sata_mv: rearrange mv_start_dma() and friends
[linux-2.6/kvm.git] / drivers / ata / sata_mv.c
blobfb3288bbd9fb4b91a46fbc2faf079178f5487f4d
1 /*
2 * sata_mv.c - Marvell SATA support
4 * Copyright 2008: Marvell Corporation, all rights reserved.
5 * Copyright 2005: EMC Corporation, all rights reserved.
6 * Copyright 2005 Red Hat, Inc. All rights reserved.
8 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26 * sata_mv TODO list:
28 * --> Errata workaround for NCQ device errors.
30 * --> More errata workarounds for PCI-X.
32 * --> Complete a full errata audit for all chipsets to identify others.
34 * --> ATAPI support (Marvell claims the 60xx/70xx chips can do it).
36 * --> Develop a low-power-consumption strategy, and implement it.
38 * --> [Experiment, low priority] Investigate interrupt coalescing.
39 * Quite often, especially with PCI Message Signalled Interrupts (MSI),
40 * the overhead reduced by interrupt mitigation is quite often not
41 * worth the latency cost.
43 * --> [Experiment, Marvell value added] Is it possible to use target
44 * mode to cross-connect two Linux boxes with Marvell cards? If so,
45 * creating LibATA target mode support would be very interesting.
47 * Target mode, for those without docs, is the ability to directly
48 * connect two SATA ports.
51 #include <linux/kernel.h>
52 #include <linux/module.h>
53 #include <linux/pci.h>
54 #include <linux/init.h>
55 #include <linux/blkdev.h>
56 #include <linux/delay.h>
57 #include <linux/interrupt.h>
58 #include <linux/dmapool.h>
59 #include <linux/dma-mapping.h>
60 #include <linux/device.h>
61 #include <linux/platform_device.h>
62 #include <linux/ata_platform.h>
63 #include <linux/mbus.h>
64 #include <linux/bitops.h>
65 #include <scsi/scsi_host.h>
66 #include <scsi/scsi_cmnd.h>
67 #include <scsi/scsi_device.h>
68 #include <linux/libata.h>
70 #define DRV_NAME "sata_mv"
71 #define DRV_VERSION "1.25"
73 enum {
74 /* BAR's are enumerated in terms of pci_resource_start() terms */
75 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
76 MV_IO_BAR = 2, /* offset 0x18: IO space */
77 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
79 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
80 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
82 MV_PCI_REG_BASE = 0,
83 MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
84 MV_IRQ_COAL_CAUSE = (MV_IRQ_COAL_REG_BASE + 0x08),
85 MV_IRQ_COAL_CAUSE_LO = (MV_IRQ_COAL_REG_BASE + 0x88),
86 MV_IRQ_COAL_CAUSE_HI = (MV_IRQ_COAL_REG_BASE + 0x8c),
87 MV_IRQ_COAL_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xcc),
88 MV_IRQ_COAL_TIME_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xd0),
90 MV_SATAHC0_REG_BASE = 0x20000,
91 MV_FLASH_CTL_OFS = 0x1046c,
92 MV_GPIO_PORT_CTL_OFS = 0x104f0,
93 MV_RESET_CFG_OFS = 0x180d8,
95 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
96 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
97 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
98 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
100 MV_MAX_Q_DEPTH = 32,
101 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
103 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
104 * CRPB needs alignment on a 256B boundary. Size == 256B
105 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
107 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
108 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
109 MV_MAX_SG_CT = 256,
110 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
112 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
113 MV_PORT_HC_SHIFT = 2,
114 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
115 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
116 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
118 /* Host Flags */
119 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
120 MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
122 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
123 ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING,
125 MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
127 MV_GEN_II_FLAGS = MV_COMMON_FLAGS | MV_FLAG_IRQ_COALESCE |
128 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
129 ATA_FLAG_NCQ | ATA_FLAG_NO_ATAPI,
131 MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN,
133 CRQB_FLAG_READ = (1 << 0),
134 CRQB_TAG_SHIFT = 1,
135 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
136 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
137 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
138 CRQB_CMD_ADDR_SHIFT = 8,
139 CRQB_CMD_CS = (0x2 << 11),
140 CRQB_CMD_LAST = (1 << 15),
142 CRPB_FLAG_STATUS_SHIFT = 8,
143 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
144 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
146 EPRD_FLAG_END_OF_TBL = (1 << 31),
148 /* PCI interface registers */
150 PCI_COMMAND_OFS = 0xc00,
151 PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
153 PCI_MAIN_CMD_STS_OFS = 0xd30,
154 STOP_PCI_MASTER = (1 << 2),
155 PCI_MASTER_EMPTY = (1 << 3),
156 GLOB_SFT_RST = (1 << 4),
158 MV_PCI_MODE_OFS = 0xd00,
159 MV_PCI_MODE_MASK = 0x30,
161 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
162 MV_PCI_DISC_TIMER = 0xd04,
163 MV_PCI_MSI_TRIGGER = 0xc38,
164 MV_PCI_SERR_MASK = 0xc28,
165 MV_PCI_XBAR_TMOUT_OFS = 0x1d04,
166 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
167 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
168 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
169 MV_PCI_ERR_COMMAND = 0x1d50,
171 PCI_IRQ_CAUSE_OFS = 0x1d58,
172 PCI_IRQ_MASK_OFS = 0x1d5c,
173 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
175 PCIE_IRQ_CAUSE_OFS = 0x1900,
176 PCIE_IRQ_MASK_OFS = 0x1910,
177 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
179 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
180 PCI_HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
181 PCI_HC_MAIN_IRQ_MASK_OFS = 0x1d64,
182 SOC_HC_MAIN_IRQ_CAUSE_OFS = 0x20020,
183 SOC_HC_MAIN_IRQ_MASK_OFS = 0x20024,
184 ERR_IRQ = (1 << 0), /* shift by port # */
185 DONE_IRQ = (1 << 1), /* shift by port # */
186 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
187 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
188 PCI_ERR = (1 << 18),
189 TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
190 TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
191 PORTS_0_3_COAL_DONE = (1 << 8),
192 PORTS_4_7_COAL_DONE = (1 << 17),
193 PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
194 GPIO_INT = (1 << 22),
195 SELF_INT = (1 << 23),
196 TWSI_INT = (1 << 24),
197 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
198 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
199 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
201 /* SATAHC registers */
202 HC_CFG_OFS = 0,
204 HC_IRQ_CAUSE_OFS = 0x14,
205 DMA_IRQ = (1 << 0), /* shift by port # */
206 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
207 DEV_IRQ = (1 << 8), /* shift by port # */
209 /* Shadow block registers */
210 SHD_BLK_OFS = 0x100,
211 SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
213 /* SATA registers */
214 SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
215 SATA_ACTIVE_OFS = 0x350,
216 SATA_FIS_IRQ_CAUSE_OFS = 0x364,
217 SATA_FIS_IRQ_AN = (1 << 9), /* async notification */
219 LTMODE_OFS = 0x30c,
220 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
222 PHY_MODE3 = 0x310,
223 PHY_MODE4 = 0x314,
224 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
225 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
226 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
227 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
229 PHY_MODE2 = 0x330,
230 SATA_IFCTL_OFS = 0x344,
231 SATA_TESTCTL_OFS = 0x348,
232 SATA_IFSTAT_OFS = 0x34c,
233 VENDOR_UNIQUE_FIS_OFS = 0x35c,
235 FISCFG_OFS = 0x360,
236 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
237 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
239 MV5_PHY_MODE = 0x74,
240 MV5_LTMODE_OFS = 0x30,
241 MV5_PHY_CTL_OFS = 0x0C,
242 SATA_INTERFACE_CFG_OFS = 0x050,
244 MV_M2_PREAMP_MASK = 0x7e0,
246 /* Port registers */
247 EDMA_CFG_OFS = 0,
248 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
249 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
250 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
251 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
252 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
253 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
254 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
256 EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
257 EDMA_ERR_IRQ_MASK_OFS = 0xc,
258 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
259 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
260 EDMA_ERR_DEV = (1 << 2), /* device error */
261 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
262 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
263 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
264 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
265 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
266 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
267 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
268 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
269 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
270 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
271 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
273 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
274 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
275 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
276 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
277 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
279 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
281 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
282 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
283 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
284 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
285 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
286 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
288 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
290 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
291 EDMA_ERR_OVERRUN_5 = (1 << 5),
292 EDMA_ERR_UNDERRUN_5 = (1 << 6),
294 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
295 EDMA_ERR_LNK_CTRL_RX_1 |
296 EDMA_ERR_LNK_CTRL_RX_3 |
297 EDMA_ERR_LNK_CTRL_TX,
299 EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
300 EDMA_ERR_PRD_PAR |
301 EDMA_ERR_DEV_DCON |
302 EDMA_ERR_DEV_CON |
303 EDMA_ERR_SERR |
304 EDMA_ERR_SELF_DIS |
305 EDMA_ERR_CRQB_PAR |
306 EDMA_ERR_CRPB_PAR |
307 EDMA_ERR_INTRL_PAR |
308 EDMA_ERR_IORDY |
309 EDMA_ERR_LNK_CTRL_RX_2 |
310 EDMA_ERR_LNK_DATA_RX |
311 EDMA_ERR_LNK_DATA_TX |
312 EDMA_ERR_TRANS_PROTO,
314 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
315 EDMA_ERR_PRD_PAR |
316 EDMA_ERR_DEV_DCON |
317 EDMA_ERR_DEV_CON |
318 EDMA_ERR_OVERRUN_5 |
319 EDMA_ERR_UNDERRUN_5 |
320 EDMA_ERR_SELF_DIS_5 |
321 EDMA_ERR_CRQB_PAR |
322 EDMA_ERR_CRPB_PAR |
323 EDMA_ERR_INTRL_PAR |
324 EDMA_ERR_IORDY,
326 EDMA_REQ_Q_BASE_HI_OFS = 0x10,
327 EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
329 EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
330 EDMA_REQ_Q_PTR_SHIFT = 5,
332 EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
333 EDMA_RSP_Q_IN_PTR_OFS = 0x20,
334 EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
335 EDMA_RSP_Q_PTR_SHIFT = 3,
337 EDMA_CMD_OFS = 0x28, /* EDMA command register */
338 EDMA_EN = (1 << 0), /* enable EDMA */
339 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
340 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
342 EDMA_STATUS_OFS = 0x30, /* EDMA engine status */
343 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
344 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
346 EDMA_IORDY_TMOUT_OFS = 0x34,
347 EDMA_ARB_CFG_OFS = 0x38,
349 EDMA_HALTCOND_OFS = 0x60, /* GenIIe halt conditions */
351 /* Host private flags (hp_flags) */
352 MV_HP_FLAG_MSI = (1 << 0),
353 MV_HP_ERRATA_50XXB0 = (1 << 1),
354 MV_HP_ERRATA_50XXB2 = (1 << 2),
355 MV_HP_ERRATA_60X1B2 = (1 << 3),
356 MV_HP_ERRATA_60X1C0 = (1 << 4),
357 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
358 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
359 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
360 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
361 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
362 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
364 /* Port private flags (pp_flags) */
365 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
366 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
367 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
368 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
371 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
372 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
373 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
374 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
375 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
377 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
378 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
380 enum {
381 /* DMA boundary 0xffff is required by the s/g splitting
382 * we need on /length/ in mv_fill-sg().
384 MV_DMA_BOUNDARY = 0xffffU,
386 /* mask of register bits containing lower 32 bits
387 * of EDMA request queue DMA address
389 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
391 /* ditto, for response queue */
392 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
395 enum chip_type {
396 chip_504x,
397 chip_508x,
398 chip_5080,
399 chip_604x,
400 chip_608x,
401 chip_6042,
402 chip_7042,
403 chip_soc,
406 /* Command ReQuest Block: 32B */
407 struct mv_crqb {
408 __le32 sg_addr;
409 __le32 sg_addr_hi;
410 __le16 ctrl_flags;
411 __le16 ata_cmd[11];
414 struct mv_crqb_iie {
415 __le32 addr;
416 __le32 addr_hi;
417 __le32 flags;
418 __le32 len;
419 __le32 ata_cmd[4];
422 /* Command ResPonse Block: 8B */
423 struct mv_crpb {
424 __le16 id;
425 __le16 flags;
426 __le32 tmstmp;
429 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
430 struct mv_sg {
431 __le32 addr;
432 __le32 flags_size;
433 __le32 addr_hi;
434 __le32 reserved;
437 struct mv_port_priv {
438 struct mv_crqb *crqb;
439 dma_addr_t crqb_dma;
440 struct mv_crpb *crpb;
441 dma_addr_t crpb_dma;
442 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
443 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
445 unsigned int req_idx;
446 unsigned int resp_idx;
448 u32 pp_flags;
449 unsigned int delayed_eh_pmp_map;
452 struct mv_port_signal {
453 u32 amps;
454 u32 pre;
457 struct mv_host_priv {
458 u32 hp_flags;
459 u32 main_irq_mask;
460 struct mv_port_signal signal[8];
461 const struct mv_hw_ops *ops;
462 int n_ports;
463 void __iomem *base;
464 void __iomem *main_irq_cause_addr;
465 void __iomem *main_irq_mask_addr;
466 u32 irq_cause_ofs;
467 u32 irq_mask_ofs;
468 u32 unmask_all_irqs;
470 * These consistent DMA memory pools give us guaranteed
471 * alignment for hardware-accessed data structures,
472 * and less memory waste in accomplishing the alignment.
474 struct dma_pool *crqb_pool;
475 struct dma_pool *crpb_pool;
476 struct dma_pool *sg_tbl_pool;
479 struct mv_hw_ops {
480 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
481 unsigned int port);
482 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
483 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
484 void __iomem *mmio);
485 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
486 unsigned int n_hc);
487 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
488 void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
491 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
492 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
493 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
494 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
495 static int mv_port_start(struct ata_port *ap);
496 static void mv_port_stop(struct ata_port *ap);
497 static int mv_qc_defer(struct ata_queued_cmd *qc);
498 static void mv_qc_prep(struct ata_queued_cmd *qc);
499 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
500 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
501 static int mv_hardreset(struct ata_link *link, unsigned int *class,
502 unsigned long deadline);
503 static void mv_eh_freeze(struct ata_port *ap);
504 static void mv_eh_thaw(struct ata_port *ap);
505 static void mv6_dev_config(struct ata_device *dev);
507 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
508 unsigned int port);
509 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
510 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
511 void __iomem *mmio);
512 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
513 unsigned int n_hc);
514 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
515 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
517 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
518 unsigned int port);
519 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
520 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
521 void __iomem *mmio);
522 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
523 unsigned int n_hc);
524 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
525 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
526 void __iomem *mmio);
527 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
528 void __iomem *mmio);
529 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
530 void __iomem *mmio, unsigned int n_hc);
531 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
532 void __iomem *mmio);
533 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
534 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
535 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
536 unsigned int port_no);
537 static int mv_stop_edma(struct ata_port *ap);
538 static int mv_stop_edma_engine(void __iomem *port_mmio);
539 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
541 static void mv_pmp_select(struct ata_port *ap, int pmp);
542 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
543 unsigned long deadline);
544 static int mv_softreset(struct ata_link *link, unsigned int *class,
545 unsigned long deadline);
546 static void mv_pmp_error_handler(struct ata_port *ap);
547 static void mv_process_crpb_entries(struct ata_port *ap,
548 struct mv_port_priv *pp);
550 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
551 * because we have to allow room for worst case splitting of
552 * PRDs for 64K boundaries in mv_fill_sg().
554 static struct scsi_host_template mv5_sht = {
555 ATA_BASE_SHT(DRV_NAME),
556 .sg_tablesize = MV_MAX_SG_CT / 2,
557 .dma_boundary = MV_DMA_BOUNDARY,
560 static struct scsi_host_template mv6_sht = {
561 ATA_NCQ_SHT(DRV_NAME),
562 .can_queue = MV_MAX_Q_DEPTH - 1,
563 .sg_tablesize = MV_MAX_SG_CT / 2,
564 .dma_boundary = MV_DMA_BOUNDARY,
567 static struct ata_port_operations mv5_ops = {
568 .inherits = &ata_sff_port_ops,
570 .qc_defer = mv_qc_defer,
571 .qc_prep = mv_qc_prep,
572 .qc_issue = mv_qc_issue,
574 .freeze = mv_eh_freeze,
575 .thaw = mv_eh_thaw,
576 .hardreset = mv_hardreset,
577 .error_handler = ata_std_error_handler, /* avoid SFF EH */
578 .post_internal_cmd = ATA_OP_NULL,
580 .scr_read = mv5_scr_read,
581 .scr_write = mv5_scr_write,
583 .port_start = mv_port_start,
584 .port_stop = mv_port_stop,
587 static struct ata_port_operations mv6_ops = {
588 .inherits = &mv5_ops,
589 .dev_config = mv6_dev_config,
590 .scr_read = mv_scr_read,
591 .scr_write = mv_scr_write,
593 .pmp_hardreset = mv_pmp_hardreset,
594 .pmp_softreset = mv_softreset,
595 .softreset = mv_softreset,
596 .error_handler = mv_pmp_error_handler,
599 static struct ata_port_operations mv_iie_ops = {
600 .inherits = &mv6_ops,
601 .dev_config = ATA_OP_NULL,
602 .qc_prep = mv_qc_prep_iie,
605 static const struct ata_port_info mv_port_info[] = {
606 { /* chip_504x */
607 .flags = MV_GEN_I_FLAGS,
608 .pio_mask = 0x1f, /* pio0-4 */
609 .udma_mask = ATA_UDMA6,
610 .port_ops = &mv5_ops,
612 { /* chip_508x */
613 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
614 .pio_mask = 0x1f, /* pio0-4 */
615 .udma_mask = ATA_UDMA6,
616 .port_ops = &mv5_ops,
618 { /* chip_5080 */
619 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
620 .pio_mask = 0x1f, /* pio0-4 */
621 .udma_mask = ATA_UDMA6,
622 .port_ops = &mv5_ops,
624 { /* chip_604x */
625 .flags = MV_GEN_II_FLAGS,
626 .pio_mask = 0x1f, /* pio0-4 */
627 .udma_mask = ATA_UDMA6,
628 .port_ops = &mv6_ops,
630 { /* chip_608x */
631 .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
632 .pio_mask = 0x1f, /* pio0-4 */
633 .udma_mask = ATA_UDMA6,
634 .port_ops = &mv6_ops,
636 { /* chip_6042 */
637 .flags = MV_GEN_IIE_FLAGS,
638 .pio_mask = 0x1f, /* pio0-4 */
639 .udma_mask = ATA_UDMA6,
640 .port_ops = &mv_iie_ops,
642 { /* chip_7042 */
643 .flags = MV_GEN_IIE_FLAGS,
644 .pio_mask = 0x1f, /* pio0-4 */
645 .udma_mask = ATA_UDMA6,
646 .port_ops = &mv_iie_ops,
648 { /* chip_soc */
649 .flags = MV_GEN_IIE_FLAGS,
650 .pio_mask = 0x1f, /* pio0-4 */
651 .udma_mask = ATA_UDMA6,
652 .port_ops = &mv_iie_ops,
656 static const struct pci_device_id mv_pci_tbl[] = {
657 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
658 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
659 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
660 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
661 /* RocketRAID 1720/174x have different identifiers */
662 { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
663 { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
664 { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
666 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
667 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
668 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
669 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
670 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
672 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
674 /* Adaptec 1430SA */
675 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
677 /* Marvell 7042 support */
678 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
680 /* Highpoint RocketRAID PCIe series */
681 { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
682 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
684 { } /* terminate list */
687 static const struct mv_hw_ops mv5xxx_ops = {
688 .phy_errata = mv5_phy_errata,
689 .enable_leds = mv5_enable_leds,
690 .read_preamp = mv5_read_preamp,
691 .reset_hc = mv5_reset_hc,
692 .reset_flash = mv5_reset_flash,
693 .reset_bus = mv5_reset_bus,
696 static const struct mv_hw_ops mv6xxx_ops = {
697 .phy_errata = mv6_phy_errata,
698 .enable_leds = mv6_enable_leds,
699 .read_preamp = mv6_read_preamp,
700 .reset_hc = mv6_reset_hc,
701 .reset_flash = mv6_reset_flash,
702 .reset_bus = mv_reset_pci_bus,
705 static const struct mv_hw_ops mv_soc_ops = {
706 .phy_errata = mv6_phy_errata,
707 .enable_leds = mv_soc_enable_leds,
708 .read_preamp = mv_soc_read_preamp,
709 .reset_hc = mv_soc_reset_hc,
710 .reset_flash = mv_soc_reset_flash,
711 .reset_bus = mv_soc_reset_bus,
715 * Functions
718 static inline void writelfl(unsigned long data, void __iomem *addr)
720 writel(data, addr);
721 (void) readl(addr); /* flush to avoid PCI posted write */
724 static inline unsigned int mv_hc_from_port(unsigned int port)
726 return port >> MV_PORT_HC_SHIFT;
729 static inline unsigned int mv_hardport_from_port(unsigned int port)
731 return port & MV_PORT_MASK;
735 * Consolidate some rather tricky bit shift calculations.
736 * This is hot-path stuff, so not a function.
737 * Simple code, with two return values, so macro rather than inline.
739 * port is the sole input, in range 0..7.
740 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
741 * hardport is the other output, in range 0..3.
743 * Note that port and hardport may be the same variable in some cases.
745 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
747 shift = mv_hc_from_port(port) * HC_SHIFT; \
748 hardport = mv_hardport_from_port(port); \
749 shift += hardport * 2; \
752 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
754 return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
757 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
758 unsigned int port)
760 return mv_hc_base(base, mv_hc_from_port(port));
763 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
765 return mv_hc_base_from_port(base, port) +
766 MV_SATAHC_ARBTR_REG_SZ +
767 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
770 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
772 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
773 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
775 return hc_mmio + ofs;
778 static inline void __iomem *mv_host_base(struct ata_host *host)
780 struct mv_host_priv *hpriv = host->private_data;
781 return hpriv->base;
784 static inline void __iomem *mv_ap_base(struct ata_port *ap)
786 return mv_port_base(mv_host_base(ap->host), ap->port_no);
789 static inline int mv_get_hc_count(unsigned long port_flags)
791 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
794 static void mv_set_edma_ptrs(void __iomem *port_mmio,
795 struct mv_host_priv *hpriv,
796 struct mv_port_priv *pp)
798 u32 index;
801 * initialize request queue
803 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
804 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
806 WARN_ON(pp->crqb_dma & 0x3ff);
807 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
808 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
809 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
810 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
813 * initialize response queue
815 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
816 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
818 WARN_ON(pp->crpb_dma & 0xff);
819 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
820 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
821 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
822 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
825 static void mv_set_main_irq_mask(struct ata_host *host,
826 u32 disable_bits, u32 enable_bits)
828 struct mv_host_priv *hpriv = host->private_data;
829 u32 old_mask, new_mask;
831 old_mask = hpriv->main_irq_mask;
832 new_mask = (old_mask & ~disable_bits) | enable_bits;
833 if (new_mask != old_mask) {
834 hpriv->main_irq_mask = new_mask;
835 writelfl(new_mask, hpriv->main_irq_mask_addr);
839 static void mv_enable_port_irqs(struct ata_port *ap,
840 unsigned int port_bits)
842 unsigned int shift, hardport, port = ap->port_no;
843 u32 disable_bits, enable_bits;
845 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
847 disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
848 enable_bits = port_bits << shift;
849 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
852 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
853 void __iomem *port_mmio,
854 unsigned int port_irqs)
856 struct mv_host_priv *hpriv = ap->host->private_data;
857 int hardport = mv_hardport_from_port(ap->port_no);
858 void __iomem *hc_mmio = mv_hc_base_from_port(
859 mv_host_base(ap->host), ap->port_no);
860 u32 hc_irq_cause;
862 /* clear EDMA event indicators, if any */
863 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
865 /* clear pending irq events */
866 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
867 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
869 /* clear FIS IRQ Cause */
870 if (IS_GEN_IIE(hpriv))
871 writelfl(0, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
873 mv_enable_port_irqs(ap, port_irqs);
877 * mv_start_edma - Enable eDMA engine
878 * @base: port base address
879 * @pp: port private data
881 * Verify the local cache of the eDMA state is accurate with a
882 * WARN_ON.
884 * LOCKING:
885 * Inherited from caller.
887 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
888 struct mv_port_priv *pp, u8 protocol)
890 int want_ncq = (protocol == ATA_PROT_NCQ);
892 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
893 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
894 if (want_ncq != using_ncq)
895 mv_stop_edma(ap);
897 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
898 struct mv_host_priv *hpriv = ap->host->private_data;
900 mv_edma_cfg(ap, want_ncq, 1);
902 mv_set_edma_ptrs(port_mmio, hpriv, pp);
903 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
905 writelfl(EDMA_EN, port_mmio + EDMA_CMD_OFS);
906 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
910 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
912 void __iomem *port_mmio = mv_ap_base(ap);
913 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
914 const int per_loop = 5, timeout = (15 * 1000 / per_loop);
915 int i;
918 * Wait for the EDMA engine to finish transactions in progress.
919 * No idea what a good "timeout" value might be, but measurements
920 * indicate that it often requires hundreds of microseconds
921 * with two drives in-use. So we use the 15msec value above
922 * as a rough guess at what even more drives might require.
924 for (i = 0; i < timeout; ++i) {
925 u32 edma_stat = readl(port_mmio + EDMA_STATUS_OFS);
926 if ((edma_stat & empty_idle) == empty_idle)
927 break;
928 udelay(per_loop);
930 /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
934 * mv_stop_edma_engine - Disable eDMA engine
935 * @port_mmio: io base address
937 * LOCKING:
938 * Inherited from caller.
940 static int mv_stop_edma_engine(void __iomem *port_mmio)
942 int i;
944 /* Disable eDMA. The disable bit auto clears. */
945 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
947 /* Wait for the chip to confirm eDMA is off. */
948 for (i = 10000; i > 0; i--) {
949 u32 reg = readl(port_mmio + EDMA_CMD_OFS);
950 if (!(reg & EDMA_EN))
951 return 0;
952 udelay(10);
954 return -EIO;
957 static int mv_stop_edma(struct ata_port *ap)
959 void __iomem *port_mmio = mv_ap_base(ap);
960 struct mv_port_priv *pp = ap->private_data;
962 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
963 return 0;
964 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
965 mv_wait_for_edma_empty_idle(ap);
966 if (mv_stop_edma_engine(port_mmio)) {
967 ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
968 return -EIO;
970 return 0;
973 #ifdef ATA_DEBUG
974 static void mv_dump_mem(void __iomem *start, unsigned bytes)
976 int b, w;
977 for (b = 0; b < bytes; ) {
978 DPRINTK("%p: ", start + b);
979 for (w = 0; b < bytes && w < 4; w++) {
980 printk("%08x ", readl(start + b));
981 b += sizeof(u32);
983 printk("\n");
986 #endif
988 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
990 #ifdef ATA_DEBUG
991 int b, w;
992 u32 dw;
993 for (b = 0; b < bytes; ) {
994 DPRINTK("%02x: ", b);
995 for (w = 0; b < bytes && w < 4; w++) {
996 (void) pci_read_config_dword(pdev, b, &dw);
997 printk("%08x ", dw);
998 b += sizeof(u32);
1000 printk("\n");
1002 #endif
1004 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1005 struct pci_dev *pdev)
1007 #ifdef ATA_DEBUG
1008 void __iomem *hc_base = mv_hc_base(mmio_base,
1009 port >> MV_PORT_HC_SHIFT);
1010 void __iomem *port_base;
1011 int start_port, num_ports, p, start_hc, num_hcs, hc;
1013 if (0 > port) {
1014 start_hc = start_port = 0;
1015 num_ports = 8; /* shld be benign for 4 port devs */
1016 num_hcs = 2;
1017 } else {
1018 start_hc = port >> MV_PORT_HC_SHIFT;
1019 start_port = port;
1020 num_ports = num_hcs = 1;
1022 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1023 num_ports > 1 ? num_ports - 1 : start_port);
1025 if (NULL != pdev) {
1026 DPRINTK("PCI config space regs:\n");
1027 mv_dump_pci_cfg(pdev, 0x68);
1029 DPRINTK("PCI regs:\n");
1030 mv_dump_mem(mmio_base+0xc00, 0x3c);
1031 mv_dump_mem(mmio_base+0xd00, 0x34);
1032 mv_dump_mem(mmio_base+0xf00, 0x4);
1033 mv_dump_mem(mmio_base+0x1d00, 0x6c);
1034 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1035 hc_base = mv_hc_base(mmio_base, hc);
1036 DPRINTK("HC regs (HC %i):\n", hc);
1037 mv_dump_mem(hc_base, 0x1c);
1039 for (p = start_port; p < start_port + num_ports; p++) {
1040 port_base = mv_port_base(mmio_base, p);
1041 DPRINTK("EDMA regs (port %i):\n", p);
1042 mv_dump_mem(port_base, 0x54);
1043 DPRINTK("SATA regs (port %i):\n", p);
1044 mv_dump_mem(port_base+0x300, 0x60);
1046 #endif
1049 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1051 unsigned int ofs;
1053 switch (sc_reg_in) {
1054 case SCR_STATUS:
1055 case SCR_CONTROL:
1056 case SCR_ERROR:
1057 ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
1058 break;
1059 case SCR_ACTIVE:
1060 ofs = SATA_ACTIVE_OFS; /* active is not with the others */
1061 break;
1062 default:
1063 ofs = 0xffffffffU;
1064 break;
1066 return ofs;
1069 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1071 unsigned int ofs = mv_scr_offset(sc_reg_in);
1073 if (ofs != 0xffffffffU) {
1074 *val = readl(mv_ap_base(link->ap) + ofs);
1075 return 0;
1076 } else
1077 return -EINVAL;
1080 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1082 unsigned int ofs = mv_scr_offset(sc_reg_in);
1084 if (ofs != 0xffffffffU) {
1085 writelfl(val, mv_ap_base(link->ap) + ofs);
1086 return 0;
1087 } else
1088 return -EINVAL;
1091 static void mv6_dev_config(struct ata_device *adev)
1094 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1096 * Gen-II does not support NCQ over a port multiplier
1097 * (no FIS-based switching).
1099 if (adev->flags & ATA_DFLAG_NCQ) {
1100 if (sata_pmp_attached(adev->link->ap)) {
1101 adev->flags &= ~ATA_DFLAG_NCQ;
1102 ata_dev_printk(adev, KERN_INFO,
1103 "NCQ disabled for command-based switching\n");
1108 static int mv_qc_defer(struct ata_queued_cmd *qc)
1110 struct ata_link *link = qc->dev->link;
1111 struct ata_port *ap = link->ap;
1112 struct mv_port_priv *pp = ap->private_data;
1115 * Don't allow new commands if we're in a delayed EH state
1116 * for NCQ and/or FIS-based switching.
1118 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1119 return ATA_DEFER_PORT;
1121 * If the port is completely idle, then allow the new qc.
1123 if (ap->nr_active_links == 0)
1124 return 0;
1127 * The port is operating in host queuing mode (EDMA) with NCQ
1128 * enabled, allow multiple NCQ commands. EDMA also allows
1129 * queueing multiple DMA commands but libata core currently
1130 * doesn't allow it.
1132 if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1133 (pp->pp_flags & MV_PP_FLAG_NCQ_EN) && ata_is_ncq(qc->tf.protocol))
1134 return 0;
1136 return ATA_DEFER_PORT;
1139 static void mv_config_fbs(void __iomem *port_mmio, int want_ncq, int want_fbs)
1141 u32 new_fiscfg, old_fiscfg;
1142 u32 new_ltmode, old_ltmode;
1143 u32 new_haltcond, old_haltcond;
1145 old_fiscfg = readl(port_mmio + FISCFG_OFS);
1146 old_ltmode = readl(port_mmio + LTMODE_OFS);
1147 old_haltcond = readl(port_mmio + EDMA_HALTCOND_OFS);
1149 new_fiscfg = old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1150 new_ltmode = old_ltmode & ~LTMODE_BIT8;
1151 new_haltcond = old_haltcond | EDMA_ERR_DEV;
1153 if (want_fbs) {
1154 new_fiscfg = old_fiscfg | FISCFG_SINGLE_SYNC;
1155 new_ltmode = old_ltmode | LTMODE_BIT8;
1156 if (want_ncq)
1157 new_haltcond &= ~EDMA_ERR_DEV;
1158 else
1159 new_fiscfg |= FISCFG_WAIT_DEV_ERR;
1162 if (new_fiscfg != old_fiscfg)
1163 writelfl(new_fiscfg, port_mmio + FISCFG_OFS);
1164 if (new_ltmode != old_ltmode)
1165 writelfl(new_ltmode, port_mmio + LTMODE_OFS);
1166 if (new_haltcond != old_haltcond)
1167 writelfl(new_haltcond, port_mmio + EDMA_HALTCOND_OFS);
1170 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1172 struct mv_host_priv *hpriv = ap->host->private_data;
1173 u32 old, new;
1175 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1176 old = readl(hpriv->base + MV_GPIO_PORT_CTL_OFS);
1177 if (want_ncq)
1178 new = old | (1 << 22);
1179 else
1180 new = old & ~(1 << 22);
1181 if (new != old)
1182 writel(new, hpriv->base + MV_GPIO_PORT_CTL_OFS);
1185 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1187 u32 cfg;
1188 struct mv_port_priv *pp = ap->private_data;
1189 struct mv_host_priv *hpriv = ap->host->private_data;
1190 void __iomem *port_mmio = mv_ap_base(ap);
1192 /* set up non-NCQ EDMA configuration */
1193 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
1194 pp->pp_flags &= ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN);
1196 if (IS_GEN_I(hpriv))
1197 cfg |= (1 << 8); /* enab config burst size mask */
1199 else if (IS_GEN_II(hpriv)) {
1200 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1201 mv_60x1_errata_sata25(ap, want_ncq);
1203 } else if (IS_GEN_IIE(hpriv)) {
1204 int want_fbs = sata_pmp_attached(ap);
1206 * Possible future enhancement:
1208 * The chip can use FBS with non-NCQ, if we allow it,
1209 * But first we need to have the error handling in place
1210 * for this mode (datasheet section 7.3.15.4.2.3).
1211 * So disallow non-NCQ FBS for now.
1213 want_fbs &= want_ncq;
1215 mv_config_fbs(port_mmio, want_ncq, want_fbs);
1217 if (want_fbs) {
1218 pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1219 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1222 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
1223 if (want_edma) {
1224 cfg |= (1 << 22); /* enab 4-entry host queue cache */
1225 if (!IS_SOC(hpriv))
1226 cfg |= (1 << 18); /* enab early completion */
1228 if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1229 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1232 if (want_ncq) {
1233 cfg |= EDMA_CFG_NCQ;
1234 pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
1237 writelfl(cfg, port_mmio + EDMA_CFG_OFS);
1240 static void mv_port_free_dma_mem(struct ata_port *ap)
1242 struct mv_host_priv *hpriv = ap->host->private_data;
1243 struct mv_port_priv *pp = ap->private_data;
1244 int tag;
1246 if (pp->crqb) {
1247 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1248 pp->crqb = NULL;
1250 if (pp->crpb) {
1251 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1252 pp->crpb = NULL;
1255 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1256 * For later hardware, we have one unique sg_tbl per NCQ tag.
1258 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1259 if (pp->sg_tbl[tag]) {
1260 if (tag == 0 || !IS_GEN_I(hpriv))
1261 dma_pool_free(hpriv->sg_tbl_pool,
1262 pp->sg_tbl[tag],
1263 pp->sg_tbl_dma[tag]);
1264 pp->sg_tbl[tag] = NULL;
1270 * mv_port_start - Port specific init/start routine.
1271 * @ap: ATA channel to manipulate
1273 * Allocate and point to DMA memory, init port private memory,
1274 * zero indices.
1276 * LOCKING:
1277 * Inherited from caller.
1279 static int mv_port_start(struct ata_port *ap)
1281 struct device *dev = ap->host->dev;
1282 struct mv_host_priv *hpriv = ap->host->private_data;
1283 struct mv_port_priv *pp;
1284 int tag;
1286 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1287 if (!pp)
1288 return -ENOMEM;
1289 ap->private_data = pp;
1291 pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1292 if (!pp->crqb)
1293 return -ENOMEM;
1294 memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1296 pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1297 if (!pp->crpb)
1298 goto out_port_free_dma_mem;
1299 memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1301 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1302 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1303 ap->flags |= ATA_FLAG_AN;
1305 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1306 * For later hardware, we need one unique sg_tbl per NCQ tag.
1308 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1309 if (tag == 0 || !IS_GEN_I(hpriv)) {
1310 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1311 GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1312 if (!pp->sg_tbl[tag])
1313 goto out_port_free_dma_mem;
1314 } else {
1315 pp->sg_tbl[tag] = pp->sg_tbl[0];
1316 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1319 return 0;
1321 out_port_free_dma_mem:
1322 mv_port_free_dma_mem(ap);
1323 return -ENOMEM;
1327 * mv_port_stop - Port specific cleanup/stop routine.
1328 * @ap: ATA channel to manipulate
1330 * Stop DMA, cleanup port memory.
1332 * LOCKING:
1333 * This routine uses the host lock to protect the DMA stop.
1335 static void mv_port_stop(struct ata_port *ap)
1337 mv_stop_edma(ap);
1338 mv_enable_port_irqs(ap, 0);
1339 mv_port_free_dma_mem(ap);
1343 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1344 * @qc: queued command whose SG list to source from
1346 * Populate the SG list and mark the last entry.
1348 * LOCKING:
1349 * Inherited from caller.
1351 static void mv_fill_sg(struct ata_queued_cmd *qc)
1353 struct mv_port_priv *pp = qc->ap->private_data;
1354 struct scatterlist *sg;
1355 struct mv_sg *mv_sg, *last_sg = NULL;
1356 unsigned int si;
1358 mv_sg = pp->sg_tbl[qc->tag];
1359 for_each_sg(qc->sg, sg, qc->n_elem, si) {
1360 dma_addr_t addr = sg_dma_address(sg);
1361 u32 sg_len = sg_dma_len(sg);
1363 while (sg_len) {
1364 u32 offset = addr & 0xffff;
1365 u32 len = sg_len;
1367 if ((offset + sg_len > 0x10000))
1368 len = 0x10000 - offset;
1370 mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1371 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1372 mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1374 sg_len -= len;
1375 addr += len;
1377 last_sg = mv_sg;
1378 mv_sg++;
1382 if (likely(last_sg))
1383 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1386 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1388 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1389 (last ? CRQB_CMD_LAST : 0);
1390 *cmdw = cpu_to_le16(tmp);
1394 * mv_qc_prep - Host specific command preparation.
1395 * @qc: queued command to prepare
1397 * This routine simply redirects to the general purpose routine
1398 * if command is not DMA. Else, it handles prep of the CRQB
1399 * (command request block), does some sanity checking, and calls
1400 * the SG load routine.
1402 * LOCKING:
1403 * Inherited from caller.
1405 static void mv_qc_prep(struct ata_queued_cmd *qc)
1407 struct ata_port *ap = qc->ap;
1408 struct mv_port_priv *pp = ap->private_data;
1409 __le16 *cw;
1410 struct ata_taskfile *tf;
1411 u16 flags = 0;
1412 unsigned in_index;
1414 if ((qc->tf.protocol != ATA_PROT_DMA) &&
1415 (qc->tf.protocol != ATA_PROT_NCQ))
1416 return;
1418 /* Fill in command request block
1420 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1421 flags |= CRQB_FLAG_READ;
1422 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1423 flags |= qc->tag << CRQB_TAG_SHIFT;
1424 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1426 /* get current queue index from software */
1427 in_index = pp->req_idx;
1429 pp->crqb[in_index].sg_addr =
1430 cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1431 pp->crqb[in_index].sg_addr_hi =
1432 cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1433 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
1435 cw = &pp->crqb[in_index].ata_cmd[0];
1436 tf = &qc->tf;
1438 /* Sadly, the CRQB cannot accomodate all registers--there are
1439 * only 11 bytes...so we must pick and choose required
1440 * registers based on the command. So, we drop feature and
1441 * hob_feature for [RW] DMA commands, but they are needed for
1442 * NCQ. NCQ will drop hob_nsect, which is not needed there
1443 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
1445 switch (tf->command) {
1446 case ATA_CMD_READ:
1447 case ATA_CMD_READ_EXT:
1448 case ATA_CMD_WRITE:
1449 case ATA_CMD_WRITE_EXT:
1450 case ATA_CMD_WRITE_FUA_EXT:
1451 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1452 break;
1453 case ATA_CMD_FPDMA_READ:
1454 case ATA_CMD_FPDMA_WRITE:
1455 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1456 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1457 break;
1458 default:
1459 /* The only other commands EDMA supports in non-queued and
1460 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1461 * of which are defined/used by Linux. If we get here, this
1462 * driver needs work.
1464 * FIXME: modify libata to give qc_prep a return value and
1465 * return error here.
1467 BUG_ON(tf->command);
1468 break;
1470 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1471 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1472 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1473 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1474 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1475 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1476 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1477 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1478 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
1480 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1481 return;
1482 mv_fill_sg(qc);
1486 * mv_qc_prep_iie - Host specific command preparation.
1487 * @qc: queued command to prepare
1489 * This routine simply redirects to the general purpose routine
1490 * if command is not DMA. Else, it handles prep of the CRQB
1491 * (command request block), does some sanity checking, and calls
1492 * the SG load routine.
1494 * LOCKING:
1495 * Inherited from caller.
1497 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
1499 struct ata_port *ap = qc->ap;
1500 struct mv_port_priv *pp = ap->private_data;
1501 struct mv_crqb_iie *crqb;
1502 struct ata_taskfile *tf;
1503 unsigned in_index;
1504 u32 flags = 0;
1506 if ((qc->tf.protocol != ATA_PROT_DMA) &&
1507 (qc->tf.protocol != ATA_PROT_NCQ))
1508 return;
1510 /* Fill in Gen IIE command request block */
1511 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1512 flags |= CRQB_FLAG_READ;
1514 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1515 flags |= qc->tag << CRQB_TAG_SHIFT;
1516 flags |= qc->tag << CRQB_HOSTQ_SHIFT;
1517 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1519 /* get current queue index from software */
1520 in_index = pp->req_idx;
1522 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
1523 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1524 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1525 crqb->flags = cpu_to_le32(flags);
1527 tf = &qc->tf;
1528 crqb->ata_cmd[0] = cpu_to_le32(
1529 (tf->command << 16) |
1530 (tf->feature << 24)
1532 crqb->ata_cmd[1] = cpu_to_le32(
1533 (tf->lbal << 0) |
1534 (tf->lbam << 8) |
1535 (tf->lbah << 16) |
1536 (tf->device << 24)
1538 crqb->ata_cmd[2] = cpu_to_le32(
1539 (tf->hob_lbal << 0) |
1540 (tf->hob_lbam << 8) |
1541 (tf->hob_lbah << 16) |
1542 (tf->hob_feature << 24)
1544 crqb->ata_cmd[3] = cpu_to_le32(
1545 (tf->nsect << 0) |
1546 (tf->hob_nsect << 8)
1549 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1550 return;
1551 mv_fill_sg(qc);
1555 * mv_qc_issue - Initiate a command to the host
1556 * @qc: queued command to start
1558 * This routine simply redirects to the general purpose routine
1559 * if command is not DMA. Else, it sanity checks our local
1560 * caches of the request producer/consumer indices then enables
1561 * DMA and bumps the request producer index.
1563 * LOCKING:
1564 * Inherited from caller.
1566 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
1568 struct ata_port *ap = qc->ap;
1569 void __iomem *port_mmio = mv_ap_base(ap);
1570 struct mv_port_priv *pp = ap->private_data;
1571 u32 in_index;
1573 if ((qc->tf.protocol != ATA_PROT_DMA) &&
1574 (qc->tf.protocol != ATA_PROT_NCQ)) {
1575 static int limit_warnings = 10;
1577 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
1579 * Someday, we might implement special polling workarounds
1580 * for these, but it all seems rather unnecessary since we
1581 * normally use only DMA for commands which transfer more
1582 * than a single block of data.
1584 * Much of the time, this could just work regardless.
1585 * So for now, just log the incident, and allow the attempt.
1587 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
1588 --limit_warnings;
1589 ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME
1590 ": attempting PIO w/multiple DRQ: "
1591 "this may fail due to h/w errata\n");
1594 * We're about to send a non-EDMA capable command to the
1595 * port. Turn off EDMA so there won't be problems accessing
1596 * shadow block, etc registers.
1598 mv_stop_edma(ap);
1599 mv_enable_port_irqs(ap, ERR_IRQ);
1600 mv_pmp_select(ap, qc->dev->link->pmp);
1601 return ata_sff_qc_issue(qc);
1604 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
1606 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
1607 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
1609 /* and write the request in pointer to kick the EDMA to life */
1610 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
1611 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1613 return 0;
1616 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
1618 struct mv_port_priv *pp = ap->private_data;
1619 struct ata_queued_cmd *qc;
1621 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1622 return NULL;
1623 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1624 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
1625 qc = NULL;
1626 return qc;
1629 static void mv_pmp_error_handler(struct ata_port *ap)
1631 unsigned int pmp, pmp_map;
1632 struct mv_port_priv *pp = ap->private_data;
1634 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
1636 * Perform NCQ error analysis on failed PMPs
1637 * before we freeze the port entirely.
1639 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
1641 pmp_map = pp->delayed_eh_pmp_map;
1642 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
1643 for (pmp = 0; pmp_map != 0; pmp++) {
1644 unsigned int this_pmp = (1 << pmp);
1645 if (pmp_map & this_pmp) {
1646 struct ata_link *link = &ap->pmp_link[pmp];
1647 pmp_map &= ~this_pmp;
1648 ata_eh_analyze_ncq_error(link);
1651 ata_port_freeze(ap);
1653 sata_pmp_error_handler(ap);
1656 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
1658 void __iomem *port_mmio = mv_ap_base(ap);
1660 return readl(port_mmio + SATA_TESTCTL_OFS) >> 16;
1663 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
1665 struct ata_eh_info *ehi;
1666 unsigned int pmp;
1669 * Initialize EH info for PMPs which saw device errors
1671 ehi = &ap->link.eh_info;
1672 for (pmp = 0; pmp_map != 0; pmp++) {
1673 unsigned int this_pmp = (1 << pmp);
1674 if (pmp_map & this_pmp) {
1675 struct ata_link *link = &ap->pmp_link[pmp];
1677 pmp_map &= ~this_pmp;
1678 ehi = &link->eh_info;
1679 ata_ehi_clear_desc(ehi);
1680 ata_ehi_push_desc(ehi, "dev err");
1681 ehi->err_mask |= AC_ERR_DEV;
1682 ehi->action |= ATA_EH_RESET;
1683 ata_link_abort(link);
1688 static int mv_req_q_empty(struct ata_port *ap)
1690 void __iomem *port_mmio = mv_ap_base(ap);
1691 u32 in_ptr, out_ptr;
1693 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS)
1694 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1695 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS)
1696 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1697 return (in_ptr == out_ptr); /* 1 == queue_is_empty */
1700 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
1702 struct mv_port_priv *pp = ap->private_data;
1703 int failed_links;
1704 unsigned int old_map, new_map;
1707 * Device error during FBS+NCQ operation:
1709 * Set a port flag to prevent further I/O being enqueued.
1710 * Leave the EDMA running to drain outstanding commands from this port.
1711 * Perform the post-mortem/EH only when all responses are complete.
1712 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
1714 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
1715 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
1716 pp->delayed_eh_pmp_map = 0;
1718 old_map = pp->delayed_eh_pmp_map;
1719 new_map = old_map | mv_get_err_pmp_map(ap);
1721 if (old_map != new_map) {
1722 pp->delayed_eh_pmp_map = new_map;
1723 mv_pmp_eh_prep(ap, new_map & ~old_map);
1725 failed_links = hweight16(new_map);
1727 ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
1728 "failed_links=%d nr_active_links=%d\n",
1729 __func__, pp->delayed_eh_pmp_map,
1730 ap->qc_active, failed_links,
1731 ap->nr_active_links);
1733 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
1734 mv_process_crpb_entries(ap, pp);
1735 mv_stop_edma(ap);
1736 mv_eh_freeze(ap);
1737 ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
1738 return 1; /* handled */
1740 ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
1741 return 1; /* handled */
1744 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
1747 * Possible future enhancement:
1749 * FBS+non-NCQ operation is not yet implemented.
1750 * See related notes in mv_edma_cfg().
1752 * Device error during FBS+non-NCQ operation:
1754 * We need to snapshot the shadow registers for each failed command.
1755 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
1757 return 0; /* not handled */
1760 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
1762 struct mv_port_priv *pp = ap->private_data;
1764 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1765 return 0; /* EDMA was not active: not handled */
1766 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
1767 return 0; /* FBS was not active: not handled */
1769 if (!(edma_err_cause & EDMA_ERR_DEV))
1770 return 0; /* non DEV error: not handled */
1771 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
1772 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
1773 return 0; /* other problems: not handled */
1775 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
1777 * EDMA should NOT have self-disabled for this case.
1778 * If it did, then something is wrong elsewhere,
1779 * and we cannot handle it here.
1781 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
1782 ata_port_printk(ap, KERN_WARNING,
1783 "%s: err_cause=0x%x pp_flags=0x%x\n",
1784 __func__, edma_err_cause, pp->pp_flags);
1785 return 0; /* not handled */
1787 return mv_handle_fbs_ncq_dev_err(ap);
1788 } else {
1790 * EDMA should have self-disabled for this case.
1791 * If it did not, then something is wrong elsewhere,
1792 * and we cannot handle it here.
1794 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
1795 ata_port_printk(ap, KERN_WARNING,
1796 "%s: err_cause=0x%x pp_flags=0x%x\n",
1797 __func__, edma_err_cause, pp->pp_flags);
1798 return 0; /* not handled */
1800 return mv_handle_fbs_non_ncq_dev_err(ap);
1802 return 0; /* not handled */
1805 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
1807 struct ata_eh_info *ehi = &ap->link.eh_info;
1808 char *when = "idle";
1810 ata_ehi_clear_desc(ehi);
1811 if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
1812 when = "disabled";
1813 } else if (edma_was_enabled) {
1814 when = "EDMA enabled";
1815 } else {
1816 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
1817 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
1818 when = "polling";
1820 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
1821 ehi->err_mask |= AC_ERR_OTHER;
1822 ehi->action |= ATA_EH_RESET;
1823 ata_port_freeze(ap);
1827 * mv_err_intr - Handle error interrupts on the port
1828 * @ap: ATA channel to manipulate
1830 * Most cases require a full reset of the chip's state machine,
1831 * which also performs a COMRESET.
1832 * Also, if the port disabled DMA, update our cached copy to match.
1834 * LOCKING:
1835 * Inherited from caller.
1837 static void mv_err_intr(struct ata_port *ap)
1839 void __iomem *port_mmio = mv_ap_base(ap);
1840 u32 edma_err_cause, eh_freeze_mask, serr = 0;
1841 u32 fis_cause = 0;
1842 struct mv_port_priv *pp = ap->private_data;
1843 struct mv_host_priv *hpriv = ap->host->private_data;
1844 unsigned int action = 0, err_mask = 0;
1845 struct ata_eh_info *ehi = &ap->link.eh_info;
1846 struct ata_queued_cmd *qc;
1847 int abort = 0;
1850 * Read and clear the SError and err_cause bits.
1851 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
1852 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
1854 sata_scr_read(&ap->link, SCR_ERROR, &serr);
1855 sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
1857 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1858 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
1859 fis_cause = readl(port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
1860 writelfl(~fis_cause, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
1862 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1864 if (edma_err_cause & EDMA_ERR_DEV) {
1866 * Device errors during FIS-based switching operation
1867 * require special handling.
1869 if (mv_handle_dev_err(ap, edma_err_cause))
1870 return;
1873 qc = mv_get_active_qc(ap);
1874 ata_ehi_clear_desc(ehi);
1875 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
1876 edma_err_cause, pp->pp_flags);
1878 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
1879 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
1880 if (fis_cause & SATA_FIS_IRQ_AN) {
1881 u32 ec = edma_err_cause &
1882 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
1883 sata_async_notification(ap);
1884 if (!ec)
1885 return; /* Just an AN; no need for the nukes */
1886 ata_ehi_push_desc(ehi, "SDB notify");
1890 * All generations share these EDMA error cause bits:
1892 if (edma_err_cause & EDMA_ERR_DEV) {
1893 err_mask |= AC_ERR_DEV;
1894 action |= ATA_EH_RESET;
1895 ata_ehi_push_desc(ehi, "dev error");
1897 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
1898 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
1899 EDMA_ERR_INTRL_PAR)) {
1900 err_mask |= AC_ERR_ATA_BUS;
1901 action |= ATA_EH_RESET;
1902 ata_ehi_push_desc(ehi, "parity error");
1904 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
1905 ata_ehi_hotplugged(ehi);
1906 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
1907 "dev disconnect" : "dev connect");
1908 action |= ATA_EH_RESET;
1912 * Gen-I has a different SELF_DIS bit,
1913 * different FREEZE bits, and no SERR bit:
1915 if (IS_GEN_I(hpriv)) {
1916 eh_freeze_mask = EDMA_EH_FREEZE_5;
1917 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
1918 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1919 ata_ehi_push_desc(ehi, "EDMA self-disable");
1921 } else {
1922 eh_freeze_mask = EDMA_EH_FREEZE;
1923 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
1924 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1925 ata_ehi_push_desc(ehi, "EDMA self-disable");
1927 if (edma_err_cause & EDMA_ERR_SERR) {
1928 ata_ehi_push_desc(ehi, "SError=%08x", serr);
1929 err_mask |= AC_ERR_ATA_BUS;
1930 action |= ATA_EH_RESET;
1934 if (!err_mask) {
1935 err_mask = AC_ERR_OTHER;
1936 action |= ATA_EH_RESET;
1939 ehi->serror |= serr;
1940 ehi->action |= action;
1942 if (qc)
1943 qc->err_mask |= err_mask;
1944 else
1945 ehi->err_mask |= err_mask;
1947 if (err_mask == AC_ERR_DEV) {
1949 * Cannot do ata_port_freeze() here,
1950 * because it would kill PIO access,
1951 * which is needed for further diagnosis.
1953 mv_eh_freeze(ap);
1954 abort = 1;
1955 } else if (edma_err_cause & eh_freeze_mask) {
1957 * Note to self: ata_port_freeze() calls ata_port_abort()
1959 ata_port_freeze(ap);
1960 } else {
1961 abort = 1;
1964 if (abort) {
1965 if (qc)
1966 ata_link_abort(qc->dev->link);
1967 else
1968 ata_port_abort(ap);
1972 static void mv_process_crpb_response(struct ata_port *ap,
1973 struct mv_crpb *response, unsigned int tag, int ncq_enabled)
1975 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
1977 if (qc) {
1978 u8 ata_status;
1979 u16 edma_status = le16_to_cpu(response->flags);
1981 * edma_status from a response queue entry:
1982 * LSB is from EDMA_ERR_IRQ_CAUSE_OFS (non-NCQ only).
1983 * MSB is saved ATA status from command completion.
1985 if (!ncq_enabled) {
1986 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
1987 if (err_cause) {
1989 * Error will be seen/handled by mv_err_intr().
1990 * So do nothing at all here.
1992 return;
1995 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
1996 if (!ac_err_mask(ata_status))
1997 ata_qc_complete(qc);
1998 /* else: leave it for mv_err_intr() */
1999 } else {
2000 ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
2001 __func__, tag);
2005 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2007 void __iomem *port_mmio = mv_ap_base(ap);
2008 struct mv_host_priv *hpriv = ap->host->private_data;
2009 u32 in_index;
2010 bool work_done = false;
2011 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2013 /* Get the hardware queue position index */
2014 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
2015 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2017 /* Process new responses from since the last time we looked */
2018 while (in_index != pp->resp_idx) {
2019 unsigned int tag;
2020 struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2022 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2024 if (IS_GEN_I(hpriv)) {
2025 /* 50xx: no NCQ, only one command active at a time */
2026 tag = ap->link.active_tag;
2027 } else {
2028 /* Gen II/IIE: get command tag from CRPB entry */
2029 tag = le16_to_cpu(response->id) & 0x1f;
2031 mv_process_crpb_response(ap, response, tag, ncq_enabled);
2032 work_done = true;
2035 /* Update the software queue position index in hardware */
2036 if (work_done)
2037 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2038 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2039 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
2042 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2044 struct mv_port_priv *pp;
2045 int edma_was_enabled;
2047 if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
2048 mv_unexpected_intr(ap, 0);
2049 return;
2052 * Grab a snapshot of the EDMA_EN flag setting,
2053 * so that we have a consistent view for this port,
2054 * even if something we call of our routines changes it.
2056 pp = ap->private_data;
2057 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2059 * Process completed CRPB response(s) before other events.
2061 if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2062 mv_process_crpb_entries(ap, pp);
2063 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2064 mv_handle_fbs_ncq_dev_err(ap);
2067 * Handle chip-reported errors, or continue on to handle PIO.
2069 if (unlikely(port_cause & ERR_IRQ)) {
2070 mv_err_intr(ap);
2071 } else if (!edma_was_enabled) {
2072 struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2073 if (qc)
2074 ata_sff_host_intr(ap, qc);
2075 else
2076 mv_unexpected_intr(ap, edma_was_enabled);
2081 * mv_host_intr - Handle all interrupts on the given host controller
2082 * @host: host specific structure
2083 * @main_irq_cause: Main interrupt cause register for the chip.
2085 * LOCKING:
2086 * Inherited from caller.
2088 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2090 struct mv_host_priv *hpriv = host->private_data;
2091 void __iomem *mmio = hpriv->base, *hc_mmio;
2092 unsigned int handled = 0, port;
2094 for (port = 0; port < hpriv->n_ports; port++) {
2095 struct ata_port *ap = host->ports[port];
2096 unsigned int p, shift, hardport, port_cause;
2098 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2100 * Each hc within the host has its own hc_irq_cause register,
2101 * where the interrupting ports bits get ack'd.
2103 if (hardport == 0) { /* first port on this hc ? */
2104 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2105 u32 port_mask, ack_irqs;
2107 * Skip this entire hc if nothing pending for any ports
2109 if (!hc_cause) {
2110 port += MV_PORTS_PER_HC - 1;
2111 continue;
2114 * We don't need/want to read the hc_irq_cause register,
2115 * because doing so hurts performance, and
2116 * main_irq_cause already gives us everything we need.
2118 * But we do have to *write* to the hc_irq_cause to ack
2119 * the ports that we are handling this time through.
2121 * This requires that we create a bitmap for those
2122 * ports which interrupted us, and use that bitmap
2123 * to ack (only) those ports via hc_irq_cause.
2125 ack_irqs = 0;
2126 for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2127 if ((port + p) >= hpriv->n_ports)
2128 break;
2129 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2130 if (hc_cause & port_mask)
2131 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2133 hc_mmio = mv_hc_base_from_port(mmio, port);
2134 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE_OFS);
2135 handled = 1;
2138 * Handle interrupts signalled for this port:
2140 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2141 if (port_cause)
2142 mv_port_intr(ap, port_cause);
2144 return handled;
2147 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2149 struct mv_host_priv *hpriv = host->private_data;
2150 struct ata_port *ap;
2151 struct ata_queued_cmd *qc;
2152 struct ata_eh_info *ehi;
2153 unsigned int i, err_mask, printed = 0;
2154 u32 err_cause;
2156 err_cause = readl(mmio + hpriv->irq_cause_ofs);
2158 dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2159 err_cause);
2161 DPRINTK("All regs @ PCI error\n");
2162 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2164 writelfl(0, mmio + hpriv->irq_cause_ofs);
2166 for (i = 0; i < host->n_ports; i++) {
2167 ap = host->ports[i];
2168 if (!ata_link_offline(&ap->link)) {
2169 ehi = &ap->link.eh_info;
2170 ata_ehi_clear_desc(ehi);
2171 if (!printed++)
2172 ata_ehi_push_desc(ehi,
2173 "PCI err cause 0x%08x", err_cause);
2174 err_mask = AC_ERR_HOST_BUS;
2175 ehi->action = ATA_EH_RESET;
2176 qc = ata_qc_from_tag(ap, ap->link.active_tag);
2177 if (qc)
2178 qc->err_mask |= err_mask;
2179 else
2180 ehi->err_mask |= err_mask;
2182 ata_port_freeze(ap);
2185 return 1; /* handled */
2189 * mv_interrupt - Main interrupt event handler
2190 * @irq: unused
2191 * @dev_instance: private data; in this case the host structure
2193 * Read the read only register to determine if any host
2194 * controllers have pending interrupts. If so, call lower level
2195 * routine to handle. Also check for PCI errors which are only
2196 * reported here.
2198 * LOCKING:
2199 * This routine holds the host lock while processing pending
2200 * interrupts.
2202 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2204 struct ata_host *host = dev_instance;
2205 struct mv_host_priv *hpriv = host->private_data;
2206 unsigned int handled = 0;
2207 int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
2208 u32 main_irq_cause, pending_irqs;
2210 spin_lock(&host->lock);
2212 /* for MSI: block new interrupts while in here */
2213 if (using_msi)
2214 writel(0, hpriv->main_irq_mask_addr);
2216 main_irq_cause = readl(hpriv->main_irq_cause_addr);
2217 pending_irqs = main_irq_cause & hpriv->main_irq_mask;
2219 * Deal with cases where we either have nothing pending, or have read
2220 * a bogus register value which can indicate HW removal or PCI fault.
2222 if (pending_irqs && main_irq_cause != 0xffffffffU) {
2223 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
2224 handled = mv_pci_error(host, hpriv->base);
2225 else
2226 handled = mv_host_intr(host, pending_irqs);
2229 /* for MSI: unmask; interrupt cause bits will retrigger now */
2230 if (using_msi)
2231 writel(hpriv->main_irq_mask, hpriv->main_irq_mask_addr);
2233 spin_unlock(&host->lock);
2235 return IRQ_RETVAL(handled);
2238 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
2240 unsigned int ofs;
2242 switch (sc_reg_in) {
2243 case SCR_STATUS:
2244 case SCR_ERROR:
2245 case SCR_CONTROL:
2246 ofs = sc_reg_in * sizeof(u32);
2247 break;
2248 default:
2249 ofs = 0xffffffffU;
2250 break;
2252 return ofs;
2255 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
2257 struct mv_host_priv *hpriv = link->ap->host->private_data;
2258 void __iomem *mmio = hpriv->base;
2259 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
2260 unsigned int ofs = mv5_scr_offset(sc_reg_in);
2262 if (ofs != 0xffffffffU) {
2263 *val = readl(addr + ofs);
2264 return 0;
2265 } else
2266 return -EINVAL;
2269 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
2271 struct mv_host_priv *hpriv = link->ap->host->private_data;
2272 void __iomem *mmio = hpriv->base;
2273 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
2274 unsigned int ofs = mv5_scr_offset(sc_reg_in);
2276 if (ofs != 0xffffffffU) {
2277 writelfl(val, addr + ofs);
2278 return 0;
2279 } else
2280 return -EINVAL;
2283 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
2285 struct pci_dev *pdev = to_pci_dev(host->dev);
2286 int early_5080;
2288 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
2290 if (!early_5080) {
2291 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
2292 tmp |= (1 << 0);
2293 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
2296 mv_reset_pci_bus(host, mmio);
2299 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
2301 writel(0x0fcfffff, mmio + MV_FLASH_CTL_OFS);
2304 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
2305 void __iomem *mmio)
2307 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
2308 u32 tmp;
2310 tmp = readl(phy_mmio + MV5_PHY_MODE);
2312 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
2313 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
2316 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
2318 u32 tmp;
2320 writel(0, mmio + MV_GPIO_PORT_CTL_OFS);
2322 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
2324 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
2325 tmp |= ~(1 << 0);
2326 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
2329 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2330 unsigned int port)
2332 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
2333 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
2334 u32 tmp;
2335 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
2337 if (fix_apm_sq) {
2338 tmp = readl(phy_mmio + MV5_LTMODE_OFS);
2339 tmp |= (1 << 19);
2340 writel(tmp, phy_mmio + MV5_LTMODE_OFS);
2342 tmp = readl(phy_mmio + MV5_PHY_CTL_OFS);
2343 tmp &= ~0x3;
2344 tmp |= 0x1;
2345 writel(tmp, phy_mmio + MV5_PHY_CTL_OFS);
2348 tmp = readl(phy_mmio + MV5_PHY_MODE);
2349 tmp &= ~mask;
2350 tmp |= hpriv->signal[port].pre;
2351 tmp |= hpriv->signal[port].amps;
2352 writel(tmp, phy_mmio + MV5_PHY_MODE);
2356 #undef ZERO
2357 #define ZERO(reg) writel(0, port_mmio + (reg))
2358 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
2359 unsigned int port)
2361 void __iomem *port_mmio = mv_port_base(mmio, port);
2363 mv_reset_channel(hpriv, mmio, port);
2365 ZERO(0x028); /* command */
2366 writel(0x11f, port_mmio + EDMA_CFG_OFS);
2367 ZERO(0x004); /* timer */
2368 ZERO(0x008); /* irq err cause */
2369 ZERO(0x00c); /* irq err mask */
2370 ZERO(0x010); /* rq bah */
2371 ZERO(0x014); /* rq inp */
2372 ZERO(0x018); /* rq outp */
2373 ZERO(0x01c); /* respq bah */
2374 ZERO(0x024); /* respq outp */
2375 ZERO(0x020); /* respq inp */
2376 ZERO(0x02c); /* test control */
2377 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
2379 #undef ZERO
2381 #define ZERO(reg) writel(0, hc_mmio + (reg))
2382 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2383 unsigned int hc)
2385 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2386 u32 tmp;
2388 ZERO(0x00c);
2389 ZERO(0x010);
2390 ZERO(0x014);
2391 ZERO(0x018);
2393 tmp = readl(hc_mmio + 0x20);
2394 tmp &= 0x1c1c1c1c;
2395 tmp |= 0x03030303;
2396 writel(tmp, hc_mmio + 0x20);
2398 #undef ZERO
2400 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2401 unsigned int n_hc)
2403 unsigned int hc, port;
2405 for (hc = 0; hc < n_hc; hc++) {
2406 for (port = 0; port < MV_PORTS_PER_HC; port++)
2407 mv5_reset_hc_port(hpriv, mmio,
2408 (hc * MV_PORTS_PER_HC) + port);
2410 mv5_reset_one_hc(hpriv, mmio, hc);
2413 return 0;
2416 #undef ZERO
2417 #define ZERO(reg) writel(0, mmio + (reg))
2418 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
2420 struct mv_host_priv *hpriv = host->private_data;
2421 u32 tmp;
2423 tmp = readl(mmio + MV_PCI_MODE_OFS);
2424 tmp &= 0xff00ffff;
2425 writel(tmp, mmio + MV_PCI_MODE_OFS);
2427 ZERO(MV_PCI_DISC_TIMER);
2428 ZERO(MV_PCI_MSI_TRIGGER);
2429 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT_OFS);
2430 ZERO(MV_PCI_SERR_MASK);
2431 ZERO(hpriv->irq_cause_ofs);
2432 ZERO(hpriv->irq_mask_ofs);
2433 ZERO(MV_PCI_ERR_LOW_ADDRESS);
2434 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
2435 ZERO(MV_PCI_ERR_ATTRIBUTE);
2436 ZERO(MV_PCI_ERR_COMMAND);
2438 #undef ZERO
2440 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
2442 u32 tmp;
2444 mv5_reset_flash(hpriv, mmio);
2446 tmp = readl(mmio + MV_GPIO_PORT_CTL_OFS);
2447 tmp &= 0x3;
2448 tmp |= (1 << 5) | (1 << 6);
2449 writel(tmp, mmio + MV_GPIO_PORT_CTL_OFS);
2453 * mv6_reset_hc - Perform the 6xxx global soft reset
2454 * @mmio: base address of the HBA
2456 * This routine only applies to 6xxx parts.
2458 * LOCKING:
2459 * Inherited from caller.
2461 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2462 unsigned int n_hc)
2464 void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
2465 int i, rc = 0;
2466 u32 t;
2468 /* Following procedure defined in PCI "main command and status
2469 * register" table.
2471 t = readl(reg);
2472 writel(t | STOP_PCI_MASTER, reg);
2474 for (i = 0; i < 1000; i++) {
2475 udelay(1);
2476 t = readl(reg);
2477 if (PCI_MASTER_EMPTY & t)
2478 break;
2480 if (!(PCI_MASTER_EMPTY & t)) {
2481 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
2482 rc = 1;
2483 goto done;
2486 /* set reset */
2487 i = 5;
2488 do {
2489 writel(t | GLOB_SFT_RST, reg);
2490 t = readl(reg);
2491 udelay(1);
2492 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
2494 if (!(GLOB_SFT_RST & t)) {
2495 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
2496 rc = 1;
2497 goto done;
2500 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
2501 i = 5;
2502 do {
2503 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
2504 t = readl(reg);
2505 udelay(1);
2506 } while ((GLOB_SFT_RST & t) && (i-- > 0));
2508 if (GLOB_SFT_RST & t) {
2509 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
2510 rc = 1;
2512 done:
2513 return rc;
2516 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
2517 void __iomem *mmio)
2519 void __iomem *port_mmio;
2520 u32 tmp;
2522 tmp = readl(mmio + MV_RESET_CFG_OFS);
2523 if ((tmp & (1 << 0)) == 0) {
2524 hpriv->signal[idx].amps = 0x7 << 8;
2525 hpriv->signal[idx].pre = 0x1 << 5;
2526 return;
2529 port_mmio = mv_port_base(mmio, idx);
2530 tmp = readl(port_mmio + PHY_MODE2);
2532 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
2533 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
2536 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
2538 writel(0x00000060, mmio + MV_GPIO_PORT_CTL_OFS);
2541 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2542 unsigned int port)
2544 void __iomem *port_mmio = mv_port_base(mmio, port);
2546 u32 hp_flags = hpriv->hp_flags;
2547 int fix_phy_mode2 =
2548 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2549 int fix_phy_mode4 =
2550 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2551 u32 m2, m3;
2553 if (fix_phy_mode2) {
2554 m2 = readl(port_mmio + PHY_MODE2);
2555 m2 &= ~(1 << 16);
2556 m2 |= (1 << 31);
2557 writel(m2, port_mmio + PHY_MODE2);
2559 udelay(200);
2561 m2 = readl(port_mmio + PHY_MODE2);
2562 m2 &= ~((1 << 16) | (1 << 31));
2563 writel(m2, port_mmio + PHY_MODE2);
2565 udelay(200);
2569 * Gen-II/IIe PHY_MODE3 errata RM#2:
2570 * Achieves better receiver noise performance than the h/w default:
2572 m3 = readl(port_mmio + PHY_MODE3);
2573 m3 = (m3 & 0x1f) | (0x5555601 << 5);
2575 /* Guideline 88F5182 (GL# SATA-S11) */
2576 if (IS_SOC(hpriv))
2577 m3 &= ~0x1c;
2579 if (fix_phy_mode4) {
2580 u32 m4 = readl(port_mmio + PHY_MODE4);
2582 * Enforce reserved-bit restrictions on GenIIe devices only.
2583 * For earlier chipsets, force only the internal config field
2584 * (workaround for errata FEr SATA#10 part 1).
2586 if (IS_GEN_IIE(hpriv))
2587 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
2588 else
2589 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
2590 writel(m4, port_mmio + PHY_MODE4);
2593 * Workaround for 60x1-B2 errata SATA#13:
2594 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
2595 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
2597 writel(m3, port_mmio + PHY_MODE3);
2599 /* Revert values of pre-emphasis and signal amps to the saved ones */
2600 m2 = readl(port_mmio + PHY_MODE2);
2602 m2 &= ~MV_M2_PREAMP_MASK;
2603 m2 |= hpriv->signal[port].amps;
2604 m2 |= hpriv->signal[port].pre;
2605 m2 &= ~(1 << 16);
2607 /* according to mvSata 3.6.1, some IIE values are fixed */
2608 if (IS_GEN_IIE(hpriv)) {
2609 m2 &= ~0xC30FF01F;
2610 m2 |= 0x0000900F;
2613 writel(m2, port_mmio + PHY_MODE2);
2616 /* TODO: use the generic LED interface to configure the SATA Presence */
2617 /* & Acitivy LEDs on the board */
2618 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
2619 void __iomem *mmio)
2621 return;
2624 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
2625 void __iomem *mmio)
2627 void __iomem *port_mmio;
2628 u32 tmp;
2630 port_mmio = mv_port_base(mmio, idx);
2631 tmp = readl(port_mmio + PHY_MODE2);
2633 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
2634 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
2637 #undef ZERO
2638 #define ZERO(reg) writel(0, port_mmio + (reg))
2639 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
2640 void __iomem *mmio, unsigned int port)
2642 void __iomem *port_mmio = mv_port_base(mmio, port);
2644 mv_reset_channel(hpriv, mmio, port);
2646 ZERO(0x028); /* command */
2647 writel(0x101f, port_mmio + EDMA_CFG_OFS);
2648 ZERO(0x004); /* timer */
2649 ZERO(0x008); /* irq err cause */
2650 ZERO(0x00c); /* irq err mask */
2651 ZERO(0x010); /* rq bah */
2652 ZERO(0x014); /* rq inp */
2653 ZERO(0x018); /* rq outp */
2654 ZERO(0x01c); /* respq bah */
2655 ZERO(0x024); /* respq outp */
2656 ZERO(0x020); /* respq inp */
2657 ZERO(0x02c); /* test control */
2658 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
2661 #undef ZERO
2663 #define ZERO(reg) writel(0, hc_mmio + (reg))
2664 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
2665 void __iomem *mmio)
2667 void __iomem *hc_mmio = mv_hc_base(mmio, 0);
2669 ZERO(0x00c);
2670 ZERO(0x010);
2671 ZERO(0x014);
2675 #undef ZERO
2677 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
2678 void __iomem *mmio, unsigned int n_hc)
2680 unsigned int port;
2682 for (port = 0; port < hpriv->n_ports; port++)
2683 mv_soc_reset_hc_port(hpriv, mmio, port);
2685 mv_soc_reset_one_hc(hpriv, mmio);
2687 return 0;
2690 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
2691 void __iomem *mmio)
2693 return;
2696 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
2698 return;
2701 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
2703 u32 ifcfg = readl(port_mmio + SATA_INTERFACE_CFG_OFS);
2705 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
2706 if (want_gen2i)
2707 ifcfg |= (1 << 7); /* enable gen2i speed */
2708 writelfl(ifcfg, port_mmio + SATA_INTERFACE_CFG_OFS);
2711 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
2712 unsigned int port_no)
2714 void __iomem *port_mmio = mv_port_base(mmio, port_no);
2717 * The datasheet warns against setting EDMA_RESET when EDMA is active
2718 * (but doesn't say what the problem might be). So we first try
2719 * to disable the EDMA engine before doing the EDMA_RESET operation.
2721 mv_stop_edma_engine(port_mmio);
2722 writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
2724 if (!IS_GEN_I(hpriv)) {
2725 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
2726 mv_setup_ifcfg(port_mmio, 1);
2729 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
2730 * link, and physical layers. It resets all SATA interface registers
2731 * (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev.
2733 writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
2734 udelay(25); /* allow reset propagation */
2735 writelfl(0, port_mmio + EDMA_CMD_OFS);
2737 hpriv->ops->phy_errata(hpriv, mmio, port_no);
2739 if (IS_GEN_I(hpriv))
2740 mdelay(1);
2743 static void mv_pmp_select(struct ata_port *ap, int pmp)
2745 if (sata_pmp_supported(ap)) {
2746 void __iomem *port_mmio = mv_ap_base(ap);
2747 u32 reg = readl(port_mmio + SATA_IFCTL_OFS);
2748 int old = reg & 0xf;
2750 if (old != pmp) {
2751 reg = (reg & ~0xf) | pmp;
2752 writelfl(reg, port_mmio + SATA_IFCTL_OFS);
2757 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
2758 unsigned long deadline)
2760 mv_pmp_select(link->ap, sata_srst_pmp(link));
2761 return sata_std_hardreset(link, class, deadline);
2764 static int mv_softreset(struct ata_link *link, unsigned int *class,
2765 unsigned long deadline)
2767 mv_pmp_select(link->ap, sata_srst_pmp(link));
2768 return ata_sff_softreset(link, class, deadline);
2771 static int mv_hardreset(struct ata_link *link, unsigned int *class,
2772 unsigned long deadline)
2774 struct ata_port *ap = link->ap;
2775 struct mv_host_priv *hpriv = ap->host->private_data;
2776 struct mv_port_priv *pp = ap->private_data;
2777 void __iomem *mmio = hpriv->base;
2778 int rc, attempts = 0, extra = 0;
2779 u32 sstatus;
2780 bool online;
2782 mv_reset_channel(hpriv, mmio, ap->port_no);
2783 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2785 /* Workaround for errata FEr SATA#10 (part 2) */
2786 do {
2787 const unsigned long *timing =
2788 sata_ehc_deb_timing(&link->eh_context);
2790 rc = sata_link_hardreset(link, timing, deadline + extra,
2791 &online, NULL);
2792 rc = online ? -EAGAIN : rc;
2793 if (rc)
2794 return rc;
2795 sata_scr_read(link, SCR_STATUS, &sstatus);
2796 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
2797 /* Force 1.5gb/s link speed and try again */
2798 mv_setup_ifcfg(mv_ap_base(ap), 0);
2799 if (time_after(jiffies + HZ, deadline))
2800 extra = HZ; /* only extend it once, max */
2802 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
2804 return rc;
2807 static void mv_eh_freeze(struct ata_port *ap)
2809 mv_stop_edma(ap);
2810 mv_enable_port_irqs(ap, 0);
2813 static void mv_eh_thaw(struct ata_port *ap)
2815 struct mv_host_priv *hpriv = ap->host->private_data;
2816 unsigned int port = ap->port_no;
2817 unsigned int hardport = mv_hardport_from_port(port);
2818 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
2819 void __iomem *port_mmio = mv_ap_base(ap);
2820 u32 hc_irq_cause;
2822 /* clear EDMA errors on this port */
2823 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2825 /* clear pending irq events */
2826 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
2827 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
2829 mv_enable_port_irqs(ap, ERR_IRQ);
2833 * mv_port_init - Perform some early initialization on a single port.
2834 * @port: libata data structure storing shadow register addresses
2835 * @port_mmio: base address of the port
2837 * Initialize shadow register mmio addresses, clear outstanding
2838 * interrupts on the port, and unmask interrupts for the future
2839 * start of the port.
2841 * LOCKING:
2842 * Inherited from caller.
2844 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
2846 void __iomem *shd_base = port_mmio + SHD_BLK_OFS;
2847 unsigned serr_ofs;
2849 /* PIO related setup
2851 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
2852 port->error_addr =
2853 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
2854 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
2855 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
2856 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
2857 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
2858 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
2859 port->status_addr =
2860 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
2861 /* special case: control/altstatus doesn't have ATA_REG_ address */
2862 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
2864 /* unused: */
2865 port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
2867 /* Clear any currently outstanding port interrupt conditions */
2868 serr_ofs = mv_scr_offset(SCR_ERROR);
2869 writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
2870 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2872 /* unmask all non-transient EDMA error interrupts */
2873 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
2875 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2876 readl(port_mmio + EDMA_CFG_OFS),
2877 readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
2878 readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
2881 static unsigned int mv_in_pcix_mode(struct ata_host *host)
2883 struct mv_host_priv *hpriv = host->private_data;
2884 void __iomem *mmio = hpriv->base;
2885 u32 reg;
2887 if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
2888 return 0; /* not PCI-X capable */
2889 reg = readl(mmio + MV_PCI_MODE_OFS);
2890 if ((reg & MV_PCI_MODE_MASK) == 0)
2891 return 0; /* conventional PCI mode */
2892 return 1; /* chip is in PCI-X mode */
2895 static int mv_pci_cut_through_okay(struct ata_host *host)
2897 struct mv_host_priv *hpriv = host->private_data;
2898 void __iomem *mmio = hpriv->base;
2899 u32 reg;
2901 if (!mv_in_pcix_mode(host)) {
2902 reg = readl(mmio + PCI_COMMAND_OFS);
2903 if (reg & PCI_COMMAND_MRDTRIG)
2904 return 0; /* not okay */
2906 return 1; /* okay */
2909 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
2911 struct pci_dev *pdev = to_pci_dev(host->dev);
2912 struct mv_host_priv *hpriv = host->private_data;
2913 u32 hp_flags = hpriv->hp_flags;
2915 switch (board_idx) {
2916 case chip_5080:
2917 hpriv->ops = &mv5xxx_ops;
2918 hp_flags |= MV_HP_GEN_I;
2920 switch (pdev->revision) {
2921 case 0x1:
2922 hp_flags |= MV_HP_ERRATA_50XXB0;
2923 break;
2924 case 0x3:
2925 hp_flags |= MV_HP_ERRATA_50XXB2;
2926 break;
2927 default:
2928 dev_printk(KERN_WARNING, &pdev->dev,
2929 "Applying 50XXB2 workarounds to unknown rev\n");
2930 hp_flags |= MV_HP_ERRATA_50XXB2;
2931 break;
2933 break;
2935 case chip_504x:
2936 case chip_508x:
2937 hpriv->ops = &mv5xxx_ops;
2938 hp_flags |= MV_HP_GEN_I;
2940 switch (pdev->revision) {
2941 case 0x0:
2942 hp_flags |= MV_HP_ERRATA_50XXB0;
2943 break;
2944 case 0x3:
2945 hp_flags |= MV_HP_ERRATA_50XXB2;
2946 break;
2947 default:
2948 dev_printk(KERN_WARNING, &pdev->dev,
2949 "Applying B2 workarounds to unknown rev\n");
2950 hp_flags |= MV_HP_ERRATA_50XXB2;
2951 break;
2953 break;
2955 case chip_604x:
2956 case chip_608x:
2957 hpriv->ops = &mv6xxx_ops;
2958 hp_flags |= MV_HP_GEN_II;
2960 switch (pdev->revision) {
2961 case 0x7:
2962 hp_flags |= MV_HP_ERRATA_60X1B2;
2963 break;
2964 case 0x9:
2965 hp_flags |= MV_HP_ERRATA_60X1C0;
2966 break;
2967 default:
2968 dev_printk(KERN_WARNING, &pdev->dev,
2969 "Applying B2 workarounds to unknown rev\n");
2970 hp_flags |= MV_HP_ERRATA_60X1B2;
2971 break;
2973 break;
2975 case chip_7042:
2976 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
2977 if (pdev->vendor == PCI_VENDOR_ID_TTI &&
2978 (pdev->device == 0x2300 || pdev->device == 0x2310))
2981 * Highpoint RocketRAID PCIe 23xx series cards:
2983 * Unconfigured drives are treated as "Legacy"
2984 * by the BIOS, and it overwrites sector 8 with
2985 * a "Lgcy" metadata block prior to Linux boot.
2987 * Configured drives (RAID or JBOD) leave sector 8
2988 * alone, but instead overwrite a high numbered
2989 * sector for the RAID metadata. This sector can
2990 * be determined exactly, by truncating the physical
2991 * drive capacity to a nice even GB value.
2993 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
2995 * Warn the user, lest they think we're just buggy.
2997 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
2998 " BIOS CORRUPTS DATA on all attached drives,"
2999 " regardless of if/how they are configured."
3000 " BEWARE!\n");
3001 printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3002 " use sectors 8-9 on \"Legacy\" drives,"
3003 " and avoid the final two gigabytes on"
3004 " all RocketRAID BIOS initialized drives.\n");
3006 /* drop through */
3007 case chip_6042:
3008 hpriv->ops = &mv6xxx_ops;
3009 hp_flags |= MV_HP_GEN_IIE;
3010 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3011 hp_flags |= MV_HP_CUT_THROUGH;
3013 switch (pdev->revision) {
3014 case 0x2: /* Rev.B0: the first/only public release */
3015 hp_flags |= MV_HP_ERRATA_60X1C0;
3016 break;
3017 default:
3018 dev_printk(KERN_WARNING, &pdev->dev,
3019 "Applying 60X1C0 workarounds to unknown rev\n");
3020 hp_flags |= MV_HP_ERRATA_60X1C0;
3021 break;
3023 break;
3024 case chip_soc:
3025 hpriv->ops = &mv_soc_ops;
3026 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3027 MV_HP_ERRATA_60X1C0;
3028 break;
3030 default:
3031 dev_printk(KERN_ERR, host->dev,
3032 "BUG: invalid board index %u\n", board_idx);
3033 return 1;
3036 hpriv->hp_flags = hp_flags;
3037 if (hp_flags & MV_HP_PCIE) {
3038 hpriv->irq_cause_ofs = PCIE_IRQ_CAUSE_OFS;
3039 hpriv->irq_mask_ofs = PCIE_IRQ_MASK_OFS;
3040 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
3041 } else {
3042 hpriv->irq_cause_ofs = PCI_IRQ_CAUSE_OFS;
3043 hpriv->irq_mask_ofs = PCI_IRQ_MASK_OFS;
3044 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
3047 return 0;
3051 * mv_init_host - Perform some early initialization of the host.
3052 * @host: ATA host to initialize
3053 * @board_idx: controller index
3055 * If possible, do an early global reset of the host. Then do
3056 * our port init and clear/unmask all/relevant host interrupts.
3058 * LOCKING:
3059 * Inherited from caller.
3061 static int mv_init_host(struct ata_host *host, unsigned int board_idx)
3063 int rc = 0, n_hc, port, hc;
3064 struct mv_host_priv *hpriv = host->private_data;
3065 void __iomem *mmio = hpriv->base;
3067 rc = mv_chip_id(host, board_idx);
3068 if (rc)
3069 goto done;
3071 if (IS_SOC(hpriv)) {
3072 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE_OFS;
3073 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK_OFS;
3074 } else {
3075 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE_OFS;
3076 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK_OFS;
3079 /* initialize shadow irq mask with register's value */
3080 hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3082 /* global interrupt mask: 0 == mask everything */
3083 mv_set_main_irq_mask(host, ~0, 0);
3085 n_hc = mv_get_hc_count(host->ports[0]->flags);
3087 for (port = 0; port < host->n_ports; port++)
3088 hpriv->ops->read_preamp(hpriv, port, mmio);
3090 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3091 if (rc)
3092 goto done;
3094 hpriv->ops->reset_flash(hpriv, mmio);
3095 hpriv->ops->reset_bus(host, mmio);
3096 hpriv->ops->enable_leds(hpriv, mmio);
3098 for (port = 0; port < host->n_ports; port++) {
3099 struct ata_port *ap = host->ports[port];
3100 void __iomem *port_mmio = mv_port_base(mmio, port);
3102 mv_port_init(&ap->ioaddr, port_mmio);
3104 #ifdef CONFIG_PCI
3105 if (!IS_SOC(hpriv)) {
3106 unsigned int offset = port_mmio - mmio;
3107 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
3108 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
3110 #endif
3113 for (hc = 0; hc < n_hc; hc++) {
3114 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3116 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3117 "(before clear)=0x%08x\n", hc,
3118 readl(hc_mmio + HC_CFG_OFS),
3119 readl(hc_mmio + HC_IRQ_CAUSE_OFS));
3121 /* Clear any currently outstanding hc interrupt conditions */
3122 writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
3125 /* Clear any currently outstanding host interrupt conditions */
3126 writelfl(0, mmio + hpriv->irq_cause_ofs);
3128 /* and unmask interrupt generation for host regs */
3129 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_ofs);
3132 * enable only global host interrupts for now.
3133 * The per-port interrupts get done later as ports are set up.
3135 mv_set_main_irq_mask(host, 0, PCI_ERR);
3136 done:
3137 return rc;
3140 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3142 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3143 MV_CRQB_Q_SZ, 0);
3144 if (!hpriv->crqb_pool)
3145 return -ENOMEM;
3147 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3148 MV_CRPB_Q_SZ, 0);
3149 if (!hpriv->crpb_pool)
3150 return -ENOMEM;
3152 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3153 MV_SG_TBL_SZ, 0);
3154 if (!hpriv->sg_tbl_pool)
3155 return -ENOMEM;
3157 return 0;
3160 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3161 struct mbus_dram_target_info *dram)
3163 int i;
3165 for (i = 0; i < 4; i++) {
3166 writel(0, hpriv->base + WINDOW_CTRL(i));
3167 writel(0, hpriv->base + WINDOW_BASE(i));
3170 for (i = 0; i < dram->num_cs; i++) {
3171 struct mbus_dram_window *cs = dram->cs + i;
3173 writel(((cs->size - 1) & 0xffff0000) |
3174 (cs->mbus_attr << 8) |
3175 (dram->mbus_dram_target_id << 4) | 1,
3176 hpriv->base + WINDOW_CTRL(i));
3177 writel(cs->base, hpriv->base + WINDOW_BASE(i));
3182 * mv_platform_probe - handle a positive probe of an soc Marvell
3183 * host
3184 * @pdev: platform device found
3186 * LOCKING:
3187 * Inherited from caller.
3189 static int mv_platform_probe(struct platform_device *pdev)
3191 static int printed_version;
3192 const struct mv_sata_platform_data *mv_platform_data;
3193 const struct ata_port_info *ppi[] =
3194 { &mv_port_info[chip_soc], NULL };
3195 struct ata_host *host;
3196 struct mv_host_priv *hpriv;
3197 struct resource *res;
3198 int n_ports, rc;
3200 if (!printed_version++)
3201 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
3204 * Simple resource validation ..
3206 if (unlikely(pdev->num_resources != 2)) {
3207 dev_err(&pdev->dev, "invalid number of resources\n");
3208 return -EINVAL;
3212 * Get the register base first
3214 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3215 if (res == NULL)
3216 return -EINVAL;
3218 /* allocate host */
3219 mv_platform_data = pdev->dev.platform_data;
3220 n_ports = mv_platform_data->n_ports;
3222 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
3223 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
3225 if (!host || !hpriv)
3226 return -ENOMEM;
3227 host->private_data = hpriv;
3228 hpriv->n_ports = n_ports;
3230 host->iomap = NULL;
3231 hpriv->base = devm_ioremap(&pdev->dev, res->start,
3232 res->end - res->start + 1);
3233 hpriv->base -= MV_SATAHC0_REG_BASE;
3236 * (Re-)program MBUS remapping windows if we are asked to.
3238 if (mv_platform_data->dram != NULL)
3239 mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
3241 rc = mv_create_dma_pools(hpriv, &pdev->dev);
3242 if (rc)
3243 return rc;
3245 /* initialize adapter */
3246 rc = mv_init_host(host, chip_soc);
3247 if (rc)
3248 return rc;
3250 dev_printk(KERN_INFO, &pdev->dev,
3251 "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
3252 host->n_ports);
3254 return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
3255 IRQF_SHARED, &mv6_sht);
3260 * mv_platform_remove - unplug a platform interface
3261 * @pdev: platform device
3263 * A platform bus SATA device has been unplugged. Perform the needed
3264 * cleanup. Also called on module unload for any active devices.
3266 static int __devexit mv_platform_remove(struct platform_device *pdev)
3268 struct device *dev = &pdev->dev;
3269 struct ata_host *host = dev_get_drvdata(dev);
3271 ata_host_detach(host);
3272 return 0;
3275 static struct platform_driver mv_platform_driver = {
3276 .probe = mv_platform_probe,
3277 .remove = __devexit_p(mv_platform_remove),
3278 .driver = {
3279 .name = DRV_NAME,
3280 .owner = THIS_MODULE,
3285 #ifdef CONFIG_PCI
3286 static int mv_pci_init_one(struct pci_dev *pdev,
3287 const struct pci_device_id *ent);
3290 static struct pci_driver mv_pci_driver = {
3291 .name = DRV_NAME,
3292 .id_table = mv_pci_tbl,
3293 .probe = mv_pci_init_one,
3294 .remove = ata_pci_remove_one,
3298 * module options
3300 static int msi; /* Use PCI msi; either zero (off, default) or non-zero */
3303 /* move to PCI layer or libata core? */
3304 static int pci_go_64(struct pci_dev *pdev)
3306 int rc;
3308 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3309 rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3310 if (rc) {
3311 rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3312 if (rc) {
3313 dev_printk(KERN_ERR, &pdev->dev,
3314 "64-bit DMA enable failed\n");
3315 return rc;
3318 } else {
3319 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3320 if (rc) {
3321 dev_printk(KERN_ERR, &pdev->dev,
3322 "32-bit DMA enable failed\n");
3323 return rc;
3325 rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3326 if (rc) {
3327 dev_printk(KERN_ERR, &pdev->dev,
3328 "32-bit consistent DMA enable failed\n");
3329 return rc;
3333 return rc;
3337 * mv_print_info - Dump key info to kernel log for perusal.
3338 * @host: ATA host to print info about
3340 * FIXME: complete this.
3342 * LOCKING:
3343 * Inherited from caller.
3345 static void mv_print_info(struct ata_host *host)
3347 struct pci_dev *pdev = to_pci_dev(host->dev);
3348 struct mv_host_priv *hpriv = host->private_data;
3349 u8 scc;
3350 const char *scc_s, *gen;
3352 /* Use this to determine the HW stepping of the chip so we know
3353 * what errata to workaround
3355 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
3356 if (scc == 0)
3357 scc_s = "SCSI";
3358 else if (scc == 0x01)
3359 scc_s = "RAID";
3360 else
3361 scc_s = "?";
3363 if (IS_GEN_I(hpriv))
3364 gen = "I";
3365 else if (IS_GEN_II(hpriv))
3366 gen = "II";
3367 else if (IS_GEN_IIE(hpriv))
3368 gen = "IIE";
3369 else
3370 gen = "?";
3372 dev_printk(KERN_INFO, &pdev->dev,
3373 "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
3374 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
3375 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
3379 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
3380 * @pdev: PCI device found
3381 * @ent: PCI device ID entry for the matched host
3383 * LOCKING:
3384 * Inherited from caller.
3386 static int mv_pci_init_one(struct pci_dev *pdev,
3387 const struct pci_device_id *ent)
3389 static int printed_version;
3390 unsigned int board_idx = (unsigned int)ent->driver_data;
3391 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
3392 struct ata_host *host;
3393 struct mv_host_priv *hpriv;
3394 int n_ports, rc;
3396 if (!printed_version++)
3397 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
3399 /* allocate host */
3400 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
3402 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
3403 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
3404 if (!host || !hpriv)
3405 return -ENOMEM;
3406 host->private_data = hpriv;
3407 hpriv->n_ports = n_ports;
3409 /* acquire resources */
3410 rc = pcim_enable_device(pdev);
3411 if (rc)
3412 return rc;
3414 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
3415 if (rc == -EBUSY)
3416 pcim_pin_device(pdev);
3417 if (rc)
3418 return rc;
3419 host->iomap = pcim_iomap_table(pdev);
3420 hpriv->base = host->iomap[MV_PRIMARY_BAR];
3422 rc = pci_go_64(pdev);
3423 if (rc)
3424 return rc;
3426 rc = mv_create_dma_pools(hpriv, &pdev->dev);
3427 if (rc)
3428 return rc;
3430 /* initialize adapter */
3431 rc = mv_init_host(host, board_idx);
3432 if (rc)
3433 return rc;
3435 /* Enable message-switched interrupts, if requested */
3436 if (msi && pci_enable_msi(pdev) == 0)
3437 hpriv->hp_flags |= MV_HP_FLAG_MSI;
3439 mv_dump_pci_cfg(pdev, 0x68);
3440 mv_print_info(host);
3442 pci_set_master(pdev);
3443 pci_try_set_mwi(pdev);
3444 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
3445 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
3447 #endif
3449 static int mv_platform_probe(struct platform_device *pdev);
3450 static int __devexit mv_platform_remove(struct platform_device *pdev);
3452 static int __init mv_init(void)
3454 int rc = -ENODEV;
3455 #ifdef CONFIG_PCI
3456 rc = pci_register_driver(&mv_pci_driver);
3457 if (rc < 0)
3458 return rc;
3459 #endif
3460 rc = platform_driver_register(&mv_platform_driver);
3462 #ifdef CONFIG_PCI
3463 if (rc < 0)
3464 pci_unregister_driver(&mv_pci_driver);
3465 #endif
3466 return rc;
3469 static void __exit mv_exit(void)
3471 #ifdef CONFIG_PCI
3472 pci_unregister_driver(&mv_pci_driver);
3473 #endif
3474 platform_driver_unregister(&mv_platform_driver);
3477 MODULE_AUTHOR("Brett Russ");
3478 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
3479 MODULE_LICENSE("GPL");
3480 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
3481 MODULE_VERSION(DRV_VERSION);
3482 MODULE_ALIAS("platform:" DRV_NAME);
3484 #ifdef CONFIG_PCI
3485 module_param(msi, int, 0444);
3486 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
3487 #endif
3489 module_init(mv_init);
3490 module_exit(mv_exit);