)info->par;
1565 if ((err = aty128_decode_var(var, &par)) != 0)
1566 return err;
1567 aty128_encode_var(var, &par);
1568 return 0;
1573 * Pan or Wrap the Display
1575 static int aty128fb_pan_display(struct fb_var_screeninfo *var, struct fb_info *fb)
1577 struct aty128fb_par *par = fb->par;
1578 u32 xoffset, yoffset;
1579 u32 offset;
1580 u32 xres, yres;
1582 xres = (((par->crtc.h_total >> 16) & 0xff) + 1) << 3;
1583 yres = ((par->crtc.v_total >> 16) & 0x7ff) + 1;
1585 xoffset = (var->xoffset +7) & ~7;
1586 yoffset = var->yoffset;
1588 if (xoffset+xres > par->crtc.vxres || yoffset+yres > par->crtc.vyres)
1589 return -EINVAL;
1591 par->crtc.xoffset = xoffset;
1592 par->crtc.yoffset = yoffset;
1594 offset = ((yoffset * par->crtc.vxres + xoffset)*(par->crtc.bpp >> 3)) & ~7;
1596 if (par->crtc.bpp == 24)
1597 offset += 8 * (offset % 3); /* Must be multiple of 8 and 3 */
1599 aty_st_le32(CRTC_OFFSET, offset);
1601 return 0;
1606 * Helper function to store a single palette register
1608 static void aty128_st_pal(u_int regno, u_int red, u_int green, u_int blue,
1609 struct aty128fb_par *par)
1611 if (par->chip_gen == rage_M3) {
1612 #if 0
1613 /* Note: For now, on M3, we set palette on both heads, which may
1614 * be useless. Can someone with a M3 check this ?
1616 * This code would still be useful if using the second CRTC to
1617 * do mirroring
1620 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PALETTE_ACCESS_CNTL);
1621 aty_st_8(PALETTE_INDEX, regno);
1622 aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1623 #endif
1624 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & ~DAC_PALETTE_ACCESS_CNTL);
1627 aty_st_8(PALETTE_INDEX, regno);
1628 aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1631 static int aty128fb_sync(struct fb_info *info)
1633 struct aty128fb_par *par = info->par;
1635 if (par->blitter_may_be_busy)
1636 wait_for_idle(par);
1637 return 0;
1640 #ifndef MODULE
1641 static int __devinit aty128fb_setup(char *options)
1643 char *this_opt;
1645 if (!options || !*options)
1646 return 0;
1648 while ((this_opt = strsep(&options, ",")) != NULL) {
1649 if (!strncmp(this_opt, "lcd:", 4)) {
1650 default_lcd_on = simple_strtoul(this_opt+4, NULL, 0);
1651 continue;
1652 } else if (!strncmp(this_opt, "crt:", 4)) {
1653 default_crt_on = simple_strtoul(this_opt+4, NULL, 0);
1654 continue;
1656 #ifdef CONFIG_MTRR
1657 if(!strncmp(this_opt, "nomtrr", 6)) {
1658 mtrr = 0;
1659 continue;
1661 #endif
1662 #ifdef CONFIG_PPC_PMAC
1663 /* vmode and cmode deprecated */
1664 if (!strncmp(this_opt, "vmode:", 6)) {
1665 unsigned int vmode = simple_strtoul(this_opt+6, NULL, 0);
1666 if (vmode > 0 && vmode <= VMODE_MAX)
1667 default_vmode = vmode;
1668 continue;
1669 } else if (!strncmp(this_opt, "cmode:", 6)) {
1670 unsigned int cmode = simple_strtoul(this_opt+6, NULL, 0);
1671 switch (cmode) {
1672 case 0:
1673 case 8:
1674 default_cmode = CMODE_8;
1675 break;
1676 case 15:
1677 case 16:
1678 default_cmode = CMODE_16;
1679 break;
1680 case 24:
1681 case 32:
1682 default_cmode = CMODE_32;
1683 break;
1685 continue;
1687 #endif /* CONFIG_PPC_PMAC */
1688 mode_option = this_opt;
1690 return 0;
1692 #endif /* MODULE */
1694 /* Backlight */
1695 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1696 #define MAX_LEVEL 0xFF
1698 static struct backlight_properties aty128_bl_data;
1700 /* Call with fb_info->bl_mutex held */
1701 static int aty128_bl_get_level_brightness(struct aty128fb_par *par,
1702 int level)
1704 struct fb_info *info = pci_get_drvdata(par->pdev);
1705 int atylevel;
1707 /* Get and convert the value */
1708 atylevel = MAX_LEVEL -
1709 (info->bl_curve[level] * FB_BACKLIGHT_MAX / MAX_LEVEL);
1711 if (atylevel < 0)
1712 atylevel = 0;
1713 else if (atylevel > MAX_LEVEL)
1714 atylevel = MAX_LEVEL;
1716 return atylevel;
1719 /* We turn off the LCD completely instead of just dimming the backlight.
1720 * This provides greater power saving and the display is useless without
1721 * backlight anyway
1723 #define BACKLIGHT_LVDS_OFF
1724 /* That one prevents proper CRT output with LCD off */
1725 #undef BACKLIGHT_DAC_OFF
1727 /* Call with fb_info->bl_mutex held */
1728 static int __aty128_bl_update_status(struct backlight_device *bd)
1730 struct aty128fb_par *par = class_get_devdata(&bd->class_dev);
1731 unsigned int reg = aty_ld_le32(LVDS_GEN_CNTL);
1732 int level;
1734 if (bd->props->power != FB_BLANK_UNBLANK ||
1735 bd->props->fb_blank != FB_BLANK_UNBLANK ||
1736 !par->lcd_on)
1737 level = 0;
1738 else
1739 level = bd->props->brightness;
1741 reg |= LVDS_BL_MOD_EN | LVDS_BLON;
1742 if (level > 0) {
1743 reg |= LVDS_DIGION;
1744 if (!(reg & LVDS_ON)) {
1745 reg &= ~LVDS_BLON;
1746 aty_st_le32(LVDS_GEN_CNTL, reg);
1747 aty_ld_le32(LVDS_GEN_CNTL);
1748 mdelay(10);
1749 reg |= LVDS_BLON;
1750 aty_st_le32(LVDS_GEN_CNTL, reg);
1752 reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1753 reg |= (aty128_bl_get_level_brightness(par, level) << LVDS_BL_MOD_LEVEL_SHIFT);
1754 #ifdef BACKLIGHT_LVDS_OFF
1755 reg |= LVDS_ON | LVDS_EN;
1756 reg &= ~LVDS_DISPLAY_DIS;
1757 #endif
1758 aty_st_le32(LVDS_GEN_CNTL, reg);
1759 #ifdef BACKLIGHT_DAC_OFF
1760 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & (~DAC_PDWN));
1761 #endif
1762 } else {
1763 reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1764 reg |= (aty128_bl_get_level_brightness(par, 0) << LVDS_BL_MOD_LEVEL_SHIFT);
1765 #ifdef BACKLIGHT_LVDS_OFF
1766 reg |= LVDS_DISPLAY_DIS;
1767 aty_st_le32(LVDS_GEN_CNTL, reg);
1768 aty_ld_le32(LVDS_GEN_CNTL);
1769 udelay(10);
1770 reg &= ~(LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION);
1771 #endif
1772 aty_st_le32(LVDS_GEN_CNTL, reg);
1773 #ifdef BACKLIGHT_DAC_OFF
1774 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PDWN);
1775 #endif
1778 return 0;
1781 static int aty128_bl_update_status(struct backlight_device *bd)
1783 struct aty128fb_par *par = class_get_devdata(&bd->class_dev);
1784 struct fb_info *info = pci_get_drvdata(par->pdev);
1785 int ret;
1787 mutex_lock(&info->bl_mutex);
1788 ret = __aty128_bl_update_status(bd);
1789 mutex_unlock(&info->bl_mutex);
1791 return ret;
1794 static int aty128_bl_get_brightness(struct backlight_device *bd)
1796 return bd->props->brightness;
1799 static struct backlight_properties aty128_bl_data = {
1800 .owner = THIS_MODULE,
1801 .get_brightness = aty128_bl_get_brightness,
1802 .update_status = aty128_bl_update_status,
1803 .max_brightness = (FB_BACKLIGHT_LEVELS - 1),
1806 static void aty128_bl_set_power(struct fb_info *info, int power)
1808 mutex_lock(&info->bl_mutex);
1810 if (info->bl_dev) {
1811 down(&info->bl_dev->sem);
1812 info->bl_dev->props->power = power;
1813 __aty128_bl_update_status(info->bl_dev);
1814 up(&info->bl_dev->sem);
1817 mutex_unlock(&info->bl_mutex);
1820 static void aty128_bl_init(struct aty128fb_par *par)
1822 struct fb_info *info = pci_get_drvdata(par->pdev);
1823 struct backlight_device *bd;
1824 char name[12];
1826 /* Could be extended to Rage128Pro LVDS output too */
1827 if (par->chip_gen != rage_M3)
1828 return;
1830 #ifdef CONFIG_PMAC_BACKLIGHT
1831 if (!pmac_has_backlight_type("ati"))
1832 return;
1833 #endif
1835 snprintf(name, sizeof(name), "aty128bl%d", info->node);
1837 bd = backlight_device_register(name, info->dev, par, &aty128_bl_data);
1838 if (IS_ERR(bd)) {
1839 info->bl_dev = NULL;
1840 printk(KERN_WARNING "aty128: Backlight registration failed\n");
1841 goto error;
1844 mutex_lock(&info->bl_mutex);
1845 info->bl_dev = bd;
1846 fb_bl_default_curve(info, 0,
1847 63 * FB_BACKLIGHT_MAX / MAX_LEVEL,
1848 219 * FB_BACKLIGHT_MAX / MAX_LEVEL);
1849 mutex_unlock(&info->bl_mutex);
1851 down(&bd->sem);
1852 bd->props->brightness = aty128_bl_data.max_brightness;
1853 bd->props->power = FB_BLANK_UNBLANK;
1854 bd->props->update_status(bd);
1855 up(&bd->sem);
1857 #ifdef CONFIG_PMAC_BACKLIGHT
1858 mutex_lock(&pmac_backlight_mutex);
1859 if (!pmac_backlight)
1860 pmac_backlight = bd;
1861 mutex_unlock(&pmac_backlight_mutex);
1862 #endif
1864 printk("aty128: Backlight initialized (%s)\n", name);
1866 return;
1868 error:
1869 return;
1872 static void aty128_bl_exit(struct aty128fb_par *par)
1874 struct fb_info *info = pci_get_drvdata(par->pdev);
1876 #ifdef CONFIG_PMAC_BACKLIGHT
1877 mutex_lock(&pmac_backlight_mutex);
1878 #endif
1880 mutex_lock(&info->bl_mutex);
1881 if (info->bl_dev) {
1882 #ifdef CONFIG_PMAC_BACKLIGHT
1883 if (pmac_backlight == info->bl_dev)
1884 pmac_backlight = NULL;
1885 #endif
1887 backlight_device_unregister(info->bl_dev);
1888 info->bl_dev = NULL;
1890 printk("aty128: Backlight unloaded\n");
1892 mutex_unlock(&info->bl_mutex);
1894 #ifdef CONFIG_PMAC_BACKLIGHT
1895 mutex_unlock(&pmac_backlight_mutex);
1896 #endif
1898 #endif /* CONFIG_FB_ATY128_BACKLIGHT */
1901 * Initialisation
1904 #ifdef CONFIG_PPC_PMAC
1905 static void aty128_early_resume(void *data)
1907 struct aty128fb_par *par = data;
1909 if (try_acquire_console_sem())
1910 return;
1911 aty128_do_resume(par->pdev);
1912 release_console_sem();
1914 #endif /* CONFIG_PPC_PMAC */
1916 static int __devinit aty128_init(struct pci_dev *pdev, const struct pci_device_id *ent)
1918 struct fb_info *info = pci_get_drvdata(pdev);
1919 struct aty128fb_par *par = info->par;
1920 struct fb_var_screeninfo var;
1921 char video_card[DEVICE_NAME_SIZE];
1922 u8 chip_rev;
1923 u32 dac;
1925 /* Get the chip revision */
1926 chip_rev = (aty_ld_le32(CONFIG_CNTL) >> 16) & 0x1F;
1928 strcpy(video_card, "Rage128 XX ");
1929 video_card[8] = ent->device >> 8;
1930 video_card[9] = ent->device & 0xFF;
1932 /* range check to make sure */
1933 if (ent->driver_data < ARRAY_SIZE(r128_family))
1934 strncat(video_card, r128_family[ent->driver_data], sizeof(video_card));
1936 printk(KERN_INFO "aty128fb: %s [chip rev 0x%x] ", video_card, chip_rev);
1938 if (par->vram_size % (1024 * 1024) == 0)
1939 printk("%dM %s\n", par->vram_size / (1024*1024), par->mem->name);
1940 else
1941 printk("%dk %s\n", par->vram_size / 1024, par->mem->name);
1943 par->chip_gen = ent->driver_data;
1945 /* fill in info */
1946 info->fbops = &aty128fb_ops;
1947 info->flags = FBINFO_FLAG_DEFAULT;
1949 par->lcd_on = default_lcd_on;
1950 par->crt_on = default_crt_on;
1952 var = default_var;
1953 #ifdef CONFIG_PPC_PMAC
1954 if (machine_is(powermac)) {
1955 /* Indicate sleep capability */
1956 if (par->chip_gen == rage_M3) {
1957 pmac_call_feature(PMAC_FTR_DEVICE_CAN_WAKE, NULL, 0, 1);
1958 pmac_set_early_video_resume(aty128_early_resume, par);
1961 /* Find default mode */
1962 if (mode_option) {
1963 if (!mac_find_mode(&var, info, mode_option, 8))
1964 var = default_var;
1965 } else {
1966 if (default_vmode <= 0 || default_vmode > VMODE_MAX)
1967 default_vmode = VMODE_1024_768_60;
1969 /* iMacs need that resolution
1970 * PowerMac2,1 first r128 iMacs
1971 * PowerMac2,2 summer 2000 iMacs
1972 * PowerMac4,1 january 2001 iMacs "flower power"
1974 if (machine_is_compatible("PowerMac2,1") ||
1975 machine_is_compatible("PowerMac2,2") ||
1976 machine_is_compatible("PowerMac4,1"))
1977 default_vmode = VMODE_1024_768_75;
1979 /* iBook SE */
1980 if (machine_is_compatible("PowerBook2,2"))
1981 default_vmode = VMODE_800_600_60;
1983 /* PowerBook Firewire (Pismo), iBook Dual USB */
1984 if (machine_is_compatible("PowerBook3,1") ||
1985 machine_is_compatible("PowerBook4,1"))
1986 default_vmode = VMODE_1024_768_60;
1988 /* PowerBook Titanium */
1989 if (machine_is_compatible("PowerBook3,2"))
1990 default_vmode = VMODE_1152_768_60;
1992 if (default_cmode > 16)
1993 default_cmode = CMODE_32;
1994 else if (default_cmode > 8)
1995 default_cmode = CMODE_16;
1996 else
1997 default_cmode = CMODE_8;
1999 if (mac_vmode_to_var(default_vmode, default_cmode, &var))
2000 var = default_var;
2002 } else
2003 #endif /* CONFIG_PPC_PMAC */
2005 if (mode_option)
2006 if (fb_find_mode(&var, info, mode_option, NULL,
2007 0, &defaultmode, 8) == 0)
2008 var = default_var;
2011 var.accel_flags &= ~FB_ACCELF_TEXT;
2012 // var.accel_flags |= FB_ACCELF_TEXT;/* FIXME Will add accel later */
2014 if (aty128fb_check_var(&var, info)) {
2015 printk(KERN_ERR "aty128fb: Cannot set default mode.\n");
2016 return 0;
2019 /* setup the DAC the way we like it */
2020 dac = aty_ld_le32(DAC_CNTL);
2021 dac |= (DAC_8BIT_EN | DAC_RANGE_CNTL);
2022 dac |= DAC_MASK;
2023 if (par->chip_gen == rage_M3)
2024 dac |= DAC_PALETTE2_SNOOP_EN;
2025 aty_st_le32(DAC_CNTL, dac);
2027 /* turn off bus mastering, just in case */
2028 aty_st_le32(BUS_CNTL, aty_ld_le32(BUS_CNTL) | BUS_MASTER_DIS);
2030 info->var = var;
2031 fb_alloc_cmap(&info->cmap, 256, 0);
2033 var.activate = FB_ACTIVATE_NOW;
2035 aty128_init_engine(par);
2037 par->pm_reg = pci_find_capability(pdev, PCI_CAP_ID_PM);
2038 par->pdev = pdev;
2039 par->asleep = 0;
2040 par->lock_blank = 0;
2042 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2043 aty128_bl_init(par);
2044 #endif
2046 if (register_framebuffer(info) < 0)
2047 return 0;
2049 printk(KERN_INFO "fb%d: %s frame buffer device on %s\n",
2050 info->node, info->fix.id, video_card);
2052 return 1; /* success! */
2055 #ifdef CONFIG_PCI
2056 /* register a card ++ajoshi */
2057 static int __devinit aty128_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2059 unsigned long fb_addr, reg_addr;
2060 struct aty128fb_par *par;
2061 struct fb_info *info;
2062 int err;
2063 #ifndef __sparc__
2064 void __iomem *bios = NULL;
2065 #endif
2067 /* Enable device in PCI config */
2068 if ((err = pci_enable_device(pdev))) {
2069 printk(KERN_ERR "aty128fb: Cannot enable PCI device: %d\n",
2070 err);
2071 return -ENODEV;
2074 fb_addr = pci_resource_start(pdev, 0);
2075 if (!request_mem_region(fb_addr, pci_resource_len(pdev, 0),
2076 "aty128fb FB")) {
2077 printk(KERN_ERR "aty128fb: cannot reserve frame "
2078 "buffer memory\n");
2079 return -ENODEV;
2082 reg_addr = pci_resource_start(pdev, 2);
2083 if (!request_mem_region(reg_addr, pci_resource_len(pdev, 2),
2084 "aty128fb MMIO")) {
2085 printk(KERN_ERR "aty128fb: cannot reserve MMIO region\n");
2086 goto err_free_fb;
2089 /* We have the resources. Now virtualize them */
2090 info = framebuffer_alloc(sizeof(struct aty128fb_par), &pdev->dev);
2091 if (info == NULL) {
2092 printk(KERN_ERR "aty128fb: can't alloc fb_info_aty128\n");
2093 goto err_free_mmio;
2095 par = info->par;
2097 info->pseudo_palette = par->pseudo_palette;
2099 /* Virtualize mmio region */
2100 info->fix.mmio_start = reg_addr;
2101 par->regbase = ioremap(reg_addr, pci_resource_len(pdev, 2));
2102 if (!par->regbase)
2103 goto err_free_info;
2105 /* Grab memory size from the card */
2106 // How does this relate to the resource length from the PCI hardware?
2107 par->vram_size = aty_ld_le32(CONFIG_MEMSIZE) & 0x03FFFFFF;
2109 /* Virtualize the framebuffer */
2110 info->screen_base = ioremap(fb_addr, par->vram_size);
2111 if (!info->screen_base)
2112 goto err_unmap_out;
2114 /* Set up info->fix */
2115 info->fix = aty128fb_fix;
2116 info->fix.smem_start = fb_addr;
2117 info->fix.smem_len = par->vram_size;
2118 info->fix.mmio_start = reg_addr;
2120 /* If we can't test scratch registers, something is seriously wrong */
2121 if (!register_test(par)) {
2122 printk(KERN_ERR "aty128fb: Can't write to video register!\n");
2123 goto err_out;
2126 #ifndef __sparc__
2127 bios = aty128_map_ROM(par, pdev);
2128 #ifdef CONFIG_X86
2129 if (bios == NULL)
2130 bios = aty128_find_mem_vbios(par);
2131 #endif
2132 if (bios == NULL)
2133 printk(KERN_INFO "aty128fb: BIOS not located, guessing timings.\n");
2134 else {
2135 printk(KERN_INFO "aty128fb: Rage128 BIOS located\n");
2136 aty128_get_pllinfo(par, bios);
2137 pci_unmap_rom(pdev, bios);
2139 #endif /* __sparc__ */
2141 aty128_timings(par);
2142 pci_set_drvdata(pdev, info);
2144 if (!aty128_init(pdev, ent))
2145 goto err_out;
2147 #ifdef CONFIG_MTRR
2148 if (mtrr) {
2149 par->mtrr.vram = mtrr_add(info->fix.smem_start,
2150 par->vram_size, MTRR_TYPE_WRCOMB, 1);
2151 par->mtrr.vram_valid = 1;
2152 /* let there be speed */
2153 printk(KERN_INFO "aty128fb: Rage128 MTRR set to ON\n");
2155 #endif /* CONFIG_MTRR */
2156 return 0;
2158 err_out:
2159 iounmap(info->screen_base);
2160 err_unmap_out:
2161 iounmap(par->regbase);
2162 err_free_info:
2163 framebuffer_release(info);
2164 err_free_mmio:
2165 release_mem_region(pci_resource_start(pdev, 2),
2166 pci_resource_len(pdev, 2));
2167 err_free_fb:
2168 release_mem_region(pci_resource_start(pdev, 0),
2169 pci_resource_len(pdev, 0));
2170 return -ENODEV;
2173 static void __devexit aty128_remove(struct pci_dev *pdev)
2175 struct fb_info *info = pci_get_drvdata(pdev);
2176 struct aty128fb_par *par;
2178 if (!info)
2179 return;
2181 par = info->par;
2183 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2184 aty128_bl_exit(par);
2185 #endif
2187 unregister_framebuffer(info);
2188 #ifdef CONFIG_MTRR
2189 if (par->mtrr.vram_valid)
2190 mtrr_del(par->mtrr.vram, info->fix.smem_start,
2191 par->vram_size);
2192 #endif /* CONFIG_MTRR */
2193 iounmap(par->regbase);
2194 iounmap(info->screen_base);
2196 release_mem_region(pci_resource_start(pdev, 0),
2197 pci_resource_len(pdev, 0));
2198 release_mem_region(pci_resource_start(pdev, 2),
2199 pci_resource_len(pdev, 2));
2200 framebuffer_release(info);
2202 #endif /* CONFIG_PCI */
2207 * Blank the display.
2209 static int aty128fb_blank(int blank, struct fb_info *fb)
2211 struct aty128fb_par *par = fb->par;
2212 u8 state = 0;
2214 if (par->lock_blank || par->asleep)
2215 return 0;
2217 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2218 if (machine_is(powermac) && blank)
2219 aty128_bl_set_power(fb, FB_BLANK_POWERDOWN);
2220 #endif
2222 if (blank & FB_BLANK_VSYNC_SUSPEND)
2223 state |= 2;
2224 if (blank & FB_BLANK_HSYNC_SUSPEND)
2225 state |= 1;
2226 if (blank & FB_BLANK_POWERDOWN)
2227 state |= 4;
2229 aty_st_8(CRTC_EXT_CNTL+1, state);
2231 if (par->chip_gen == rage_M3) {
2232 aty128_set_crt_enable(par, par->crt_on && !blank);
2233 aty128_set_lcd_enable(par, par->lcd_on && !blank);
2236 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2237 if (machine_is(powermac) && !blank)
2238 aty128_bl_set_power(fb, FB_BLANK_UNBLANK);
2239 #endif
2241 return 0;
2245 * Set a single color register. The values supplied are already
2246 * rounded down to the hardware's capabilities (according to the
2247 * entries in the var structure). Return != 0 for invalid regno.
2249 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
2250 u_int transp, struct fb_info *info)
2252 struct aty128fb_par *par = info->par;
2254 if (regno > 255
2255 || (par->crtc.depth == 16 && regno > 63)
2256 || (par->crtc.depth == 15 && regno > 31))
2257 return 1;
2259 red >>= 8;
2260 green >>= 8;
2261 blue >>= 8;
2263 if (regno < 16) {
2264 int i;
2265 u32 *pal = info->pseudo_palette;
2267 switch (par->crtc.depth) {
2268 case 15:
2269 pal[regno] = (regno << 10) | (regno << 5) | regno;
2270 break;
2271 case 16:
2272 pal[regno] = (regno << 11) | (regno << 6) | regno;
2273 break;
2274 case 24:
2275 pal[regno] = (regno << 16) | (regno << 8) | regno;
2276 break;
2277 case 32:
2278 i = (regno << 8) | regno;
2279 pal[regno] = (i << 16) | i;
2280 break;
2284 if (par->crtc.depth == 16 && regno > 0) {
2286 * With the 5-6-5 split of bits for RGB at 16 bits/pixel, we
2287 * have 32 slots for R and B values but 64 slots for G values.
2288 * Thus the R and B values go in one slot but the G value
2289 * goes in a different slot, and we have to avoid disturbing
2290 * the other fields in the slots we touch.
2292 par->green[regno] = green;
2293 if (regno < 32) {
2294 par->red[regno] = red;
2295 par->blue[regno] = blue;
2296 aty128_st_pal(regno * 8, red, par->green[regno*2],
2297 blue, par);
2299 red = par->red[regno/2];
2300 blue = par->blue[regno/2];
2301 regno <<= 2;
2302 } else if (par->crtc.bpp == 16)
2303 regno <<= 3;
2304 aty128_st_pal(regno, red, green, blue, par);
2306 return 0;
2309 #define ATY_MIRROR_LCD_ON 0x00000001
2310 #define ATY_MIRROR_CRT_ON 0x00000002
2312 /* out param: u32* backlight value: 0 to 15 */
2313 #define FBIO_ATY128_GET_MIRROR _IOR('@', 1, __u32)
2314 /* in param: u32* backlight value: 0 to 15 */
2315 #define FBIO_ATY128_SET_MIRROR _IOW('@', 2, __u32)
2317 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
2319 struct aty128fb_par *par = info->par;
2320 u32 value;
2321 int rc;
2323 switch (cmd) {
2324 case FBIO_ATY128_SET_MIRROR:
2325 if (par->chip_gen != rage_M3)
2326 return -EINVAL;
2327 rc = get_user(value, (__u32 __user *)arg);
2328 if (rc)
2329 return rc;
2330 par->lcd_on = (value & 0x01) != 0;
2331 par->crt_on = (value & 0x02) != 0;
2332 if (!par->crt_on && !par->lcd_on)
2333 par->lcd_on = 1;
2334 aty128_set_crt_enable(par, par->crt_on);
2335 aty128_set_lcd_enable(par, par->lcd_on);
2336 return 0;
2337 case FBIO_ATY128_GET_MIRROR:
2338 if (par->chip_gen != rage_M3)
2339 return -EINVAL;
2340 value = (par->crt_on << 1) | par->lcd_on;
2341 return put_user(value, (__u32 __user *)arg);
2343 return -EINVAL;
2346 #if 0
2348 * Accelerated functions
2351 static inline void aty128_rectcopy(int srcx, int srcy, int dstx, int dsty,
2352 u_int width, u_int height,
2353 struct fb_info_aty128 *par)
2355 u32 save_dp_datatype, save_dp_cntl, dstval;
2357 if (!width || !height)
2358 return;
2360 dstval = depth_to_dst(par->current_par.crtc.depth);
2361 if (dstval == DST_24BPP) {
2362 srcx *= 3;
2363 dstx *= 3;
2364 width *= 3;
2365 } else if (dstval == -EINVAL) {
2366 printk("aty128fb: invalid depth or RGBA\n");
2367 return;
2370 wait_for_fifo(2, par);
2371 save_dp_datatype = aty_ld_le32(DP_DATATYPE);
2372 save_dp_cntl = aty_ld_le32(DP_CNTL);
2374 wait_for_fifo(6, par);
2375 aty_st_le32(SRC_Y_X, (srcy << 16) | srcx);
2376 aty_st_le32(DP_MIX, ROP3_SRCCOPY | DP_SRC_RECT);
2377 aty_st_le32(DP_CNTL, DST_X_LEFT_TO_RIGHT | DST_Y_TOP_TO_BOTTOM);
2378 aty_st_le32(DP_DATATYPE, save_dp_datatype | dstval | SRC_DSTCOLOR);
2380 aty_st_le32(DST_Y_X, (dsty << 16) | dstx);
2381 aty_st_le32(DST_HEIGHT_WIDTH, (height << 16) | width);
2383 par->blitter_may_be_busy = 1;
2385 wait_for_fifo(2, par);
2386 aty_st_le32(DP_DATATYPE, save_dp_datatype);
2387 aty_st_le32(DP_CNTL, save_dp_cntl);
2392 * Text mode accelerated functions
2395 static void fbcon_aty128_bmove(struct display *p, int sy, int sx, int dy, int dx,
2396 int height, int width)
2398 sx *= fontwidth(p);
2399 sy *= fontheight(p);
2400 dx *= fontwidth(p);
2401 dy *= fontheight(p);
2402 width *= fontwidth(p);
2403 height *= fontheight(p);
2405 aty128_rectcopy(sx, sy, dx, dy, width, height,
2406 (struct fb_info_aty128 *)p->fb_info);
2408 #endif /* 0 */
2410 static void aty128_set_suspend(struct aty128fb_par *par, int suspend)
2412 u32 pmgt;
2413 u16 pwr_command;
2414 struct pci_dev *pdev = par->pdev;
2416 if (!par->pm_reg)
2417 return;
2419 /* Set the chip into the appropriate suspend mode (we use D2,
2420 * D3 would require a complete re-initialisation of the chip,
2421 * including PCI config registers, clocks, AGP configuration, ...)
2423 if (suspend) {
2424 /* Make sure CRTC2 is reset. Remove that the day we decide to
2425 * actually use CRTC2 and replace it with real code for disabling
2426 * the CRTC2 output during sleep
2428 aty_st_le32(CRTC2_GEN_CNTL, aty_ld_le32(CRTC2_GEN_CNTL) &
2429 ~(CRTC2_EN));
2431 /* Set the power management mode to be PCI based */
2432 /* Use this magic value for now */
2433 pmgt = 0x0c005407;
2434 aty_st_pll(POWER_MANAGEMENT, pmgt);
2435 (void)aty_ld_pll(POWER_MANAGEMENT);
2436 aty_st_le32(BUS_CNTL1, 0x00000010);
2437 aty_st_le32(MEM_POWER_MISC, 0x0c830000);
2438 mdelay(100);
2439 pci_read_config_word(pdev, par->pm_reg+PCI_PM_CTRL, &pwr_command);
2440 /* Switch PCI power management to D2 */
2441 pci_write_config_word(pdev, par->pm_reg+PCI_PM_CTRL,
2442 (pwr_command & ~PCI_PM_CTRL_STATE_MASK) | 2);
2443 pci_read_config_word(pdev, par->pm_reg+PCI_PM_CTRL, &pwr_command);
2444 } else {
2445 /* Switch back PCI power management to D0 */
2446 mdelay(100);
2447 pci_write_config_word(pdev, par->pm_reg+PCI_PM_CTRL, 0);
2448 pci_read_config_word(pdev, par->pm_reg+PCI_PM_CTRL, &pwr_command);
2449 mdelay(100);
2453 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2455 struct fb_info *info = pci_get_drvdata(pdev);
2456 struct aty128fb_par *par = info->par;
2458 /* We don't do anything but D2, for now we return 0, but
2459 * we may want to change that. How do we know if the BIOS
2460 * can properly take care of D3 ? Also, with swsusp, we
2461 * know we'll be rebooted, ...
2463 #ifndef CONFIG_PPC_PMAC
2464 /* HACK ALERT ! Once I find a proper way to say to each driver
2465 * individually what will happen with it's PCI slot, I'll change
2466 * that. On laptops, the AGP slot is just unclocked, so D2 is
2467 * expected, while on desktops, the card is powered off
2469 return 0;
2470 #endif /* CONFIG_PPC_PMAC */
2472 if (state.event == pdev->dev.power.power_state.event)
2473 return 0;
2475 printk(KERN_DEBUG "aty128fb: suspending...\n");
2477 acquire_console_sem();
2479 fb_set_suspend(info, 1);
2481 /* Make sure engine is reset */
2482 wait_for_idle(par);
2483 aty128_reset_engine(par);
2484 wait_for_idle(par);
2486 /* Blank display and LCD */
2487 aty128fb_blank(VESA_POWERDOWN, info);
2489 /* Sleep */
2490 par->asleep = 1;
2491 par->lock_blank = 1;
2493 #ifdef CONFIG_PPC_PMAC
2494 /* On powermac, we have hooks to properly suspend/resume AGP now,
2495 * use them here. We'll ultimately need some generic support here,
2496 * but the generic code isn't quite ready for that yet
2498 pmac_suspend_agp_for_card(pdev);
2499 #endif /* CONFIG_PPC_PMAC */
2501 /* We need a way to make sure the fbdev layer will _not_ touch the
2502 * framebuffer before we put the chip to suspend state. On 2.4, I
2503 * used dummy fb ops, 2.5 need proper support for this at the
2504 * fbdev level
2506 if (state.event != PM_EVENT_ON)
2507 aty128_set_suspend(par, 1);
2509 release_console_sem();
2511 pdev->dev.power.power_state = state;
2513 return 0;
2516 static int aty128_do_resume(struct pci_dev *pdev)
2518 struct fb_info *info = pci_get_drvdata(pdev);
2519 struct aty128fb_par *par = info->par;
2521 if (pdev->dev.power.power_state.event == PM_EVENT_ON)
2522 return 0;
2524 /* Wakeup chip */
2525 aty128_set_suspend(par, 0);
2526 par->asleep = 0;
2528 /* Restore display & engine */
2529 aty128_reset_engine(par);
2530 wait_for_idle(par);
2531 aty128fb_set_par(info);
2532 fb_pan_display(info, &info->var);
2533 fb_set_cmap(&info->cmap, info);
2535 /* Refresh */
2536 fb_set_suspend(info, 0);
2538 /* Unblank */
2539 par->lock_blank = 0;
2540 aty128fb_blank(0, info);
2542 #ifdef CONFIG_PPC_PMAC
2543 /* On powermac, we have hooks to properly suspend/resume AGP now,
2544 * use them here. We'll ultimately need some generic support here,
2545 * but the generic code isn't quite ready for that yet
2547 pmac_resume_agp_for_card(pdev);
2548 #endif /* CONFIG_PPC_PMAC */
2550 pdev->dev.power.power_state = PMSG_ON;
2552 printk(KERN_DEBUG "aty128fb: resumed !\n");
2554 return 0;
2557 static int aty128_pci_resume(struct pci_dev *pdev)
2559 int rc;
2561 acquire_console_sem();
2562 rc = aty128_do_resume(pdev);
2563 release_console_sem();
2565 return rc;
2569 static int __devinit aty128fb_init(void)
2571 #ifndef MODULE
2572 char *option = NULL;
2574 if (fb_get_options("aty128fb", &option))
2575 return -ENODEV;
2576 aty128fb_setup(option);
2577 #endif
2579 return pci_register_driver(&aty128fb_driver);
2582 static void __exit aty128fb_exit(void)
2584 pci_unregister_driver(&aty128fb_driver);
2587 module_init(aty128fb_init);
2589 module_exit(aty128fb_exit);
2591 MODULE_AUTHOR("(c)1999-2003 Brad Douglas <brad@neruo.com>");
2592 MODULE_DESCRIPTION("FBDev driver for ATI Rage128 / Pro cards");
2593 MODULE_LICENSE("GPL");
2594 module_param(mode_option, charp, 0);
2595 MODULE_PARM_DESC(mode_option, "Specify resolution as \"<xres>x<yres>[-<bpp>][@<refresh>]\" ");
2596 #ifdef CONFIG_MTRR
2597 module_param_named(nomtrr, mtrr, invbool, 0);
2598 MODULE_PARM_DESC(nomtrr, "bool: Disable MTRR support (0 or 1=disabled) (default=0)");
2599 #endif