Better interface for hooking early initcalls.
[linux-2.6/kmemtrace.git] / arch / mips / kernel / smtc.c
blob3e863186cd222944fcbf9b441dc7e10f140fcb18
1 /* Copyright (C) 2004 Mips Technologies, Inc */
3 #include <linux/clockchips.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/cpumask.h>
7 #include <linux/interrupt.h>
8 #include <linux/kernel_stat.h>
9 #include <linux/module.h>
11 #include <asm/cpu.h>
12 #include <asm/processor.h>
13 #include <asm/atomic.h>
14 #include <asm/system.h>
15 #include <asm/hardirq.h>
16 #include <asm/hazards.h>
17 #include <asm/irq.h>
18 #include <asm/mmu_context.h>
19 #include <asm/mipsregs.h>
20 #include <asm/cacheflush.h>
21 #include <asm/time.h>
22 #include <asm/addrspace.h>
23 #include <asm/smtc.h>
24 #include <asm/smtc_ipi.h>
25 #include <asm/smtc_proc.h>
28 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
29 * in do_IRQ. These are passed in setup_irq_smtc() and stored
30 * in this table.
32 unsigned long irq_hwmask[NR_IRQS];
34 #define LOCK_MT_PRA() \
35 local_irq_save(flags); \
36 mtflags = dmt()
38 #define UNLOCK_MT_PRA() \
39 emt(mtflags); \
40 local_irq_restore(flags)
42 #define LOCK_CORE_PRA() \
43 local_irq_save(flags); \
44 mtflags = dvpe()
46 #define UNLOCK_CORE_PRA() \
47 evpe(mtflags); \
48 local_irq_restore(flags)
51 * Data structures purely associated with SMTC parallelism
56 * Table for tracking ASIDs whose lifetime is prolonged.
59 asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
62 * Clock interrupt "latch" buffers, per "CPU"
65 static atomic_t ipi_timer_latch[NR_CPUS];
68 * Number of InterProcessor Interrupt (IPI) message buffers to allocate
71 #define IPIBUF_PER_CPU 4
73 static struct smtc_ipi_q IPIQ[NR_CPUS];
74 static struct smtc_ipi_q freeIPIq;
77 /* Forward declarations */
79 void ipi_decode(struct smtc_ipi *);
80 static void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
81 static void setup_cross_vpe_interrupts(unsigned int nvpe);
82 void init_smtc_stats(void);
84 /* Global SMTC Status */
86 unsigned int smtc_status = 0;
88 /* Boot command line configuration overrides */
90 static int vpe0limit;
91 static int ipibuffers = 0;
92 static int nostlb = 0;
93 static int asidmask = 0;
94 unsigned long smtc_asid_mask = 0xff;
96 static int __init vpe0tcs(char *str)
98 get_option(&str, &vpe0limit);
100 return 1;
103 static int __init ipibufs(char *str)
105 get_option(&str, &ipibuffers);
106 return 1;
109 static int __init stlb_disable(char *s)
111 nostlb = 1;
112 return 1;
115 static int __init asidmask_set(char *str)
117 get_option(&str, &asidmask);
118 switch (asidmask) {
119 case 0x1:
120 case 0x3:
121 case 0x7:
122 case 0xf:
123 case 0x1f:
124 case 0x3f:
125 case 0x7f:
126 case 0xff:
127 smtc_asid_mask = (unsigned long)asidmask;
128 break;
129 default:
130 printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
132 return 1;
135 __setup("vpe0tcs=", vpe0tcs);
136 __setup("ipibufs=", ipibufs);
137 __setup("nostlb", stlb_disable);
138 __setup("asidmask=", asidmask_set);
140 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
142 static int hang_trig = 0;
144 static int __init hangtrig_enable(char *s)
146 hang_trig = 1;
147 return 1;
151 __setup("hangtrig", hangtrig_enable);
153 #define DEFAULT_BLOCKED_IPI_LIMIT 32
155 static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
157 static int __init tintq(char *str)
159 get_option(&str, &timerq_limit);
160 return 1;
163 __setup("tintq=", tintq);
165 static int imstuckcount[2][8];
166 /* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
167 static int vpemask[2][8] = {
168 {0, 0, 1, 0, 0, 0, 0, 1},
169 {0, 0, 0, 0, 0, 0, 0, 1}
171 int tcnoprog[NR_CPUS];
172 static atomic_t idle_hook_initialized = {0};
173 static int clock_hang_reported[NR_CPUS];
175 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
178 * Configure shared TLB - VPC configuration bit must be set by caller
181 static void smtc_configure_tlb(void)
183 int i, tlbsiz, vpes;
184 unsigned long mvpconf0;
185 unsigned long config1val;
187 /* Set up ASID preservation table */
188 for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
189 for(i = 0; i < MAX_SMTC_ASIDS; i++) {
190 smtc_live_asid[vpes][i] = 0;
193 mvpconf0 = read_c0_mvpconf0();
195 if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
196 >> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
197 /* If we have multiple VPEs, try to share the TLB */
198 if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
200 * If TLB sizing is programmable, shared TLB
201 * size is the total available complement.
202 * Otherwise, we have to take the sum of all
203 * static VPE TLB entries.
205 if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
206 >> MVPCONF0_PTLBE_SHIFT)) == 0) {
208 * If there's more than one VPE, there had better
209 * be more than one TC, because we need one to bind
210 * to each VPE in turn to be able to read
211 * its configuration state!
213 settc(1);
214 /* Stop the TC from doing anything foolish */
215 write_tc_c0_tchalt(TCHALT_H);
216 mips_ihb();
217 /* No need to un-Halt - that happens later anyway */
218 for (i=0; i < vpes; i++) {
219 write_tc_c0_tcbind(i);
221 * To be 100% sure we're really getting the right
222 * information, we exit the configuration state
223 * and do an IHB after each rebinding.
225 write_c0_mvpcontrol(
226 read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
227 mips_ihb();
229 * Only count if the MMU Type indicated is TLB
231 if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
232 config1val = read_vpe_c0_config1();
233 tlbsiz += ((config1val >> 25) & 0x3f) + 1;
236 /* Put core back in configuration state */
237 write_c0_mvpcontrol(
238 read_c0_mvpcontrol() | MVPCONTROL_VPC );
239 mips_ihb();
242 write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
243 ehb();
246 * Setup kernel data structures to use software total,
247 * rather than read the per-VPE Config1 value. The values
248 * for "CPU 0" gets copied to all the other CPUs as part
249 * of their initialization in smtc_cpu_setup().
252 /* MIPS32 limits TLB indices to 64 */
253 if (tlbsiz > 64)
254 tlbsiz = 64;
255 cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
256 smtc_status |= SMTC_TLB_SHARED;
257 local_flush_tlb_all();
259 printk("TLB of %d entry pairs shared by %d VPEs\n",
260 tlbsiz, vpes);
261 } else {
262 printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
269 * Incrementally build the CPU map out of constituent MIPS MT cores,
270 * using the specified available VPEs and TCs. Plaform code needs
271 * to ensure that each MIPS MT core invokes this routine on reset,
272 * one at a time(!).
274 * This version of the build_cpu_map and prepare_cpus routines assumes
275 * that *all* TCs of a MIPS MT core will be used for Linux, and that
276 * they will be spread across *all* available VPEs (to minimise the
277 * loss of efficiency due to exception service serialization).
278 * An improved version would pick up configuration information and
279 * possibly leave some TCs/VPEs as "slave" processors.
281 * Use c0_MVPConf0 to find out how many TCs are available, setting up
282 * phys_cpu_present_map and the logical/physical mappings.
285 int __init mipsmt_build_cpu_map(int start_cpu_slot)
287 int i, ntcs;
290 * The CPU map isn't actually used for anything at this point,
291 * so it's not clear what else we should do apart from set
292 * everything up so that "logical" = "physical".
294 ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
295 for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
296 cpu_set(i, phys_cpu_present_map);
297 __cpu_number_map[i] = i;
298 __cpu_logical_map[i] = i;
300 #ifdef CONFIG_MIPS_MT_FPAFF
301 /* Initialize map of CPUs with FPUs */
302 cpus_clear(mt_fpu_cpumask);
303 #endif
305 /* One of those TC's is the one booting, and not a secondary... */
306 printk("%i available secondary CPU TC(s)\n", i - 1);
308 return i;
312 * Common setup before any secondaries are started
313 * Make sure all CPU's are in a sensible state before we boot any of the
314 * secondaries.
316 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
317 * as possible across the available VPEs.
320 static void smtc_tc_setup(int vpe, int tc, int cpu)
322 settc(tc);
323 write_tc_c0_tchalt(TCHALT_H);
324 mips_ihb();
325 write_tc_c0_tcstatus((read_tc_c0_tcstatus()
326 & ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
327 | TCSTATUS_A);
328 write_tc_c0_tccontext(0);
329 /* Bind tc to vpe */
330 write_tc_c0_tcbind(vpe);
331 /* In general, all TCs should have the same cpu_data indications */
332 memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
333 /* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
334 if (cpu_data[0].cputype == CPU_34K ||
335 cpu_data[0].cputype == CPU_1004K)
336 cpu_data[cpu].options &= ~MIPS_CPU_FPU;
337 cpu_data[cpu].vpe_id = vpe;
338 cpu_data[cpu].tc_id = tc;
342 void mipsmt_prepare_cpus(void)
344 int i, vpe, tc, ntc, nvpe, tcpervpe[NR_CPUS], slop, cpu;
345 unsigned long flags;
346 unsigned long val;
347 int nipi;
348 struct smtc_ipi *pipi;
350 /* disable interrupts so we can disable MT */
351 local_irq_save(flags);
352 /* disable MT so we can configure */
353 dvpe();
354 dmt();
356 spin_lock_init(&freeIPIq.lock);
359 * We probably don't have as many VPEs as we do SMP "CPUs",
360 * but it's possible - and in any case we'll never use more!
362 for (i=0; i<NR_CPUS; i++) {
363 IPIQ[i].head = IPIQ[i].tail = NULL;
364 spin_lock_init(&IPIQ[i].lock);
365 IPIQ[i].depth = 0;
366 atomic_set(&ipi_timer_latch[i], 0);
369 /* cpu_data index starts at zero */
370 cpu = 0;
371 cpu_data[cpu].vpe_id = 0;
372 cpu_data[cpu].tc_id = 0;
373 cpu++;
375 /* Report on boot-time options */
376 mips_mt_set_cpuoptions();
377 if (vpelimit > 0)
378 printk("Limit of %d VPEs set\n", vpelimit);
379 if (tclimit > 0)
380 printk("Limit of %d TCs set\n", tclimit);
381 if (nostlb) {
382 printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
384 if (asidmask)
385 printk("ASID mask value override to 0x%x\n", asidmask);
387 /* Temporary */
388 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
389 if (hang_trig)
390 printk("Logic Analyser Trigger on suspected TC hang\n");
391 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
393 /* Put MVPE's into 'configuration state' */
394 write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
396 val = read_c0_mvpconf0();
397 nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
398 if (vpelimit > 0 && nvpe > vpelimit)
399 nvpe = vpelimit;
400 ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
401 if (ntc > NR_CPUS)
402 ntc = NR_CPUS;
403 if (tclimit > 0 && ntc > tclimit)
404 ntc = tclimit;
405 slop = ntc % nvpe;
406 for (i = 0; i < nvpe; i++) {
407 tcpervpe[i] = ntc / nvpe;
408 if (slop) {
409 if((slop - i) > 0) tcpervpe[i]++;
412 /* Handle command line override for VPE0 */
413 if (vpe0limit > ntc) vpe0limit = ntc;
414 if (vpe0limit > 0) {
415 int slopslop;
416 if (vpe0limit < tcpervpe[0]) {
417 /* Reducing TC count - distribute to others */
418 slop = tcpervpe[0] - vpe0limit;
419 slopslop = slop % (nvpe - 1);
420 tcpervpe[0] = vpe0limit;
421 for (i = 1; i < nvpe; i++) {
422 tcpervpe[i] += slop / (nvpe - 1);
423 if(slopslop && ((slopslop - (i - 1) > 0)))
424 tcpervpe[i]++;
426 } else if (vpe0limit > tcpervpe[0]) {
427 /* Increasing TC count - steal from others */
428 slop = vpe0limit - tcpervpe[0];
429 slopslop = slop % (nvpe - 1);
430 tcpervpe[0] = vpe0limit;
431 for (i = 1; i < nvpe; i++) {
432 tcpervpe[i] -= slop / (nvpe - 1);
433 if(slopslop && ((slopslop - (i - 1) > 0)))
434 tcpervpe[i]--;
439 /* Set up shared TLB */
440 smtc_configure_tlb();
442 for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
444 * Set the MVP bits.
446 settc(tc);
447 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_MVP);
448 if (vpe != 0)
449 printk(", ");
450 printk("VPE %d: TC", vpe);
451 for (i = 0; i < tcpervpe[vpe]; i++) {
453 * TC 0 is bound to VPE 0 at reset,
454 * and is presumably executing this
455 * code. Leave it alone!
457 if (tc != 0) {
458 smtc_tc_setup(vpe, tc, cpu);
459 cpu++;
461 printk(" %d", tc);
462 tc++;
464 if (vpe != 0) {
466 * Clear any stale software interrupts from VPE's Cause
468 write_vpe_c0_cause(0);
471 * Clear ERL/EXL of VPEs other than 0
472 * and set restricted interrupt enable/mask.
474 write_vpe_c0_status((read_vpe_c0_status()
475 & ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
476 | (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
477 | ST0_IE));
479 * set config to be the same as vpe0,
480 * particularly kseg0 coherency alg
482 write_vpe_c0_config(read_c0_config());
483 /* Clear any pending timer interrupt */
484 write_vpe_c0_compare(0);
485 /* Propagate Config7 */
486 write_vpe_c0_config7(read_c0_config7());
487 write_vpe_c0_count(read_c0_count());
489 /* enable multi-threading within VPE */
490 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
491 /* enable the VPE */
492 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
496 * Pull any physically present but unused TCs out of circulation.
498 while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
499 cpu_clear(tc, phys_cpu_present_map);
500 cpu_clear(tc, cpu_present_map);
501 tc++;
504 /* release config state */
505 write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
507 printk("\n");
509 /* Set up coprocessor affinity CPU mask(s) */
511 #ifdef CONFIG_MIPS_MT_FPAFF
512 for (tc = 0; tc < ntc; tc++) {
513 if (cpu_data[tc].options & MIPS_CPU_FPU)
514 cpu_set(tc, mt_fpu_cpumask);
516 #endif
518 /* set up ipi interrupts... */
520 /* If we have multiple VPEs running, set up the cross-VPE interrupt */
522 setup_cross_vpe_interrupts(nvpe);
524 /* Set up queue of free IPI "messages". */
525 nipi = NR_CPUS * IPIBUF_PER_CPU;
526 if (ipibuffers > 0)
527 nipi = ipibuffers;
529 pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
530 if (pipi == NULL)
531 panic("kmalloc of IPI message buffers failed\n");
532 else
533 printk("IPI buffer pool of %d buffers\n", nipi);
534 for (i = 0; i < nipi; i++) {
535 smtc_ipi_nq(&freeIPIq, pipi);
536 pipi++;
539 /* Arm multithreading and enable other VPEs - but all TCs are Halted */
540 emt(EMT_ENABLE);
541 evpe(EVPE_ENABLE);
542 local_irq_restore(flags);
543 /* Initialize SMTC /proc statistics/diagnostics */
544 init_smtc_stats();
549 * Setup the PC, SP, and GP of a secondary processor and start it
550 * running!
551 * smp_bootstrap is the place to resume from
552 * __KSTK_TOS(idle) is apparently the stack pointer
553 * (unsigned long)idle->thread_info the gp
556 void __cpuinit smtc_boot_secondary(int cpu, struct task_struct *idle)
558 extern u32 kernelsp[NR_CPUS];
559 long flags;
560 int mtflags;
562 LOCK_MT_PRA();
563 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
564 dvpe();
566 settc(cpu_data[cpu].tc_id);
568 /* pc */
569 write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
571 /* stack pointer */
572 kernelsp[cpu] = __KSTK_TOS(idle);
573 write_tc_gpr_sp(__KSTK_TOS(idle));
575 /* global pointer */
576 write_tc_gpr_gp((unsigned long)task_thread_info(idle));
578 smtc_status |= SMTC_MTC_ACTIVE;
579 write_tc_c0_tchalt(0);
580 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
581 evpe(EVPE_ENABLE);
583 UNLOCK_MT_PRA();
586 void smtc_init_secondary(void)
589 * Start timer on secondary VPEs if necessary.
590 * plat_timer_setup has already have been invoked by init/main
591 * on "boot" TC. Like per_cpu_trap_init() hack, this assumes that
592 * SMTC init code assigns TCs consdecutively and in ascending order
593 * to across available VPEs.
595 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
596 ((read_c0_tcbind() & TCBIND_CURVPE)
597 != cpu_data[smp_processor_id() - 1].vpe_id)){
598 write_c0_compare(read_c0_count() + mips_hpt_frequency/HZ);
601 local_irq_enable();
604 void smtc_smp_finish(void)
606 printk("TC %d going on-line as CPU %d\n",
607 cpu_data[smp_processor_id()].tc_id, smp_processor_id());
610 void smtc_cpus_done(void)
615 * Support for SMTC-optimized driver IRQ registration
619 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
620 * in do_IRQ. These are passed in setup_irq_smtc() and stored
621 * in this table.
624 int setup_irq_smtc(unsigned int irq, struct irqaction * new,
625 unsigned long hwmask)
627 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
628 unsigned int vpe = current_cpu_data.vpe_id;
630 vpemask[vpe][irq - MIPS_CPU_IRQ_BASE] = 1;
631 #endif
632 irq_hwmask[irq] = hwmask;
634 return setup_irq(irq, new);
637 #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
639 * Support for IRQ affinity to TCs
642 void smtc_set_irq_affinity(unsigned int irq, cpumask_t affinity)
645 * If a "fast path" cache of quickly decodable affinity state
646 * is maintained, this is where it gets done, on a call up
647 * from the platform affinity code.
651 void smtc_forward_irq(unsigned int irq)
653 int target;
656 * OK wise guy, now figure out how to get the IRQ
657 * to be serviced on an authorized "CPU".
659 * Ideally, to handle the situation where an IRQ has multiple
660 * eligible CPUS, we would maintain state per IRQ that would
661 * allow a fair distribution of service requests. Since the
662 * expected use model is any-or-only-one, for simplicity
663 * and efficiency, we just pick the easiest one to find.
666 target = first_cpu(irq_desc[irq].affinity);
669 * We depend on the platform code to have correctly processed
670 * IRQ affinity change requests to ensure that the IRQ affinity
671 * mask has been purged of bits corresponding to nonexistent and
672 * offline "CPUs", and to TCs bound to VPEs other than the VPE
673 * connected to the physical interrupt input for the interrupt
674 * in question. Otherwise we have a nasty problem with interrupt
675 * mask management. This is best handled in non-performance-critical
676 * platform IRQ affinity setting code, to minimize interrupt-time
677 * checks.
680 /* If no one is eligible, service locally */
681 if (target >= NR_CPUS) {
682 do_IRQ_no_affinity(irq);
683 return;
686 smtc_send_ipi(target, IRQ_AFFINITY_IPI, irq);
689 #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
692 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
693 * Within a VPE one TC can interrupt another by different approaches.
694 * The easiest to get right would probably be to make all TCs except
695 * the target IXMT and set a software interrupt, but an IXMT-based
696 * scheme requires that a handler must run before a new IPI could
697 * be sent, which would break the "broadcast" loops in MIPS MT.
698 * A more gonzo approach within a VPE is to halt the TC, extract
699 * its Restart, Status, and a couple of GPRs, and program the Restart
700 * address to emulate an interrupt.
702 * Within a VPE, one can be confident that the target TC isn't in
703 * a critical EXL state when halted, since the write to the Halt
704 * register could not have issued on the writing thread if the
705 * halting thread had EXL set. So k0 and k1 of the target TC
706 * can be used by the injection code. Across VPEs, one can't
707 * be certain that the target TC isn't in a critical exception
708 * state. So we try a two-step process of sending a software
709 * interrupt to the target VPE, which either handles the event
710 * itself (if it was the target) or injects the event within
711 * the VPE.
714 static void smtc_ipi_qdump(void)
716 int i;
718 for (i = 0; i < NR_CPUS ;i++) {
719 printk("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
720 i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
721 IPIQ[i].depth);
726 * The standard atomic.h primitives don't quite do what we want
727 * here: We need an atomic add-and-return-previous-value (which
728 * could be done with atomic_add_return and a decrement) and an
729 * atomic set/zero-and-return-previous-value (which can't really
730 * be done with the atomic.h primitives). And since this is
731 * MIPS MT, we can assume that we have LL/SC.
733 static inline int atomic_postincrement(atomic_t *v)
735 unsigned long result;
737 unsigned long temp;
739 __asm__ __volatile__(
740 "1: ll %0, %2 \n"
741 " addu %1, %0, 1 \n"
742 " sc %1, %2 \n"
743 " beqz %1, 1b \n"
744 __WEAK_LLSC_MB
745 : "=&r" (result), "=&r" (temp), "=m" (v->counter)
746 : "m" (v->counter)
747 : "memory");
749 return result;
752 void smtc_send_ipi(int cpu, int type, unsigned int action)
754 int tcstatus;
755 struct smtc_ipi *pipi;
756 long flags;
757 int mtflags;
759 if (cpu == smp_processor_id()) {
760 printk("Cannot Send IPI to self!\n");
761 return;
763 /* Set up a descriptor, to be delivered either promptly or queued */
764 pipi = smtc_ipi_dq(&freeIPIq);
765 if (pipi == NULL) {
766 bust_spinlocks(1);
767 mips_mt_regdump(dvpe());
768 panic("IPI Msg. Buffers Depleted\n");
770 pipi->type = type;
771 pipi->arg = (void *)action;
772 pipi->dest = cpu;
773 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
774 if (type == SMTC_CLOCK_TICK)
775 atomic_inc(&ipi_timer_latch[cpu]);
776 /* If not on same VPE, enqueue and send cross-VPE interrupt */
777 smtc_ipi_nq(&IPIQ[cpu], pipi);
778 LOCK_CORE_PRA();
779 settc(cpu_data[cpu].tc_id);
780 write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
781 UNLOCK_CORE_PRA();
782 } else {
784 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
785 * since ASID shootdown on the other VPE may
786 * collide with this operation.
788 LOCK_CORE_PRA();
789 settc(cpu_data[cpu].tc_id);
790 /* Halt the targeted TC */
791 write_tc_c0_tchalt(TCHALT_H);
792 mips_ihb();
795 * Inspect TCStatus - if IXMT is set, we have to queue
796 * a message. Otherwise, we set up the "interrupt"
797 * of the other TC
799 tcstatus = read_tc_c0_tcstatus();
801 if ((tcstatus & TCSTATUS_IXMT) != 0) {
803 * Spin-waiting here can deadlock,
804 * so we queue the message for the target TC.
806 write_tc_c0_tchalt(0);
807 UNLOCK_CORE_PRA();
808 /* Try to reduce redundant timer interrupt messages */
809 if (type == SMTC_CLOCK_TICK) {
810 if (atomic_postincrement(&ipi_timer_latch[cpu])!=0){
811 smtc_ipi_nq(&freeIPIq, pipi);
812 return;
815 smtc_ipi_nq(&IPIQ[cpu], pipi);
816 } else {
817 if (type == SMTC_CLOCK_TICK)
818 atomic_inc(&ipi_timer_latch[cpu]);
819 post_direct_ipi(cpu, pipi);
820 write_tc_c0_tchalt(0);
821 UNLOCK_CORE_PRA();
827 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
829 static void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
831 struct pt_regs *kstack;
832 unsigned long tcstatus;
833 unsigned long tcrestart;
834 extern u32 kernelsp[NR_CPUS];
835 extern void __smtc_ipi_vector(void);
836 //printk("%s: on %d for %d\n", __func__, smp_processor_id(), cpu);
838 /* Extract Status, EPC from halted TC */
839 tcstatus = read_tc_c0_tcstatus();
840 tcrestart = read_tc_c0_tcrestart();
841 /* If TCRestart indicates a WAIT instruction, advance the PC */
842 if ((tcrestart & 0x80000000)
843 && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
844 tcrestart += 4;
847 * Save on TC's future kernel stack
849 * CU bit of Status is indicator that TC was
850 * already running on a kernel stack...
852 if (tcstatus & ST0_CU0) {
853 /* Note that this "- 1" is pointer arithmetic */
854 kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
855 } else {
856 kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
859 kstack->cp0_epc = (long)tcrestart;
860 /* Save TCStatus */
861 kstack->cp0_tcstatus = tcstatus;
862 /* Pass token of operation to be performed kernel stack pad area */
863 kstack->pad0[4] = (unsigned long)pipi;
864 /* Pass address of function to be called likewise */
865 kstack->pad0[5] = (unsigned long)&ipi_decode;
866 /* Set interrupt exempt and kernel mode */
867 tcstatus |= TCSTATUS_IXMT;
868 tcstatus &= ~TCSTATUS_TKSU;
869 write_tc_c0_tcstatus(tcstatus);
870 ehb();
871 /* Set TC Restart address to be SMTC IPI vector */
872 write_tc_c0_tcrestart(__smtc_ipi_vector);
875 static void ipi_resched_interrupt(void)
877 /* Return from interrupt should be enough to cause scheduler check */
881 static void ipi_call_interrupt(void)
883 /* Invoke generic function invocation code in smp.c */
884 smp_call_function_interrupt();
887 DECLARE_PER_CPU(struct clock_event_device, smtc_dummy_clockevent_device);
889 void ipi_decode(struct smtc_ipi *pipi)
891 unsigned int cpu = smp_processor_id();
892 struct clock_event_device *cd;
893 void *arg_copy = pipi->arg;
894 int type_copy = pipi->type;
895 int ticks;
897 smtc_ipi_nq(&freeIPIq, pipi);
898 switch (type_copy) {
899 case SMTC_CLOCK_TICK:
900 irq_enter();
901 kstat_this_cpu.irqs[MIPS_CPU_IRQ_BASE + 1]++;
902 cd = &per_cpu(smtc_dummy_clockevent_device, cpu);
903 ticks = atomic_read(&ipi_timer_latch[cpu]);
904 atomic_sub(ticks, &ipi_timer_latch[cpu]);
905 while (ticks) {
906 cd->event_handler(cd);
907 ticks--;
909 irq_exit();
910 break;
912 case LINUX_SMP_IPI:
913 switch ((int)arg_copy) {
914 case SMP_RESCHEDULE_YOURSELF:
915 ipi_resched_interrupt();
916 break;
917 case SMP_CALL_FUNCTION:
918 ipi_call_interrupt();
919 break;
920 default:
921 printk("Impossible SMTC IPI Argument 0x%x\n",
922 (int)arg_copy);
923 break;
925 break;
926 #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
927 case IRQ_AFFINITY_IPI:
929 * Accept a "forwarded" interrupt that was initially
930 * taken by a TC who doesn't have affinity for the IRQ.
932 do_IRQ_no_affinity((int)arg_copy);
933 break;
934 #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
935 default:
936 printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
937 break;
941 void deferred_smtc_ipi(void)
943 struct smtc_ipi *pipi;
944 unsigned long flags;
945 /* DEBUG */
946 int q = smp_processor_id();
949 * Test is not atomic, but much faster than a dequeue,
950 * and the vast majority of invocations will have a null queue.
952 if (IPIQ[q].head != NULL) {
953 while((pipi = smtc_ipi_dq(&IPIQ[q])) != NULL) {
954 /* ipi_decode() should be called with interrupts off */
955 local_irq_save(flags);
956 ipi_decode(pipi);
957 local_irq_restore(flags);
963 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
964 * set via cross-VPE MTTR manipulation of the Cause register. It would be
965 * in some regards preferable to have external logic for "doorbell" hardware
966 * interrupts.
969 static int cpu_ipi_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_IRQ;
971 static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
973 int my_vpe = cpu_data[smp_processor_id()].vpe_id;
974 int my_tc = cpu_data[smp_processor_id()].tc_id;
975 int cpu;
976 struct smtc_ipi *pipi;
977 unsigned long tcstatus;
978 int sent;
979 long flags;
980 unsigned int mtflags;
981 unsigned int vpflags;
984 * So long as cross-VPE interrupts are done via
985 * MFTR/MTTR read-modify-writes of Cause, we need
986 * to stop other VPEs whenever the local VPE does
987 * anything similar.
989 local_irq_save(flags);
990 vpflags = dvpe();
991 clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
992 set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
993 irq_enable_hazard();
994 evpe(vpflags);
995 local_irq_restore(flags);
998 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
999 * queued for TCs on this VPE other than the current one.
1000 * Return-from-interrupt should cause us to drain the queue
1001 * for the current TC, so we ought not to have to do it explicitly here.
1004 for_each_online_cpu(cpu) {
1005 if (cpu_data[cpu].vpe_id != my_vpe)
1006 continue;
1008 pipi = smtc_ipi_dq(&IPIQ[cpu]);
1009 if (pipi != NULL) {
1010 if (cpu_data[cpu].tc_id != my_tc) {
1011 sent = 0;
1012 LOCK_MT_PRA();
1013 settc(cpu_data[cpu].tc_id);
1014 write_tc_c0_tchalt(TCHALT_H);
1015 mips_ihb();
1016 tcstatus = read_tc_c0_tcstatus();
1017 if ((tcstatus & TCSTATUS_IXMT) == 0) {
1018 post_direct_ipi(cpu, pipi);
1019 sent = 1;
1021 write_tc_c0_tchalt(0);
1022 UNLOCK_MT_PRA();
1023 if (!sent) {
1024 smtc_ipi_req(&IPIQ[cpu], pipi);
1026 } else {
1028 * ipi_decode() should be called
1029 * with interrupts off
1031 local_irq_save(flags);
1032 ipi_decode(pipi);
1033 local_irq_restore(flags);
1038 return IRQ_HANDLED;
1041 static void ipi_irq_dispatch(void)
1043 do_IRQ(cpu_ipi_irq);
1046 static struct irqaction irq_ipi = {
1047 .handler = ipi_interrupt,
1048 .flags = IRQF_DISABLED,
1049 .name = "SMTC_IPI",
1050 .flags = IRQF_PERCPU
1053 static void setup_cross_vpe_interrupts(unsigned int nvpe)
1055 if (nvpe < 1)
1056 return;
1058 if (!cpu_has_vint)
1059 panic("SMTC Kernel requires Vectored Interrupt support");
1061 set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
1063 setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
1065 set_irq_handler(cpu_ipi_irq, handle_percpu_irq);
1069 * SMTC-specific hacks invoked from elsewhere in the kernel.
1071 * smtc_ipi_replay is called from raw_local_irq_restore which is only ever
1072 * called with interrupts disabled. We do rely on interrupts being disabled
1073 * here because using spin_lock_irqsave()/spin_unlock_irqrestore() would
1074 * result in a recursive call to raw_local_irq_restore().
1077 static void __smtc_ipi_replay(void)
1079 unsigned int cpu = smp_processor_id();
1082 * To the extent that we've ever turned interrupts off,
1083 * we may have accumulated deferred IPIs. This is subtle.
1084 * If we use the smtc_ipi_qdepth() macro, we'll get an
1085 * exact number - but we'll also disable interrupts
1086 * and create a window of failure where a new IPI gets
1087 * queued after we test the depth but before we re-enable
1088 * interrupts. So long as IXMT never gets set, however,
1089 * we should be OK: If we pick up something and dispatch
1090 * it here, that's great. If we see nothing, but concurrent
1091 * with this operation, another TC sends us an IPI, IXMT
1092 * is clear, and we'll handle it as a real pseudo-interrupt
1093 * and not a pseudo-pseudo interrupt.
1095 if (IPIQ[cpu].depth > 0) {
1096 while (1) {
1097 struct smtc_ipi_q *q = &IPIQ[cpu];
1098 struct smtc_ipi *pipi;
1099 extern void self_ipi(struct smtc_ipi *);
1101 spin_lock(&q->lock);
1102 pipi = __smtc_ipi_dq(q);
1103 spin_unlock(&q->lock);
1104 if (!pipi)
1105 break;
1107 self_ipi(pipi);
1108 smtc_cpu_stats[cpu].selfipis++;
1113 void smtc_ipi_replay(void)
1115 raw_local_irq_disable();
1116 __smtc_ipi_replay();
1119 EXPORT_SYMBOL(smtc_ipi_replay);
1121 void smtc_idle_loop_hook(void)
1123 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
1124 int im;
1125 int flags;
1126 int mtflags;
1127 int bit;
1128 int vpe;
1129 int tc;
1130 int hook_ntcs;
1132 * printk within DMT-protected regions can deadlock,
1133 * so buffer diagnostic messages for later output.
1135 char *pdb_msg;
1136 char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
1138 if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
1139 if (atomic_add_return(1, &idle_hook_initialized) == 1) {
1140 int mvpconf0;
1141 /* Tedious stuff to just do once */
1142 mvpconf0 = read_c0_mvpconf0();
1143 hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
1144 if (hook_ntcs > NR_CPUS)
1145 hook_ntcs = NR_CPUS;
1146 for (tc = 0; tc < hook_ntcs; tc++) {
1147 tcnoprog[tc] = 0;
1148 clock_hang_reported[tc] = 0;
1150 for (vpe = 0; vpe < 2; vpe++)
1151 for (im = 0; im < 8; im++)
1152 imstuckcount[vpe][im] = 0;
1153 printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
1154 atomic_set(&idle_hook_initialized, 1000);
1155 } else {
1156 /* Someone else is initializing in parallel - let 'em finish */
1157 while (atomic_read(&idle_hook_initialized) < 1000)
1162 /* Have we stupidly left IXMT set somewhere? */
1163 if (read_c0_tcstatus() & 0x400) {
1164 write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1165 ehb();
1166 printk("Dangling IXMT in cpu_idle()\n");
1169 /* Have we stupidly left an IM bit turned off? */
1170 #define IM_LIMIT 2000
1171 local_irq_save(flags);
1172 mtflags = dmt();
1173 pdb_msg = &id_ho_db_msg[0];
1174 im = read_c0_status();
1175 vpe = current_cpu_data.vpe_id;
1176 for (bit = 0; bit < 8; bit++) {
1178 * In current prototype, I/O interrupts
1179 * are masked for VPE > 0
1181 if (vpemask[vpe][bit]) {
1182 if (!(im & (0x100 << bit)))
1183 imstuckcount[vpe][bit]++;
1184 else
1185 imstuckcount[vpe][bit] = 0;
1186 if (imstuckcount[vpe][bit] > IM_LIMIT) {
1187 set_c0_status(0x100 << bit);
1188 ehb();
1189 imstuckcount[vpe][bit] = 0;
1190 pdb_msg += sprintf(pdb_msg,
1191 "Dangling IM %d fixed for VPE %d\n", bit,
1192 vpe);
1198 * Now that we limit outstanding timer IPIs, check for hung TC
1200 for (tc = 0; tc < NR_CPUS; tc++) {
1201 /* Don't check ourself - we'll dequeue IPIs just below */
1202 if ((tc != smp_processor_id()) &&
1203 atomic_read(&ipi_timer_latch[tc]) > timerq_limit) {
1204 if (clock_hang_reported[tc] == 0) {
1205 pdb_msg += sprintf(pdb_msg,
1206 "TC %d looks hung with timer latch at %d\n",
1207 tc, atomic_read(&ipi_timer_latch[tc]));
1208 clock_hang_reported[tc]++;
1212 emt(mtflags);
1213 local_irq_restore(flags);
1214 if (pdb_msg != &id_ho_db_msg[0])
1215 printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
1216 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
1219 * Replay any accumulated deferred IPIs. If "Instant Replay"
1220 * is in use, there should never be any.
1222 #ifndef CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY
1224 unsigned long flags;
1226 local_irq_save(flags);
1227 __smtc_ipi_replay();
1228 local_irq_restore(flags);
1230 #endif /* CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY */
1233 void smtc_soft_dump(void)
1235 int i;
1237 printk("Counter Interrupts taken per CPU (TC)\n");
1238 for (i=0; i < NR_CPUS; i++) {
1239 printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
1241 printk("Self-IPI invocations:\n");
1242 for (i=0; i < NR_CPUS; i++) {
1243 printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
1245 smtc_ipi_qdump();
1246 printk("Timer IPI Backlogs:\n");
1247 for (i=0; i < NR_CPUS; i++) {
1248 printk("%d: %d\n", i, atomic_read(&ipi_timer_latch[i]));
1250 printk("%d Recoveries of \"stolen\" FPU\n",
1251 atomic_read(&smtc_fpu_recoveries));
1256 * TLB management routines special to SMTC
1259 void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
1261 unsigned long flags, mtflags, tcstat, prevhalt, asid;
1262 int tlb, i;
1265 * It would be nice to be able to use a spinlock here,
1266 * but this is invoked from within TLB flush routines
1267 * that protect themselves with DVPE, so if a lock is
1268 * held by another TC, it'll never be freed.
1270 * DVPE/DMT must not be done with interrupts enabled,
1271 * so even so most callers will already have disabled
1272 * them, let's be really careful...
1275 local_irq_save(flags);
1276 if (smtc_status & SMTC_TLB_SHARED) {
1277 mtflags = dvpe();
1278 tlb = 0;
1279 } else {
1280 mtflags = dmt();
1281 tlb = cpu_data[cpu].vpe_id;
1283 asid = asid_cache(cpu);
1285 do {
1286 if (!((asid += ASID_INC) & ASID_MASK) ) {
1287 if (cpu_has_vtag_icache)
1288 flush_icache_all();
1289 /* Traverse all online CPUs (hack requires contigous range) */
1290 for_each_online_cpu(i) {
1292 * We don't need to worry about our own CPU, nor those of
1293 * CPUs who don't share our TLB.
1295 if ((i != smp_processor_id()) &&
1296 ((smtc_status & SMTC_TLB_SHARED) ||
1297 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
1298 settc(cpu_data[i].tc_id);
1299 prevhalt = read_tc_c0_tchalt() & TCHALT_H;
1300 if (!prevhalt) {
1301 write_tc_c0_tchalt(TCHALT_H);
1302 mips_ihb();
1304 tcstat = read_tc_c0_tcstatus();
1305 smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
1306 if (!prevhalt)
1307 write_tc_c0_tchalt(0);
1310 if (!asid) /* fix version if needed */
1311 asid = ASID_FIRST_VERSION;
1312 local_flush_tlb_all(); /* start new asid cycle */
1314 } while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
1317 * SMTC shares the TLB within VPEs and possibly across all VPEs.
1319 for_each_online_cpu(i) {
1320 if ((smtc_status & SMTC_TLB_SHARED) ||
1321 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
1322 cpu_context(i, mm) = asid_cache(i) = asid;
1325 if (smtc_status & SMTC_TLB_SHARED)
1326 evpe(mtflags);
1327 else
1328 emt(mtflags);
1329 local_irq_restore(flags);
1333 * Invoked from macros defined in mmu_context.h
1334 * which must already have disabled interrupts
1335 * and done a DVPE or DMT as appropriate.
1338 void smtc_flush_tlb_asid(unsigned long asid)
1340 int entry;
1341 unsigned long ehi;
1343 entry = read_c0_wired();
1345 /* Traverse all non-wired entries */
1346 while (entry < current_cpu_data.tlbsize) {
1347 write_c0_index(entry);
1348 ehb();
1349 tlb_read();
1350 ehb();
1351 ehi = read_c0_entryhi();
1352 if ((ehi & ASID_MASK) == asid) {
1354 * Invalidate only entries with specified ASID,
1355 * makiing sure all entries differ.
1357 write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
1358 write_c0_entrylo0(0);
1359 write_c0_entrylo1(0);
1360 mtc0_tlbw_hazard();
1361 tlb_write_indexed();
1363 entry++;
1365 write_c0_index(PARKED_INDEX);
1366 tlbw_use_hazard();
1370 * Support for single-threading cache flush operations.
1373 static int halt_state_save[NR_CPUS];
1376 * To really, really be sure that nothing is being done
1377 * by other TCs, halt them all. This code assumes that
1378 * a DVPE has already been done, so while their Halted
1379 * state is theoretically architecturally unstable, in
1380 * practice, it's not going to change while we're looking
1381 * at it.
1384 void smtc_cflush_lockdown(void)
1386 int cpu;
1388 for_each_online_cpu(cpu) {
1389 if (cpu != smp_processor_id()) {
1390 settc(cpu_data[cpu].tc_id);
1391 halt_state_save[cpu] = read_tc_c0_tchalt();
1392 write_tc_c0_tchalt(TCHALT_H);
1395 mips_ihb();
1398 /* It would be cheating to change the cpu_online states during a flush! */
1400 void smtc_cflush_release(void)
1402 int cpu;
1405 * Start with a hazard barrier to ensure
1406 * that all CACHE ops have played through.
1408 mips_ihb();
1410 for_each_online_cpu(cpu) {
1411 if (cpu != smp_processor_id()) {
1412 settc(cpu_data[cpu].tc_id);
1413 write_tc_c0_tchalt(halt_state_save[cpu]);
1416 mips_ihb();