2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <trace/events/kvm.h>
49 #define CREATE_TRACE_POINTS
52 #include <asm/debugreg.h>
59 #include <asm/pvclock.h>
60 #include <asm/div64.h>
62 #define MAX_IO_MSRS 256
63 #define CR0_RESERVED_BITS \
64 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
65 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
66 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
67 #define CR4_RESERVED_BITS \
68 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
69 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
70 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
72 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
74 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
76 #define KVM_MAX_MCE_BANKS 32
77 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
80 * - enable syscall per default because its emulated by KVM
81 * - enable LME and LMA per default on 64 bit KVM
84 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffafeULL
;
86 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffffeULL
;
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
92 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
93 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
94 struct kvm_cpuid_entry2 __user
*entries
);
96 struct kvm_x86_ops
*kvm_x86_ops
;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
100 module_param_named(ignore_msrs
, ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
102 #define KVM_NR_SHARED_MSRS 16
104 struct kvm_shared_msrs_global
{
106 u32 msrs
[KVM_NR_SHARED_MSRS
];
109 struct kvm_shared_msrs
{
110 struct user_return_notifier urn
;
112 struct kvm_shared_msr_values
{
115 } values
[KVM_NR_SHARED_MSRS
];
118 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global
;
119 static DEFINE_PER_CPU(struct kvm_shared_msrs
, shared_msrs
);
121 struct kvm_stats_debugfs_item debugfs_entries
[] = {
122 { "pf_fixed", VCPU_STAT(pf_fixed
) },
123 { "pf_guest", VCPU_STAT(pf_guest
) },
124 { "tlb_flush", VCPU_STAT(tlb_flush
) },
125 { "invlpg", VCPU_STAT(invlpg
) },
126 { "exits", VCPU_STAT(exits
) },
127 { "io_exits", VCPU_STAT(io_exits
) },
128 { "mmio_exits", VCPU_STAT(mmio_exits
) },
129 { "signal_exits", VCPU_STAT(signal_exits
) },
130 { "irq_window", VCPU_STAT(irq_window_exits
) },
131 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
132 { "halt_exits", VCPU_STAT(halt_exits
) },
133 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
134 { "hypercalls", VCPU_STAT(hypercalls
) },
135 { "request_irq", VCPU_STAT(request_irq_exits
) },
136 { "irq_exits", VCPU_STAT(irq_exits
) },
137 { "host_state_reload", VCPU_STAT(host_state_reload
) },
138 { "efer_reload", VCPU_STAT(efer_reload
) },
139 { "fpu_reload", VCPU_STAT(fpu_reload
) },
140 { "insn_emulation", VCPU_STAT(insn_emulation
) },
141 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
142 { "irq_injections", VCPU_STAT(irq_injections
) },
143 { "nmi_injections", VCPU_STAT(nmi_injections
) },
144 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
145 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
146 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
147 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
148 { "mmu_flooded", VM_STAT(mmu_flooded
) },
149 { "mmu_recycled", VM_STAT(mmu_recycled
) },
150 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
151 { "mmu_unsync", VM_STAT(mmu_unsync
) },
152 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
153 { "largepages", VM_STAT(lpages
) },
157 u64 __read_mostly host_xcr0
;
159 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu
*vcpu
)
162 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
); i
++)
163 vcpu
->arch
.apf
.gfns
[i
] = ~0;
166 static inline u32
bit(int bitno
)
168 return 1 << (bitno
& 31);
171 static void kvm_on_user_return(struct user_return_notifier
*urn
)
174 struct kvm_shared_msrs
*locals
175 = container_of(urn
, struct kvm_shared_msrs
, urn
);
176 struct kvm_shared_msr_values
*values
;
178 for (slot
= 0; slot
< shared_msrs_global
.nr
; ++slot
) {
179 values
= &locals
->values
[slot
];
180 if (values
->host
!= values
->curr
) {
181 wrmsrl(shared_msrs_global
.msrs
[slot
], values
->host
);
182 values
->curr
= values
->host
;
185 locals
->registered
= false;
186 user_return_notifier_unregister(urn
);
189 static void shared_msr_update(unsigned slot
, u32 msr
)
191 struct kvm_shared_msrs
*smsr
;
194 smsr
= &__get_cpu_var(shared_msrs
);
195 /* only read, and nobody should modify it at this time,
196 * so don't need lock */
197 if (slot
>= shared_msrs_global
.nr
) {
198 printk(KERN_ERR
"kvm: invalid MSR slot!");
201 rdmsrl_safe(msr
, &value
);
202 smsr
->values
[slot
].host
= value
;
203 smsr
->values
[slot
].curr
= value
;
206 void kvm_define_shared_msr(unsigned slot
, u32 msr
)
208 if (slot
>= shared_msrs_global
.nr
)
209 shared_msrs_global
.nr
= slot
+ 1;
210 shared_msrs_global
.msrs
[slot
] = msr
;
211 /* we need ensured the shared_msr_global have been updated */
214 EXPORT_SYMBOL_GPL(kvm_define_shared_msr
);
216 static void kvm_shared_msr_cpu_online(void)
220 for (i
= 0; i
< shared_msrs_global
.nr
; ++i
)
221 shared_msr_update(i
, shared_msrs_global
.msrs
[i
]);
224 void kvm_set_shared_msr(unsigned slot
, u64 value
, u64 mask
)
226 struct kvm_shared_msrs
*smsr
= &__get_cpu_var(shared_msrs
);
228 if (((value
^ smsr
->values
[slot
].curr
) & mask
) == 0)
230 smsr
->values
[slot
].curr
= value
;
231 wrmsrl(shared_msrs_global
.msrs
[slot
], value
);
232 if (!smsr
->registered
) {
233 smsr
->urn
.on_user_return
= kvm_on_user_return
;
234 user_return_notifier_register(&smsr
->urn
);
235 smsr
->registered
= true;
238 EXPORT_SYMBOL_GPL(kvm_set_shared_msr
);
240 static void drop_user_return_notifiers(void *ignore
)
242 struct kvm_shared_msrs
*smsr
= &__get_cpu_var(shared_msrs
);
244 if (smsr
->registered
)
245 kvm_on_user_return(&smsr
->urn
);
248 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
250 if (irqchip_in_kernel(vcpu
->kvm
))
251 return vcpu
->arch
.apic_base
;
253 return vcpu
->arch
.apic_base
;
255 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
257 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
259 /* TODO: reserve bits check */
260 if (irqchip_in_kernel(vcpu
->kvm
))
261 kvm_lapic_set_base(vcpu
, data
);
263 vcpu
->arch
.apic_base
= data
;
265 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
267 #define EXCPT_BENIGN 0
268 #define EXCPT_CONTRIBUTORY 1
271 static int exception_class(int vector
)
281 return EXCPT_CONTRIBUTORY
;
288 static void kvm_multiple_exception(struct kvm_vcpu
*vcpu
,
289 unsigned nr
, bool has_error
, u32 error_code
,
295 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
297 if (!vcpu
->arch
.exception
.pending
) {
299 vcpu
->arch
.exception
.pending
= true;
300 vcpu
->arch
.exception
.has_error_code
= has_error
;
301 vcpu
->arch
.exception
.nr
= nr
;
302 vcpu
->arch
.exception
.error_code
= error_code
;
303 vcpu
->arch
.exception
.reinject
= reinject
;
307 /* to check exception */
308 prev_nr
= vcpu
->arch
.exception
.nr
;
309 if (prev_nr
== DF_VECTOR
) {
310 /* triple fault -> shutdown */
311 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
314 class1
= exception_class(prev_nr
);
315 class2
= exception_class(nr
);
316 if ((class1
== EXCPT_CONTRIBUTORY
&& class2
== EXCPT_CONTRIBUTORY
)
317 || (class1
== EXCPT_PF
&& class2
!= EXCPT_BENIGN
)) {
318 /* generate double fault per SDM Table 5-5 */
319 vcpu
->arch
.exception
.pending
= true;
320 vcpu
->arch
.exception
.has_error_code
= true;
321 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
322 vcpu
->arch
.exception
.error_code
= 0;
324 /* replace previous exception with a new one in a hope
325 that instruction re-execution will regenerate lost
330 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
332 kvm_multiple_exception(vcpu
, nr
, false, 0, false);
334 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
336 void kvm_requeue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
338 kvm_multiple_exception(vcpu
, nr
, false, 0, true);
340 EXPORT_SYMBOL_GPL(kvm_requeue_exception
);
342 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
)
344 unsigned error_code
= vcpu
->arch
.fault
.error_code
;
346 ++vcpu
->stat
.pf_guest
;
347 vcpu
->arch
.cr2
= vcpu
->arch
.fault
.address
;
348 kvm_queue_exception_e(vcpu
, PF_VECTOR
, error_code
);
351 void kvm_propagate_fault(struct kvm_vcpu
*vcpu
)
353 if (mmu_is_nested(vcpu
) && !vcpu
->arch
.fault
.nested
)
354 vcpu
->arch
.nested_mmu
.inject_page_fault(vcpu
);
356 vcpu
->arch
.mmu
.inject_page_fault(vcpu
);
358 vcpu
->arch
.fault
.nested
= false;
361 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
363 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
364 vcpu
->arch
.nmi_pending
= 1;
366 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
368 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
370 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false);
372 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
374 void kvm_requeue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
376 kvm_multiple_exception(vcpu
, nr
, true, error_code
, true);
378 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e
);
381 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
382 * a #GP and return false.
384 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
386 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
388 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
391 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
394 * This function will be used to read from the physical memory of the currently
395 * running guest. The difference to kvm_read_guest_page is that this function
396 * can read from guest physical or from the guest's guest physical memory.
398 int kvm_read_guest_page_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
399 gfn_t ngfn
, void *data
, int offset
, int len
,
405 ngpa
= gfn_to_gpa(ngfn
);
406 real_gfn
= mmu
->translate_gpa(vcpu
, ngpa
, access
);
407 if (real_gfn
== UNMAPPED_GVA
)
410 real_gfn
= gpa_to_gfn(real_gfn
);
412 return kvm_read_guest_page(vcpu
->kvm
, real_gfn
, data
, offset
, len
);
414 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu
);
416 int kvm_read_nested_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
417 void *data
, int offset
, int len
, u32 access
)
419 return kvm_read_guest_page_mmu(vcpu
, vcpu
->arch
.walk_mmu
, gfn
,
420 data
, offset
, len
, access
);
424 * Load the pae pdptrs. Return true is they are all valid.
426 int load_pdptrs(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
, unsigned long cr3
)
428 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
429 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
432 u64 pdpte
[ARRAY_SIZE(mmu
->pdptrs
)];
434 ret
= kvm_read_guest_page_mmu(vcpu
, mmu
, pdpt_gfn
, pdpte
,
435 offset
* sizeof(u64
), sizeof(pdpte
),
436 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
441 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
442 if (is_present_gpte(pdpte
[i
]) &&
443 (pdpte
[i
] & vcpu
->arch
.mmu
.rsvd_bits_mask
[0][2])) {
450 memcpy(mmu
->pdptrs
, pdpte
, sizeof(mmu
->pdptrs
));
451 __set_bit(VCPU_EXREG_PDPTR
,
452 (unsigned long *)&vcpu
->arch
.regs_avail
);
453 __set_bit(VCPU_EXREG_PDPTR
,
454 (unsigned long *)&vcpu
->arch
.regs_dirty
);
459 EXPORT_SYMBOL_GPL(load_pdptrs
);
461 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
463 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.walk_mmu
->pdptrs
)];
469 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
472 if (!test_bit(VCPU_EXREG_PDPTR
,
473 (unsigned long *)&vcpu
->arch
.regs_avail
))
476 gfn
= (vcpu
->arch
.cr3
& ~31u) >> PAGE_SHIFT
;
477 offset
= (vcpu
->arch
.cr3
& ~31u) & (PAGE_SIZE
- 1);
478 r
= kvm_read_nested_guest_page(vcpu
, gfn
, pdpte
, offset
, sizeof(pdpte
),
479 PFERR_USER_MASK
| PFERR_WRITE_MASK
);
482 changed
= memcmp(pdpte
, vcpu
->arch
.walk_mmu
->pdptrs
, sizeof(pdpte
)) != 0;
488 int kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
490 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
491 unsigned long update_bits
= X86_CR0_PG
| X86_CR0_WP
|
492 X86_CR0_CD
| X86_CR0_NW
;
497 if (cr0
& 0xffffffff00000000UL
)
501 cr0
&= ~CR0_RESERVED_BITS
;
503 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
))
506 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
))
509 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
511 if ((vcpu
->arch
.efer
& EFER_LME
)) {
516 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
521 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
526 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
528 if ((cr0
^ old_cr0
) & update_bits
)
529 kvm_mmu_reset_context(vcpu
);
532 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
534 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
536 (void)kvm_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~0x0eul
) | (msw
& 0x0f));
538 EXPORT_SYMBOL_GPL(kvm_lmsw
);
540 int __kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
544 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
545 if (index
!= XCR_XFEATURE_ENABLED_MASK
)
548 if (kvm_x86_ops
->get_cpl(vcpu
) != 0)
550 if (!(xcr0
& XSTATE_FP
))
552 if ((xcr0
& XSTATE_YMM
) && !(xcr0
& XSTATE_SSE
))
554 if (xcr0
& ~host_xcr0
)
556 vcpu
->arch
.xcr0
= xcr0
;
557 vcpu
->guest_xcr0_loaded
= 0;
561 int kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
563 if (__kvm_set_xcr(vcpu
, index
, xcr
)) {
564 kvm_inject_gp(vcpu
, 0);
569 EXPORT_SYMBOL_GPL(kvm_set_xcr
);
571 static bool guest_cpuid_has_xsave(struct kvm_vcpu
*vcpu
)
573 struct kvm_cpuid_entry2
*best
;
575 best
= kvm_find_cpuid_entry(vcpu
, 1, 0);
576 return best
&& (best
->ecx
& bit(X86_FEATURE_XSAVE
));
579 static void update_cpuid(struct kvm_vcpu
*vcpu
)
581 struct kvm_cpuid_entry2
*best
;
583 best
= kvm_find_cpuid_entry(vcpu
, 1, 0);
587 /* Update OSXSAVE bit */
588 if (cpu_has_xsave
&& best
->function
== 0x1) {
589 best
->ecx
&= ~(bit(X86_FEATURE_OSXSAVE
));
590 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
))
591 best
->ecx
|= bit(X86_FEATURE_OSXSAVE
);
595 int kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
597 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
598 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
| X86_CR4_PAE
;
600 if (cr4
& CR4_RESERVED_BITS
)
603 if (!guest_cpuid_has_xsave(vcpu
) && (cr4
& X86_CR4_OSXSAVE
))
606 if (is_long_mode(vcpu
)) {
607 if (!(cr4
& X86_CR4_PAE
))
609 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
610 && ((cr4
^ old_cr4
) & pdptr_bits
)
611 && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, vcpu
->arch
.cr3
))
614 if (cr4
& X86_CR4_VMXE
)
617 kvm_x86_ops
->set_cr4(vcpu
, cr4
);
619 if ((cr4
^ old_cr4
) & pdptr_bits
)
620 kvm_mmu_reset_context(vcpu
);
622 if ((cr4
^ old_cr4
) & X86_CR4_OSXSAVE
)
627 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
629 int kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
631 if (cr3
== vcpu
->arch
.cr3
&& !pdptrs_changed(vcpu
)) {
632 kvm_mmu_sync_roots(vcpu
);
633 kvm_mmu_flush_tlb(vcpu
);
637 if (is_long_mode(vcpu
)) {
638 if (cr3
& CR3_L_MODE_RESERVED_BITS
)
642 if (cr3
& CR3_PAE_RESERVED_BITS
)
644 if (is_paging(vcpu
) &&
645 !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
))
649 * We don't check reserved bits in nonpae mode, because
650 * this isn't enforced, and VMware depends on this.
655 * Does the new cr3 value map to physical memory? (Note, we
656 * catch an invalid cr3 even in real-mode, because it would
657 * cause trouble later on when we turn on paging anyway.)
659 * A real CPU would silently accept an invalid cr3 and would
660 * attempt to use it - with largely undefined (and often hard
661 * to debug) behavior on the guest side.
663 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
665 vcpu
->arch
.cr3
= cr3
;
666 vcpu
->arch
.mmu
.new_cr3(vcpu
);
669 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
671 int __kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
673 if (cr8
& CR8_RESERVED_BITS
)
675 if (irqchip_in_kernel(vcpu
->kvm
))
676 kvm_lapic_set_tpr(vcpu
, cr8
);
678 vcpu
->arch
.cr8
= cr8
;
682 void kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
684 if (__kvm_set_cr8(vcpu
, cr8
))
685 kvm_inject_gp(vcpu
, 0);
687 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
689 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
691 if (irqchip_in_kernel(vcpu
->kvm
))
692 return kvm_lapic_get_cr8(vcpu
);
694 return vcpu
->arch
.cr8
;
696 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
698 static int __kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
702 vcpu
->arch
.db
[dr
] = val
;
703 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
704 vcpu
->arch
.eff_db
[dr
] = val
;
707 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
711 if (val
& 0xffffffff00000000ULL
)
713 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | DR6_FIXED_1
;
716 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
720 if (val
& 0xffffffff00000000ULL
)
722 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
723 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
724 kvm_x86_ops
->set_dr7(vcpu
, vcpu
->arch
.dr7
);
725 vcpu
->arch
.switch_db_regs
= (val
& DR7_BP_EN_MASK
);
733 int kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
737 res
= __kvm_set_dr(vcpu
, dr
, val
);
739 kvm_queue_exception(vcpu
, UD_VECTOR
);
741 kvm_inject_gp(vcpu
, 0);
745 EXPORT_SYMBOL_GPL(kvm_set_dr
);
747 static int _kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
751 *val
= vcpu
->arch
.db
[dr
];
754 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
758 *val
= vcpu
->arch
.dr6
;
761 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
765 *val
= vcpu
->arch
.dr7
;
772 int kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
774 if (_kvm_get_dr(vcpu
, dr
, val
)) {
775 kvm_queue_exception(vcpu
, UD_VECTOR
);
780 EXPORT_SYMBOL_GPL(kvm_get_dr
);
783 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
784 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
786 * This list is modified at module load time to reflect the
787 * capabilities of the host cpu. This capabilities test skips MSRs that are
788 * kvm-specific. Those are put in the beginning of the list.
791 #define KVM_SAVE_MSRS_BEGIN 8
792 static u32 msrs_to_save
[] = {
793 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
794 MSR_KVM_SYSTEM_TIME_NEW
, MSR_KVM_WALL_CLOCK_NEW
,
795 HV_X64_MSR_GUEST_OS_ID
, HV_X64_MSR_HYPERCALL
,
796 HV_X64_MSR_APIC_ASSIST_PAGE
, MSR_KVM_ASYNC_PF_EN
,
797 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
800 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
802 MSR_IA32_TSC
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
805 static unsigned num_msrs_to_save
;
807 static u32 emulated_msrs
[] = {
808 MSR_IA32_MISC_ENABLE
,
813 static int set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
815 u64 old_efer
= vcpu
->arch
.efer
;
817 if (efer
& efer_reserved_bits
)
821 && (vcpu
->arch
.efer
& EFER_LME
) != (efer
& EFER_LME
))
824 if (efer
& EFER_FFXSR
) {
825 struct kvm_cpuid_entry2
*feat
;
827 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
828 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
)))
832 if (efer
& EFER_SVME
) {
833 struct kvm_cpuid_entry2
*feat
;
835 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
836 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
)))
841 efer
|= vcpu
->arch
.efer
& EFER_LMA
;
843 kvm_x86_ops
->set_efer(vcpu
, efer
);
845 vcpu
->arch
.mmu
.base_role
.nxe
= (efer
& EFER_NX
) && !tdp_enabled
;
847 /* Update reserved bits */
848 if ((efer
^ old_efer
) & EFER_NX
)
849 kvm_mmu_reset_context(vcpu
);
854 void kvm_enable_efer_bits(u64 mask
)
856 efer_reserved_bits
&= ~mask
;
858 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
862 * Writes msr value into into the appropriate "register".
863 * Returns 0 on success, non-0 otherwise.
864 * Assumes vcpu_load() was already called.
866 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
868 return kvm_x86_ops
->set_msr(vcpu
, msr_index
, data
);
872 * Adapt set_msr() to msr_io()'s calling convention
874 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
876 return kvm_set_msr(vcpu
, index
, *data
);
879 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
883 struct pvclock_wall_clock wc
;
884 struct timespec boot
;
889 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
894 ++version
; /* first time write, random junk */
898 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
901 * The guest calculates current wall clock time by adding
902 * system time (updated by kvm_guest_time_update below) to the
903 * wall clock specified here. guest system time equals host
904 * system time for us, thus we must fill in host boot time here.
908 wc
.sec
= boot
.tv_sec
;
909 wc
.nsec
= boot
.tv_nsec
;
910 wc
.version
= version
;
912 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
915 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
918 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
920 uint32_t quotient
, remainder
;
922 /* Don't try to replace with do_div(), this one calculates
923 * "(dividend << 32) / divisor" */
925 : "=a" (quotient
), "=d" (remainder
)
926 : "0" (0), "1" (dividend
), "r" (divisor
) );
930 static void kvm_get_time_scale(uint32_t scaled_khz
, uint32_t base_khz
,
931 s8
*pshift
, u32
*pmultiplier
)
938 tps64
= base_khz
* 1000LL;
939 scaled64
= scaled_khz
* 1000LL;
940 while (tps64
> scaled64
*2 || tps64
& 0xffffffff00000000ULL
) {
945 tps32
= (uint32_t)tps64
;
946 while (tps32
<= scaled64
|| scaled64
& 0xffffffff00000000ULL
) {
947 if (scaled64
& 0xffffffff00000000ULL
|| tps32
& 0x80000000)
955 *pmultiplier
= div_frac(scaled64
, tps32
);
957 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
958 __func__
, base_khz
, scaled_khz
, shift
, *pmultiplier
);
961 static inline u64
get_kernel_ns(void)
965 WARN_ON(preemptible());
967 monotonic_to_bootbased(&ts
);
968 return timespec_to_ns(&ts
);
971 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
972 unsigned long max_tsc_khz
;
974 static inline int kvm_tsc_changes_freq(void)
977 int ret
= !boot_cpu_has(X86_FEATURE_CONSTANT_TSC
) &&
978 cpufreq_quick_get(cpu
) != 0;
983 static inline u64
nsec_to_cycles(u64 nsec
)
987 WARN_ON(preemptible());
988 if (kvm_tsc_changes_freq())
989 printk_once(KERN_WARNING
990 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
991 ret
= nsec
* __get_cpu_var(cpu_tsc_khz
);
992 do_div(ret
, USEC_PER_SEC
);
996 static void kvm_arch_set_tsc_khz(struct kvm
*kvm
, u32 this_tsc_khz
)
998 /* Compute a scale to convert nanoseconds in TSC cycles */
999 kvm_get_time_scale(this_tsc_khz
, NSEC_PER_SEC
/ 1000,
1000 &kvm
->arch
.virtual_tsc_shift
,
1001 &kvm
->arch
.virtual_tsc_mult
);
1002 kvm
->arch
.virtual_tsc_khz
= this_tsc_khz
;
1005 static u64
compute_guest_tsc(struct kvm_vcpu
*vcpu
, s64 kernel_ns
)
1007 u64 tsc
= pvclock_scale_delta(kernel_ns
-vcpu
->arch
.last_tsc_nsec
,
1008 vcpu
->kvm
->arch
.virtual_tsc_mult
,
1009 vcpu
->kvm
->arch
.virtual_tsc_shift
);
1010 tsc
+= vcpu
->arch
.last_tsc_write
;
1014 void kvm_write_tsc(struct kvm_vcpu
*vcpu
, u64 data
)
1016 struct kvm
*kvm
= vcpu
->kvm
;
1017 u64 offset
, ns
, elapsed
;
1018 unsigned long flags
;
1021 spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
1022 offset
= data
- native_read_tsc();
1023 ns
= get_kernel_ns();
1024 elapsed
= ns
- kvm
->arch
.last_tsc_nsec
;
1025 sdiff
= data
- kvm
->arch
.last_tsc_write
;
1030 * Special case: close write to TSC within 5 seconds of
1031 * another CPU is interpreted as an attempt to synchronize
1032 * The 5 seconds is to accomodate host load / swapping as
1033 * well as any reset of TSC during the boot process.
1035 * In that case, for a reliable TSC, we can match TSC offsets,
1036 * or make a best guest using elapsed value.
1038 if (sdiff
< nsec_to_cycles(5ULL * NSEC_PER_SEC
) &&
1039 elapsed
< 5ULL * NSEC_PER_SEC
) {
1040 if (!check_tsc_unstable()) {
1041 offset
= kvm
->arch
.last_tsc_offset
;
1042 pr_debug("kvm: matched tsc offset for %llu\n", data
);
1044 u64 delta
= nsec_to_cycles(elapsed
);
1046 pr_debug("kvm: adjusted tsc offset by %llu\n", delta
);
1048 ns
= kvm
->arch
.last_tsc_nsec
;
1050 kvm
->arch
.last_tsc_nsec
= ns
;
1051 kvm
->arch
.last_tsc_write
= data
;
1052 kvm
->arch
.last_tsc_offset
= offset
;
1053 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
1054 spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
1056 /* Reset of TSC must disable overshoot protection below */
1057 vcpu
->arch
.hv_clock
.tsc_timestamp
= 0;
1058 vcpu
->arch
.last_tsc_write
= data
;
1059 vcpu
->arch
.last_tsc_nsec
= ns
;
1061 EXPORT_SYMBOL_GPL(kvm_write_tsc
);
1063 static int kvm_guest_time_update(struct kvm_vcpu
*v
)
1065 unsigned long flags
;
1066 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1068 unsigned long this_tsc_khz
;
1069 s64 kernel_ns
, max_kernel_ns
;
1072 /* Keep irq disabled to prevent changes to the clock */
1073 local_irq_save(flags
);
1074 kvm_get_msr(v
, MSR_IA32_TSC
, &tsc_timestamp
);
1075 kernel_ns
= get_kernel_ns();
1076 this_tsc_khz
= __get_cpu_var(cpu_tsc_khz
);
1078 if (unlikely(this_tsc_khz
== 0)) {
1079 local_irq_restore(flags
);
1080 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1085 * We may have to catch up the TSC to match elapsed wall clock
1086 * time for two reasons, even if kvmclock is used.
1087 * 1) CPU could have been running below the maximum TSC rate
1088 * 2) Broken TSC compensation resets the base at each VCPU
1089 * entry to avoid unknown leaps of TSC even when running
1090 * again on the same CPU. This may cause apparent elapsed
1091 * time to disappear, and the guest to stand still or run
1094 if (vcpu
->tsc_catchup
) {
1095 u64 tsc
= compute_guest_tsc(v
, kernel_ns
);
1096 if (tsc
> tsc_timestamp
) {
1097 kvm_x86_ops
->adjust_tsc_offset(v
, tsc
- tsc_timestamp
);
1098 tsc_timestamp
= tsc
;
1102 local_irq_restore(flags
);
1104 if (!vcpu
->time_page
)
1108 * Time as measured by the TSC may go backwards when resetting the base
1109 * tsc_timestamp. The reason for this is that the TSC resolution is
1110 * higher than the resolution of the other clock scales. Thus, many
1111 * possible measurments of the TSC correspond to one measurement of any
1112 * other clock, and so a spread of values is possible. This is not a
1113 * problem for the computation of the nanosecond clock; with TSC rates
1114 * around 1GHZ, there can only be a few cycles which correspond to one
1115 * nanosecond value, and any path through this code will inevitably
1116 * take longer than that. However, with the kernel_ns value itself,
1117 * the precision may be much lower, down to HZ granularity. If the
1118 * first sampling of TSC against kernel_ns ends in the low part of the
1119 * range, and the second in the high end of the range, we can get:
1121 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1123 * As the sampling errors potentially range in the thousands of cycles,
1124 * it is possible such a time value has already been observed by the
1125 * guest. To protect against this, we must compute the system time as
1126 * observed by the guest and ensure the new system time is greater.
1129 if (vcpu
->hv_clock
.tsc_timestamp
&& vcpu
->last_guest_tsc
) {
1130 max_kernel_ns
= vcpu
->last_guest_tsc
-
1131 vcpu
->hv_clock
.tsc_timestamp
;
1132 max_kernel_ns
= pvclock_scale_delta(max_kernel_ns
,
1133 vcpu
->hv_clock
.tsc_to_system_mul
,
1134 vcpu
->hv_clock
.tsc_shift
);
1135 max_kernel_ns
+= vcpu
->last_kernel_ns
;
1138 if (unlikely(vcpu
->hw_tsc_khz
!= this_tsc_khz
)) {
1139 kvm_get_time_scale(NSEC_PER_SEC
/ 1000, this_tsc_khz
,
1140 &vcpu
->hv_clock
.tsc_shift
,
1141 &vcpu
->hv_clock
.tsc_to_system_mul
);
1142 vcpu
->hw_tsc_khz
= this_tsc_khz
;
1145 if (max_kernel_ns
> kernel_ns
)
1146 kernel_ns
= max_kernel_ns
;
1148 /* With all the info we got, fill in the values */
1149 vcpu
->hv_clock
.tsc_timestamp
= tsc_timestamp
;
1150 vcpu
->hv_clock
.system_time
= kernel_ns
+ v
->kvm
->arch
.kvmclock_offset
;
1151 vcpu
->last_kernel_ns
= kernel_ns
;
1152 vcpu
->last_guest_tsc
= tsc_timestamp
;
1153 vcpu
->hv_clock
.flags
= 0;
1156 * The interface expects us to write an even number signaling that the
1157 * update is finished. Since the guest won't see the intermediate
1158 * state, we just increase by 2 at the end.
1160 vcpu
->hv_clock
.version
+= 2;
1162 shared_kaddr
= kmap_atomic(vcpu
->time_page
, KM_USER0
);
1164 memcpy(shared_kaddr
+ vcpu
->time_offset
, &vcpu
->hv_clock
,
1165 sizeof(vcpu
->hv_clock
));
1167 kunmap_atomic(shared_kaddr
, KM_USER0
);
1169 mark_page_dirty(v
->kvm
, vcpu
->time
>> PAGE_SHIFT
);
1173 static bool msr_mtrr_valid(unsigned msr
)
1176 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR
- 1:
1177 case MSR_MTRRfix64K_00000
:
1178 case MSR_MTRRfix16K_80000
:
1179 case MSR_MTRRfix16K_A0000
:
1180 case MSR_MTRRfix4K_C0000
:
1181 case MSR_MTRRfix4K_C8000
:
1182 case MSR_MTRRfix4K_D0000
:
1183 case MSR_MTRRfix4K_D8000
:
1184 case MSR_MTRRfix4K_E0000
:
1185 case MSR_MTRRfix4K_E8000
:
1186 case MSR_MTRRfix4K_F0000
:
1187 case MSR_MTRRfix4K_F8000
:
1188 case MSR_MTRRdefType
:
1189 case MSR_IA32_CR_PAT
:
1197 static bool valid_pat_type(unsigned t
)
1199 return t
< 8 && (1 << t
) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1202 static bool valid_mtrr_type(unsigned t
)
1204 return t
< 8 && (1 << t
) & 0x73; /* 0, 1, 4, 5, 6 */
1207 static bool mtrr_valid(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1211 if (!msr_mtrr_valid(msr
))
1214 if (msr
== MSR_IA32_CR_PAT
) {
1215 for (i
= 0; i
< 8; i
++)
1216 if (!valid_pat_type((data
>> (i
* 8)) & 0xff))
1219 } else if (msr
== MSR_MTRRdefType
) {
1222 return valid_mtrr_type(data
& 0xff);
1223 } else if (msr
>= MSR_MTRRfix64K_00000
&& msr
<= MSR_MTRRfix4K_F8000
) {
1224 for (i
= 0; i
< 8 ; i
++)
1225 if (!valid_mtrr_type((data
>> (i
* 8)) & 0xff))
1230 /* variable MTRRs */
1231 return valid_mtrr_type(data
& 0xff);
1234 static int set_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1236 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
1238 if (!mtrr_valid(vcpu
, msr
, data
))
1241 if (msr
== MSR_MTRRdefType
) {
1242 vcpu
->arch
.mtrr_state
.def_type
= data
;
1243 vcpu
->arch
.mtrr_state
.enabled
= (data
& 0xc00) >> 10;
1244 } else if (msr
== MSR_MTRRfix64K_00000
)
1246 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
1247 p
[1 + msr
- MSR_MTRRfix16K_80000
] = data
;
1248 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
1249 p
[3 + msr
- MSR_MTRRfix4K_C0000
] = data
;
1250 else if (msr
== MSR_IA32_CR_PAT
)
1251 vcpu
->arch
.pat
= data
;
1252 else { /* Variable MTRRs */
1253 int idx
, is_mtrr_mask
;
1256 idx
= (msr
- 0x200) / 2;
1257 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
1260 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
1263 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
1267 kvm_mmu_reset_context(vcpu
);
1271 static int set_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1273 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1274 unsigned bank_num
= mcg_cap
& 0xff;
1277 case MSR_IA32_MCG_STATUS
:
1278 vcpu
->arch
.mcg_status
= data
;
1280 case MSR_IA32_MCG_CTL
:
1281 if (!(mcg_cap
& MCG_CTL_P
))
1283 if (data
!= 0 && data
!= ~(u64
)0)
1285 vcpu
->arch
.mcg_ctl
= data
;
1288 if (msr
>= MSR_IA32_MC0_CTL
&&
1289 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
1290 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1291 /* only 0 or all 1s can be written to IA32_MCi_CTL
1292 * some Linux kernels though clear bit 10 in bank 4 to
1293 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1294 * this to avoid an uncatched #GP in the guest
1296 if ((offset
& 0x3) == 0 &&
1297 data
!= 0 && (data
| (1 << 10)) != ~(u64
)0)
1299 vcpu
->arch
.mce_banks
[offset
] = data
;
1307 static int xen_hvm_config(struct kvm_vcpu
*vcpu
, u64 data
)
1309 struct kvm
*kvm
= vcpu
->kvm
;
1310 int lm
= is_long_mode(vcpu
);
1311 u8
*blob_addr
= lm
? (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_64
1312 : (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_32
;
1313 u8 blob_size
= lm
? kvm
->arch
.xen_hvm_config
.blob_size_64
1314 : kvm
->arch
.xen_hvm_config
.blob_size_32
;
1315 u32 page_num
= data
& ~PAGE_MASK
;
1316 u64 page_addr
= data
& PAGE_MASK
;
1321 if (page_num
>= blob_size
)
1324 page
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
1328 if (copy_from_user(page
, blob_addr
+ (page_num
* PAGE_SIZE
), PAGE_SIZE
))
1330 if (kvm_write_guest(kvm
, page_addr
, page
, PAGE_SIZE
))
1339 static bool kvm_hv_hypercall_enabled(struct kvm
*kvm
)
1341 return kvm
->arch
.hv_hypercall
& HV_X64_MSR_HYPERCALL_ENABLE
;
1344 static bool kvm_hv_msr_partition_wide(u32 msr
)
1348 case HV_X64_MSR_GUEST_OS_ID
:
1349 case HV_X64_MSR_HYPERCALL
:
1357 static int set_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1359 struct kvm
*kvm
= vcpu
->kvm
;
1362 case HV_X64_MSR_GUEST_OS_ID
:
1363 kvm
->arch
.hv_guest_os_id
= data
;
1364 /* setting guest os id to zero disables hypercall page */
1365 if (!kvm
->arch
.hv_guest_os_id
)
1366 kvm
->arch
.hv_hypercall
&= ~HV_X64_MSR_HYPERCALL_ENABLE
;
1368 case HV_X64_MSR_HYPERCALL
: {
1373 /* if guest os id is not set hypercall should remain disabled */
1374 if (!kvm
->arch
.hv_guest_os_id
)
1376 if (!(data
& HV_X64_MSR_HYPERCALL_ENABLE
)) {
1377 kvm
->arch
.hv_hypercall
= data
;
1380 gfn
= data
>> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT
;
1381 addr
= gfn_to_hva(kvm
, gfn
);
1382 if (kvm_is_error_hva(addr
))
1384 kvm_x86_ops
->patch_hypercall(vcpu
, instructions
);
1385 ((unsigned char *)instructions
)[3] = 0xc3; /* ret */
1386 if (copy_to_user((void __user
*)addr
, instructions
, 4))
1388 kvm
->arch
.hv_hypercall
= data
;
1392 pr_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1393 "data 0x%llx\n", msr
, data
);
1399 static int set_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1402 case HV_X64_MSR_APIC_ASSIST_PAGE
: {
1405 if (!(data
& HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE
)) {
1406 vcpu
->arch
.hv_vapic
= data
;
1409 addr
= gfn_to_hva(vcpu
->kvm
, data
>>
1410 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT
);
1411 if (kvm_is_error_hva(addr
))
1413 if (clear_user((void __user
*)addr
, PAGE_SIZE
))
1415 vcpu
->arch
.hv_vapic
= data
;
1418 case HV_X64_MSR_EOI
:
1419 return kvm_hv_vapic_msr_write(vcpu
, APIC_EOI
, data
);
1420 case HV_X64_MSR_ICR
:
1421 return kvm_hv_vapic_msr_write(vcpu
, APIC_ICR
, data
);
1422 case HV_X64_MSR_TPR
:
1423 return kvm_hv_vapic_msr_write(vcpu
, APIC_TASKPRI
, data
);
1425 pr_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1426 "data 0x%llx\n", msr
, data
);
1433 static int kvm_pv_enable_async_pf(struct kvm_vcpu
*vcpu
, u64 data
)
1435 gpa_t gpa
= data
& ~0x3f;
1437 /* Bits 2:5 are resrved, Should be zero */
1441 vcpu
->arch
.apf
.msr_val
= data
;
1443 if (!(data
& KVM_ASYNC_PF_ENABLED
)) {
1444 kvm_clear_async_pf_completion_queue(vcpu
);
1445 kvm_async_pf_hash_reset(vcpu
);
1449 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, gpa
))
1452 vcpu
->arch
.apf
.send_user_only
= !(data
& KVM_ASYNC_PF_SEND_ALWAYS
);
1453 kvm_async_pf_wakeup_all(vcpu
);
1457 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1461 return set_efer(vcpu
, data
);
1463 data
&= ~(u64
)0x40; /* ignore flush filter disable */
1464 data
&= ~(u64
)0x100; /* ignore ignne emulation enable */
1466 pr_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
1471 case MSR_FAM10H_MMIO_CONF_BASE
:
1473 pr_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
1478 case MSR_AMD64_NB_CFG
:
1480 case MSR_IA32_DEBUGCTLMSR
:
1482 /* We support the non-activated case already */
1484 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
1485 /* Values other than LBR and BTF are vendor-specific,
1486 thus reserved and should throw a #GP */
1489 pr_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1492 case MSR_IA32_UCODE_REV
:
1493 case MSR_IA32_UCODE_WRITE
:
1494 case MSR_VM_HSAVE_PA
:
1495 case MSR_AMD64_PATCH_LOADER
:
1497 case 0x200 ... 0x2ff:
1498 return set_msr_mtrr(vcpu
, msr
, data
);
1499 case MSR_IA32_APICBASE
:
1500 kvm_set_apic_base(vcpu
, data
);
1502 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
1503 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
1504 case MSR_IA32_MISC_ENABLE
:
1505 vcpu
->arch
.ia32_misc_enable_msr
= data
;
1507 case MSR_KVM_WALL_CLOCK_NEW
:
1508 case MSR_KVM_WALL_CLOCK
:
1509 vcpu
->kvm
->arch
.wall_clock
= data
;
1510 kvm_write_wall_clock(vcpu
->kvm
, data
);
1512 case MSR_KVM_SYSTEM_TIME_NEW
:
1513 case MSR_KVM_SYSTEM_TIME
: {
1514 if (vcpu
->arch
.time_page
) {
1515 kvm_release_page_dirty(vcpu
->arch
.time_page
);
1516 vcpu
->arch
.time_page
= NULL
;
1519 vcpu
->arch
.time
= data
;
1520 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1522 /* we verify if the enable bit is set... */
1526 /* ...but clean it before doing the actual write */
1527 vcpu
->arch
.time_offset
= data
& ~(PAGE_MASK
| 1);
1529 vcpu
->arch
.time_page
=
1530 gfn_to_page(vcpu
->kvm
, data
>> PAGE_SHIFT
);
1532 if (is_error_page(vcpu
->arch
.time_page
)) {
1533 kvm_release_page_clean(vcpu
->arch
.time_page
);
1534 vcpu
->arch
.time_page
= NULL
;
1538 case MSR_KVM_ASYNC_PF_EN
:
1539 if (kvm_pv_enable_async_pf(vcpu
, data
))
1542 case MSR_IA32_MCG_CTL
:
1543 case MSR_IA32_MCG_STATUS
:
1544 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
1545 return set_msr_mce(vcpu
, msr
, data
);
1547 /* Performance counters are not protected by a CPUID bit,
1548 * so we should check all of them in the generic path for the sake of
1549 * cross vendor migration.
1550 * Writing a zero into the event select MSRs disables them,
1551 * which we perfectly emulate ;-). Any other value should be at least
1552 * reported, some guests depend on them.
1554 case MSR_P6_EVNTSEL0
:
1555 case MSR_P6_EVNTSEL1
:
1556 case MSR_K7_EVNTSEL0
:
1557 case MSR_K7_EVNTSEL1
:
1558 case MSR_K7_EVNTSEL2
:
1559 case MSR_K7_EVNTSEL3
:
1561 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
1562 "0x%x data 0x%llx\n", msr
, data
);
1564 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1565 * so we ignore writes to make it happy.
1567 case MSR_P6_PERFCTR0
:
1568 case MSR_P6_PERFCTR1
:
1569 case MSR_K7_PERFCTR0
:
1570 case MSR_K7_PERFCTR1
:
1571 case MSR_K7_PERFCTR2
:
1572 case MSR_K7_PERFCTR3
:
1573 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
1574 "0x%x data 0x%llx\n", msr
, data
);
1576 case MSR_K7_CLK_CTL
:
1578 * Ignore all writes to this no longer documented MSR.
1579 * Writes are only relevant for old K7 processors,
1580 * all pre-dating SVM, but a recommended workaround from
1581 * AMD for these chips. It is possible to speicify the
1582 * affected processor models on the command line, hence
1583 * the need to ignore the workaround.
1586 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
1587 if (kvm_hv_msr_partition_wide(msr
)) {
1589 mutex_lock(&vcpu
->kvm
->lock
);
1590 r
= set_msr_hyperv_pw(vcpu
, msr
, data
);
1591 mutex_unlock(&vcpu
->kvm
->lock
);
1594 return set_msr_hyperv(vcpu
, msr
, data
);
1597 if (msr
&& (msr
== vcpu
->kvm
->arch
.xen_hvm_config
.msr
))
1598 return xen_hvm_config(vcpu
, data
);
1600 pr_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n",
1604 pr_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n",
1611 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
1615 * Reads an msr value (of 'msr_index') into 'pdata'.
1616 * Returns 0 on success, non-0 otherwise.
1617 * Assumes vcpu_load() was already called.
1619 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
1621 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
1624 static int get_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1626 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
1628 if (!msr_mtrr_valid(msr
))
1631 if (msr
== MSR_MTRRdefType
)
1632 *pdata
= vcpu
->arch
.mtrr_state
.def_type
+
1633 (vcpu
->arch
.mtrr_state
.enabled
<< 10);
1634 else if (msr
== MSR_MTRRfix64K_00000
)
1636 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
1637 *pdata
= p
[1 + msr
- MSR_MTRRfix16K_80000
];
1638 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
1639 *pdata
= p
[3 + msr
- MSR_MTRRfix4K_C0000
];
1640 else if (msr
== MSR_IA32_CR_PAT
)
1641 *pdata
= vcpu
->arch
.pat
;
1642 else { /* Variable MTRRs */
1643 int idx
, is_mtrr_mask
;
1646 idx
= (msr
- 0x200) / 2;
1647 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
1650 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
1653 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
1660 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1663 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1664 unsigned bank_num
= mcg_cap
& 0xff;
1667 case MSR_IA32_P5_MC_ADDR
:
1668 case MSR_IA32_P5_MC_TYPE
:
1671 case MSR_IA32_MCG_CAP
:
1672 data
= vcpu
->arch
.mcg_cap
;
1674 case MSR_IA32_MCG_CTL
:
1675 if (!(mcg_cap
& MCG_CTL_P
))
1677 data
= vcpu
->arch
.mcg_ctl
;
1679 case MSR_IA32_MCG_STATUS
:
1680 data
= vcpu
->arch
.mcg_status
;
1683 if (msr
>= MSR_IA32_MC0_CTL
&&
1684 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
1685 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1686 data
= vcpu
->arch
.mce_banks
[offset
];
1695 static int get_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1698 struct kvm
*kvm
= vcpu
->kvm
;
1701 case HV_X64_MSR_GUEST_OS_ID
:
1702 data
= kvm
->arch
.hv_guest_os_id
;
1704 case HV_X64_MSR_HYPERCALL
:
1705 data
= kvm
->arch
.hv_hypercall
;
1708 pr_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
1716 static int get_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1721 case HV_X64_MSR_VP_INDEX
: {
1724 kvm_for_each_vcpu(r
, v
, vcpu
->kvm
)
1729 case HV_X64_MSR_EOI
:
1730 return kvm_hv_vapic_msr_read(vcpu
, APIC_EOI
, pdata
);
1731 case HV_X64_MSR_ICR
:
1732 return kvm_hv_vapic_msr_read(vcpu
, APIC_ICR
, pdata
);
1733 case HV_X64_MSR_TPR
:
1734 return kvm_hv_vapic_msr_read(vcpu
, APIC_TASKPRI
, pdata
);
1736 pr_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
1743 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1748 case MSR_IA32_PLATFORM_ID
:
1749 case MSR_IA32_UCODE_REV
:
1750 case MSR_IA32_EBL_CR_POWERON
:
1751 case MSR_IA32_DEBUGCTLMSR
:
1752 case MSR_IA32_LASTBRANCHFROMIP
:
1753 case MSR_IA32_LASTBRANCHTOIP
:
1754 case MSR_IA32_LASTINTFROMIP
:
1755 case MSR_IA32_LASTINTTOIP
:
1758 case MSR_VM_HSAVE_PA
:
1759 case MSR_P6_PERFCTR0
:
1760 case MSR_P6_PERFCTR1
:
1761 case MSR_P6_EVNTSEL0
:
1762 case MSR_P6_EVNTSEL1
:
1763 case MSR_K7_EVNTSEL0
:
1764 case MSR_K7_PERFCTR0
:
1765 case MSR_K8_INT_PENDING_MSG
:
1766 case MSR_AMD64_NB_CFG
:
1767 case MSR_FAM10H_MMIO_CONF_BASE
:
1771 data
= 0x500 | KVM_NR_VAR_MTRR
;
1773 case 0x200 ... 0x2ff:
1774 return get_msr_mtrr(vcpu
, msr
, pdata
);
1775 case 0xcd: /* fsb frequency */
1779 * MSR_EBC_FREQUENCY_ID
1780 * Conservative value valid for even the basic CPU models.
1781 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1782 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1783 * and 266MHz for model 3, or 4. Set Core Clock
1784 * Frequency to System Bus Frequency Ratio to 1 (bits
1785 * 31:24) even though these are only valid for CPU
1786 * models > 2, however guests may end up dividing or
1787 * multiplying by zero otherwise.
1789 case MSR_EBC_FREQUENCY_ID
:
1792 case MSR_IA32_APICBASE
:
1793 data
= kvm_get_apic_base(vcpu
);
1795 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
1796 return kvm_x2apic_msr_read(vcpu
, msr
, pdata
);
1798 case MSR_IA32_MISC_ENABLE
:
1799 data
= vcpu
->arch
.ia32_misc_enable_msr
;
1801 case MSR_IA32_PERF_STATUS
:
1802 /* TSC increment by tick */
1804 /* CPU multiplier */
1805 data
|= (((uint64_t)4ULL) << 40);
1808 data
= vcpu
->arch
.efer
;
1810 case MSR_KVM_WALL_CLOCK
:
1811 case MSR_KVM_WALL_CLOCK_NEW
:
1812 data
= vcpu
->kvm
->arch
.wall_clock
;
1814 case MSR_KVM_SYSTEM_TIME
:
1815 case MSR_KVM_SYSTEM_TIME_NEW
:
1816 data
= vcpu
->arch
.time
;
1818 case MSR_KVM_ASYNC_PF_EN
:
1819 data
= vcpu
->arch
.apf
.msr_val
;
1821 case MSR_IA32_P5_MC_ADDR
:
1822 case MSR_IA32_P5_MC_TYPE
:
1823 case MSR_IA32_MCG_CAP
:
1824 case MSR_IA32_MCG_CTL
:
1825 case MSR_IA32_MCG_STATUS
:
1826 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
1827 return get_msr_mce(vcpu
, msr
, pdata
);
1828 case MSR_K7_CLK_CTL
:
1830 * Provide expected ramp-up count for K7. All other
1831 * are set to zero, indicating minimum divisors for
1834 * This prevents guest kernels on AMD host with CPU
1835 * type 6, model 8 and higher from exploding due to
1836 * the rdmsr failing.
1840 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
1841 if (kvm_hv_msr_partition_wide(msr
)) {
1843 mutex_lock(&vcpu
->kvm
->lock
);
1844 r
= get_msr_hyperv_pw(vcpu
, msr
, pdata
);
1845 mutex_unlock(&vcpu
->kvm
->lock
);
1848 return get_msr_hyperv(vcpu
, msr
, pdata
);
1852 pr_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
1855 pr_unimpl(vcpu
, "ignored rdmsr: 0x%x\n", msr
);
1863 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
1866 * Read or write a bunch of msrs. All parameters are kernel addresses.
1868 * @return number of msrs set successfully.
1870 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
1871 struct kvm_msr_entry
*entries
,
1872 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
1873 unsigned index
, u64
*data
))
1877 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
1878 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
1879 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
1881 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
1887 * Read or write a bunch of msrs. Parameters are user addresses.
1889 * @return number of msrs set successfully.
1891 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
1892 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
1893 unsigned index
, u64
*data
),
1896 struct kvm_msrs msrs
;
1897 struct kvm_msr_entry
*entries
;
1902 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
1906 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
1910 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
1911 entries
= kmalloc(size
, GFP_KERNEL
);
1916 if (copy_from_user(entries
, user_msrs
->entries
, size
))
1919 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
1924 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
1935 int kvm_dev_ioctl_check_extension(long ext
)
1940 case KVM_CAP_IRQCHIP
:
1942 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
1943 case KVM_CAP_SET_TSS_ADDR
:
1944 case KVM_CAP_EXT_CPUID
:
1945 case KVM_CAP_CLOCKSOURCE
:
1947 case KVM_CAP_NOP_IO_DELAY
:
1948 case KVM_CAP_MP_STATE
:
1949 case KVM_CAP_SYNC_MMU
:
1950 case KVM_CAP_REINJECT_CONTROL
:
1951 case KVM_CAP_IRQ_INJECT_STATUS
:
1952 case KVM_CAP_ASSIGN_DEV_IRQ
:
1954 case KVM_CAP_IOEVENTFD
:
1956 case KVM_CAP_PIT_STATE2
:
1957 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
1958 case KVM_CAP_XEN_HVM
:
1959 case KVM_CAP_ADJUST_CLOCK
:
1960 case KVM_CAP_VCPU_EVENTS
:
1961 case KVM_CAP_HYPERV
:
1962 case KVM_CAP_HYPERV_VAPIC
:
1963 case KVM_CAP_HYPERV_SPIN
:
1964 case KVM_CAP_PCI_SEGMENT
:
1965 case KVM_CAP_DEBUGREGS
:
1966 case KVM_CAP_X86_ROBUST_SINGLESTEP
:
1968 case KVM_CAP_ASYNC_PF
:
1971 case KVM_CAP_COALESCED_MMIO
:
1972 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
1975 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
1977 case KVM_CAP_NR_VCPUS
:
1980 case KVM_CAP_NR_MEMSLOTS
:
1981 r
= KVM_MEMORY_SLOTS
;
1983 case KVM_CAP_PV_MMU
: /* obsolete */
1990 r
= KVM_MAX_MCE_BANKS
;
2003 long kvm_arch_dev_ioctl(struct file
*filp
,
2004 unsigned int ioctl
, unsigned long arg
)
2006 void __user
*argp
= (void __user
*)arg
;
2010 case KVM_GET_MSR_INDEX_LIST
: {
2011 struct kvm_msr_list __user
*user_msr_list
= argp
;
2012 struct kvm_msr_list msr_list
;
2016 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
2019 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
2020 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
2023 if (n
< msr_list
.nmsrs
)
2026 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
2027 num_msrs_to_save
* sizeof(u32
)))
2029 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
2031 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
2036 case KVM_GET_SUPPORTED_CPUID
: {
2037 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2038 struct kvm_cpuid2 cpuid
;
2041 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2043 r
= kvm_dev_ioctl_get_supported_cpuid(&cpuid
,
2044 cpuid_arg
->entries
);
2049 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2054 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
2057 mce_cap
= KVM_MCE_CAP_SUPPORTED
;
2059 if (copy_to_user(argp
, &mce_cap
, sizeof mce_cap
))
2071 static void wbinvd_ipi(void *garbage
)
2076 static bool need_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
2078 return vcpu
->kvm
->arch
.iommu_domain
&&
2079 !(vcpu
->kvm
->arch
.iommu_flags
& KVM_IOMMU_CACHE_COHERENCY
);
2082 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2084 /* Address WBINVD may be executed by guest */
2085 if (need_emulate_wbinvd(vcpu
)) {
2086 if (kvm_x86_ops
->has_wbinvd_exit())
2087 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
2088 else if (vcpu
->cpu
!= -1 && vcpu
->cpu
!= cpu
)
2089 smp_call_function_single(vcpu
->cpu
,
2090 wbinvd_ipi
, NULL
, 1);
2093 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
2094 if (unlikely(vcpu
->cpu
!= cpu
) || check_tsc_unstable()) {
2095 /* Make sure TSC doesn't go backwards */
2096 s64 tsc_delta
= !vcpu
->arch
.last_host_tsc
? 0 :
2097 native_read_tsc() - vcpu
->arch
.last_host_tsc
;
2099 mark_tsc_unstable("KVM discovered backwards TSC");
2100 if (check_tsc_unstable()) {
2101 kvm_x86_ops
->adjust_tsc_offset(vcpu
, -tsc_delta
);
2102 vcpu
->arch
.tsc_catchup
= 1;
2103 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
2105 if (vcpu
->cpu
!= cpu
)
2106 kvm_migrate_timers(vcpu
);
2111 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
2113 kvm_x86_ops
->vcpu_put(vcpu
);
2114 kvm_put_guest_fpu(vcpu
);
2115 vcpu
->arch
.last_host_tsc
= native_read_tsc();
2118 static int is_efer_nx(void)
2120 unsigned long long efer
= 0;
2122 rdmsrl_safe(MSR_EFER
, &efer
);
2123 return efer
& EFER_NX
;
2126 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
2129 struct kvm_cpuid_entry2
*e
, *entry
;
2132 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
2133 e
= &vcpu
->arch
.cpuid_entries
[i
];
2134 if (e
->function
== 0x80000001) {
2139 if (entry
&& (entry
->edx
& (1 << 20)) && !is_efer_nx()) {
2140 entry
->edx
&= ~(1 << 20);
2141 printk(KERN_INFO
"kvm: guest NX capability removed\n");
2145 /* when an old userspace process fills a new kernel module */
2146 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
2147 struct kvm_cpuid
*cpuid
,
2148 struct kvm_cpuid_entry __user
*entries
)
2151 struct kvm_cpuid_entry
*cpuid_entries
;
2154 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
2157 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry
) * cpuid
->nent
);
2161 if (copy_from_user(cpuid_entries
, entries
,
2162 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
2164 for (i
= 0; i
< cpuid
->nent
; i
++) {
2165 vcpu
->arch
.cpuid_entries
[i
].function
= cpuid_entries
[i
].function
;
2166 vcpu
->arch
.cpuid_entries
[i
].eax
= cpuid_entries
[i
].eax
;
2167 vcpu
->arch
.cpuid_entries
[i
].ebx
= cpuid_entries
[i
].ebx
;
2168 vcpu
->arch
.cpuid_entries
[i
].ecx
= cpuid_entries
[i
].ecx
;
2169 vcpu
->arch
.cpuid_entries
[i
].edx
= cpuid_entries
[i
].edx
;
2170 vcpu
->arch
.cpuid_entries
[i
].index
= 0;
2171 vcpu
->arch
.cpuid_entries
[i
].flags
= 0;
2172 vcpu
->arch
.cpuid_entries
[i
].padding
[0] = 0;
2173 vcpu
->arch
.cpuid_entries
[i
].padding
[1] = 0;
2174 vcpu
->arch
.cpuid_entries
[i
].padding
[2] = 0;
2176 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
2177 cpuid_fix_nx_cap(vcpu
);
2179 kvm_apic_set_version(vcpu
);
2180 kvm_x86_ops
->cpuid_update(vcpu
);
2184 vfree(cpuid_entries
);
2189 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu
*vcpu
,
2190 struct kvm_cpuid2
*cpuid
,
2191 struct kvm_cpuid_entry2 __user
*entries
)
2196 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
2199 if (copy_from_user(&vcpu
->arch
.cpuid_entries
, entries
,
2200 cpuid
->nent
* sizeof(struct kvm_cpuid_entry2
)))
2202 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
2203 kvm_apic_set_version(vcpu
);
2204 kvm_x86_ops
->cpuid_update(vcpu
);
2212 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu
*vcpu
,
2213 struct kvm_cpuid2
*cpuid
,
2214 struct kvm_cpuid_entry2 __user
*entries
)
2219 if (cpuid
->nent
< vcpu
->arch
.cpuid_nent
)
2222 if (copy_to_user(entries
, &vcpu
->arch
.cpuid_entries
,
2223 vcpu
->arch
.cpuid_nent
* sizeof(struct kvm_cpuid_entry2
)))
2228 cpuid
->nent
= vcpu
->arch
.cpuid_nent
;
2232 static void do_cpuid_1_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
2235 entry
->function
= function
;
2236 entry
->index
= index
;
2237 cpuid_count(entry
->function
, entry
->index
,
2238 &entry
->eax
, &entry
->ebx
, &entry
->ecx
, &entry
->edx
);
2242 #define F(x) bit(X86_FEATURE_##x)
2244 static void do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
2245 u32 index
, int *nent
, int maxnent
)
2247 unsigned f_nx
= is_efer_nx() ? F(NX
) : 0;
2248 #ifdef CONFIG_X86_64
2249 unsigned f_gbpages
= (kvm_x86_ops
->get_lpage_level() == PT_PDPE_LEVEL
)
2251 unsigned f_lm
= F(LM
);
2253 unsigned f_gbpages
= 0;
2256 unsigned f_rdtscp
= kvm_x86_ops
->rdtscp_supported() ? F(RDTSCP
) : 0;
2259 const u32 kvm_supported_word0_x86_features
=
2260 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
2261 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
2262 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SEP
) |
2263 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
2264 F(PAT
) | F(PSE36
) | 0 /* PSN */ | F(CLFLSH
) |
2265 0 /* Reserved, DS, ACPI */ | F(MMX
) |
2266 F(FXSR
) | F(XMM
) | F(XMM2
) | F(SELFSNOOP
) |
2267 0 /* HTT, TM, Reserved, PBE */;
2268 /* cpuid 0x80000001.edx */
2269 const u32 kvm_supported_word1_x86_features
=
2270 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
2271 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
2272 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SYSCALL
) |
2273 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
2274 F(PAT
) | F(PSE36
) | 0 /* Reserved */ |
2275 f_nx
| 0 /* Reserved */ | F(MMXEXT
) | F(MMX
) |
2276 F(FXSR
) | F(FXSR_OPT
) | f_gbpages
| f_rdtscp
|
2277 0 /* Reserved */ | f_lm
| F(3DNOWEXT
) | F(3DNOW
);
2279 const u32 kvm_supported_word4_x86_features
=
2280 F(XMM3
) | F(PCLMULQDQ
) | 0 /* DTES64, MONITOR */ |
2281 0 /* DS-CPL, VMX, SMX, EST */ |
2282 0 /* TM2 */ | F(SSSE3
) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2283 0 /* Reserved */ | F(CX16
) | 0 /* xTPR Update, PDCM */ |
2284 0 /* Reserved, DCA */ | F(XMM4_1
) |
2285 F(XMM4_2
) | F(X2APIC
) | F(MOVBE
) | F(POPCNT
) |
2286 0 /* Reserved*/ | F(AES
) | F(XSAVE
) | 0 /* OSXSAVE */ | F(AVX
) |
2288 /* cpuid 0x80000001.ecx */
2289 const u32 kvm_supported_word6_x86_features
=
2290 F(LAHF_LM
) | F(CMP_LEGACY
) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2291 F(CR8_LEGACY
) | F(ABM
) | F(SSE4A
) | F(MISALIGNSSE
) |
2292 F(3DNOWPREFETCH
) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP
) |
2293 0 /* SKINIT, WDT, LWP */ | F(FMA4
) | F(TBM
);
2295 /* all calls to cpuid_count() should be made on the same cpu */
2297 do_cpuid_1_ent(entry
, function
, index
);
2302 entry
->eax
= min(entry
->eax
, (u32
)0xd);
2305 entry
->edx
&= kvm_supported_word0_x86_features
;
2306 entry
->ecx
&= kvm_supported_word4_x86_features
;
2307 /* we support x2apic emulation even if host does not support
2308 * it since we emulate x2apic in software */
2309 entry
->ecx
|= F(X2APIC
);
2311 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2312 * may return different values. This forces us to get_cpu() before
2313 * issuing the first command, and also to emulate this annoying behavior
2314 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2316 int t
, times
= entry
->eax
& 0xff;
2318 entry
->flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
2319 entry
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
2320 for (t
= 1; t
< times
&& *nent
< maxnent
; ++t
) {
2321 do_cpuid_1_ent(&entry
[t
], function
, 0);
2322 entry
[t
].flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
2327 /* function 4 and 0xb have additional index. */
2331 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2332 /* read more entries until cache_type is zero */
2333 for (i
= 1; *nent
< maxnent
; ++i
) {
2334 cache_type
= entry
[i
- 1].eax
& 0x1f;
2337 do_cpuid_1_ent(&entry
[i
], function
, i
);
2339 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2347 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2348 /* read more entries until level_type is zero */
2349 for (i
= 1; *nent
< maxnent
; ++i
) {
2350 level_type
= entry
[i
- 1].ecx
& 0xff00;
2353 do_cpuid_1_ent(&entry
[i
], function
, i
);
2355 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2363 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2364 for (i
= 1; *nent
< maxnent
; ++i
) {
2365 if (entry
[i
- 1].eax
== 0 && i
!= 2)
2367 do_cpuid_1_ent(&entry
[i
], function
, i
);
2369 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2374 case KVM_CPUID_SIGNATURE
: {
2375 char signature
[12] = "KVMKVMKVM\0\0";
2376 u32
*sigptr
= (u32
*)signature
;
2378 entry
->ebx
= sigptr
[0];
2379 entry
->ecx
= sigptr
[1];
2380 entry
->edx
= sigptr
[2];
2383 case KVM_CPUID_FEATURES
:
2384 entry
->eax
= (1 << KVM_FEATURE_CLOCKSOURCE
) |
2385 (1 << KVM_FEATURE_NOP_IO_DELAY
) |
2386 (1 << KVM_FEATURE_CLOCKSOURCE2
) |
2387 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT
);
2393 entry
->eax
= min(entry
->eax
, 0x8000001a);
2396 entry
->edx
&= kvm_supported_word1_x86_features
;
2397 entry
->ecx
&= kvm_supported_word6_x86_features
;
2401 kvm_x86_ops
->set_supported_cpuid(function
, entry
);
2408 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
2409 struct kvm_cpuid_entry2 __user
*entries
)
2411 struct kvm_cpuid_entry2
*cpuid_entries
;
2412 int limit
, nent
= 0, r
= -E2BIG
;
2415 if (cpuid
->nent
< 1)
2417 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
2418 cpuid
->nent
= KVM_MAX_CPUID_ENTRIES
;
2420 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry2
) * cpuid
->nent
);
2424 do_cpuid_ent(&cpuid_entries
[0], 0, 0, &nent
, cpuid
->nent
);
2425 limit
= cpuid_entries
[0].eax
;
2426 for (func
= 1; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
2427 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
2428 &nent
, cpuid
->nent
);
2430 if (nent
>= cpuid
->nent
)
2433 do_cpuid_ent(&cpuid_entries
[nent
], 0x80000000, 0, &nent
, cpuid
->nent
);
2434 limit
= cpuid_entries
[nent
- 1].eax
;
2435 for (func
= 0x80000001; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
2436 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
2437 &nent
, cpuid
->nent
);
2442 if (nent
>= cpuid
->nent
)
2445 do_cpuid_ent(&cpuid_entries
[nent
], KVM_CPUID_SIGNATURE
, 0, &nent
,
2449 if (nent
>= cpuid
->nent
)
2452 do_cpuid_ent(&cpuid_entries
[nent
], KVM_CPUID_FEATURES
, 0, &nent
,
2456 if (nent
>= cpuid
->nent
)
2460 if (copy_to_user(entries
, cpuid_entries
,
2461 nent
* sizeof(struct kvm_cpuid_entry2
)))
2467 vfree(cpuid_entries
);
2472 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
2473 struct kvm_lapic_state
*s
)
2475 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
2480 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
2481 struct kvm_lapic_state
*s
)
2483 memcpy(vcpu
->arch
.apic
->regs
, s
->regs
, sizeof *s
);
2484 kvm_apic_post_state_restore(vcpu
);
2485 update_cr8_intercept(vcpu
);
2490 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
2491 struct kvm_interrupt
*irq
)
2493 if (irq
->irq
< 0 || irq
->irq
>= 256)
2495 if (irqchip_in_kernel(vcpu
->kvm
))
2498 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
2499 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2504 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
2506 kvm_inject_nmi(vcpu
);
2511 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
2512 struct kvm_tpr_access_ctl
*tac
)
2516 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
2520 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
2524 unsigned bank_num
= mcg_cap
& 0xff, bank
;
2527 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
2529 if (mcg_cap
& ~(KVM_MCE_CAP_SUPPORTED
| 0xff | 0xff0000))
2532 vcpu
->arch
.mcg_cap
= mcg_cap
;
2533 /* Init IA32_MCG_CTL to all 1s */
2534 if (mcg_cap
& MCG_CTL_P
)
2535 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
2536 /* Init IA32_MCi_CTL to all 1s */
2537 for (bank
= 0; bank
< bank_num
; bank
++)
2538 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
2543 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
2544 struct kvm_x86_mce
*mce
)
2546 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2547 unsigned bank_num
= mcg_cap
& 0xff;
2548 u64
*banks
= vcpu
->arch
.mce_banks
;
2550 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
2553 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2554 * reporting is disabled
2556 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
2557 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
2559 banks
+= 4 * mce
->bank
;
2561 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2562 * reporting is disabled for the bank
2564 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
2566 if (mce
->status
& MCI_STATUS_UC
) {
2567 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
2568 !kvm_read_cr4_bits(vcpu
, X86_CR4_MCE
)) {
2569 printk(KERN_DEBUG
"kvm: set_mce: "
2570 "injects mce exception while "
2571 "previous one is in progress!\n");
2572 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2575 if (banks
[1] & MCI_STATUS_VAL
)
2576 mce
->status
|= MCI_STATUS_OVER
;
2577 banks
[2] = mce
->addr
;
2578 banks
[3] = mce
->misc
;
2579 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
2580 banks
[1] = mce
->status
;
2581 kvm_queue_exception(vcpu
, MC_VECTOR
);
2582 } else if (!(banks
[1] & MCI_STATUS_VAL
)
2583 || !(banks
[1] & MCI_STATUS_UC
)) {
2584 if (banks
[1] & MCI_STATUS_VAL
)
2585 mce
->status
|= MCI_STATUS_OVER
;
2586 banks
[2] = mce
->addr
;
2587 banks
[3] = mce
->misc
;
2588 banks
[1] = mce
->status
;
2590 banks
[1] |= MCI_STATUS_OVER
;
2594 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu
*vcpu
,
2595 struct kvm_vcpu_events
*events
)
2597 events
->exception
.injected
=
2598 vcpu
->arch
.exception
.pending
&&
2599 !kvm_exception_is_soft(vcpu
->arch
.exception
.nr
);
2600 events
->exception
.nr
= vcpu
->arch
.exception
.nr
;
2601 events
->exception
.has_error_code
= vcpu
->arch
.exception
.has_error_code
;
2602 events
->exception
.pad
= 0;
2603 events
->exception
.error_code
= vcpu
->arch
.exception
.error_code
;
2605 events
->interrupt
.injected
=
2606 vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
;
2607 events
->interrupt
.nr
= vcpu
->arch
.interrupt
.nr
;
2608 events
->interrupt
.soft
= 0;
2609 events
->interrupt
.shadow
=
2610 kvm_x86_ops
->get_interrupt_shadow(vcpu
,
2611 KVM_X86_SHADOW_INT_MOV_SS
| KVM_X86_SHADOW_INT_STI
);
2613 events
->nmi
.injected
= vcpu
->arch
.nmi_injected
;
2614 events
->nmi
.pending
= vcpu
->arch
.nmi_pending
;
2615 events
->nmi
.masked
= kvm_x86_ops
->get_nmi_mask(vcpu
);
2616 events
->nmi
.pad
= 0;
2618 events
->sipi_vector
= vcpu
->arch
.sipi_vector
;
2620 events
->flags
= (KVM_VCPUEVENT_VALID_NMI_PENDING
2621 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2622 | KVM_VCPUEVENT_VALID_SHADOW
);
2623 memset(&events
->reserved
, 0, sizeof(events
->reserved
));
2626 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu
*vcpu
,
2627 struct kvm_vcpu_events
*events
)
2629 if (events
->flags
& ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2630 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2631 | KVM_VCPUEVENT_VALID_SHADOW
))
2634 vcpu
->arch
.exception
.pending
= events
->exception
.injected
;
2635 vcpu
->arch
.exception
.nr
= events
->exception
.nr
;
2636 vcpu
->arch
.exception
.has_error_code
= events
->exception
.has_error_code
;
2637 vcpu
->arch
.exception
.error_code
= events
->exception
.error_code
;
2639 vcpu
->arch
.interrupt
.pending
= events
->interrupt
.injected
;
2640 vcpu
->arch
.interrupt
.nr
= events
->interrupt
.nr
;
2641 vcpu
->arch
.interrupt
.soft
= events
->interrupt
.soft
;
2642 if (vcpu
->arch
.interrupt
.pending
&& irqchip_in_kernel(vcpu
->kvm
))
2643 kvm_pic_clear_isr_ack(vcpu
->kvm
);
2644 if (events
->flags
& KVM_VCPUEVENT_VALID_SHADOW
)
2645 kvm_x86_ops
->set_interrupt_shadow(vcpu
,
2646 events
->interrupt
.shadow
);
2648 vcpu
->arch
.nmi_injected
= events
->nmi
.injected
;
2649 if (events
->flags
& KVM_VCPUEVENT_VALID_NMI_PENDING
)
2650 vcpu
->arch
.nmi_pending
= events
->nmi
.pending
;
2651 kvm_x86_ops
->set_nmi_mask(vcpu
, events
->nmi
.masked
);
2653 if (events
->flags
& KVM_VCPUEVENT_VALID_SIPI_VECTOR
)
2654 vcpu
->arch
.sipi_vector
= events
->sipi_vector
;
2656 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2661 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu
*vcpu
,
2662 struct kvm_debugregs
*dbgregs
)
2664 memcpy(dbgregs
->db
, vcpu
->arch
.db
, sizeof(vcpu
->arch
.db
));
2665 dbgregs
->dr6
= vcpu
->arch
.dr6
;
2666 dbgregs
->dr7
= vcpu
->arch
.dr7
;
2668 memset(&dbgregs
->reserved
, 0, sizeof(dbgregs
->reserved
));
2671 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu
*vcpu
,
2672 struct kvm_debugregs
*dbgregs
)
2677 memcpy(vcpu
->arch
.db
, dbgregs
->db
, sizeof(vcpu
->arch
.db
));
2678 vcpu
->arch
.dr6
= dbgregs
->dr6
;
2679 vcpu
->arch
.dr7
= dbgregs
->dr7
;
2684 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu
*vcpu
,
2685 struct kvm_xsave
*guest_xsave
)
2688 memcpy(guest_xsave
->region
,
2689 &vcpu
->arch
.guest_fpu
.state
->xsave
,
2692 memcpy(guest_xsave
->region
,
2693 &vcpu
->arch
.guest_fpu
.state
->fxsave
,
2694 sizeof(struct i387_fxsave_struct
));
2695 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)] =
2700 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu
*vcpu
,
2701 struct kvm_xsave
*guest_xsave
)
2704 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)];
2707 memcpy(&vcpu
->arch
.guest_fpu
.state
->xsave
,
2708 guest_xsave
->region
, xstate_size
);
2710 if (xstate_bv
& ~XSTATE_FPSSE
)
2712 memcpy(&vcpu
->arch
.guest_fpu
.state
->fxsave
,
2713 guest_xsave
->region
, sizeof(struct i387_fxsave_struct
));
2718 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu
*vcpu
,
2719 struct kvm_xcrs
*guest_xcrs
)
2721 if (!cpu_has_xsave
) {
2722 guest_xcrs
->nr_xcrs
= 0;
2726 guest_xcrs
->nr_xcrs
= 1;
2727 guest_xcrs
->flags
= 0;
2728 guest_xcrs
->xcrs
[0].xcr
= XCR_XFEATURE_ENABLED_MASK
;
2729 guest_xcrs
->xcrs
[0].value
= vcpu
->arch
.xcr0
;
2732 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu
*vcpu
,
2733 struct kvm_xcrs
*guest_xcrs
)
2740 if (guest_xcrs
->nr_xcrs
> KVM_MAX_XCRS
|| guest_xcrs
->flags
)
2743 for (i
= 0; i
< guest_xcrs
->nr_xcrs
; i
++)
2744 /* Only support XCR0 currently */
2745 if (guest_xcrs
->xcrs
[0].xcr
== XCR_XFEATURE_ENABLED_MASK
) {
2746 r
= __kvm_set_xcr(vcpu
, XCR_XFEATURE_ENABLED_MASK
,
2747 guest_xcrs
->xcrs
[0].value
);
2755 long kvm_arch_vcpu_ioctl(struct file
*filp
,
2756 unsigned int ioctl
, unsigned long arg
)
2758 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2759 void __user
*argp
= (void __user
*)arg
;
2762 struct kvm_lapic_state
*lapic
;
2763 struct kvm_xsave
*xsave
;
2764 struct kvm_xcrs
*xcrs
;
2770 case KVM_GET_LAPIC
: {
2772 if (!vcpu
->arch
.apic
)
2774 u
.lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
2779 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, u
.lapic
);
2783 if (copy_to_user(argp
, u
.lapic
, sizeof(struct kvm_lapic_state
)))
2788 case KVM_SET_LAPIC
: {
2790 if (!vcpu
->arch
.apic
)
2792 u
.lapic
= kmalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
2797 if (copy_from_user(u
.lapic
, argp
, sizeof(struct kvm_lapic_state
)))
2799 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, u
.lapic
);
2805 case KVM_INTERRUPT
: {
2806 struct kvm_interrupt irq
;
2809 if (copy_from_user(&irq
, argp
, sizeof irq
))
2811 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
2818 r
= kvm_vcpu_ioctl_nmi(vcpu
);
2824 case KVM_SET_CPUID
: {
2825 struct kvm_cpuid __user
*cpuid_arg
= argp
;
2826 struct kvm_cpuid cpuid
;
2829 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2831 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
2836 case KVM_SET_CPUID2
: {
2837 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2838 struct kvm_cpuid2 cpuid
;
2841 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2843 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
2844 cpuid_arg
->entries
);
2849 case KVM_GET_CPUID2
: {
2850 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2851 struct kvm_cpuid2 cpuid
;
2854 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2856 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
2857 cpuid_arg
->entries
);
2861 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2867 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
2870 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
2872 case KVM_TPR_ACCESS_REPORTING
: {
2873 struct kvm_tpr_access_ctl tac
;
2876 if (copy_from_user(&tac
, argp
, sizeof tac
))
2878 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
2882 if (copy_to_user(argp
, &tac
, sizeof tac
))
2887 case KVM_SET_VAPIC_ADDR
: {
2888 struct kvm_vapic_addr va
;
2891 if (!irqchip_in_kernel(vcpu
->kvm
))
2894 if (copy_from_user(&va
, argp
, sizeof va
))
2897 kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
2900 case KVM_X86_SETUP_MCE
: {
2904 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
2906 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
2909 case KVM_X86_SET_MCE
: {
2910 struct kvm_x86_mce mce
;
2913 if (copy_from_user(&mce
, argp
, sizeof mce
))
2915 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
2918 case KVM_GET_VCPU_EVENTS
: {
2919 struct kvm_vcpu_events events
;
2921 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu
, &events
);
2924 if (copy_to_user(argp
, &events
, sizeof(struct kvm_vcpu_events
)))
2929 case KVM_SET_VCPU_EVENTS
: {
2930 struct kvm_vcpu_events events
;
2933 if (copy_from_user(&events
, argp
, sizeof(struct kvm_vcpu_events
)))
2936 r
= kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
);
2939 case KVM_GET_DEBUGREGS
: {
2940 struct kvm_debugregs dbgregs
;
2942 kvm_vcpu_ioctl_x86_get_debugregs(vcpu
, &dbgregs
);
2945 if (copy_to_user(argp
, &dbgregs
,
2946 sizeof(struct kvm_debugregs
)))
2951 case KVM_SET_DEBUGREGS
: {
2952 struct kvm_debugregs dbgregs
;
2955 if (copy_from_user(&dbgregs
, argp
,
2956 sizeof(struct kvm_debugregs
)))
2959 r
= kvm_vcpu_ioctl_x86_set_debugregs(vcpu
, &dbgregs
);
2962 case KVM_GET_XSAVE
: {
2963 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
2968 kvm_vcpu_ioctl_x86_get_xsave(vcpu
, u
.xsave
);
2971 if (copy_to_user(argp
, u
.xsave
, sizeof(struct kvm_xsave
)))
2976 case KVM_SET_XSAVE
: {
2977 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
2983 if (copy_from_user(u
.xsave
, argp
, sizeof(struct kvm_xsave
)))
2986 r
= kvm_vcpu_ioctl_x86_set_xsave(vcpu
, u
.xsave
);
2989 case KVM_GET_XCRS
: {
2990 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
2995 kvm_vcpu_ioctl_x86_get_xcrs(vcpu
, u
.xcrs
);
2998 if (copy_to_user(argp
, u
.xcrs
,
2999 sizeof(struct kvm_xcrs
)))
3004 case KVM_SET_XCRS
: {
3005 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
3011 if (copy_from_user(u
.xcrs
, argp
,
3012 sizeof(struct kvm_xcrs
)))
3015 r
= kvm_vcpu_ioctl_x86_set_xcrs(vcpu
, u
.xcrs
);
3026 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
3030 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
3032 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
3036 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
3039 kvm
->arch
.ept_identity_map_addr
= ident_addr
;
3043 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
3044 u32 kvm_nr_mmu_pages
)
3046 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
3049 mutex_lock(&kvm
->slots_lock
);
3050 spin_lock(&kvm
->mmu_lock
);
3052 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
3053 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
3055 spin_unlock(&kvm
->mmu_lock
);
3056 mutex_unlock(&kvm
->slots_lock
);
3060 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
3062 return kvm
->arch
.n_max_mmu_pages
;
3065 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3070 switch (chip
->chip_id
) {
3071 case KVM_IRQCHIP_PIC_MASTER
:
3072 memcpy(&chip
->chip
.pic
,
3073 &pic_irqchip(kvm
)->pics
[0],
3074 sizeof(struct kvm_pic_state
));
3076 case KVM_IRQCHIP_PIC_SLAVE
:
3077 memcpy(&chip
->chip
.pic
,
3078 &pic_irqchip(kvm
)->pics
[1],
3079 sizeof(struct kvm_pic_state
));
3081 case KVM_IRQCHIP_IOAPIC
:
3082 r
= kvm_get_ioapic(kvm
, &chip
->chip
.ioapic
);
3091 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3096 switch (chip
->chip_id
) {
3097 case KVM_IRQCHIP_PIC_MASTER
:
3098 spin_lock(&pic_irqchip(kvm
)->lock
);
3099 memcpy(&pic_irqchip(kvm
)->pics
[0],
3101 sizeof(struct kvm_pic_state
));
3102 spin_unlock(&pic_irqchip(kvm
)->lock
);
3104 case KVM_IRQCHIP_PIC_SLAVE
:
3105 spin_lock(&pic_irqchip(kvm
)->lock
);
3106 memcpy(&pic_irqchip(kvm
)->pics
[1],
3108 sizeof(struct kvm_pic_state
));
3109 spin_unlock(&pic_irqchip(kvm
)->lock
);
3111 case KVM_IRQCHIP_IOAPIC
:
3112 r
= kvm_set_ioapic(kvm
, &chip
->chip
.ioapic
);
3118 kvm_pic_update_irq(pic_irqchip(kvm
));
3122 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3126 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3127 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
3128 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3132 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3136 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3137 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
3138 kvm_pit_load_count(kvm
, 0, ps
->channels
[0].count
, 0);
3139 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3143 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3147 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3148 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
3149 sizeof(ps
->channels
));
3150 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
3151 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3152 memset(&ps
->reserved
, 0, sizeof(ps
->reserved
));
3156 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3158 int r
= 0, start
= 0;
3159 u32 prev_legacy
, cur_legacy
;
3160 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3161 prev_legacy
= kvm
->arch
.vpit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3162 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3163 if (!prev_legacy
&& cur_legacy
)
3165 memcpy(&kvm
->arch
.vpit
->pit_state
.channels
, &ps
->channels
,
3166 sizeof(kvm
->arch
.vpit
->pit_state
.channels
));
3167 kvm
->arch
.vpit
->pit_state
.flags
= ps
->flags
;
3168 kvm_pit_load_count(kvm
, 0, kvm
->arch
.vpit
->pit_state
.channels
[0].count
, start
);
3169 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3173 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
3174 struct kvm_reinject_control
*control
)
3176 if (!kvm
->arch
.vpit
)
3178 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3179 kvm
->arch
.vpit
->pit_state
.pit_timer
.reinject
= control
->pit_reinject
;
3180 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3185 * Get (and clear) the dirty memory log for a memory slot.
3187 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
,
3188 struct kvm_dirty_log
*log
)
3191 struct kvm_memory_slot
*memslot
;
3193 unsigned long is_dirty
= 0;
3195 mutex_lock(&kvm
->slots_lock
);
3198 if (log
->slot
>= KVM_MEMORY_SLOTS
)
3201 memslot
= &kvm
->memslots
->memslots
[log
->slot
];
3203 if (!memslot
->dirty_bitmap
)
3206 n
= kvm_dirty_bitmap_bytes(memslot
);
3208 for (i
= 0; !is_dirty
&& i
< n
/sizeof(long); i
++)
3209 is_dirty
= memslot
->dirty_bitmap
[i
];
3211 /* If nothing is dirty, don't bother messing with page tables. */
3213 struct kvm_memslots
*slots
, *old_slots
;
3214 unsigned long *dirty_bitmap
;
3216 dirty_bitmap
= memslot
->dirty_bitmap_head
;
3217 if (memslot
->dirty_bitmap
== dirty_bitmap
)
3218 dirty_bitmap
+= n
/ sizeof(long);
3219 memset(dirty_bitmap
, 0, n
);
3222 slots
= kzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
3225 memcpy(slots
, kvm
->memslots
, sizeof(struct kvm_memslots
));
3226 slots
->memslots
[log
->slot
].dirty_bitmap
= dirty_bitmap
;
3227 slots
->generation
++;
3229 old_slots
= kvm
->memslots
;
3230 rcu_assign_pointer(kvm
->memslots
, slots
);
3231 synchronize_srcu_expedited(&kvm
->srcu
);
3232 dirty_bitmap
= old_slots
->memslots
[log
->slot
].dirty_bitmap
;
3235 spin_lock(&kvm
->mmu_lock
);
3236 kvm_mmu_slot_remove_write_access(kvm
, log
->slot
);
3237 spin_unlock(&kvm
->mmu_lock
);
3240 if (copy_to_user(log
->dirty_bitmap
, dirty_bitmap
, n
))
3244 if (clear_user(log
->dirty_bitmap
, n
))
3250 mutex_unlock(&kvm
->slots_lock
);
3254 long kvm_arch_vm_ioctl(struct file
*filp
,
3255 unsigned int ioctl
, unsigned long arg
)
3257 struct kvm
*kvm
= filp
->private_data
;
3258 void __user
*argp
= (void __user
*)arg
;
3261 * This union makes it completely explicit to gcc-3.x
3262 * that these two variables' stack usage should be
3263 * combined, not added together.
3266 struct kvm_pit_state ps
;
3267 struct kvm_pit_state2 ps2
;
3268 struct kvm_pit_config pit_config
;
3272 case KVM_SET_TSS_ADDR
:
3273 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
3277 case KVM_SET_IDENTITY_MAP_ADDR
: {
3281 if (copy_from_user(&ident_addr
, argp
, sizeof ident_addr
))
3283 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
3288 case KVM_SET_NR_MMU_PAGES
:
3289 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
3293 case KVM_GET_NR_MMU_PAGES
:
3294 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
3296 case KVM_CREATE_IRQCHIP
: {
3297 struct kvm_pic
*vpic
;
3299 mutex_lock(&kvm
->lock
);
3302 goto create_irqchip_unlock
;
3304 vpic
= kvm_create_pic(kvm
);
3306 r
= kvm_ioapic_init(kvm
);
3308 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3311 goto create_irqchip_unlock
;
3314 goto create_irqchip_unlock
;
3316 kvm
->arch
.vpic
= vpic
;
3318 r
= kvm_setup_default_irq_routing(kvm
);
3320 mutex_lock(&kvm
->irq_lock
);
3321 kvm_ioapic_destroy(kvm
);
3322 kvm_destroy_pic(kvm
);
3323 mutex_unlock(&kvm
->irq_lock
);
3325 create_irqchip_unlock
:
3326 mutex_unlock(&kvm
->lock
);
3329 case KVM_CREATE_PIT
:
3330 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
3332 case KVM_CREATE_PIT2
:
3334 if (copy_from_user(&u
.pit_config
, argp
,
3335 sizeof(struct kvm_pit_config
)))
3338 mutex_lock(&kvm
->slots_lock
);
3341 goto create_pit_unlock
;
3343 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
3347 mutex_unlock(&kvm
->slots_lock
);
3349 case KVM_IRQ_LINE_STATUS
:
3350 case KVM_IRQ_LINE
: {
3351 struct kvm_irq_level irq_event
;
3354 if (copy_from_user(&irq_event
, argp
, sizeof irq_event
))
3357 if (irqchip_in_kernel(kvm
)) {
3359 status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
3360 irq_event
.irq
, irq_event
.level
);
3361 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
3363 irq_event
.status
= status
;
3364 if (copy_to_user(argp
, &irq_event
,
3372 case KVM_GET_IRQCHIP
: {
3373 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3374 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
3380 if (copy_from_user(chip
, argp
, sizeof *chip
))
3381 goto get_irqchip_out
;
3383 if (!irqchip_in_kernel(kvm
))
3384 goto get_irqchip_out
;
3385 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
3387 goto get_irqchip_out
;
3389 if (copy_to_user(argp
, chip
, sizeof *chip
))
3390 goto get_irqchip_out
;
3398 case KVM_SET_IRQCHIP
: {
3399 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3400 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
3406 if (copy_from_user(chip
, argp
, sizeof *chip
))
3407 goto set_irqchip_out
;
3409 if (!irqchip_in_kernel(kvm
))
3410 goto set_irqchip_out
;
3411 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
3413 goto set_irqchip_out
;
3423 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
3426 if (!kvm
->arch
.vpit
)
3428 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
3432 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
3439 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
3442 if (!kvm
->arch
.vpit
)
3444 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
3450 case KVM_GET_PIT2
: {
3452 if (!kvm
->arch
.vpit
)
3454 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
3458 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
3463 case KVM_SET_PIT2
: {
3465 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
3468 if (!kvm
->arch
.vpit
)
3470 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
3476 case KVM_REINJECT_CONTROL
: {
3477 struct kvm_reinject_control control
;
3479 if (copy_from_user(&control
, argp
, sizeof(control
)))
3481 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
3487 case KVM_XEN_HVM_CONFIG
: {
3489 if (copy_from_user(&kvm
->arch
.xen_hvm_config
, argp
,
3490 sizeof(struct kvm_xen_hvm_config
)))
3493 if (kvm
->arch
.xen_hvm_config
.flags
)
3498 case KVM_SET_CLOCK
: {
3499 struct kvm_clock_data user_ns
;
3504 if (copy_from_user(&user_ns
, argp
, sizeof(user_ns
)))
3512 local_irq_disable();
3513 now_ns
= get_kernel_ns();
3514 delta
= user_ns
.clock
- now_ns
;
3516 kvm
->arch
.kvmclock_offset
= delta
;
3519 case KVM_GET_CLOCK
: {
3520 struct kvm_clock_data user_ns
;
3523 local_irq_disable();
3524 now_ns
= get_kernel_ns();
3525 user_ns
.clock
= kvm
->arch
.kvmclock_offset
+ now_ns
;
3528 memset(&user_ns
.pad
, 0, sizeof(user_ns
.pad
));
3531 if (copy_to_user(argp
, &user_ns
, sizeof(user_ns
)))
3544 static void kvm_init_msr_list(void)
3549 /* skip the first msrs in the list. KVM-specific */
3550 for (i
= j
= KVM_SAVE_MSRS_BEGIN
; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
3551 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
3554 msrs_to_save
[j
] = msrs_to_save
[i
];
3557 num_msrs_to_save
= j
;
3560 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
3563 if (vcpu
->arch
.apic
&&
3564 !kvm_iodevice_write(&vcpu
->arch
.apic
->dev
, addr
, len
, v
))
3567 return kvm_io_bus_write(vcpu
->kvm
, KVM_MMIO_BUS
, addr
, len
, v
);
3570 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
3572 if (vcpu
->arch
.apic
&&
3573 !kvm_iodevice_read(&vcpu
->arch
.apic
->dev
, addr
, len
, v
))
3576 return kvm_io_bus_read(vcpu
->kvm
, KVM_MMIO_BUS
, addr
, len
, v
);
3579 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
3580 struct kvm_segment
*var
, int seg
)
3582 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
3585 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
3586 struct kvm_segment
*var
, int seg
)
3588 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
3591 static gpa_t
translate_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
)
3596 static gpa_t
translate_nested_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
)
3601 BUG_ON(!mmu_is_nested(vcpu
));
3603 /* NPT walks are always user-walks */
3604 access
|= PFERR_USER_MASK
;
3605 t_gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gpa
, access
, &error
);
3606 if (t_gpa
== UNMAPPED_GVA
)
3607 vcpu
->arch
.fault
.nested
= true;
3612 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
, u32
*error
)
3614 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3615 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, error
);
3618 gpa_t
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu
*vcpu
, gva_t gva
, u32
*error
)
3620 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3621 access
|= PFERR_FETCH_MASK
;
3622 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, error
);
3625 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
, u32
*error
)
3627 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3628 access
|= PFERR_WRITE_MASK
;
3629 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, error
);
3632 /* uses this to access any guest's mapped memory without checking CPL */
3633 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
, u32
*error
)
3635 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, 0, error
);
3638 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
3639 struct kvm_vcpu
*vcpu
, u32 access
,
3643 int r
= X86EMUL_CONTINUE
;
3646 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
,
3648 unsigned offset
= addr
& (PAGE_SIZE
-1);
3649 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
3652 if (gpa
== UNMAPPED_GVA
) {
3653 r
= X86EMUL_PROPAGATE_FAULT
;
3656 ret
= kvm_read_guest(vcpu
->kvm
, gpa
, data
, toread
);
3658 r
= X86EMUL_IO_NEEDED
;
3670 /* used for instruction fetching */
3671 static int kvm_fetch_guest_virt(gva_t addr
, void *val
, unsigned int bytes
,
3672 struct kvm_vcpu
*vcpu
, u32
*error
)
3674 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3675 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
,
3676 access
| PFERR_FETCH_MASK
, error
);
3679 static int kvm_read_guest_virt(gva_t addr
, void *val
, unsigned int bytes
,
3680 struct kvm_vcpu
*vcpu
, u32
*error
)
3682 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3683 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
3687 static int kvm_read_guest_virt_system(gva_t addr
, void *val
, unsigned int bytes
,
3688 struct kvm_vcpu
*vcpu
, u32
*error
)
3690 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, 0, error
);
3693 static int kvm_write_guest_virt_system(gva_t addr
, void *val
,
3695 struct kvm_vcpu
*vcpu
,
3699 int r
= X86EMUL_CONTINUE
;
3702 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
,
3705 unsigned offset
= addr
& (PAGE_SIZE
-1);
3706 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
3709 if (gpa
== UNMAPPED_GVA
) {
3710 r
= X86EMUL_PROPAGATE_FAULT
;
3713 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, data
, towrite
);
3715 r
= X86EMUL_IO_NEEDED
;
3727 static int emulator_read_emulated(unsigned long addr
,
3730 unsigned int *error_code
,
3731 struct kvm_vcpu
*vcpu
)
3735 if (vcpu
->mmio_read_completed
) {
3736 memcpy(val
, vcpu
->mmio_data
, bytes
);
3737 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
3738 vcpu
->mmio_phys_addr
, *(u64
*)val
);
3739 vcpu
->mmio_read_completed
= 0;
3740 return X86EMUL_CONTINUE
;
3743 gpa
= kvm_mmu_gva_to_gpa_read(vcpu
, addr
, error_code
);
3745 if (gpa
== UNMAPPED_GVA
)
3746 return X86EMUL_PROPAGATE_FAULT
;
3748 /* For APIC access vmexit */
3749 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
3752 if (kvm_read_guest_virt(addr
, val
, bytes
, vcpu
, NULL
)
3753 == X86EMUL_CONTINUE
)
3754 return X86EMUL_CONTINUE
;
3758 * Is this MMIO handled locally?
3760 if (!vcpu_mmio_read(vcpu
, gpa
, bytes
, val
)) {
3761 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
, gpa
, *(u64
*)val
);
3762 return X86EMUL_CONTINUE
;
3765 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, 0);
3767 vcpu
->mmio_needed
= 1;
3768 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
3769 vcpu
->run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
= gpa
;
3770 vcpu
->run
->mmio
.len
= vcpu
->mmio_size
= bytes
;
3771 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= 0;
3773 return X86EMUL_IO_NEEDED
;
3776 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3777 const void *val
, int bytes
)
3781 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
3784 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
, 1);
3788 static int emulator_write_emulated_onepage(unsigned long addr
,
3791 unsigned int *error_code
,
3792 struct kvm_vcpu
*vcpu
)
3796 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, error_code
);
3798 if (gpa
== UNMAPPED_GVA
)
3799 return X86EMUL_PROPAGATE_FAULT
;
3801 /* For APIC access vmexit */
3802 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
3805 if (emulator_write_phys(vcpu
, gpa
, val
, bytes
))
3806 return X86EMUL_CONTINUE
;
3809 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, *(u64
*)val
);
3811 * Is this MMIO handled locally?
3813 if (!vcpu_mmio_write(vcpu
, gpa
, bytes
, val
))
3814 return X86EMUL_CONTINUE
;
3816 vcpu
->mmio_needed
= 1;
3817 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
3818 vcpu
->run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
= gpa
;
3819 vcpu
->run
->mmio
.len
= vcpu
->mmio_size
= bytes
;
3820 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= 1;
3821 memcpy(vcpu
->run
->mmio
.data
, val
, bytes
);
3823 return X86EMUL_CONTINUE
;
3826 int emulator_write_emulated(unsigned long addr
,
3829 unsigned int *error_code
,
3830 struct kvm_vcpu
*vcpu
)
3832 /* Crossing a page boundary? */
3833 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
3836 now
= -addr
& ~PAGE_MASK
;
3837 rc
= emulator_write_emulated_onepage(addr
, val
, now
, error_code
,
3839 if (rc
!= X86EMUL_CONTINUE
)
3845 return emulator_write_emulated_onepage(addr
, val
, bytes
, error_code
,
3849 #define CMPXCHG_TYPE(t, ptr, old, new) \
3850 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3852 #ifdef CONFIG_X86_64
3853 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3855 # define CMPXCHG64(ptr, old, new) \
3856 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3859 static int emulator_cmpxchg_emulated(unsigned long addr
,
3863 unsigned int *error_code
,
3864 struct kvm_vcpu
*vcpu
)
3871 /* guests cmpxchg8b have to be emulated atomically */
3872 if (bytes
> 8 || (bytes
& (bytes
- 1)))
3875 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
3877 if (gpa
== UNMAPPED_GVA
||
3878 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
3881 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
3884 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
3885 if (is_error_page(page
)) {
3886 kvm_release_page_clean(page
);
3890 kaddr
= kmap_atomic(page
, KM_USER0
);
3891 kaddr
+= offset_in_page(gpa
);
3894 exchanged
= CMPXCHG_TYPE(u8
, kaddr
, old
, new);
3897 exchanged
= CMPXCHG_TYPE(u16
, kaddr
, old
, new);
3900 exchanged
= CMPXCHG_TYPE(u32
, kaddr
, old
, new);
3903 exchanged
= CMPXCHG64(kaddr
, old
, new);
3908 kunmap_atomic(kaddr
, KM_USER0
);
3909 kvm_release_page_dirty(page
);
3912 return X86EMUL_CMPXCHG_FAILED
;
3914 kvm_mmu_pte_write(vcpu
, gpa
, new, bytes
, 1);
3916 return X86EMUL_CONTINUE
;
3919 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
3921 return emulator_write_emulated(addr
, new, bytes
, error_code
, vcpu
);
3924 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
3926 /* TODO: String I/O for in kernel device */
3929 if (vcpu
->arch
.pio
.in
)
3930 r
= kvm_io_bus_read(vcpu
->kvm
, KVM_PIO_BUS
, vcpu
->arch
.pio
.port
,
3931 vcpu
->arch
.pio
.size
, pd
);
3933 r
= kvm_io_bus_write(vcpu
->kvm
, KVM_PIO_BUS
,
3934 vcpu
->arch
.pio
.port
, vcpu
->arch
.pio
.size
,
3940 static int emulator_pio_in_emulated(int size
, unsigned short port
, void *val
,
3941 unsigned int count
, struct kvm_vcpu
*vcpu
)
3943 if (vcpu
->arch
.pio
.count
)
3946 trace_kvm_pio(0, port
, size
, 1);
3948 vcpu
->arch
.pio
.port
= port
;
3949 vcpu
->arch
.pio
.in
= 1;
3950 vcpu
->arch
.pio
.count
= count
;
3951 vcpu
->arch
.pio
.size
= size
;
3953 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
3955 memcpy(val
, vcpu
->arch
.pio_data
, size
* count
);
3956 vcpu
->arch
.pio
.count
= 0;
3960 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
3961 vcpu
->run
->io
.direction
= KVM_EXIT_IO_IN
;
3962 vcpu
->run
->io
.size
= size
;
3963 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
3964 vcpu
->run
->io
.count
= count
;
3965 vcpu
->run
->io
.port
= port
;
3970 static int emulator_pio_out_emulated(int size
, unsigned short port
,
3971 const void *val
, unsigned int count
,
3972 struct kvm_vcpu
*vcpu
)
3974 trace_kvm_pio(1, port
, size
, 1);
3976 vcpu
->arch
.pio
.port
= port
;
3977 vcpu
->arch
.pio
.in
= 0;
3978 vcpu
->arch
.pio
.count
= count
;
3979 vcpu
->arch
.pio
.size
= size
;
3981 memcpy(vcpu
->arch
.pio_data
, val
, size
* count
);
3983 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
3984 vcpu
->arch
.pio
.count
= 0;
3988 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
3989 vcpu
->run
->io
.direction
= KVM_EXIT_IO_OUT
;
3990 vcpu
->run
->io
.size
= size
;
3991 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
3992 vcpu
->run
->io
.count
= count
;
3993 vcpu
->run
->io
.port
= port
;
3998 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
4000 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
4003 int emulate_invlpg(struct kvm_vcpu
*vcpu
, gva_t address
)
4005 kvm_mmu_invlpg(vcpu
, address
);
4006 return X86EMUL_CONTINUE
;
4009 int kvm_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
4011 if (!need_emulate_wbinvd(vcpu
))
4012 return X86EMUL_CONTINUE
;
4014 if (kvm_x86_ops
->has_wbinvd_exit()) {
4015 int cpu
= get_cpu();
4017 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
4018 smp_call_function_many(vcpu
->arch
.wbinvd_dirty_mask
,
4019 wbinvd_ipi
, NULL
, 1);
4021 cpumask_clear(vcpu
->arch
.wbinvd_dirty_mask
);
4024 return X86EMUL_CONTINUE
;
4026 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd
);
4028 int emulate_clts(struct kvm_vcpu
*vcpu
)
4030 kvm_x86_ops
->set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~X86_CR0_TS
));
4031 kvm_x86_ops
->fpu_activate(vcpu
);
4032 return X86EMUL_CONTINUE
;
4035 int emulator_get_dr(int dr
, unsigned long *dest
, struct kvm_vcpu
*vcpu
)
4037 return _kvm_get_dr(vcpu
, dr
, dest
);
4040 int emulator_set_dr(int dr
, unsigned long value
, struct kvm_vcpu
*vcpu
)
4043 return __kvm_set_dr(vcpu
, dr
, value
);
4046 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
4048 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
4051 static unsigned long emulator_get_cr(int cr
, struct kvm_vcpu
*vcpu
)
4053 unsigned long value
;
4057 value
= kvm_read_cr0(vcpu
);
4060 value
= vcpu
->arch
.cr2
;
4063 value
= vcpu
->arch
.cr3
;
4066 value
= kvm_read_cr4(vcpu
);
4069 value
= kvm_get_cr8(vcpu
);
4072 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
4079 static int emulator_set_cr(int cr
, unsigned long val
, struct kvm_vcpu
*vcpu
)
4085 res
= kvm_set_cr0(vcpu
, mk_cr_64(kvm_read_cr0(vcpu
), val
));
4088 vcpu
->arch
.cr2
= val
;
4091 res
= kvm_set_cr3(vcpu
, val
);
4094 res
= kvm_set_cr4(vcpu
, mk_cr_64(kvm_read_cr4(vcpu
), val
));
4097 res
= __kvm_set_cr8(vcpu
, val
& 0xfUL
);
4100 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
4107 static int emulator_get_cpl(struct kvm_vcpu
*vcpu
)
4109 return kvm_x86_ops
->get_cpl(vcpu
);
4112 static void emulator_get_gdt(struct desc_ptr
*dt
, struct kvm_vcpu
*vcpu
)
4114 kvm_x86_ops
->get_gdt(vcpu
, dt
);
4117 static void emulator_get_idt(struct desc_ptr
*dt
, struct kvm_vcpu
*vcpu
)
4119 kvm_x86_ops
->get_idt(vcpu
, dt
);
4122 static unsigned long emulator_get_cached_segment_base(int seg
,
4123 struct kvm_vcpu
*vcpu
)
4125 return get_segment_base(vcpu
, seg
);
4128 static bool emulator_get_cached_descriptor(struct desc_struct
*desc
, int seg
,
4129 struct kvm_vcpu
*vcpu
)
4131 struct kvm_segment var
;
4133 kvm_get_segment(vcpu
, &var
, seg
);
4140 set_desc_limit(desc
, var
.limit
);
4141 set_desc_base(desc
, (unsigned long)var
.base
);
4142 desc
->type
= var
.type
;
4144 desc
->dpl
= var
.dpl
;
4145 desc
->p
= var
.present
;
4146 desc
->avl
= var
.avl
;
4154 static void emulator_set_cached_descriptor(struct desc_struct
*desc
, int seg
,
4155 struct kvm_vcpu
*vcpu
)
4157 struct kvm_segment var
;
4159 /* needed to preserve selector */
4160 kvm_get_segment(vcpu
, &var
, seg
);
4162 var
.base
= get_desc_base(desc
);
4163 var
.limit
= get_desc_limit(desc
);
4165 var
.limit
= (var
.limit
<< 12) | 0xfff;
4166 var
.type
= desc
->type
;
4167 var
.present
= desc
->p
;
4168 var
.dpl
= desc
->dpl
;
4173 var
.avl
= desc
->avl
;
4174 var
.present
= desc
->p
;
4175 var
.unusable
= !var
.present
;
4178 kvm_set_segment(vcpu
, &var
, seg
);
4182 static u16
emulator_get_segment_selector(int seg
, struct kvm_vcpu
*vcpu
)
4184 struct kvm_segment kvm_seg
;
4186 kvm_get_segment(vcpu
, &kvm_seg
, seg
);
4187 return kvm_seg
.selector
;
4190 static void emulator_set_segment_selector(u16 sel
, int seg
,
4191 struct kvm_vcpu
*vcpu
)
4193 struct kvm_segment kvm_seg
;
4195 kvm_get_segment(vcpu
, &kvm_seg
, seg
);
4196 kvm_seg
.selector
= sel
;
4197 kvm_set_segment(vcpu
, &kvm_seg
, seg
);
4200 static struct x86_emulate_ops emulate_ops
= {
4201 .read_std
= kvm_read_guest_virt_system
,
4202 .write_std
= kvm_write_guest_virt_system
,
4203 .fetch
= kvm_fetch_guest_virt
,
4204 .read_emulated
= emulator_read_emulated
,
4205 .write_emulated
= emulator_write_emulated
,
4206 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
4207 .pio_in_emulated
= emulator_pio_in_emulated
,
4208 .pio_out_emulated
= emulator_pio_out_emulated
,
4209 .get_cached_descriptor
= emulator_get_cached_descriptor
,
4210 .set_cached_descriptor
= emulator_set_cached_descriptor
,
4211 .get_segment_selector
= emulator_get_segment_selector
,
4212 .set_segment_selector
= emulator_set_segment_selector
,
4213 .get_cached_segment_base
= emulator_get_cached_segment_base
,
4214 .get_gdt
= emulator_get_gdt
,
4215 .get_idt
= emulator_get_idt
,
4216 .get_cr
= emulator_get_cr
,
4217 .set_cr
= emulator_set_cr
,
4218 .cpl
= emulator_get_cpl
,
4219 .get_dr
= emulator_get_dr
,
4220 .set_dr
= emulator_set_dr
,
4221 .set_msr
= kvm_set_msr
,
4222 .get_msr
= kvm_get_msr
,
4225 static void cache_all_regs(struct kvm_vcpu
*vcpu
)
4227 kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4228 kvm_register_read(vcpu
, VCPU_REGS_RSP
);
4229 kvm_register_read(vcpu
, VCPU_REGS_RIP
);
4230 vcpu
->arch
.regs_dirty
= ~0;
4233 static void toggle_interruptibility(struct kvm_vcpu
*vcpu
, u32 mask
)
4235 u32 int_shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
, mask
);
4237 * an sti; sti; sequence only disable interrupts for the first
4238 * instruction. So, if the last instruction, be it emulated or
4239 * not, left the system with the INT_STI flag enabled, it
4240 * means that the last instruction is an sti. We should not
4241 * leave the flag on in this case. The same goes for mov ss
4243 if (!(int_shadow
& mask
))
4244 kvm_x86_ops
->set_interrupt_shadow(vcpu
, mask
);
4247 static void inject_emulated_exception(struct kvm_vcpu
*vcpu
)
4249 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4250 if (ctxt
->exception
== PF_VECTOR
)
4251 kvm_propagate_fault(vcpu
);
4252 else if (ctxt
->error_code_valid
)
4253 kvm_queue_exception_e(vcpu
, ctxt
->exception
, ctxt
->error_code
);
4255 kvm_queue_exception(vcpu
, ctxt
->exception
);
4258 static void init_emulate_ctxt(struct kvm_vcpu
*vcpu
)
4260 struct decode_cache
*c
= &vcpu
->arch
.emulate_ctxt
.decode
;
4263 cache_all_regs(vcpu
);
4265 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
4267 vcpu
->arch
.emulate_ctxt
.vcpu
= vcpu
;
4268 vcpu
->arch
.emulate_ctxt
.eflags
= kvm_x86_ops
->get_rflags(vcpu
);
4269 vcpu
->arch
.emulate_ctxt
.eip
= kvm_rip_read(vcpu
);
4270 vcpu
->arch
.emulate_ctxt
.mode
=
4271 (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
4272 (vcpu
->arch
.emulate_ctxt
.eflags
& X86_EFLAGS_VM
)
4273 ? X86EMUL_MODE_VM86
: cs_l
4274 ? X86EMUL_MODE_PROT64
: cs_db
4275 ? X86EMUL_MODE_PROT32
: X86EMUL_MODE_PROT16
;
4276 memset(c
, 0, sizeof(struct decode_cache
));
4277 memcpy(c
->regs
, vcpu
->arch
.regs
, sizeof c
->regs
);
4280 int kvm_inject_realmode_interrupt(struct kvm_vcpu
*vcpu
, int irq
)
4282 struct decode_cache
*c
= &vcpu
->arch
.emulate_ctxt
.decode
;
4285 init_emulate_ctxt(vcpu
);
4287 vcpu
->arch
.emulate_ctxt
.decode
.op_bytes
= 2;
4288 vcpu
->arch
.emulate_ctxt
.decode
.ad_bytes
= 2;
4289 vcpu
->arch
.emulate_ctxt
.decode
.eip
= vcpu
->arch
.emulate_ctxt
.eip
;
4290 ret
= emulate_int_real(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
, irq
);
4292 if (ret
!= X86EMUL_CONTINUE
)
4293 return EMULATE_FAIL
;
4295 vcpu
->arch
.emulate_ctxt
.eip
= c
->eip
;
4296 memcpy(vcpu
->arch
.regs
, c
->regs
, sizeof c
->regs
);
4297 kvm_rip_write(vcpu
, vcpu
->arch
.emulate_ctxt
.eip
);
4298 kvm_x86_ops
->set_rflags(vcpu
, vcpu
->arch
.emulate_ctxt
.eflags
);
4300 if (irq
== NMI_VECTOR
)
4301 vcpu
->arch
.nmi_pending
= false;
4303 vcpu
->arch
.interrupt
.pending
= false;
4305 return EMULATE_DONE
;
4307 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt
);
4309 static int handle_emulation_failure(struct kvm_vcpu
*vcpu
)
4311 ++vcpu
->stat
.insn_emulation_fail
;
4312 trace_kvm_emulate_insn_failed(vcpu
);
4313 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
4314 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
4315 vcpu
->run
->internal
.ndata
= 0;
4316 kvm_queue_exception(vcpu
, UD_VECTOR
);
4317 return EMULATE_FAIL
;
4320 static bool reexecute_instruction(struct kvm_vcpu
*vcpu
, gva_t gva
)
4328 * if emulation was due to access to shadowed page table
4329 * and it failed try to unshadow page and re-entetr the
4330 * guest to let CPU execute the instruction.
4332 if (kvm_mmu_unprotect_page_virt(vcpu
, gva
))
4335 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, gva
, NULL
);
4337 if (gpa
== UNMAPPED_GVA
)
4338 return true; /* let cpu generate fault */
4340 if (!kvm_is_error_hva(gfn_to_hva(vcpu
->kvm
, gpa
>> PAGE_SHIFT
)))
4346 int emulate_instruction(struct kvm_vcpu
*vcpu
,
4352 struct decode_cache
*c
= &vcpu
->arch
.emulate_ctxt
.decode
;
4354 kvm_clear_exception_queue(vcpu
);
4355 vcpu
->arch
.mmio_fault_cr2
= cr2
;
4357 * TODO: fix emulate.c to use guest_read/write_register
4358 * instead of direct ->regs accesses, can save hundred cycles
4359 * on Intel for instructions that don't read/change RSP, for
4362 cache_all_regs(vcpu
);
4364 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
4365 init_emulate_ctxt(vcpu
);
4366 vcpu
->arch
.emulate_ctxt
.interruptibility
= 0;
4367 vcpu
->arch
.emulate_ctxt
.exception
= -1;
4368 vcpu
->arch
.emulate_ctxt
.perm_ok
= false;
4370 r
= x86_decode_insn(&vcpu
->arch
.emulate_ctxt
);
4371 if (r
== X86EMUL_PROPAGATE_FAULT
)
4374 trace_kvm_emulate_insn_start(vcpu
);
4376 /* Only allow emulation of specific instructions on #UD
4377 * (namely VMMCALL, sysenter, sysexit, syscall)*/
4378 if (emulation_type
& EMULTYPE_TRAP_UD
) {
4380 return EMULATE_FAIL
;
4382 case 0x01: /* VMMCALL */
4383 if (c
->modrm_mod
!= 3 || c
->modrm_rm
!= 1)
4384 return EMULATE_FAIL
;
4386 case 0x34: /* sysenter */
4387 case 0x35: /* sysexit */
4388 if (c
->modrm_mod
!= 0 || c
->modrm_rm
!= 0)
4389 return EMULATE_FAIL
;
4391 case 0x05: /* syscall */
4392 if (c
->modrm_mod
!= 0 || c
->modrm_rm
!= 0)
4393 return EMULATE_FAIL
;
4396 return EMULATE_FAIL
;
4399 if (!(c
->modrm_reg
== 0 || c
->modrm_reg
== 3))
4400 return EMULATE_FAIL
;
4403 ++vcpu
->stat
.insn_emulation
;
4405 if (reexecute_instruction(vcpu
, cr2
))
4406 return EMULATE_DONE
;
4407 if (emulation_type
& EMULTYPE_SKIP
)
4408 return EMULATE_FAIL
;
4409 return handle_emulation_failure(vcpu
);
4413 if (emulation_type
& EMULTYPE_SKIP
) {
4414 kvm_rip_write(vcpu
, vcpu
->arch
.emulate_ctxt
.decode
.eip
);
4415 return EMULATE_DONE
;
4418 /* this is needed for vmware backdor interface to work since it
4419 changes registers values during IO operation */
4420 memcpy(c
->regs
, vcpu
->arch
.regs
, sizeof c
->regs
);
4423 r
= x86_emulate_insn(&vcpu
->arch
.emulate_ctxt
);
4425 if (r
== EMULATION_FAILED
) {
4426 if (reexecute_instruction(vcpu
, cr2
))
4427 return EMULATE_DONE
;
4429 return handle_emulation_failure(vcpu
);
4433 if (vcpu
->arch
.emulate_ctxt
.exception
>= 0) {
4434 inject_emulated_exception(vcpu
);
4436 } else if (vcpu
->arch
.pio
.count
) {
4437 if (!vcpu
->arch
.pio
.in
)
4438 vcpu
->arch
.pio
.count
= 0;
4439 r
= EMULATE_DO_MMIO
;
4440 } else if (vcpu
->mmio_needed
) {
4441 if (vcpu
->mmio_is_write
)
4442 vcpu
->mmio_needed
= 0;
4443 r
= EMULATE_DO_MMIO
;
4444 } else if (r
== EMULATION_RESTART
)
4449 toggle_interruptibility(vcpu
, vcpu
->arch
.emulate_ctxt
.interruptibility
);
4450 kvm_x86_ops
->set_rflags(vcpu
, vcpu
->arch
.emulate_ctxt
.eflags
);
4451 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
4452 memcpy(vcpu
->arch
.regs
, c
->regs
, sizeof c
->regs
);
4453 kvm_rip_write(vcpu
, vcpu
->arch
.emulate_ctxt
.eip
);
4457 EXPORT_SYMBOL_GPL(emulate_instruction
);
4459 int kvm_fast_pio_out(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
)
4461 unsigned long val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4462 int ret
= emulator_pio_out_emulated(size
, port
, &val
, 1, vcpu
);
4463 /* do not return to emulator after return from userspace */
4464 vcpu
->arch
.pio
.count
= 0;
4467 EXPORT_SYMBOL_GPL(kvm_fast_pio_out
);
4469 static void tsc_bad(void *info
)
4471 __get_cpu_var(cpu_tsc_khz
) = 0;
4474 static void tsc_khz_changed(void *data
)
4476 struct cpufreq_freqs
*freq
= data
;
4477 unsigned long khz
= 0;
4481 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
4482 khz
= cpufreq_quick_get(raw_smp_processor_id());
4485 __get_cpu_var(cpu_tsc_khz
) = khz
;
4488 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
4491 struct cpufreq_freqs
*freq
= data
;
4493 struct kvm_vcpu
*vcpu
;
4494 int i
, send_ipi
= 0;
4497 * We allow guests to temporarily run on slowing clocks,
4498 * provided we notify them after, or to run on accelerating
4499 * clocks, provided we notify them before. Thus time never
4502 * However, we have a problem. We can't atomically update
4503 * the frequency of a given CPU from this function; it is
4504 * merely a notifier, which can be called from any CPU.
4505 * Changing the TSC frequency at arbitrary points in time
4506 * requires a recomputation of local variables related to
4507 * the TSC for each VCPU. We must flag these local variables
4508 * to be updated and be sure the update takes place with the
4509 * new frequency before any guests proceed.
4511 * Unfortunately, the combination of hotplug CPU and frequency
4512 * change creates an intractable locking scenario; the order
4513 * of when these callouts happen is undefined with respect to
4514 * CPU hotplug, and they can race with each other. As such,
4515 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4516 * undefined; you can actually have a CPU frequency change take
4517 * place in between the computation of X and the setting of the
4518 * variable. To protect against this problem, all updates of
4519 * the per_cpu tsc_khz variable are done in an interrupt
4520 * protected IPI, and all callers wishing to update the value
4521 * must wait for a synchronous IPI to complete (which is trivial
4522 * if the caller is on the CPU already). This establishes the
4523 * necessary total order on variable updates.
4525 * Note that because a guest time update may take place
4526 * anytime after the setting of the VCPU's request bit, the
4527 * correct TSC value must be set before the request. However,
4528 * to ensure the update actually makes it to any guest which
4529 * starts running in hardware virtualization between the set
4530 * and the acquisition of the spinlock, we must also ping the
4531 * CPU after setting the request bit.
4535 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
4537 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
4540 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
4542 spin_lock(&kvm_lock
);
4543 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
4544 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
4545 if (vcpu
->cpu
!= freq
->cpu
)
4547 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
4548 if (vcpu
->cpu
!= smp_processor_id())
4552 spin_unlock(&kvm_lock
);
4554 if (freq
->old
< freq
->new && send_ipi
) {
4556 * We upscale the frequency. Must make the guest
4557 * doesn't see old kvmclock values while running with
4558 * the new frequency, otherwise we risk the guest sees
4559 * time go backwards.
4561 * In case we update the frequency for another cpu
4562 * (which might be in guest context) send an interrupt
4563 * to kick the cpu out of guest context. Next time
4564 * guest context is entered kvmclock will be updated,
4565 * so the guest will not see stale values.
4567 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
4572 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
4573 .notifier_call
= kvmclock_cpufreq_notifier
4576 static int kvmclock_cpu_notifier(struct notifier_block
*nfb
,
4577 unsigned long action
, void *hcpu
)
4579 unsigned int cpu
= (unsigned long)hcpu
;
4583 case CPU_DOWN_FAILED
:
4584 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
4586 case CPU_DOWN_PREPARE
:
4587 smp_call_function_single(cpu
, tsc_bad
, NULL
, 1);
4593 static struct notifier_block kvmclock_cpu_notifier_block
= {
4594 .notifier_call
= kvmclock_cpu_notifier
,
4595 .priority
= -INT_MAX
4598 static void kvm_timer_init(void)
4602 max_tsc_khz
= tsc_khz
;
4603 register_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
4604 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
4605 #ifdef CONFIG_CPU_FREQ
4606 struct cpufreq_policy policy
;
4607 memset(&policy
, 0, sizeof(policy
));
4608 cpufreq_get_policy(&policy
, get_cpu());
4609 if (policy
.cpuinfo
.max_freq
)
4610 max_tsc_khz
= policy
.cpuinfo
.max_freq
;
4612 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
4613 CPUFREQ_TRANSITION_NOTIFIER
);
4615 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz
);
4616 for_each_online_cpu(cpu
)
4617 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
4620 static DEFINE_PER_CPU(struct kvm_vcpu
*, current_vcpu
);
4622 static int kvm_is_in_guest(void)
4624 return percpu_read(current_vcpu
) != NULL
;
4627 static int kvm_is_user_mode(void)
4631 if (percpu_read(current_vcpu
))
4632 user_mode
= kvm_x86_ops
->get_cpl(percpu_read(current_vcpu
));
4634 return user_mode
!= 0;
4637 static unsigned long kvm_get_guest_ip(void)
4639 unsigned long ip
= 0;
4641 if (percpu_read(current_vcpu
))
4642 ip
= kvm_rip_read(percpu_read(current_vcpu
));
4647 static struct perf_guest_info_callbacks kvm_guest_cbs
= {
4648 .is_in_guest
= kvm_is_in_guest
,
4649 .is_user_mode
= kvm_is_user_mode
,
4650 .get_guest_ip
= kvm_get_guest_ip
,
4653 void kvm_before_handle_nmi(struct kvm_vcpu
*vcpu
)
4655 percpu_write(current_vcpu
, vcpu
);
4657 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi
);
4659 void kvm_after_handle_nmi(struct kvm_vcpu
*vcpu
)
4661 percpu_write(current_vcpu
, NULL
);
4663 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi
);
4665 int kvm_arch_init(void *opaque
)
4668 struct kvm_x86_ops
*ops
= (struct kvm_x86_ops
*)opaque
;
4671 printk(KERN_ERR
"kvm: already loaded the other module\n");
4676 if (!ops
->cpu_has_kvm_support()) {
4677 printk(KERN_ERR
"kvm: no hardware support\n");
4681 if (ops
->disabled_by_bios()) {
4682 printk(KERN_ERR
"kvm: disabled by bios\n");
4687 r
= kvm_mmu_module_init();
4691 kvm_init_msr_list();
4694 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4695 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
4696 PT_DIRTY_MASK
, PT64_NX_MASK
, 0);
4700 perf_register_guest_info_callbacks(&kvm_guest_cbs
);
4703 host_xcr0
= xgetbv(XCR_XFEATURE_ENABLED_MASK
);
4711 void kvm_arch_exit(void)
4713 perf_unregister_guest_info_callbacks(&kvm_guest_cbs
);
4715 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
4716 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
4717 CPUFREQ_TRANSITION_NOTIFIER
);
4718 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
4720 kvm_mmu_module_exit();
4723 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
4725 ++vcpu
->stat
.halt_exits
;
4726 if (irqchip_in_kernel(vcpu
->kvm
)) {
4727 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
4730 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
4734 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
4736 static inline gpa_t
hc_gpa(struct kvm_vcpu
*vcpu
, unsigned long a0
,
4739 if (is_long_mode(vcpu
))
4742 return a0
| ((gpa_t
)a1
<< 32);
4745 int kvm_hv_hypercall(struct kvm_vcpu
*vcpu
)
4747 u64 param
, ingpa
, outgpa
, ret
;
4748 uint16_t code
, rep_idx
, rep_cnt
, res
= HV_STATUS_SUCCESS
, rep_done
= 0;
4749 bool fast
, longmode
;
4753 * hypercall generates UD from non zero cpl and real mode
4756 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 || !is_protmode(vcpu
)) {
4757 kvm_queue_exception(vcpu
, UD_VECTOR
);
4761 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
4762 longmode
= is_long_mode(vcpu
) && cs_l
== 1;
4765 param
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDX
) << 32) |
4766 (kvm_register_read(vcpu
, VCPU_REGS_RAX
) & 0xffffffff);
4767 ingpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RBX
) << 32) |
4768 (kvm_register_read(vcpu
, VCPU_REGS_RCX
) & 0xffffffff);
4769 outgpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDI
) << 32) |
4770 (kvm_register_read(vcpu
, VCPU_REGS_RSI
) & 0xffffffff);
4772 #ifdef CONFIG_X86_64
4774 param
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
4775 ingpa
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
4776 outgpa
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
4780 code
= param
& 0xffff;
4781 fast
= (param
>> 16) & 0x1;
4782 rep_cnt
= (param
>> 32) & 0xfff;
4783 rep_idx
= (param
>> 48) & 0xfff;
4785 trace_kvm_hv_hypercall(code
, fast
, rep_cnt
, rep_idx
, ingpa
, outgpa
);
4788 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT
:
4789 kvm_vcpu_on_spin(vcpu
);
4792 res
= HV_STATUS_INVALID_HYPERCALL_CODE
;
4796 ret
= res
| (((u64
)rep_done
& 0xfff) << 32);
4798 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
4800 kvm_register_write(vcpu
, VCPU_REGS_RDX
, ret
>> 32);
4801 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
& 0xffffffff);
4807 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
4809 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
4812 if (kvm_hv_hypercall_enabled(vcpu
->kvm
))
4813 return kvm_hv_hypercall(vcpu
);
4815 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4816 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
4817 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
4818 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
4819 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
4821 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
4823 if (!is_long_mode(vcpu
)) {
4831 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
4837 case KVM_HC_VAPIC_POLL_IRQ
:
4841 r
= kvm_pv_mmu_op(vcpu
, a0
, hc_gpa(vcpu
, a1
, a2
), &ret
);
4848 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
4849 ++vcpu
->stat
.hypercalls
;
4852 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
4854 int kvm_fix_hypercall(struct kvm_vcpu
*vcpu
)
4856 char instruction
[3];
4857 unsigned long rip
= kvm_rip_read(vcpu
);
4860 * Blow out the MMU to ensure that no other VCPU has an active mapping
4861 * to ensure that the updated hypercall appears atomically across all
4864 kvm_mmu_zap_all(vcpu
->kvm
);
4866 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
4868 return emulator_write_emulated(rip
, instruction
, 3, NULL
, vcpu
);
4871 void realmode_lgdt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
4873 struct desc_ptr dt
= { limit
, base
};
4875 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
4878 void realmode_lidt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
4880 struct desc_ptr dt
= { limit
, base
};
4882 kvm_x86_ops
->set_idt(vcpu
, &dt
);
4885 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu
*vcpu
, int i
)
4887 struct kvm_cpuid_entry2
*e
= &vcpu
->arch
.cpuid_entries
[i
];
4888 int j
, nent
= vcpu
->arch
.cpuid_nent
;
4890 e
->flags
&= ~KVM_CPUID_FLAG_STATE_READ_NEXT
;
4891 /* when no next entry is found, the current entry[i] is reselected */
4892 for (j
= i
+ 1; ; j
= (j
+ 1) % nent
) {
4893 struct kvm_cpuid_entry2
*ej
= &vcpu
->arch
.cpuid_entries
[j
];
4894 if (ej
->function
== e
->function
) {
4895 ej
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
4899 return 0; /* silence gcc, even though control never reaches here */
4902 /* find an entry with matching function, matching index (if needed), and that
4903 * should be read next (if it's stateful) */
4904 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2
*e
,
4905 u32 function
, u32 index
)
4907 if (e
->function
!= function
)
4909 if ((e
->flags
& KVM_CPUID_FLAG_SIGNIFCANT_INDEX
) && e
->index
!= index
)
4911 if ((e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
) &&
4912 !(e
->flags
& KVM_CPUID_FLAG_STATE_READ_NEXT
))
4917 struct kvm_cpuid_entry2
*kvm_find_cpuid_entry(struct kvm_vcpu
*vcpu
,
4918 u32 function
, u32 index
)
4921 struct kvm_cpuid_entry2
*best
= NULL
;
4923 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
4924 struct kvm_cpuid_entry2
*e
;
4926 e
= &vcpu
->arch
.cpuid_entries
[i
];
4927 if (is_matching_cpuid_entry(e
, function
, index
)) {
4928 if (e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
)
4929 move_to_next_stateful_cpuid_entry(vcpu
, i
);
4934 * Both basic or both extended?
4936 if (((e
->function
^ function
) & 0x80000000) == 0)
4937 if (!best
|| e
->function
> best
->function
)
4942 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry
);
4944 int cpuid_maxphyaddr(struct kvm_vcpu
*vcpu
)
4946 struct kvm_cpuid_entry2
*best
;
4948 best
= kvm_find_cpuid_entry(vcpu
, 0x80000000, 0);
4949 if (!best
|| best
->eax
< 0x80000008)
4951 best
= kvm_find_cpuid_entry(vcpu
, 0x80000008, 0);
4953 return best
->eax
& 0xff;
4958 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
4960 u32 function
, index
;
4961 struct kvm_cpuid_entry2
*best
;
4963 function
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4964 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
4965 kvm_register_write(vcpu
, VCPU_REGS_RAX
, 0);
4966 kvm_register_write(vcpu
, VCPU_REGS_RBX
, 0);
4967 kvm_register_write(vcpu
, VCPU_REGS_RCX
, 0);
4968 kvm_register_write(vcpu
, VCPU_REGS_RDX
, 0);
4969 best
= kvm_find_cpuid_entry(vcpu
, function
, index
);
4971 kvm_register_write(vcpu
, VCPU_REGS_RAX
, best
->eax
);
4972 kvm_register_write(vcpu
, VCPU_REGS_RBX
, best
->ebx
);
4973 kvm_register_write(vcpu
, VCPU_REGS_RCX
, best
->ecx
);
4974 kvm_register_write(vcpu
, VCPU_REGS_RDX
, best
->edx
);
4976 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
4977 trace_kvm_cpuid(function
,
4978 kvm_register_read(vcpu
, VCPU_REGS_RAX
),
4979 kvm_register_read(vcpu
, VCPU_REGS_RBX
),
4980 kvm_register_read(vcpu
, VCPU_REGS_RCX
),
4981 kvm_register_read(vcpu
, VCPU_REGS_RDX
));
4983 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);
4986 * Check if userspace requested an interrupt window, and that the
4987 * interrupt window is open.
4989 * No need to exit to userspace if we already have an interrupt queued.
4991 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
)
4993 return (!irqchip_in_kernel(vcpu
->kvm
) && !kvm_cpu_has_interrupt(vcpu
) &&
4994 vcpu
->run
->request_interrupt_window
&&
4995 kvm_arch_interrupt_allowed(vcpu
));
4998 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
)
5000 struct kvm_run
*kvm_run
= vcpu
->run
;
5002 kvm_run
->if_flag
= (kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
5003 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
5004 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
5005 if (irqchip_in_kernel(vcpu
->kvm
))
5006 kvm_run
->ready_for_interrupt_injection
= 1;
5008 kvm_run
->ready_for_interrupt_injection
=
5009 kvm_arch_interrupt_allowed(vcpu
) &&
5010 !kvm_cpu_has_interrupt(vcpu
) &&
5011 !kvm_event_needs_reinjection(vcpu
);
5014 static void vapic_enter(struct kvm_vcpu
*vcpu
)
5016 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
5019 if (!apic
|| !apic
->vapic_addr
)
5022 page
= gfn_to_page(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
5024 vcpu
->arch
.apic
->vapic_page
= page
;
5027 static void vapic_exit(struct kvm_vcpu
*vcpu
)
5029 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
5032 if (!apic
|| !apic
->vapic_addr
)
5035 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5036 kvm_release_page_dirty(apic
->vapic_page
);
5037 mark_page_dirty(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
5038 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
5041 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
5045 if (!kvm_x86_ops
->update_cr8_intercept
)
5048 if (!vcpu
->arch
.apic
)
5051 if (!vcpu
->arch
.apic
->vapic_addr
)
5052 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
5059 tpr
= kvm_lapic_get_cr8(vcpu
);
5061 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
5064 static void inject_pending_event(struct kvm_vcpu
*vcpu
)
5066 /* try to reinject previous events if any */
5067 if (vcpu
->arch
.exception
.pending
) {
5068 trace_kvm_inj_exception(vcpu
->arch
.exception
.nr
,
5069 vcpu
->arch
.exception
.has_error_code
,
5070 vcpu
->arch
.exception
.error_code
);
5071 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
5072 vcpu
->arch
.exception
.has_error_code
,
5073 vcpu
->arch
.exception
.error_code
,
5074 vcpu
->arch
.exception
.reinject
);
5078 if (vcpu
->arch
.nmi_injected
) {
5079 kvm_x86_ops
->set_nmi(vcpu
);
5083 if (vcpu
->arch
.interrupt
.pending
) {
5084 kvm_x86_ops
->set_irq(vcpu
);
5088 /* try to inject new event if pending */
5089 if (vcpu
->arch
.nmi_pending
) {
5090 if (kvm_x86_ops
->nmi_allowed(vcpu
)) {
5091 vcpu
->arch
.nmi_pending
= false;
5092 vcpu
->arch
.nmi_injected
= true;
5093 kvm_x86_ops
->set_nmi(vcpu
);
5095 } else if (kvm_cpu_has_interrupt(vcpu
)) {
5096 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
5097 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
5099 kvm_x86_ops
->set_irq(vcpu
);
5104 static void kvm_load_guest_xcr0(struct kvm_vcpu
*vcpu
)
5106 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
) &&
5107 !vcpu
->guest_xcr0_loaded
) {
5108 /* kvm_set_xcr() also depends on this */
5109 xsetbv(XCR_XFEATURE_ENABLED_MASK
, vcpu
->arch
.xcr0
);
5110 vcpu
->guest_xcr0_loaded
= 1;
5114 static void kvm_put_guest_xcr0(struct kvm_vcpu
*vcpu
)
5116 if (vcpu
->guest_xcr0_loaded
) {
5117 if (vcpu
->arch
.xcr0
!= host_xcr0
)
5118 xsetbv(XCR_XFEATURE_ENABLED_MASK
, host_xcr0
);
5119 vcpu
->guest_xcr0_loaded
= 0;
5123 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
)
5126 bool req_int_win
= !irqchip_in_kernel(vcpu
->kvm
) &&
5127 vcpu
->run
->request_interrupt_window
;
5129 if (vcpu
->requests
) {
5130 if (kvm_check_request(KVM_REQ_MMU_RELOAD
, vcpu
))
5131 kvm_mmu_unload(vcpu
);
5132 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER
, vcpu
))
5133 __kvm_migrate_timers(vcpu
);
5134 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE
, vcpu
)) {
5135 r
= kvm_guest_time_update(vcpu
);
5139 if (kvm_check_request(KVM_REQ_MMU_SYNC
, vcpu
))
5140 kvm_mmu_sync_roots(vcpu
);
5141 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
))
5142 kvm_x86_ops
->tlb_flush(vcpu
);
5143 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
)) {
5144 vcpu
->run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
5148 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
5149 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
5153 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
)) {
5154 vcpu
->fpu_active
= 0;
5155 kvm_x86_ops
->fpu_deactivate(vcpu
);
5157 if (kvm_check_request(KVM_REQ_APF_HALT
, vcpu
)) {
5158 /* Page is swapped out. Do synthetic halt */
5159 vcpu
->arch
.apf
.halted
= true;
5165 r
= kvm_mmu_reload(vcpu
);
5169 if (kvm_check_request(KVM_REQ_EVENT
, vcpu
) || req_int_win
) {
5170 inject_pending_event(vcpu
);
5172 /* enable NMI/IRQ window open exits if needed */
5173 if (vcpu
->arch
.nmi_pending
)
5174 kvm_x86_ops
->enable_nmi_window(vcpu
);
5175 else if (kvm_cpu_has_interrupt(vcpu
) || req_int_win
)
5176 kvm_x86_ops
->enable_irq_window(vcpu
);
5178 if (kvm_lapic_enabled(vcpu
)) {
5179 update_cr8_intercept(vcpu
);
5180 kvm_lapic_sync_to_vapic(vcpu
);
5186 kvm_x86_ops
->prepare_guest_switch(vcpu
);
5187 if (vcpu
->fpu_active
)
5188 kvm_load_guest_fpu(vcpu
);
5189 kvm_load_guest_xcr0(vcpu
);
5191 atomic_set(&vcpu
->guest_mode
, 1);
5194 local_irq_disable();
5196 if (!atomic_read(&vcpu
->guest_mode
) || vcpu
->requests
5197 || need_resched() || signal_pending(current
)) {
5198 atomic_set(&vcpu
->guest_mode
, 0);
5202 kvm_x86_ops
->cancel_injection(vcpu
);
5207 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
5211 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
5213 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
5214 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
5215 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
5216 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
5219 trace_kvm_entry(vcpu
->vcpu_id
);
5220 kvm_x86_ops
->run(vcpu
);
5223 * If the guest has used debug registers, at least dr7
5224 * will be disabled while returning to the host.
5225 * If we don't have active breakpoints in the host, we don't
5226 * care about the messed up debug address registers. But if
5227 * we have some of them active, restore the old state.
5229 if (hw_breakpoint_active())
5230 hw_breakpoint_restore();
5232 kvm_get_msr(vcpu
, MSR_IA32_TSC
, &vcpu
->arch
.last_guest_tsc
);
5234 atomic_set(&vcpu
->guest_mode
, 0);
5241 * We must have an instruction between local_irq_enable() and
5242 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5243 * the interrupt shadow. The stat.exits increment will do nicely.
5244 * But we need to prevent reordering, hence this barrier():
5252 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5255 * Profile KVM exit RIPs:
5257 if (unlikely(prof_on
== KVM_PROFILING
)) {
5258 unsigned long rip
= kvm_rip_read(vcpu
);
5259 profile_hit(KVM_PROFILING
, (void *)rip
);
5263 kvm_lapic_sync_from_vapic(vcpu
);
5265 r
= kvm_x86_ops
->handle_exit(vcpu
);
5271 static int __vcpu_run(struct kvm_vcpu
*vcpu
)
5274 struct kvm
*kvm
= vcpu
->kvm
;
5276 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
)) {
5277 pr_debug("vcpu %d received sipi with vector # %x\n",
5278 vcpu
->vcpu_id
, vcpu
->arch
.sipi_vector
);
5279 kvm_lapic_reset(vcpu
);
5280 r
= kvm_arch_vcpu_reset(vcpu
);
5283 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
5286 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
5291 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
5292 !vcpu
->arch
.apf
.halted
)
5293 r
= vcpu_enter_guest(vcpu
);
5295 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
5296 kvm_vcpu_block(vcpu
);
5297 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
5298 if (kvm_check_request(KVM_REQ_UNHALT
, vcpu
))
5300 switch(vcpu
->arch
.mp_state
) {
5301 case KVM_MP_STATE_HALTED
:
5302 vcpu
->arch
.mp_state
=
5303 KVM_MP_STATE_RUNNABLE
;
5304 case KVM_MP_STATE_RUNNABLE
:
5305 vcpu
->arch
.apf
.halted
= false;
5307 case KVM_MP_STATE_SIPI_RECEIVED
:
5318 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
5319 if (kvm_cpu_has_pending_timer(vcpu
))
5320 kvm_inject_pending_timer_irqs(vcpu
);
5322 if (dm_request_for_irq_injection(vcpu
)) {
5324 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
5325 ++vcpu
->stat
.request_irq_exits
;
5328 kvm_check_async_pf_completion(vcpu
);
5330 if (signal_pending(current
)) {
5332 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
5333 ++vcpu
->stat
.signal_exits
;
5335 if (need_resched()) {
5336 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
5338 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
5342 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
5349 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
5354 if (vcpu
->sigset_active
)
5355 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
5357 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
5358 kvm_vcpu_block(vcpu
);
5359 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
5364 /* re-sync apic's tpr */
5365 if (!irqchip_in_kernel(vcpu
->kvm
))
5366 kvm_set_cr8(vcpu
, kvm_run
->cr8
);
5368 if (vcpu
->arch
.pio
.count
|| vcpu
->mmio_needed
) {
5369 if (vcpu
->mmio_needed
) {
5370 memcpy(vcpu
->mmio_data
, kvm_run
->mmio
.data
, 8);
5371 vcpu
->mmio_read_completed
= 1;
5372 vcpu
->mmio_needed
= 0;
5374 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5375 r
= emulate_instruction(vcpu
, 0, 0, EMULTYPE_NO_DECODE
);
5376 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
5377 if (r
!= EMULATE_DONE
) {
5382 if (kvm_run
->exit_reason
== KVM_EXIT_HYPERCALL
)
5383 kvm_register_write(vcpu
, VCPU_REGS_RAX
,
5384 kvm_run
->hypercall
.ret
);
5386 r
= __vcpu_run(vcpu
);
5389 post_kvm_run_save(vcpu
);
5390 if (vcpu
->sigset_active
)
5391 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
5396 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
5398 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5399 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
5400 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5401 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5402 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
5403 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
5404 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
5405 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
5406 #ifdef CONFIG_X86_64
5407 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
5408 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
5409 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
5410 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
5411 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
5412 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
5413 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
5414 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
5417 regs
->rip
= kvm_rip_read(vcpu
);
5418 regs
->rflags
= kvm_get_rflags(vcpu
);
5423 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
5425 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
5426 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
5427 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
5428 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
5429 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
5430 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
5431 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
5432 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
5433 #ifdef CONFIG_X86_64
5434 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
5435 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
5436 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
5437 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
5438 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
5439 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
5440 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
5441 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
5444 kvm_rip_write(vcpu
, regs
->rip
);
5445 kvm_set_rflags(vcpu
, regs
->rflags
);
5447 vcpu
->arch
.exception
.pending
= false;
5449 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5454 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
5456 struct kvm_segment cs
;
5458 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
5462 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
5464 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
5465 struct kvm_sregs
*sregs
)
5469 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
5470 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
5471 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
5472 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
5473 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
5474 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
5476 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
5477 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
5479 kvm_x86_ops
->get_idt(vcpu
, &dt
);
5480 sregs
->idt
.limit
= dt
.size
;
5481 sregs
->idt
.base
= dt
.address
;
5482 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
5483 sregs
->gdt
.limit
= dt
.size
;
5484 sregs
->gdt
.base
= dt
.address
;
5486 sregs
->cr0
= kvm_read_cr0(vcpu
);
5487 sregs
->cr2
= vcpu
->arch
.cr2
;
5488 sregs
->cr3
= vcpu
->arch
.cr3
;
5489 sregs
->cr4
= kvm_read_cr4(vcpu
);
5490 sregs
->cr8
= kvm_get_cr8(vcpu
);
5491 sregs
->efer
= vcpu
->arch
.efer
;
5492 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
5494 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
5496 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
5497 set_bit(vcpu
->arch
.interrupt
.nr
,
5498 (unsigned long *)sregs
->interrupt_bitmap
);
5503 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
5504 struct kvm_mp_state
*mp_state
)
5506 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
5510 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
5511 struct kvm_mp_state
*mp_state
)
5513 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
5514 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5518 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int reason
,
5519 bool has_error_code
, u32 error_code
)
5521 struct decode_cache
*c
= &vcpu
->arch
.emulate_ctxt
.decode
;
5524 init_emulate_ctxt(vcpu
);
5526 ret
= emulator_task_switch(&vcpu
->arch
.emulate_ctxt
,
5527 tss_selector
, reason
, has_error_code
,
5531 return EMULATE_FAIL
;
5533 memcpy(vcpu
->arch
.regs
, c
->regs
, sizeof c
->regs
);
5534 kvm_rip_write(vcpu
, vcpu
->arch
.emulate_ctxt
.eip
);
5535 kvm_x86_ops
->set_rflags(vcpu
, vcpu
->arch
.emulate_ctxt
.eflags
);
5536 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5537 return EMULATE_DONE
;
5539 EXPORT_SYMBOL_GPL(kvm_task_switch
);
5541 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
5542 struct kvm_sregs
*sregs
)
5544 int mmu_reset_needed
= 0;
5545 int pending_vec
, max_bits
;
5548 dt
.size
= sregs
->idt
.limit
;
5549 dt
.address
= sregs
->idt
.base
;
5550 kvm_x86_ops
->set_idt(vcpu
, &dt
);
5551 dt
.size
= sregs
->gdt
.limit
;
5552 dt
.address
= sregs
->gdt
.base
;
5553 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
5555 vcpu
->arch
.cr2
= sregs
->cr2
;
5556 mmu_reset_needed
|= vcpu
->arch
.cr3
!= sregs
->cr3
;
5557 vcpu
->arch
.cr3
= sregs
->cr3
;
5559 kvm_set_cr8(vcpu
, sregs
->cr8
);
5561 mmu_reset_needed
|= vcpu
->arch
.efer
!= sregs
->efer
;
5562 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
5563 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
5565 mmu_reset_needed
|= kvm_read_cr0(vcpu
) != sregs
->cr0
;
5566 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
5567 vcpu
->arch
.cr0
= sregs
->cr0
;
5569 mmu_reset_needed
|= kvm_read_cr4(vcpu
) != sregs
->cr4
;
5570 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
5571 if (!is_long_mode(vcpu
) && is_pae(vcpu
)) {
5572 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, vcpu
->arch
.cr3
);
5573 mmu_reset_needed
= 1;
5576 if (mmu_reset_needed
)
5577 kvm_mmu_reset_context(vcpu
);
5579 max_bits
= (sizeof sregs
->interrupt_bitmap
) << 3;
5580 pending_vec
= find_first_bit(
5581 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
5582 if (pending_vec
< max_bits
) {
5583 kvm_queue_interrupt(vcpu
, pending_vec
, false);
5584 pr_debug("Set back pending irq %d\n", pending_vec
);
5585 if (irqchip_in_kernel(vcpu
->kvm
))
5586 kvm_pic_clear_isr_ack(vcpu
->kvm
);
5589 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
5590 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
5591 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
5592 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
5593 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
5594 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
5596 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
5597 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
5599 update_cr8_intercept(vcpu
);
5601 /* Older userspace won't unhalt the vcpu on reset. */
5602 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
5603 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
5605 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
5607 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5612 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
5613 struct kvm_guest_debug
*dbg
)
5615 unsigned long rflags
;
5618 if (dbg
->control
& (KVM_GUESTDBG_INJECT_DB
| KVM_GUESTDBG_INJECT_BP
)) {
5620 if (vcpu
->arch
.exception
.pending
)
5622 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
5623 kvm_queue_exception(vcpu
, DB_VECTOR
);
5625 kvm_queue_exception(vcpu
, BP_VECTOR
);
5629 * Read rflags as long as potentially injected trace flags are still
5632 rflags
= kvm_get_rflags(vcpu
);
5634 vcpu
->guest_debug
= dbg
->control
;
5635 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
5636 vcpu
->guest_debug
= 0;
5638 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
5639 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
5640 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
5641 vcpu
->arch
.switch_db_regs
=
5642 (dbg
->arch
.debugreg
[7] & DR7_BP_EN_MASK
);
5644 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
5645 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
5646 vcpu
->arch
.switch_db_regs
= (vcpu
->arch
.dr7
& DR7_BP_EN_MASK
);
5649 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
5650 vcpu
->arch
.singlestep_rip
= kvm_rip_read(vcpu
) +
5651 get_segment_base(vcpu
, VCPU_SREG_CS
);
5654 * Trigger an rflags update that will inject or remove the trace
5657 kvm_set_rflags(vcpu
, rflags
);
5659 kvm_x86_ops
->set_guest_debug(vcpu
, dbg
);
5669 * Translate a guest virtual address to a guest physical address.
5671 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
5672 struct kvm_translation
*tr
)
5674 unsigned long vaddr
= tr
->linear_address
;
5678 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5679 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
5680 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
5681 tr
->physical_address
= gpa
;
5682 tr
->valid
= gpa
!= UNMAPPED_GVA
;
5689 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
5691 struct i387_fxsave_struct
*fxsave
=
5692 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
5694 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
5695 fpu
->fcw
= fxsave
->cwd
;
5696 fpu
->fsw
= fxsave
->swd
;
5697 fpu
->ftwx
= fxsave
->twd
;
5698 fpu
->last_opcode
= fxsave
->fop
;
5699 fpu
->last_ip
= fxsave
->rip
;
5700 fpu
->last_dp
= fxsave
->rdp
;
5701 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
5706 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
5708 struct i387_fxsave_struct
*fxsave
=
5709 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
5711 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
5712 fxsave
->cwd
= fpu
->fcw
;
5713 fxsave
->swd
= fpu
->fsw
;
5714 fxsave
->twd
= fpu
->ftwx
;
5715 fxsave
->fop
= fpu
->last_opcode
;
5716 fxsave
->rip
= fpu
->last_ip
;
5717 fxsave
->rdp
= fpu
->last_dp
;
5718 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
5723 int fx_init(struct kvm_vcpu
*vcpu
)
5727 err
= fpu_alloc(&vcpu
->arch
.guest_fpu
);
5731 fpu_finit(&vcpu
->arch
.guest_fpu
);
5734 * Ensure guest xcr0 is valid for loading
5736 vcpu
->arch
.xcr0
= XSTATE_FP
;
5738 vcpu
->arch
.cr0
|= X86_CR0_ET
;
5742 EXPORT_SYMBOL_GPL(fx_init
);
5744 static void fx_free(struct kvm_vcpu
*vcpu
)
5746 fpu_free(&vcpu
->arch
.guest_fpu
);
5749 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
5751 if (vcpu
->guest_fpu_loaded
)
5755 * Restore all possible states in the guest,
5756 * and assume host would use all available bits.
5757 * Guest xcr0 would be loaded later.
5759 kvm_put_guest_xcr0(vcpu
);
5760 vcpu
->guest_fpu_loaded
= 1;
5761 unlazy_fpu(current
);
5762 fpu_restore_checking(&vcpu
->arch
.guest_fpu
);
5766 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
5768 kvm_put_guest_xcr0(vcpu
);
5770 if (!vcpu
->guest_fpu_loaded
)
5773 vcpu
->guest_fpu_loaded
= 0;
5774 fpu_save_init(&vcpu
->arch
.guest_fpu
);
5775 ++vcpu
->stat
.fpu_reload
;
5776 kvm_make_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
);
5780 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
5782 if (vcpu
->arch
.time_page
) {
5783 kvm_release_page_dirty(vcpu
->arch
.time_page
);
5784 vcpu
->arch
.time_page
= NULL
;
5787 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
5789 kvm_x86_ops
->vcpu_free(vcpu
);
5792 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
5795 if (check_tsc_unstable() && atomic_read(&kvm
->online_vcpus
) != 0)
5796 printk_once(KERN_WARNING
5797 "kvm: SMP vm created on host with unstable TSC; "
5798 "guest TSC will not be reliable\n");
5799 return kvm_x86_ops
->vcpu_create(kvm
, id
);
5802 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
5806 vcpu
->arch
.mtrr_state
.have_fixed
= 1;
5808 r
= kvm_arch_vcpu_reset(vcpu
);
5810 r
= kvm_mmu_setup(vcpu
);
5817 kvm_x86_ops
->vcpu_free(vcpu
);
5821 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
5823 vcpu
->arch
.apf
.msr_val
= 0;
5826 kvm_mmu_unload(vcpu
);
5830 kvm_x86_ops
->vcpu_free(vcpu
);
5833 int kvm_arch_vcpu_reset(struct kvm_vcpu
*vcpu
)
5835 vcpu
->arch
.nmi_pending
= false;
5836 vcpu
->arch
.nmi_injected
= false;
5838 vcpu
->arch
.switch_db_regs
= 0;
5839 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
5840 vcpu
->arch
.dr6
= DR6_FIXED_1
;
5841 vcpu
->arch
.dr7
= DR7_FIXED_1
;
5843 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5844 vcpu
->arch
.apf
.msr_val
= 0;
5846 kvm_clear_async_pf_completion_queue(vcpu
);
5847 kvm_async_pf_hash_reset(vcpu
);
5848 vcpu
->arch
.apf
.halted
= false;
5850 return kvm_x86_ops
->vcpu_reset(vcpu
);
5853 int kvm_arch_hardware_enable(void *garbage
)
5856 struct kvm_vcpu
*vcpu
;
5859 kvm_shared_msr_cpu_online();
5860 list_for_each_entry(kvm
, &vm_list
, vm_list
)
5861 kvm_for_each_vcpu(i
, vcpu
, kvm
)
5862 if (vcpu
->cpu
== smp_processor_id())
5863 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
5864 return kvm_x86_ops
->hardware_enable(garbage
);
5867 void kvm_arch_hardware_disable(void *garbage
)
5869 kvm_x86_ops
->hardware_disable(garbage
);
5870 drop_user_return_notifiers(garbage
);
5873 int kvm_arch_hardware_setup(void)
5875 return kvm_x86_ops
->hardware_setup();
5878 void kvm_arch_hardware_unsetup(void)
5880 kvm_x86_ops
->hardware_unsetup();
5883 void kvm_arch_check_processor_compat(void *rtn
)
5885 kvm_x86_ops
->check_processor_compatibility(rtn
);
5888 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
5894 BUG_ON(vcpu
->kvm
== NULL
);
5897 vcpu
->arch
.emulate_ctxt
.ops
= &emulate_ops
;
5898 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
5899 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
5900 vcpu
->arch
.mmu
.translate_gpa
= translate_gpa
;
5901 vcpu
->arch
.nested_mmu
.translate_gpa
= translate_nested_gpa
;
5902 if (!irqchip_in_kernel(kvm
) || kvm_vcpu_is_bsp(vcpu
))
5903 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
5905 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
5907 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
5912 vcpu
->arch
.pio_data
= page_address(page
);
5914 if (!kvm
->arch
.virtual_tsc_khz
)
5915 kvm_arch_set_tsc_khz(kvm
, max_tsc_khz
);
5917 r
= kvm_mmu_create(vcpu
);
5919 goto fail_free_pio_data
;
5921 if (irqchip_in_kernel(kvm
)) {
5922 r
= kvm_create_lapic(vcpu
);
5924 goto fail_mmu_destroy
;
5927 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
5929 if (!vcpu
->arch
.mce_banks
) {
5931 goto fail_free_lapic
;
5933 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
5935 if (!zalloc_cpumask_var(&vcpu
->arch
.wbinvd_dirty_mask
, GFP_KERNEL
))
5936 goto fail_free_mce_banks
;
5938 kvm_async_pf_hash_reset(vcpu
);
5941 fail_free_mce_banks
:
5942 kfree(vcpu
->arch
.mce_banks
);
5944 kvm_free_lapic(vcpu
);
5946 kvm_mmu_destroy(vcpu
);
5948 free_page((unsigned long)vcpu
->arch
.pio_data
);
5953 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
5957 kfree(vcpu
->arch
.mce_banks
);
5958 kvm_free_lapic(vcpu
);
5959 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5960 kvm_mmu_destroy(vcpu
);
5961 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
5962 free_page((unsigned long)vcpu
->arch
.pio_data
);
5965 struct kvm
*kvm_arch_create_vm(void)
5967 struct kvm
*kvm
= kzalloc(sizeof(struct kvm
), GFP_KERNEL
);
5970 return ERR_PTR(-ENOMEM
);
5972 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
5973 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
5975 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5976 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
5978 spin_lock_init(&kvm
->arch
.tsc_write_lock
);
5983 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
5986 kvm_mmu_unload(vcpu
);
5990 static void kvm_free_vcpus(struct kvm
*kvm
)
5993 struct kvm_vcpu
*vcpu
;
5996 * Unpin any mmu pages first.
5998 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
5999 kvm_clear_async_pf_completion_queue(vcpu
);
6000 kvm_unload_vcpu_mmu(vcpu
);
6002 kvm_for_each_vcpu(i
, vcpu
, kvm
)
6003 kvm_arch_vcpu_free(vcpu
);
6005 mutex_lock(&kvm
->lock
);
6006 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
6007 kvm
->vcpus
[i
] = NULL
;
6009 atomic_set(&kvm
->online_vcpus
, 0);
6010 mutex_unlock(&kvm
->lock
);
6013 void kvm_arch_sync_events(struct kvm
*kvm
)
6015 kvm_free_all_assigned_devices(kvm
);
6019 void kvm_arch_destroy_vm(struct kvm
*kvm
)
6021 kvm_iommu_unmap_guest(kvm
);
6022 kfree(kvm
->arch
.vpic
);
6023 kfree(kvm
->arch
.vioapic
);
6024 kvm_free_vcpus(kvm
);
6025 kvm_free_physmem(kvm
);
6026 if (kvm
->arch
.apic_access_page
)
6027 put_page(kvm
->arch
.apic_access_page
);
6028 if (kvm
->arch
.ept_identity_pagetable
)
6029 put_page(kvm
->arch
.ept_identity_pagetable
);
6030 cleanup_srcu_struct(&kvm
->srcu
);
6034 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
6035 struct kvm_memory_slot
*memslot
,
6036 struct kvm_memory_slot old
,
6037 struct kvm_userspace_memory_region
*mem
,
6040 int npages
= memslot
->npages
;
6041 int map_flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
6043 /* Prevent internal slot pages from being moved by fork()/COW. */
6044 if (memslot
->id
>= KVM_MEMORY_SLOTS
)
6045 map_flags
= MAP_SHARED
| MAP_ANONYMOUS
;
6047 /*To keep backward compatibility with older userspace,
6048 *x86 needs to hanlde !user_alloc case.
6051 if (npages
&& !old
.rmap
) {
6052 unsigned long userspace_addr
;
6054 down_write(¤t
->mm
->mmap_sem
);
6055 userspace_addr
= do_mmap(NULL
, 0,
6057 PROT_READ
| PROT_WRITE
,
6060 up_write(¤t
->mm
->mmap_sem
);
6062 if (IS_ERR((void *)userspace_addr
))
6063 return PTR_ERR((void *)userspace_addr
);
6065 memslot
->userspace_addr
= userspace_addr
;
6073 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
6074 struct kvm_userspace_memory_region
*mem
,
6075 struct kvm_memory_slot old
,
6079 int npages
= mem
->memory_size
>> PAGE_SHIFT
;
6081 if (!user_alloc
&& !old
.user_alloc
&& old
.rmap
&& !npages
) {
6084 down_write(¤t
->mm
->mmap_sem
);
6085 ret
= do_munmap(current
->mm
, old
.userspace_addr
,
6086 old
.npages
* PAGE_SIZE
);
6087 up_write(¤t
->mm
->mmap_sem
);
6090 "kvm_vm_ioctl_set_memory_region: "
6091 "failed to munmap memory\n");
6094 spin_lock(&kvm
->mmu_lock
);
6095 if (!kvm
->arch
.n_requested_mmu_pages
) {
6096 unsigned int nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
6097 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
6100 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
6101 spin_unlock(&kvm
->mmu_lock
);
6104 void kvm_arch_flush_shadow(struct kvm
*kvm
)
6106 kvm_mmu_zap_all(kvm
);
6107 kvm_reload_remote_mmus(kvm
);
6110 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
6112 return (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
6113 !vcpu
->arch
.apf
.halted
)
6114 || !list_empty_careful(&vcpu
->async_pf
.done
)
6115 || vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
6116 || vcpu
->arch
.nmi_pending
||
6117 (kvm_arch_interrupt_allowed(vcpu
) &&
6118 kvm_cpu_has_interrupt(vcpu
));
6121 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
6124 int cpu
= vcpu
->cpu
;
6126 if (waitqueue_active(&vcpu
->wq
)) {
6127 wake_up_interruptible(&vcpu
->wq
);
6128 ++vcpu
->stat
.halt_wakeup
;
6132 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
6133 if (atomic_xchg(&vcpu
->guest_mode
, 0))
6134 smp_send_reschedule(cpu
);
6138 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
6140 return kvm_x86_ops
->interrupt_allowed(vcpu
);
6143 bool kvm_is_linear_rip(struct kvm_vcpu
*vcpu
, unsigned long linear_rip
)
6145 unsigned long current_rip
= kvm_rip_read(vcpu
) +
6146 get_segment_base(vcpu
, VCPU_SREG_CS
);
6148 return current_rip
== linear_rip
;
6150 EXPORT_SYMBOL_GPL(kvm_is_linear_rip
);
6152 unsigned long kvm_get_rflags(struct kvm_vcpu
*vcpu
)
6154 unsigned long rflags
;
6156 rflags
= kvm_x86_ops
->get_rflags(vcpu
);
6157 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
6158 rflags
&= ~X86_EFLAGS_TF
;
6161 EXPORT_SYMBOL_GPL(kvm_get_rflags
);
6163 void kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
6165 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
&&
6166 kvm_is_linear_rip(vcpu
, vcpu
->arch
.singlestep_rip
))
6167 rflags
|= X86_EFLAGS_TF
;
6168 kvm_x86_ops
->set_rflags(vcpu
, rflags
);
6169 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6171 EXPORT_SYMBOL_GPL(kvm_set_rflags
);
6173 void kvm_arch_async_page_ready(struct kvm_vcpu
*vcpu
, struct kvm_async_pf
*work
)
6177 if (!vcpu
->arch
.mmu
.direct_map
|| is_error_page(work
->page
))
6180 r
= kvm_mmu_reload(vcpu
);
6184 vcpu
->arch
.mmu
.page_fault(vcpu
, work
->gva
, 0, true);
6187 static inline u32
kvm_async_pf_hash_fn(gfn_t gfn
)
6189 return hash_32(gfn
& 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU
));
6192 static inline u32
kvm_async_pf_next_probe(u32 key
)
6194 return (key
+ 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU
) - 1);
6197 static void kvm_add_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6199 u32 key
= kvm_async_pf_hash_fn(gfn
);
6201 while (vcpu
->arch
.apf
.gfns
[key
] != ~0)
6202 key
= kvm_async_pf_next_probe(key
);
6204 vcpu
->arch
.apf
.gfns
[key
] = gfn
;
6207 static u32
kvm_async_pf_gfn_slot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6210 u32 key
= kvm_async_pf_hash_fn(gfn
);
6212 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
) &&
6213 (vcpu
->arch
.apf
.gfns
[key
] != gfn
||
6214 vcpu
->arch
.apf
.gfns
[key
] == ~0); i
++)
6215 key
= kvm_async_pf_next_probe(key
);
6220 bool kvm_find_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6222 return vcpu
->arch
.apf
.gfns
[kvm_async_pf_gfn_slot(vcpu
, gfn
)] == gfn
;
6225 static void kvm_del_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6229 i
= j
= kvm_async_pf_gfn_slot(vcpu
, gfn
);
6231 vcpu
->arch
.apf
.gfns
[i
] = ~0;
6233 j
= kvm_async_pf_next_probe(j
);
6234 if (vcpu
->arch
.apf
.gfns
[j
] == ~0)
6236 k
= kvm_async_pf_hash_fn(vcpu
->arch
.apf
.gfns
[j
]);
6238 * k lies cyclically in ]i,j]
6240 * |....j i.k.| or |.k..j i...|
6242 } while ((i
<= j
) ? (i
< k
&& k
<= j
) : (i
< k
|| k
<= j
));
6243 vcpu
->arch
.apf
.gfns
[i
] = vcpu
->arch
.apf
.gfns
[j
];
6248 static int apf_put_user(struct kvm_vcpu
*vcpu
, u32 val
)
6251 return kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, &val
,
6255 void kvm_arch_async_page_not_present(struct kvm_vcpu
*vcpu
,
6256 struct kvm_async_pf
*work
)
6258 trace_kvm_async_pf_not_present(work
->arch
.token
, work
->gva
);
6259 kvm_add_async_pf_gfn(vcpu
, work
->arch
.gfn
);
6261 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) ||
6262 (vcpu
->arch
.apf
.send_user_only
&&
6263 kvm_x86_ops
->get_cpl(vcpu
) == 0))
6264 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
6265 else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_NOT_PRESENT
)) {
6266 vcpu
->arch
.fault
.error_code
= 0;
6267 vcpu
->arch
.fault
.address
= work
->arch
.token
;
6268 kvm_inject_page_fault(vcpu
);
6272 void kvm_arch_async_page_present(struct kvm_vcpu
*vcpu
,
6273 struct kvm_async_pf
*work
)
6275 trace_kvm_async_pf_ready(work
->arch
.token
, work
->gva
);
6276 if (is_error_page(work
->page
))
6277 work
->arch
.token
= ~0; /* broadcast wakeup */
6279 kvm_del_async_pf_gfn(vcpu
, work
->arch
.gfn
);
6281 if ((vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) &&
6282 !apf_put_user(vcpu
, KVM_PV_REASON_PAGE_READY
)) {
6283 vcpu
->arch
.fault
.error_code
= 0;
6284 vcpu
->arch
.fault
.address
= work
->arch
.token
;
6285 kvm_inject_page_fault(vcpu
);
6289 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu
*vcpu
)
6291 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
))
6294 return !kvm_event_needs_reinjection(vcpu
) &&
6295 kvm_x86_ops
->interrupt_allowed(vcpu
);
6298 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
6299 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
6300 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
6301 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
6302 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);
6303 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun
);
6304 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit
);
6305 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject
);
6306 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit
);
6307 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga
);
6308 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit
);
6309 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts
);