[PATCH] slab: cache_estimate cleanup
[linux-2.6/kmemtrace.git] / mm / slab.c
blobe869400ea731b993dd4b388cb878c7b7dd522f31
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in kmem_cache_t and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/config.h>
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/seq_file.h>
98 #include <linux/notifier.h>
99 #include <linux/kallsyms.h>
100 #include <linux/cpu.h>
101 #include <linux/sysctl.h>
102 #include <linux/module.h>
103 #include <linux/rcupdate.h>
104 #include <linux/string.h>
105 #include <linux/nodemask.h>
106 #include <linux/mempolicy.h>
107 #include <linux/mutex.h>
109 #include <asm/uaccess.h>
110 #include <asm/cacheflush.h>
111 #include <asm/tlbflush.h>
112 #include <asm/page.h>
115 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
116 * SLAB_RED_ZONE & SLAB_POISON.
117 * 0 for faster, smaller code (especially in the critical paths).
119 * STATS - 1 to collect stats for /proc/slabinfo.
120 * 0 for faster, smaller code (especially in the critical paths).
122 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
125 #ifdef CONFIG_DEBUG_SLAB
126 #define DEBUG 1
127 #define STATS 1
128 #define FORCED_DEBUG 1
129 #else
130 #define DEBUG 0
131 #define STATS 0
132 #define FORCED_DEBUG 0
133 #endif
135 /* Shouldn't this be in a header file somewhere? */
136 #define BYTES_PER_WORD sizeof(void *)
138 #ifndef cache_line_size
139 #define cache_line_size() L1_CACHE_BYTES
140 #endif
142 #ifndef ARCH_KMALLOC_MINALIGN
144 * Enforce a minimum alignment for the kmalloc caches.
145 * Usually, the kmalloc caches are cache_line_size() aligned, except when
146 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
147 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
148 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
149 * Note that this flag disables some debug features.
151 #define ARCH_KMALLOC_MINALIGN 0
152 #endif
154 #ifndef ARCH_SLAB_MINALIGN
156 * Enforce a minimum alignment for all caches.
157 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
158 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
159 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
160 * some debug features.
162 #define ARCH_SLAB_MINALIGN 0
163 #endif
165 #ifndef ARCH_KMALLOC_FLAGS
166 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
167 #endif
169 /* Legal flag mask for kmem_cache_create(). */
170 #if DEBUG
171 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
173 SLAB_NO_REAP | SLAB_CACHE_DMA | \
174 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
175 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
176 SLAB_DESTROY_BY_RCU)
177 #else
178 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
179 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU)
182 #endif
185 * kmem_bufctl_t:
187 * Bufctl's are used for linking objs within a slab
188 * linked offsets.
190 * This implementation relies on "struct page" for locating the cache &
191 * slab an object belongs to.
192 * This allows the bufctl structure to be small (one int), but limits
193 * the number of objects a slab (not a cache) can contain when off-slab
194 * bufctls are used. The limit is the size of the largest general cache
195 * that does not use off-slab slabs.
196 * For 32bit archs with 4 kB pages, is this 56.
197 * This is not serious, as it is only for large objects, when it is unwise
198 * to have too many per slab.
199 * Note: This limit can be raised by introducing a general cache whose size
200 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
203 typedef unsigned int kmem_bufctl_t;
204 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
205 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
206 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
208 /* Max number of objs-per-slab for caches which use off-slab slabs.
209 * Needed to avoid a possible looping condition in cache_grow().
211 static unsigned long offslab_limit;
214 * struct slab
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 struct slab {
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
230 * struct slab_rcu
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
243 * We assume struct slab_rcu can overlay struct slab when destroying.
245 struct slab_rcu {
246 struct rcu_head head;
247 kmem_cache_t *cachep;
248 void *addr;
252 * struct array_cache
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
263 struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
268 spinlock_t lock;
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
277 /* bootstrap: The caches do not work without cpuarrays anymore,
278 * but the cpuarrays are allocated from the generic caches...
280 #define BOOT_CPUCACHE_ENTRIES 1
281 struct arraycache_init {
282 struct array_cache cache;
283 void *entries[BOOT_CPUCACHE_ENTRIES];
287 * The slab lists for all objects.
289 struct kmem_list3 {
290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
294 unsigned long next_reap;
295 int free_touched;
296 unsigned int free_limit;
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
303 * Need this for bootstrapping a per node allocator.
305 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
306 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
307 #define CACHE_CACHE 0
308 #define SIZE_AC 1
309 #define SIZE_L3 (1 + MAX_NUMNODES)
312 * This function must be completely optimized away if
313 * a constant is passed to it. Mostly the same as
314 * what is in linux/slab.h except it returns an
315 * index.
317 static __always_inline int index_of(const size_t size)
319 extern void __bad_size(void);
321 if (__builtin_constant_p(size)) {
322 int i = 0;
324 #define CACHE(x) \
325 if (size <=x) \
326 return i; \
327 else \
328 i++;
329 #include "linux/kmalloc_sizes.h"
330 #undef CACHE
331 __bad_size();
332 } else
333 __bad_size();
334 return 0;
337 #define INDEX_AC index_of(sizeof(struct arraycache_init))
338 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
340 static inline void kmem_list3_init(struct kmem_list3 *parent)
342 INIT_LIST_HEAD(&parent->slabs_full);
343 INIT_LIST_HEAD(&parent->slabs_partial);
344 INIT_LIST_HEAD(&parent->slabs_free);
345 parent->shared = NULL;
346 parent->alien = NULL;
347 spin_lock_init(&parent->list_lock);
348 parent->free_objects = 0;
349 parent->free_touched = 0;
352 #define MAKE_LIST(cachep, listp, slab, nodeid) \
353 do { \
354 INIT_LIST_HEAD(listp); \
355 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
356 } while (0)
358 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
359 do { \
360 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
361 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
362 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
363 } while (0)
366 * kmem_cache_t
368 * manages a cache.
371 struct kmem_cache {
372 /* 1) per-cpu data, touched during every alloc/free */
373 struct array_cache *array[NR_CPUS];
374 unsigned int batchcount;
375 unsigned int limit;
376 unsigned int shared;
377 unsigned int buffer_size;
378 /* 2) touched by every alloc & free from the backend */
379 struct kmem_list3 *nodelists[MAX_NUMNODES];
380 unsigned int flags; /* constant flags */
381 unsigned int num; /* # of objs per slab */
382 spinlock_t spinlock;
384 /* 3) cache_grow/shrink */
385 /* order of pgs per slab (2^n) */
386 unsigned int gfporder;
388 /* force GFP flags, e.g. GFP_DMA */
389 gfp_t gfpflags;
391 size_t colour; /* cache colouring range */
392 unsigned int colour_off; /* colour offset */
393 unsigned int colour_next; /* cache colouring */
394 kmem_cache_t *slabp_cache;
395 unsigned int slab_size;
396 unsigned int dflags; /* dynamic flags */
398 /* constructor func */
399 void (*ctor) (void *, kmem_cache_t *, unsigned long);
401 /* de-constructor func */
402 void (*dtor) (void *, kmem_cache_t *, unsigned long);
404 /* 4) cache creation/removal */
405 const char *name;
406 struct list_head next;
408 /* 5) statistics */
409 #if STATS
410 unsigned long num_active;
411 unsigned long num_allocations;
412 unsigned long high_mark;
413 unsigned long grown;
414 unsigned long reaped;
415 unsigned long errors;
416 unsigned long max_freeable;
417 unsigned long node_allocs;
418 unsigned long node_frees;
419 atomic_t allochit;
420 atomic_t allocmiss;
421 atomic_t freehit;
422 atomic_t freemiss;
423 #endif
424 #if DEBUG
426 * If debugging is enabled, then the allocator can add additional
427 * fields and/or padding to every object. buffer_size contains the total
428 * object size including these internal fields, the following two
429 * variables contain the offset to the user object and its size.
431 int obj_offset;
432 int obj_size;
433 #endif
436 #define CFLGS_OFF_SLAB (0x80000000UL)
437 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
439 #define BATCHREFILL_LIMIT 16
440 /* Optimization question: fewer reaps means less
441 * probability for unnessary cpucache drain/refill cycles.
443 * OTOH the cpuarrays can contain lots of objects,
444 * which could lock up otherwise freeable slabs.
446 #define REAPTIMEOUT_CPUC (2*HZ)
447 #define REAPTIMEOUT_LIST3 (4*HZ)
449 #if STATS
450 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
451 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
452 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
453 #define STATS_INC_GROWN(x) ((x)->grown++)
454 #define STATS_INC_REAPED(x) ((x)->reaped++)
455 #define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
456 (x)->high_mark = (x)->num_active; \
457 } while (0)
458 #define STATS_INC_ERR(x) ((x)->errors++)
459 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
460 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
461 #define STATS_SET_FREEABLE(x, i) \
462 do { if ((x)->max_freeable < i) \
463 (x)->max_freeable = i; \
464 } while (0)
466 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
467 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
468 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
469 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
470 #else
471 #define STATS_INC_ACTIVE(x) do { } while (0)
472 #define STATS_DEC_ACTIVE(x) do { } while (0)
473 #define STATS_INC_ALLOCED(x) do { } while (0)
474 #define STATS_INC_GROWN(x) do { } while (0)
475 #define STATS_INC_REAPED(x) do { } while (0)
476 #define STATS_SET_HIGH(x) do { } while (0)
477 #define STATS_INC_ERR(x) do { } while (0)
478 #define STATS_INC_NODEALLOCS(x) do { } while (0)
479 #define STATS_INC_NODEFREES(x) do { } while (0)
480 #define STATS_SET_FREEABLE(x, i) \
481 do { } while (0)
483 #define STATS_INC_ALLOCHIT(x) do { } while (0)
484 #define STATS_INC_ALLOCMISS(x) do { } while (0)
485 #define STATS_INC_FREEHIT(x) do { } while (0)
486 #define STATS_INC_FREEMISS(x) do { } while (0)
487 #endif
489 #if DEBUG
490 /* Magic nums for obj red zoning.
491 * Placed in the first word before and the first word after an obj.
493 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
494 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
496 /* ...and for poisoning */
497 #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
498 #define POISON_FREE 0x6b /* for use-after-free poisoning */
499 #define POISON_END 0xa5 /* end-byte of poisoning */
501 /* memory layout of objects:
502 * 0 : objp
503 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
504 * the end of an object is aligned with the end of the real
505 * allocation. Catches writes behind the end of the allocation.
506 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
507 * redzone word.
508 * cachep->obj_offset: The real object.
509 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
510 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
512 static int obj_offset(kmem_cache_t *cachep)
514 return cachep->obj_offset;
517 static int obj_size(kmem_cache_t *cachep)
519 return cachep->obj_size;
522 static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp)
524 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
525 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
528 static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp)
530 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
531 if (cachep->flags & SLAB_STORE_USER)
532 return (unsigned long *)(objp + cachep->buffer_size -
533 2 * BYTES_PER_WORD);
534 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
537 static void **dbg_userword(kmem_cache_t *cachep, void *objp)
539 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
540 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
543 #else
545 #define obj_offset(x) 0
546 #define obj_size(cachep) (cachep->buffer_size)
547 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
548 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
549 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
551 #endif
554 * Maximum size of an obj (in 2^order pages)
555 * and absolute limit for the gfp order.
557 #if defined(CONFIG_LARGE_ALLOCS)
558 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
559 #define MAX_GFP_ORDER 13 /* up to 32Mb */
560 #elif defined(CONFIG_MMU)
561 #define MAX_OBJ_ORDER 5 /* 32 pages */
562 #define MAX_GFP_ORDER 5 /* 32 pages */
563 #else
564 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
565 #define MAX_GFP_ORDER 8 /* up to 1Mb */
566 #endif
569 * Do not go above this order unless 0 objects fit into the slab.
571 #define BREAK_GFP_ORDER_HI 1
572 #define BREAK_GFP_ORDER_LO 0
573 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
575 /* Functions for storing/retrieving the cachep and or slab from the
576 * global 'mem_map'. These are used to find the slab an obj belongs to.
577 * With kfree(), these are used to find the cache which an obj belongs to.
579 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
581 page->lru.next = (struct list_head *)cache;
584 static inline struct kmem_cache *page_get_cache(struct page *page)
586 return (struct kmem_cache *)page->lru.next;
589 static inline void page_set_slab(struct page *page, struct slab *slab)
591 page->lru.prev = (struct list_head *)slab;
594 static inline struct slab *page_get_slab(struct page *page)
596 return (struct slab *)page->lru.prev;
599 /* These are the default caches for kmalloc. Custom caches can have other sizes. */
600 struct cache_sizes malloc_sizes[] = {
601 #define CACHE(x) { .cs_size = (x) },
602 #include <linux/kmalloc_sizes.h>
603 CACHE(ULONG_MAX)
604 #undef CACHE
606 EXPORT_SYMBOL(malloc_sizes);
608 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
609 struct cache_names {
610 char *name;
611 char *name_dma;
614 static struct cache_names __initdata cache_names[] = {
615 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
616 #include <linux/kmalloc_sizes.h>
617 {NULL,}
618 #undef CACHE
621 static struct arraycache_init initarray_cache __initdata =
622 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
623 static struct arraycache_init initarray_generic =
624 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
626 /* internal cache of cache description objs */
627 static kmem_cache_t cache_cache = {
628 .batchcount = 1,
629 .limit = BOOT_CPUCACHE_ENTRIES,
630 .shared = 1,
631 .buffer_size = sizeof(kmem_cache_t),
632 .flags = SLAB_NO_REAP,
633 .spinlock = SPIN_LOCK_UNLOCKED,
634 .name = "kmem_cache",
635 #if DEBUG
636 .obj_size = sizeof(kmem_cache_t),
637 #endif
640 /* Guard access to the cache-chain. */
641 static DEFINE_MUTEX(cache_chain_mutex);
642 static struct list_head cache_chain;
645 * vm_enough_memory() looks at this to determine how many
646 * slab-allocated pages are possibly freeable under pressure
648 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
650 atomic_t slab_reclaim_pages;
653 * chicken and egg problem: delay the per-cpu array allocation
654 * until the general caches are up.
656 static enum {
657 NONE,
658 PARTIAL_AC,
659 PARTIAL_L3,
660 FULL
661 } g_cpucache_up;
663 static DEFINE_PER_CPU(struct work_struct, reap_work);
665 static void free_block(kmem_cache_t *cachep, void **objpp, int len, int node);
666 static void enable_cpucache(kmem_cache_t *cachep);
667 static void cache_reap(void *unused);
668 static int __node_shrink(kmem_cache_t *cachep, int node);
670 static inline struct array_cache *ac_data(kmem_cache_t *cachep)
672 return cachep->array[smp_processor_id()];
675 static inline kmem_cache_t *__find_general_cachep(size_t size, gfp_t gfpflags)
677 struct cache_sizes *csizep = malloc_sizes;
679 #if DEBUG
680 /* This happens if someone tries to call
681 * kmem_cache_create(), or __kmalloc(), before
682 * the generic caches are initialized.
684 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
685 #endif
686 while (size > csizep->cs_size)
687 csizep++;
690 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
691 * has cs_{dma,}cachep==NULL. Thus no special case
692 * for large kmalloc calls required.
694 if (unlikely(gfpflags & GFP_DMA))
695 return csizep->cs_dmacachep;
696 return csizep->cs_cachep;
699 kmem_cache_t *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
701 return __find_general_cachep(size, gfpflags);
703 EXPORT_SYMBOL(kmem_find_general_cachep);
705 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
707 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
710 /* Calculate the number of objects and left-over bytes for a given
711 buffer size. */
712 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
713 size_t align, int flags, size_t *left_over,
714 unsigned int *num)
716 int nr_objs;
717 size_t mgmt_size;
718 size_t slab_size = PAGE_SIZE << gfporder;
721 * The slab management structure can be either off the slab or
722 * on it. For the latter case, the memory allocated for a
723 * slab is used for:
725 * - The struct slab
726 * - One kmem_bufctl_t for each object
727 * - Padding to respect alignment of @align
728 * - @buffer_size bytes for each object
730 * If the slab management structure is off the slab, then the
731 * alignment will already be calculated into the size. Because
732 * the slabs are all pages aligned, the objects will be at the
733 * correct alignment when allocated.
735 if (flags & CFLGS_OFF_SLAB) {
736 mgmt_size = 0;
737 nr_objs = slab_size / buffer_size;
739 if (nr_objs > SLAB_LIMIT)
740 nr_objs = SLAB_LIMIT;
741 } else {
743 * Ignore padding for the initial guess. The padding
744 * is at most @align-1 bytes, and @buffer_size is at
745 * least @align. In the worst case, this result will
746 * be one greater than the number of objects that fit
747 * into the memory allocation when taking the padding
748 * into account.
750 nr_objs = (slab_size - sizeof(struct slab)) /
751 (buffer_size + sizeof(kmem_bufctl_t));
754 * This calculated number will be either the right
755 * amount, or one greater than what we want.
757 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
758 > slab_size)
759 nr_objs--;
761 if (nr_objs > SLAB_LIMIT)
762 nr_objs = SLAB_LIMIT;
764 mgmt_size = slab_mgmt_size(nr_objs, align);
766 *num = nr_objs;
767 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
770 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
772 static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg)
774 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
775 function, cachep->name, msg);
776 dump_stack();
780 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
781 * via the workqueue/eventd.
782 * Add the CPU number into the expiration time to minimize the possibility of
783 * the CPUs getting into lockstep and contending for the global cache chain
784 * lock.
786 static void __devinit start_cpu_timer(int cpu)
788 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
791 * When this gets called from do_initcalls via cpucache_init(),
792 * init_workqueues() has already run, so keventd will be setup
793 * at that time.
795 if (keventd_up() && reap_work->func == NULL) {
796 INIT_WORK(reap_work, cache_reap, NULL);
797 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
801 static struct array_cache *alloc_arraycache(int node, int entries,
802 int batchcount)
804 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
805 struct array_cache *nc = NULL;
807 nc = kmalloc_node(memsize, GFP_KERNEL, node);
808 if (nc) {
809 nc->avail = 0;
810 nc->limit = entries;
811 nc->batchcount = batchcount;
812 nc->touched = 0;
813 spin_lock_init(&nc->lock);
815 return nc;
818 #ifdef CONFIG_NUMA
819 static void *__cache_alloc_node(kmem_cache_t *, gfp_t, int);
821 static inline struct array_cache **alloc_alien_cache(int node, int limit)
823 struct array_cache **ac_ptr;
824 int memsize = sizeof(void *) * MAX_NUMNODES;
825 int i;
827 if (limit > 1)
828 limit = 12;
829 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
830 if (ac_ptr) {
831 for_each_node(i) {
832 if (i == node || !node_online(i)) {
833 ac_ptr[i] = NULL;
834 continue;
836 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
837 if (!ac_ptr[i]) {
838 for (i--; i <= 0; i--)
839 kfree(ac_ptr[i]);
840 kfree(ac_ptr);
841 return NULL;
845 return ac_ptr;
848 static inline void free_alien_cache(struct array_cache **ac_ptr)
850 int i;
852 if (!ac_ptr)
853 return;
855 for_each_node(i)
856 kfree(ac_ptr[i]);
858 kfree(ac_ptr);
861 static inline void __drain_alien_cache(kmem_cache_t *cachep,
862 struct array_cache *ac, int node)
864 struct kmem_list3 *rl3 = cachep->nodelists[node];
866 if (ac->avail) {
867 spin_lock(&rl3->list_lock);
868 free_block(cachep, ac->entry, ac->avail, node);
869 ac->avail = 0;
870 spin_unlock(&rl3->list_lock);
874 static void drain_alien_cache(kmem_cache_t *cachep, struct kmem_list3 *l3)
876 int i = 0;
877 struct array_cache *ac;
878 unsigned long flags;
880 for_each_online_node(i) {
881 ac = l3->alien[i];
882 if (ac) {
883 spin_lock_irqsave(&ac->lock, flags);
884 __drain_alien_cache(cachep, ac, i);
885 spin_unlock_irqrestore(&ac->lock, flags);
889 #else
890 #define alloc_alien_cache(node, limit) do { } while (0)
891 #define free_alien_cache(ac_ptr) do { } while (0)
892 #define drain_alien_cache(cachep, l3) do { } while (0)
893 #endif
895 static int __devinit cpuup_callback(struct notifier_block *nfb,
896 unsigned long action, void *hcpu)
898 long cpu = (long)hcpu;
899 kmem_cache_t *cachep;
900 struct kmem_list3 *l3 = NULL;
901 int node = cpu_to_node(cpu);
902 int memsize = sizeof(struct kmem_list3);
904 switch (action) {
905 case CPU_UP_PREPARE:
906 mutex_lock(&cache_chain_mutex);
907 /* we need to do this right in the beginning since
908 * alloc_arraycache's are going to use this list.
909 * kmalloc_node allows us to add the slab to the right
910 * kmem_list3 and not this cpu's kmem_list3
913 list_for_each_entry(cachep, &cache_chain, next) {
914 /* setup the size64 kmemlist for cpu before we can
915 * begin anything. Make sure some other cpu on this
916 * node has not already allocated this
918 if (!cachep->nodelists[node]) {
919 if (!(l3 = kmalloc_node(memsize,
920 GFP_KERNEL, node)))
921 goto bad;
922 kmem_list3_init(l3);
923 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
924 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
926 cachep->nodelists[node] = l3;
929 spin_lock_irq(&cachep->nodelists[node]->list_lock);
930 cachep->nodelists[node]->free_limit =
931 (1 + nr_cpus_node(node)) *
932 cachep->batchcount + cachep->num;
933 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
936 /* Now we can go ahead with allocating the shared array's
937 & array cache's */
938 list_for_each_entry(cachep, &cache_chain, next) {
939 struct array_cache *nc;
941 nc = alloc_arraycache(node, cachep->limit,
942 cachep->batchcount);
943 if (!nc)
944 goto bad;
945 cachep->array[cpu] = nc;
947 l3 = cachep->nodelists[node];
948 BUG_ON(!l3);
949 if (!l3->shared) {
950 if (!(nc = alloc_arraycache(node,
951 cachep->shared *
952 cachep->batchcount,
953 0xbaadf00d)))
954 goto bad;
956 /* we are serialised from CPU_DEAD or
957 CPU_UP_CANCELLED by the cpucontrol lock */
958 l3->shared = nc;
961 mutex_unlock(&cache_chain_mutex);
962 break;
963 case CPU_ONLINE:
964 start_cpu_timer(cpu);
965 break;
966 #ifdef CONFIG_HOTPLUG_CPU
967 case CPU_DEAD:
968 /* fall thru */
969 case CPU_UP_CANCELED:
970 mutex_lock(&cache_chain_mutex);
972 list_for_each_entry(cachep, &cache_chain, next) {
973 struct array_cache *nc;
974 cpumask_t mask;
976 mask = node_to_cpumask(node);
977 spin_lock_irq(&cachep->spinlock);
978 /* cpu is dead; no one can alloc from it. */
979 nc = cachep->array[cpu];
980 cachep->array[cpu] = NULL;
981 l3 = cachep->nodelists[node];
983 if (!l3)
984 goto unlock_cache;
986 spin_lock(&l3->list_lock);
988 /* Free limit for this kmem_list3 */
989 l3->free_limit -= cachep->batchcount;
990 if (nc)
991 free_block(cachep, nc->entry, nc->avail, node);
993 if (!cpus_empty(mask)) {
994 spin_unlock(&l3->list_lock);
995 goto unlock_cache;
998 if (l3->shared) {
999 free_block(cachep, l3->shared->entry,
1000 l3->shared->avail, node);
1001 kfree(l3->shared);
1002 l3->shared = NULL;
1004 if (l3->alien) {
1005 drain_alien_cache(cachep, l3);
1006 free_alien_cache(l3->alien);
1007 l3->alien = NULL;
1010 /* free slabs belonging to this node */
1011 if (__node_shrink(cachep, node)) {
1012 cachep->nodelists[node] = NULL;
1013 spin_unlock(&l3->list_lock);
1014 kfree(l3);
1015 } else {
1016 spin_unlock(&l3->list_lock);
1018 unlock_cache:
1019 spin_unlock_irq(&cachep->spinlock);
1020 kfree(nc);
1022 mutex_unlock(&cache_chain_mutex);
1023 break;
1024 #endif
1026 return NOTIFY_OK;
1027 bad:
1028 mutex_unlock(&cache_chain_mutex);
1029 return NOTIFY_BAD;
1032 static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1035 * swap the static kmem_list3 with kmalloced memory
1037 static void init_list(kmem_cache_t *cachep, struct kmem_list3 *list, int nodeid)
1039 struct kmem_list3 *ptr;
1041 BUG_ON(cachep->nodelists[nodeid] != list);
1042 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1043 BUG_ON(!ptr);
1045 local_irq_disable();
1046 memcpy(ptr, list, sizeof(struct kmem_list3));
1047 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1048 cachep->nodelists[nodeid] = ptr;
1049 local_irq_enable();
1052 /* Initialisation.
1053 * Called after the gfp() functions have been enabled, and before smp_init().
1055 void __init kmem_cache_init(void)
1057 size_t left_over;
1058 struct cache_sizes *sizes;
1059 struct cache_names *names;
1060 int i;
1062 for (i = 0; i < NUM_INIT_LISTS; i++) {
1063 kmem_list3_init(&initkmem_list3[i]);
1064 if (i < MAX_NUMNODES)
1065 cache_cache.nodelists[i] = NULL;
1069 * Fragmentation resistance on low memory - only use bigger
1070 * page orders on machines with more than 32MB of memory.
1072 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1073 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1075 /* Bootstrap is tricky, because several objects are allocated
1076 * from caches that do not exist yet:
1077 * 1) initialize the cache_cache cache: it contains the kmem_cache_t
1078 * structures of all caches, except cache_cache itself: cache_cache
1079 * is statically allocated.
1080 * Initially an __init data area is used for the head array and the
1081 * kmem_list3 structures, it's replaced with a kmalloc allocated
1082 * array at the end of the bootstrap.
1083 * 2) Create the first kmalloc cache.
1084 * The kmem_cache_t for the new cache is allocated normally.
1085 * An __init data area is used for the head array.
1086 * 3) Create the remaining kmalloc caches, with minimally sized
1087 * head arrays.
1088 * 4) Replace the __init data head arrays for cache_cache and the first
1089 * kmalloc cache with kmalloc allocated arrays.
1090 * 5) Replace the __init data for kmem_list3 for cache_cache and
1091 * the other cache's with kmalloc allocated memory.
1092 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1095 /* 1) create the cache_cache */
1096 INIT_LIST_HEAD(&cache_chain);
1097 list_add(&cache_cache.next, &cache_chain);
1098 cache_cache.colour_off = cache_line_size();
1099 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1100 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1102 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, cache_line_size());
1104 cache_estimate(0, cache_cache.buffer_size, cache_line_size(), 0,
1105 &left_over, &cache_cache.num);
1106 if (!cache_cache.num)
1107 BUG();
1109 cache_cache.colour = left_over / cache_cache.colour_off;
1110 cache_cache.colour_next = 0;
1111 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1112 sizeof(struct slab), cache_line_size());
1114 /* 2+3) create the kmalloc caches */
1115 sizes = malloc_sizes;
1116 names = cache_names;
1118 /* Initialize the caches that provide memory for the array cache
1119 * and the kmem_list3 structures first.
1120 * Without this, further allocations will bug
1123 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1124 sizes[INDEX_AC].cs_size,
1125 ARCH_KMALLOC_MINALIGN,
1126 (ARCH_KMALLOC_FLAGS |
1127 SLAB_PANIC), NULL, NULL);
1129 if (INDEX_AC != INDEX_L3)
1130 sizes[INDEX_L3].cs_cachep =
1131 kmem_cache_create(names[INDEX_L3].name,
1132 sizes[INDEX_L3].cs_size,
1133 ARCH_KMALLOC_MINALIGN,
1134 (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL,
1135 NULL);
1137 while (sizes->cs_size != ULONG_MAX) {
1139 * For performance, all the general caches are L1 aligned.
1140 * This should be particularly beneficial on SMP boxes, as it
1141 * eliminates "false sharing".
1142 * Note for systems short on memory removing the alignment will
1143 * allow tighter packing of the smaller caches.
1145 if (!sizes->cs_cachep)
1146 sizes->cs_cachep = kmem_cache_create(names->name,
1147 sizes->cs_size,
1148 ARCH_KMALLOC_MINALIGN,
1149 (ARCH_KMALLOC_FLAGS
1150 | SLAB_PANIC),
1151 NULL, NULL);
1153 /* Inc off-slab bufctl limit until the ceiling is hit. */
1154 if (!(OFF_SLAB(sizes->cs_cachep))) {
1155 offslab_limit = sizes->cs_size - sizeof(struct slab);
1156 offslab_limit /= sizeof(kmem_bufctl_t);
1159 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1160 sizes->cs_size,
1161 ARCH_KMALLOC_MINALIGN,
1162 (ARCH_KMALLOC_FLAGS |
1163 SLAB_CACHE_DMA |
1164 SLAB_PANIC), NULL,
1165 NULL);
1167 sizes++;
1168 names++;
1170 /* 4) Replace the bootstrap head arrays */
1172 void *ptr;
1174 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1176 local_irq_disable();
1177 BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache);
1178 memcpy(ptr, ac_data(&cache_cache),
1179 sizeof(struct arraycache_init));
1180 cache_cache.array[smp_processor_id()] = ptr;
1181 local_irq_enable();
1183 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1185 local_irq_disable();
1186 BUG_ON(ac_data(malloc_sizes[INDEX_AC].cs_cachep)
1187 != &initarray_generic.cache);
1188 memcpy(ptr, ac_data(malloc_sizes[INDEX_AC].cs_cachep),
1189 sizeof(struct arraycache_init));
1190 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1191 ptr;
1192 local_irq_enable();
1194 /* 5) Replace the bootstrap kmem_list3's */
1196 int node;
1197 /* Replace the static kmem_list3 structures for the boot cpu */
1198 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1199 numa_node_id());
1201 for_each_online_node(node) {
1202 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1203 &initkmem_list3[SIZE_AC + node], node);
1205 if (INDEX_AC != INDEX_L3) {
1206 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1207 &initkmem_list3[SIZE_L3 + node],
1208 node);
1213 /* 6) resize the head arrays to their final sizes */
1215 kmem_cache_t *cachep;
1216 mutex_lock(&cache_chain_mutex);
1217 list_for_each_entry(cachep, &cache_chain, next)
1218 enable_cpucache(cachep);
1219 mutex_unlock(&cache_chain_mutex);
1222 /* Done! */
1223 g_cpucache_up = FULL;
1225 /* Register a cpu startup notifier callback
1226 * that initializes ac_data for all new cpus
1228 register_cpu_notifier(&cpucache_notifier);
1230 /* The reap timers are started later, with a module init call:
1231 * That part of the kernel is not yet operational.
1235 static int __init cpucache_init(void)
1237 int cpu;
1240 * Register the timers that return unneeded
1241 * pages to gfp.
1243 for_each_online_cpu(cpu)
1244 start_cpu_timer(cpu);
1246 return 0;
1249 __initcall(cpucache_init);
1252 * Interface to system's page allocator. No need to hold the cache-lock.
1254 * If we requested dmaable memory, we will get it. Even if we
1255 * did not request dmaable memory, we might get it, but that
1256 * would be relatively rare and ignorable.
1258 static void *kmem_getpages(kmem_cache_t *cachep, gfp_t flags, int nodeid)
1260 struct page *page;
1261 void *addr;
1262 int i;
1264 flags |= cachep->gfpflags;
1265 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1266 if (!page)
1267 return NULL;
1268 addr = page_address(page);
1270 i = (1 << cachep->gfporder);
1271 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1272 atomic_add(i, &slab_reclaim_pages);
1273 add_page_state(nr_slab, i);
1274 while (i--) {
1275 SetPageSlab(page);
1276 page++;
1278 return addr;
1282 * Interface to system's page release.
1284 static void kmem_freepages(kmem_cache_t *cachep, void *addr)
1286 unsigned long i = (1 << cachep->gfporder);
1287 struct page *page = virt_to_page(addr);
1288 const unsigned long nr_freed = i;
1290 while (i--) {
1291 if (!TestClearPageSlab(page))
1292 BUG();
1293 page++;
1295 sub_page_state(nr_slab, nr_freed);
1296 if (current->reclaim_state)
1297 current->reclaim_state->reclaimed_slab += nr_freed;
1298 free_pages((unsigned long)addr, cachep->gfporder);
1299 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1300 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1303 static void kmem_rcu_free(struct rcu_head *head)
1305 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1306 kmem_cache_t *cachep = slab_rcu->cachep;
1308 kmem_freepages(cachep, slab_rcu->addr);
1309 if (OFF_SLAB(cachep))
1310 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1313 #if DEBUG
1315 #ifdef CONFIG_DEBUG_PAGEALLOC
1316 static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr,
1317 unsigned long caller)
1319 int size = obj_size(cachep);
1321 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1323 if (size < 5 * sizeof(unsigned long))
1324 return;
1326 *addr++ = 0x12345678;
1327 *addr++ = caller;
1328 *addr++ = smp_processor_id();
1329 size -= 3 * sizeof(unsigned long);
1331 unsigned long *sptr = &caller;
1332 unsigned long svalue;
1334 while (!kstack_end(sptr)) {
1335 svalue = *sptr++;
1336 if (kernel_text_address(svalue)) {
1337 *addr++ = svalue;
1338 size -= sizeof(unsigned long);
1339 if (size <= sizeof(unsigned long))
1340 break;
1345 *addr++ = 0x87654321;
1347 #endif
1349 static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val)
1351 int size = obj_size(cachep);
1352 addr = &((char *)addr)[obj_offset(cachep)];
1354 memset(addr, val, size);
1355 *(unsigned char *)(addr + size - 1) = POISON_END;
1358 static void dump_line(char *data, int offset, int limit)
1360 int i;
1361 printk(KERN_ERR "%03x:", offset);
1362 for (i = 0; i < limit; i++) {
1363 printk(" %02x", (unsigned char)data[offset + i]);
1365 printk("\n");
1367 #endif
1369 #if DEBUG
1371 static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines)
1373 int i, size;
1374 char *realobj;
1376 if (cachep->flags & SLAB_RED_ZONE) {
1377 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1378 *dbg_redzone1(cachep, objp),
1379 *dbg_redzone2(cachep, objp));
1382 if (cachep->flags & SLAB_STORE_USER) {
1383 printk(KERN_ERR "Last user: [<%p>]",
1384 *dbg_userword(cachep, objp));
1385 print_symbol("(%s)",
1386 (unsigned long)*dbg_userword(cachep, objp));
1387 printk("\n");
1389 realobj = (char *)objp + obj_offset(cachep);
1390 size = obj_size(cachep);
1391 for (i = 0; i < size && lines; i += 16, lines--) {
1392 int limit;
1393 limit = 16;
1394 if (i + limit > size)
1395 limit = size - i;
1396 dump_line(realobj, i, limit);
1400 static void check_poison_obj(kmem_cache_t *cachep, void *objp)
1402 char *realobj;
1403 int size, i;
1404 int lines = 0;
1406 realobj = (char *)objp + obj_offset(cachep);
1407 size = obj_size(cachep);
1409 for (i = 0; i < size; i++) {
1410 char exp = POISON_FREE;
1411 if (i == size - 1)
1412 exp = POISON_END;
1413 if (realobj[i] != exp) {
1414 int limit;
1415 /* Mismatch ! */
1416 /* Print header */
1417 if (lines == 0) {
1418 printk(KERN_ERR
1419 "Slab corruption: start=%p, len=%d\n",
1420 realobj, size);
1421 print_objinfo(cachep, objp, 0);
1423 /* Hexdump the affected line */
1424 i = (i / 16) * 16;
1425 limit = 16;
1426 if (i + limit > size)
1427 limit = size - i;
1428 dump_line(realobj, i, limit);
1429 i += 16;
1430 lines++;
1431 /* Limit to 5 lines */
1432 if (lines > 5)
1433 break;
1436 if (lines != 0) {
1437 /* Print some data about the neighboring objects, if they
1438 * exist:
1440 struct slab *slabp = page_get_slab(virt_to_page(objp));
1441 int objnr;
1443 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
1444 if (objnr) {
1445 objp = slabp->s_mem + (objnr - 1) * cachep->buffer_size;
1446 realobj = (char *)objp + obj_offset(cachep);
1447 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1448 realobj, size);
1449 print_objinfo(cachep, objp, 2);
1451 if (objnr + 1 < cachep->num) {
1452 objp = slabp->s_mem + (objnr + 1) * cachep->buffer_size;
1453 realobj = (char *)objp + obj_offset(cachep);
1454 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1455 realobj, size);
1456 print_objinfo(cachep, objp, 2);
1460 #endif
1462 /* Destroy all the objs in a slab, and release the mem back to the system.
1463 * Before calling the slab must have been unlinked from the cache.
1464 * The cache-lock is not held/needed.
1466 static void slab_destroy(kmem_cache_t *cachep, struct slab *slabp)
1468 void *addr = slabp->s_mem - slabp->colouroff;
1470 #if DEBUG
1471 int i;
1472 for (i = 0; i < cachep->num; i++) {
1473 void *objp = slabp->s_mem + cachep->buffer_size * i;
1475 if (cachep->flags & SLAB_POISON) {
1476 #ifdef CONFIG_DEBUG_PAGEALLOC
1477 if ((cachep->buffer_size % PAGE_SIZE) == 0
1478 && OFF_SLAB(cachep))
1479 kernel_map_pages(virt_to_page(objp),
1480 cachep->buffer_size / PAGE_SIZE,
1482 else
1483 check_poison_obj(cachep, objp);
1484 #else
1485 check_poison_obj(cachep, objp);
1486 #endif
1488 if (cachep->flags & SLAB_RED_ZONE) {
1489 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1490 slab_error(cachep, "start of a freed object "
1491 "was overwritten");
1492 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1493 slab_error(cachep, "end of a freed object "
1494 "was overwritten");
1496 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1497 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1499 #else
1500 if (cachep->dtor) {
1501 int i;
1502 for (i = 0; i < cachep->num; i++) {
1503 void *objp = slabp->s_mem + cachep->buffer_size * i;
1504 (cachep->dtor) (objp, cachep, 0);
1507 #endif
1509 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1510 struct slab_rcu *slab_rcu;
1512 slab_rcu = (struct slab_rcu *)slabp;
1513 slab_rcu->cachep = cachep;
1514 slab_rcu->addr = addr;
1515 call_rcu(&slab_rcu->head, kmem_rcu_free);
1516 } else {
1517 kmem_freepages(cachep, addr);
1518 if (OFF_SLAB(cachep))
1519 kmem_cache_free(cachep->slabp_cache, slabp);
1523 /* For setting up all the kmem_list3s for cache whose buffer_size is same
1524 as size of kmem_list3. */
1525 static inline void set_up_list3s(kmem_cache_t *cachep, int index)
1527 int node;
1529 for_each_online_node(node) {
1530 cachep->nodelists[node] = &initkmem_list3[index + node];
1531 cachep->nodelists[node]->next_reap = jiffies +
1532 REAPTIMEOUT_LIST3 +
1533 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1538 * calculate_slab_order - calculate size (page order) of slabs and the number
1539 * of objects per slab.
1541 * This could be made much more intelligent. For now, try to avoid using
1542 * high order pages for slabs. When the gfp() functions are more friendly
1543 * towards high-order requests, this should be changed.
1545 static inline size_t calculate_slab_order(kmem_cache_t *cachep, size_t size,
1546 size_t align, gfp_t flags)
1548 size_t left_over = 0;
1550 for (;; cachep->gfporder++) {
1551 unsigned int num;
1552 size_t remainder;
1554 if (cachep->gfporder > MAX_GFP_ORDER) {
1555 cachep->num = 0;
1556 break;
1559 cache_estimate(cachep->gfporder, size, align, flags,
1560 &remainder, &num);
1561 if (!num)
1562 continue;
1563 /* More than offslab_limit objects will cause problems */
1564 if (flags & CFLGS_OFF_SLAB && cachep->num > offslab_limit)
1565 break;
1567 cachep->num = num;
1568 left_over = remainder;
1571 * Large number of objects is good, but very large slabs are
1572 * currently bad for the gfp()s.
1574 if (cachep->gfporder >= slab_break_gfp_order)
1575 break;
1577 if ((left_over * 8) <= (PAGE_SIZE << cachep->gfporder))
1578 /* Acceptable internal fragmentation */
1579 break;
1581 return left_over;
1585 * kmem_cache_create - Create a cache.
1586 * @name: A string which is used in /proc/slabinfo to identify this cache.
1587 * @size: The size of objects to be created in this cache.
1588 * @align: The required alignment for the objects.
1589 * @flags: SLAB flags
1590 * @ctor: A constructor for the objects.
1591 * @dtor: A destructor for the objects.
1593 * Returns a ptr to the cache on success, NULL on failure.
1594 * Cannot be called within a int, but can be interrupted.
1595 * The @ctor is run when new pages are allocated by the cache
1596 * and the @dtor is run before the pages are handed back.
1598 * @name must be valid until the cache is destroyed. This implies that
1599 * the module calling this has to destroy the cache before getting
1600 * unloaded.
1602 * The flags are
1604 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1605 * to catch references to uninitialised memory.
1607 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1608 * for buffer overruns.
1610 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1611 * memory pressure.
1613 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1614 * cacheline. This can be beneficial if you're counting cycles as closely
1615 * as davem.
1617 kmem_cache_t *
1618 kmem_cache_create (const char *name, size_t size, size_t align,
1619 unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
1620 void (*dtor)(void*, kmem_cache_t *, unsigned long))
1622 size_t left_over, slab_size, ralign;
1623 kmem_cache_t *cachep = NULL;
1624 struct list_head *p;
1627 * Sanity checks... these are all serious usage bugs.
1629 if ((!name) ||
1630 in_interrupt() ||
1631 (size < BYTES_PER_WORD) ||
1632 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1633 printk(KERN_ERR "%s: Early error in slab %s\n",
1634 __FUNCTION__, name);
1635 BUG();
1638 mutex_lock(&cache_chain_mutex);
1640 list_for_each(p, &cache_chain) {
1641 kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
1642 mm_segment_t old_fs = get_fs();
1643 char tmp;
1644 int res;
1647 * This happens when the module gets unloaded and doesn't
1648 * destroy its slab cache and no-one else reuses the vmalloc
1649 * area of the module. Print a warning.
1651 set_fs(KERNEL_DS);
1652 res = __get_user(tmp, pc->name);
1653 set_fs(old_fs);
1654 if (res) {
1655 printk("SLAB: cache with size %d has lost its name\n",
1656 pc->buffer_size);
1657 continue;
1660 if (!strcmp(pc->name, name)) {
1661 printk("kmem_cache_create: duplicate cache %s\n", name);
1662 dump_stack();
1663 goto oops;
1667 #if DEBUG
1668 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1669 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1670 /* No constructor, but inital state check requested */
1671 printk(KERN_ERR "%s: No con, but init state check "
1672 "requested - %s\n", __FUNCTION__, name);
1673 flags &= ~SLAB_DEBUG_INITIAL;
1675 #if FORCED_DEBUG
1677 * Enable redzoning and last user accounting, except for caches with
1678 * large objects, if the increased size would increase the object size
1679 * above the next power of two: caches with object sizes just above a
1680 * power of two have a significant amount of internal fragmentation.
1682 if ((size < 4096
1683 || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD)))
1684 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1685 if (!(flags & SLAB_DESTROY_BY_RCU))
1686 flags |= SLAB_POISON;
1687 #endif
1688 if (flags & SLAB_DESTROY_BY_RCU)
1689 BUG_ON(flags & SLAB_POISON);
1690 #endif
1691 if (flags & SLAB_DESTROY_BY_RCU)
1692 BUG_ON(dtor);
1695 * Always checks flags, a caller might be expecting debug
1696 * support which isn't available.
1698 if (flags & ~CREATE_MASK)
1699 BUG();
1701 /* Check that size is in terms of words. This is needed to avoid
1702 * unaligned accesses for some archs when redzoning is used, and makes
1703 * sure any on-slab bufctl's are also correctly aligned.
1705 if (size & (BYTES_PER_WORD - 1)) {
1706 size += (BYTES_PER_WORD - 1);
1707 size &= ~(BYTES_PER_WORD - 1);
1710 /* calculate out the final buffer alignment: */
1711 /* 1) arch recommendation: can be overridden for debug */
1712 if (flags & SLAB_HWCACHE_ALIGN) {
1713 /* Default alignment: as specified by the arch code.
1714 * Except if an object is really small, then squeeze multiple
1715 * objects into one cacheline.
1717 ralign = cache_line_size();
1718 while (size <= ralign / 2)
1719 ralign /= 2;
1720 } else {
1721 ralign = BYTES_PER_WORD;
1723 /* 2) arch mandated alignment: disables debug if necessary */
1724 if (ralign < ARCH_SLAB_MINALIGN) {
1725 ralign = ARCH_SLAB_MINALIGN;
1726 if (ralign > BYTES_PER_WORD)
1727 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1729 /* 3) caller mandated alignment: disables debug if necessary */
1730 if (ralign < align) {
1731 ralign = align;
1732 if (ralign > BYTES_PER_WORD)
1733 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1735 /* 4) Store it. Note that the debug code below can reduce
1736 * the alignment to BYTES_PER_WORD.
1738 align = ralign;
1740 /* Get cache's description obj. */
1741 cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1742 if (!cachep)
1743 goto oops;
1744 memset(cachep, 0, sizeof(kmem_cache_t));
1746 #if DEBUG
1747 cachep->obj_size = size;
1749 if (flags & SLAB_RED_ZONE) {
1750 /* redzoning only works with word aligned caches */
1751 align = BYTES_PER_WORD;
1753 /* add space for red zone words */
1754 cachep->obj_offset += BYTES_PER_WORD;
1755 size += 2 * BYTES_PER_WORD;
1757 if (flags & SLAB_STORE_USER) {
1758 /* user store requires word alignment and
1759 * one word storage behind the end of the real
1760 * object.
1762 align = BYTES_PER_WORD;
1763 size += BYTES_PER_WORD;
1765 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
1766 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
1767 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
1768 cachep->obj_offset += PAGE_SIZE - size;
1769 size = PAGE_SIZE;
1771 #endif
1772 #endif
1774 /* Determine if the slab management is 'on' or 'off' slab. */
1775 if (size >= (PAGE_SIZE >> 3))
1777 * Size is large, assume best to place the slab management obj
1778 * off-slab (should allow better packing of objs).
1780 flags |= CFLGS_OFF_SLAB;
1782 size = ALIGN(size, align);
1784 if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) {
1786 * A VFS-reclaimable slab tends to have most allocations
1787 * as GFP_NOFS and we really don't want to have to be allocating
1788 * higher-order pages when we are unable to shrink dcache.
1790 cachep->gfporder = 0;
1791 cache_estimate(cachep->gfporder, size, align, flags,
1792 &left_over, &cachep->num);
1793 } else
1794 left_over = calculate_slab_order(cachep, size, align, flags);
1796 if (!cachep->num) {
1797 printk("kmem_cache_create: couldn't create cache %s.\n", name);
1798 kmem_cache_free(&cache_cache, cachep);
1799 cachep = NULL;
1800 goto oops;
1802 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
1803 + sizeof(struct slab), align);
1806 * If the slab has been placed off-slab, and we have enough space then
1807 * move it on-slab. This is at the expense of any extra colouring.
1809 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
1810 flags &= ~CFLGS_OFF_SLAB;
1811 left_over -= slab_size;
1814 if (flags & CFLGS_OFF_SLAB) {
1815 /* really off slab. No need for manual alignment */
1816 slab_size =
1817 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1820 cachep->colour_off = cache_line_size();
1821 /* Offset must be a multiple of the alignment. */
1822 if (cachep->colour_off < align)
1823 cachep->colour_off = align;
1824 cachep->colour = left_over / cachep->colour_off;
1825 cachep->slab_size = slab_size;
1826 cachep->flags = flags;
1827 cachep->gfpflags = 0;
1828 if (flags & SLAB_CACHE_DMA)
1829 cachep->gfpflags |= GFP_DMA;
1830 spin_lock_init(&cachep->spinlock);
1831 cachep->buffer_size = size;
1833 if (flags & CFLGS_OFF_SLAB)
1834 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
1835 cachep->ctor = ctor;
1836 cachep->dtor = dtor;
1837 cachep->name = name;
1839 /* Don't let CPUs to come and go */
1840 lock_cpu_hotplug();
1842 if (g_cpucache_up == FULL) {
1843 enable_cpucache(cachep);
1844 } else {
1845 if (g_cpucache_up == NONE) {
1846 /* Note: the first kmem_cache_create must create
1847 * the cache that's used by kmalloc(24), otherwise
1848 * the creation of further caches will BUG().
1850 cachep->array[smp_processor_id()] =
1851 &initarray_generic.cache;
1853 /* If the cache that's used by
1854 * kmalloc(sizeof(kmem_list3)) is the first cache,
1855 * then we need to set up all its list3s, otherwise
1856 * the creation of further caches will BUG().
1858 set_up_list3s(cachep, SIZE_AC);
1859 if (INDEX_AC == INDEX_L3)
1860 g_cpucache_up = PARTIAL_L3;
1861 else
1862 g_cpucache_up = PARTIAL_AC;
1863 } else {
1864 cachep->array[smp_processor_id()] =
1865 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1867 if (g_cpucache_up == PARTIAL_AC) {
1868 set_up_list3s(cachep, SIZE_L3);
1869 g_cpucache_up = PARTIAL_L3;
1870 } else {
1871 int node;
1872 for_each_online_node(node) {
1874 cachep->nodelists[node] =
1875 kmalloc_node(sizeof
1876 (struct kmem_list3),
1877 GFP_KERNEL, node);
1878 BUG_ON(!cachep->nodelists[node]);
1879 kmem_list3_init(cachep->
1880 nodelists[node]);
1884 cachep->nodelists[numa_node_id()]->next_reap =
1885 jiffies + REAPTIMEOUT_LIST3 +
1886 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1888 BUG_ON(!ac_data(cachep));
1889 ac_data(cachep)->avail = 0;
1890 ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1891 ac_data(cachep)->batchcount = 1;
1892 ac_data(cachep)->touched = 0;
1893 cachep->batchcount = 1;
1894 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1897 /* cache setup completed, link it into the list */
1898 list_add(&cachep->next, &cache_chain);
1899 unlock_cpu_hotplug();
1900 oops:
1901 if (!cachep && (flags & SLAB_PANIC))
1902 panic("kmem_cache_create(): failed to create slab `%s'\n",
1903 name);
1904 mutex_unlock(&cache_chain_mutex);
1905 return cachep;
1907 EXPORT_SYMBOL(kmem_cache_create);
1909 #if DEBUG
1910 static void check_irq_off(void)
1912 BUG_ON(!irqs_disabled());
1915 static void check_irq_on(void)
1917 BUG_ON(irqs_disabled());
1920 static void check_spinlock_acquired(kmem_cache_t *cachep)
1922 #ifdef CONFIG_SMP
1923 check_irq_off();
1924 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1925 #endif
1928 static inline void check_spinlock_acquired_node(kmem_cache_t *cachep, int node)
1930 #ifdef CONFIG_SMP
1931 check_irq_off();
1932 assert_spin_locked(&cachep->nodelists[node]->list_lock);
1933 #endif
1936 #else
1937 #define check_irq_off() do { } while(0)
1938 #define check_irq_on() do { } while(0)
1939 #define check_spinlock_acquired(x) do { } while(0)
1940 #define check_spinlock_acquired_node(x, y) do { } while(0)
1941 #endif
1944 * Waits for all CPUs to execute func().
1946 static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
1948 check_irq_on();
1949 preempt_disable();
1951 local_irq_disable();
1952 func(arg);
1953 local_irq_enable();
1955 if (smp_call_function(func, arg, 1, 1))
1956 BUG();
1958 preempt_enable();
1961 static void drain_array_locked(kmem_cache_t *cachep, struct array_cache *ac,
1962 int force, int node);
1964 static void do_drain(void *arg)
1966 kmem_cache_t *cachep = (kmem_cache_t *) arg;
1967 struct array_cache *ac;
1968 int node = numa_node_id();
1970 check_irq_off();
1971 ac = ac_data(cachep);
1972 spin_lock(&cachep->nodelists[node]->list_lock);
1973 free_block(cachep, ac->entry, ac->avail, node);
1974 spin_unlock(&cachep->nodelists[node]->list_lock);
1975 ac->avail = 0;
1978 static void drain_cpu_caches(kmem_cache_t *cachep)
1980 struct kmem_list3 *l3;
1981 int node;
1983 smp_call_function_all_cpus(do_drain, cachep);
1984 check_irq_on();
1985 spin_lock_irq(&cachep->spinlock);
1986 for_each_online_node(node) {
1987 l3 = cachep->nodelists[node];
1988 if (l3) {
1989 spin_lock(&l3->list_lock);
1990 drain_array_locked(cachep, l3->shared, 1, node);
1991 spin_unlock(&l3->list_lock);
1992 if (l3->alien)
1993 drain_alien_cache(cachep, l3);
1996 spin_unlock_irq(&cachep->spinlock);
1999 static int __node_shrink(kmem_cache_t *cachep, int node)
2001 struct slab *slabp;
2002 struct kmem_list3 *l3 = cachep->nodelists[node];
2003 int ret;
2005 for (;;) {
2006 struct list_head *p;
2008 p = l3->slabs_free.prev;
2009 if (p == &l3->slabs_free)
2010 break;
2012 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
2013 #if DEBUG
2014 if (slabp->inuse)
2015 BUG();
2016 #endif
2017 list_del(&slabp->list);
2019 l3->free_objects -= cachep->num;
2020 spin_unlock_irq(&l3->list_lock);
2021 slab_destroy(cachep, slabp);
2022 spin_lock_irq(&l3->list_lock);
2024 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
2025 return ret;
2028 static int __cache_shrink(kmem_cache_t *cachep)
2030 int ret = 0, i = 0;
2031 struct kmem_list3 *l3;
2033 drain_cpu_caches(cachep);
2035 check_irq_on();
2036 for_each_online_node(i) {
2037 l3 = cachep->nodelists[i];
2038 if (l3) {
2039 spin_lock_irq(&l3->list_lock);
2040 ret += __node_shrink(cachep, i);
2041 spin_unlock_irq(&l3->list_lock);
2044 return (ret ? 1 : 0);
2048 * kmem_cache_shrink - Shrink a cache.
2049 * @cachep: The cache to shrink.
2051 * Releases as many slabs as possible for a cache.
2052 * To help debugging, a zero exit status indicates all slabs were released.
2054 int kmem_cache_shrink(kmem_cache_t *cachep)
2056 if (!cachep || in_interrupt())
2057 BUG();
2059 return __cache_shrink(cachep);
2061 EXPORT_SYMBOL(kmem_cache_shrink);
2064 * kmem_cache_destroy - delete a cache
2065 * @cachep: the cache to destroy
2067 * Remove a kmem_cache_t object from the slab cache.
2068 * Returns 0 on success.
2070 * It is expected this function will be called by a module when it is
2071 * unloaded. This will remove the cache completely, and avoid a duplicate
2072 * cache being allocated each time a module is loaded and unloaded, if the
2073 * module doesn't have persistent in-kernel storage across loads and unloads.
2075 * The cache must be empty before calling this function.
2077 * The caller must guarantee that noone will allocate memory from the cache
2078 * during the kmem_cache_destroy().
2080 int kmem_cache_destroy(kmem_cache_t *cachep)
2082 int i;
2083 struct kmem_list3 *l3;
2085 if (!cachep || in_interrupt())
2086 BUG();
2088 /* Don't let CPUs to come and go */
2089 lock_cpu_hotplug();
2091 /* Find the cache in the chain of caches. */
2092 mutex_lock(&cache_chain_mutex);
2094 * the chain is never empty, cache_cache is never destroyed
2096 list_del(&cachep->next);
2097 mutex_unlock(&cache_chain_mutex);
2099 if (__cache_shrink(cachep)) {
2100 slab_error(cachep, "Can't free all objects");
2101 mutex_lock(&cache_chain_mutex);
2102 list_add(&cachep->next, &cache_chain);
2103 mutex_unlock(&cache_chain_mutex);
2104 unlock_cpu_hotplug();
2105 return 1;
2108 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2109 synchronize_rcu();
2111 for_each_online_cpu(i)
2112 kfree(cachep->array[i]);
2114 /* NUMA: free the list3 structures */
2115 for_each_online_node(i) {
2116 if ((l3 = cachep->nodelists[i])) {
2117 kfree(l3->shared);
2118 free_alien_cache(l3->alien);
2119 kfree(l3);
2122 kmem_cache_free(&cache_cache, cachep);
2124 unlock_cpu_hotplug();
2126 return 0;
2128 EXPORT_SYMBOL(kmem_cache_destroy);
2130 /* Get the memory for a slab management obj. */
2131 static struct slab *alloc_slabmgmt(kmem_cache_t *cachep, void *objp,
2132 int colour_off, gfp_t local_flags)
2134 struct slab *slabp;
2136 if (OFF_SLAB(cachep)) {
2137 /* Slab management obj is off-slab. */
2138 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2139 if (!slabp)
2140 return NULL;
2141 } else {
2142 slabp = objp + colour_off;
2143 colour_off += cachep->slab_size;
2145 slabp->inuse = 0;
2146 slabp->colouroff = colour_off;
2147 slabp->s_mem = objp + colour_off;
2149 return slabp;
2152 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2154 return (kmem_bufctl_t *) (slabp + 1);
2157 static void cache_init_objs(kmem_cache_t *cachep,
2158 struct slab *slabp, unsigned long ctor_flags)
2160 int i;
2162 for (i = 0; i < cachep->num; i++) {
2163 void *objp = slabp->s_mem + cachep->buffer_size * i;
2164 #if DEBUG
2165 /* need to poison the objs? */
2166 if (cachep->flags & SLAB_POISON)
2167 poison_obj(cachep, objp, POISON_FREE);
2168 if (cachep->flags & SLAB_STORE_USER)
2169 *dbg_userword(cachep, objp) = NULL;
2171 if (cachep->flags & SLAB_RED_ZONE) {
2172 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2173 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2176 * Constructors are not allowed to allocate memory from
2177 * the same cache which they are a constructor for.
2178 * Otherwise, deadlock. They must also be threaded.
2180 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2181 cachep->ctor(objp + obj_offset(cachep), cachep,
2182 ctor_flags);
2184 if (cachep->flags & SLAB_RED_ZONE) {
2185 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2186 slab_error(cachep, "constructor overwrote the"
2187 " end of an object");
2188 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2189 slab_error(cachep, "constructor overwrote the"
2190 " start of an object");
2192 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)
2193 && cachep->flags & SLAB_POISON)
2194 kernel_map_pages(virt_to_page(objp),
2195 cachep->buffer_size / PAGE_SIZE, 0);
2196 #else
2197 if (cachep->ctor)
2198 cachep->ctor(objp, cachep, ctor_flags);
2199 #endif
2200 slab_bufctl(slabp)[i] = i + 1;
2202 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2203 slabp->free = 0;
2206 static void kmem_flagcheck(kmem_cache_t *cachep, gfp_t flags)
2208 if (flags & SLAB_DMA) {
2209 if (!(cachep->gfpflags & GFP_DMA))
2210 BUG();
2211 } else {
2212 if (cachep->gfpflags & GFP_DMA)
2213 BUG();
2217 static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp)
2219 int i;
2220 struct page *page;
2222 /* Nasty!!!!!! I hope this is OK. */
2223 i = 1 << cachep->gfporder;
2224 page = virt_to_page(objp);
2225 do {
2226 page_set_cache(page, cachep);
2227 page_set_slab(page, slabp);
2228 page++;
2229 } while (--i);
2233 * Grow (by 1) the number of slabs within a cache. This is called by
2234 * kmem_cache_alloc() when there are no active objs left in a cache.
2236 static int cache_grow(kmem_cache_t *cachep, gfp_t flags, int nodeid)
2238 struct slab *slabp;
2239 void *objp;
2240 size_t offset;
2241 gfp_t local_flags;
2242 unsigned long ctor_flags;
2243 struct kmem_list3 *l3;
2245 /* Be lazy and only check for valid flags here,
2246 * keeping it out of the critical path in kmem_cache_alloc().
2248 if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
2249 BUG();
2250 if (flags & SLAB_NO_GROW)
2251 return 0;
2253 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2254 local_flags = (flags & SLAB_LEVEL_MASK);
2255 if (!(local_flags & __GFP_WAIT))
2257 * Not allowed to sleep. Need to tell a constructor about
2258 * this - it might need to know...
2260 ctor_flags |= SLAB_CTOR_ATOMIC;
2262 /* About to mess with non-constant members - lock. */
2263 check_irq_off();
2264 spin_lock(&cachep->spinlock);
2266 /* Get colour for the slab, and cal the next value. */
2267 offset = cachep->colour_next;
2268 cachep->colour_next++;
2269 if (cachep->colour_next >= cachep->colour)
2270 cachep->colour_next = 0;
2271 offset *= cachep->colour_off;
2273 spin_unlock(&cachep->spinlock);
2275 check_irq_off();
2276 if (local_flags & __GFP_WAIT)
2277 local_irq_enable();
2280 * The test for missing atomic flag is performed here, rather than
2281 * the more obvious place, simply to reduce the critical path length
2282 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2283 * will eventually be caught here (where it matters).
2285 kmem_flagcheck(cachep, flags);
2287 /* Get mem for the objs.
2288 * Attempt to allocate a physical page from 'nodeid',
2290 if (!(objp = kmem_getpages(cachep, flags, nodeid)))
2291 goto failed;
2293 /* Get slab management. */
2294 if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
2295 goto opps1;
2297 slabp->nodeid = nodeid;
2298 set_slab_attr(cachep, slabp, objp);
2300 cache_init_objs(cachep, slabp, ctor_flags);
2302 if (local_flags & __GFP_WAIT)
2303 local_irq_disable();
2304 check_irq_off();
2305 l3 = cachep->nodelists[nodeid];
2306 spin_lock(&l3->list_lock);
2308 /* Make slab active. */
2309 list_add_tail(&slabp->list, &(l3->slabs_free));
2310 STATS_INC_GROWN(cachep);
2311 l3->free_objects += cachep->num;
2312 spin_unlock(&l3->list_lock);
2313 return 1;
2314 opps1:
2315 kmem_freepages(cachep, objp);
2316 failed:
2317 if (local_flags & __GFP_WAIT)
2318 local_irq_disable();
2319 return 0;
2322 #if DEBUG
2325 * Perform extra freeing checks:
2326 * - detect bad pointers.
2327 * - POISON/RED_ZONE checking
2328 * - destructor calls, for caches with POISON+dtor
2330 static void kfree_debugcheck(const void *objp)
2332 struct page *page;
2334 if (!virt_addr_valid(objp)) {
2335 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2336 (unsigned long)objp);
2337 BUG();
2339 page = virt_to_page(objp);
2340 if (!PageSlab(page)) {
2341 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2342 (unsigned long)objp);
2343 BUG();
2347 static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp,
2348 void *caller)
2350 struct page *page;
2351 unsigned int objnr;
2352 struct slab *slabp;
2354 objp -= obj_offset(cachep);
2355 kfree_debugcheck(objp);
2356 page = virt_to_page(objp);
2358 if (page_get_cache(page) != cachep) {
2359 printk(KERN_ERR
2360 "mismatch in kmem_cache_free: expected cache %p, got %p\n",
2361 page_get_cache(page), cachep);
2362 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
2363 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2364 page_get_cache(page)->name);
2365 WARN_ON(1);
2367 slabp = page_get_slab(page);
2369 if (cachep->flags & SLAB_RED_ZONE) {
2370 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE
2371 || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2372 slab_error(cachep,
2373 "double free, or memory outside"
2374 " object was overwritten");
2375 printk(KERN_ERR
2376 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2377 objp, *dbg_redzone1(cachep, objp),
2378 *dbg_redzone2(cachep, objp));
2380 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2381 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2383 if (cachep->flags & SLAB_STORE_USER)
2384 *dbg_userword(cachep, objp) = caller;
2386 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2388 BUG_ON(objnr >= cachep->num);
2389 BUG_ON(objp != slabp->s_mem + objnr * cachep->buffer_size);
2391 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2392 /* Need to call the slab's constructor so the
2393 * caller can perform a verify of its state (debugging).
2394 * Called without the cache-lock held.
2396 cachep->ctor(objp + obj_offset(cachep),
2397 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2399 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2400 /* we want to cache poison the object,
2401 * call the destruction callback
2403 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2405 if (cachep->flags & SLAB_POISON) {
2406 #ifdef CONFIG_DEBUG_PAGEALLOC
2407 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
2408 store_stackinfo(cachep, objp, (unsigned long)caller);
2409 kernel_map_pages(virt_to_page(objp),
2410 cachep->buffer_size / PAGE_SIZE, 0);
2411 } else {
2412 poison_obj(cachep, objp, POISON_FREE);
2414 #else
2415 poison_obj(cachep, objp, POISON_FREE);
2416 #endif
2418 return objp;
2421 static void check_slabp(kmem_cache_t *cachep, struct slab *slabp)
2423 kmem_bufctl_t i;
2424 int entries = 0;
2426 /* Check slab's freelist to see if this obj is there. */
2427 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2428 entries++;
2429 if (entries > cachep->num || i >= cachep->num)
2430 goto bad;
2432 if (entries != cachep->num - slabp->inuse) {
2433 bad:
2434 printk(KERN_ERR
2435 "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2436 cachep->name, cachep->num, slabp, slabp->inuse);
2437 for (i = 0;
2438 i < sizeof(slabp) + cachep->num * sizeof(kmem_bufctl_t);
2439 i++) {
2440 if ((i % 16) == 0)
2441 printk("\n%03x:", i);
2442 printk(" %02x", ((unsigned char *)slabp)[i]);
2444 printk("\n");
2445 BUG();
2448 #else
2449 #define kfree_debugcheck(x) do { } while(0)
2450 #define cache_free_debugcheck(x,objp,z) (objp)
2451 #define check_slabp(x,y) do { } while(0)
2452 #endif
2454 static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags)
2456 int batchcount;
2457 struct kmem_list3 *l3;
2458 struct array_cache *ac;
2460 check_irq_off();
2461 ac = ac_data(cachep);
2462 retry:
2463 batchcount = ac->batchcount;
2464 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2465 /* if there was little recent activity on this
2466 * cache, then perform only a partial refill.
2467 * Otherwise we could generate refill bouncing.
2469 batchcount = BATCHREFILL_LIMIT;
2471 l3 = cachep->nodelists[numa_node_id()];
2473 BUG_ON(ac->avail > 0 || !l3);
2474 spin_lock(&l3->list_lock);
2476 if (l3->shared) {
2477 struct array_cache *shared_array = l3->shared;
2478 if (shared_array->avail) {
2479 if (batchcount > shared_array->avail)
2480 batchcount = shared_array->avail;
2481 shared_array->avail -= batchcount;
2482 ac->avail = batchcount;
2483 memcpy(ac->entry,
2484 &(shared_array->entry[shared_array->avail]),
2485 sizeof(void *) * batchcount);
2486 shared_array->touched = 1;
2487 goto alloc_done;
2490 while (batchcount > 0) {
2491 struct list_head *entry;
2492 struct slab *slabp;
2493 /* Get slab alloc is to come from. */
2494 entry = l3->slabs_partial.next;
2495 if (entry == &l3->slabs_partial) {
2496 l3->free_touched = 1;
2497 entry = l3->slabs_free.next;
2498 if (entry == &l3->slabs_free)
2499 goto must_grow;
2502 slabp = list_entry(entry, struct slab, list);
2503 check_slabp(cachep, slabp);
2504 check_spinlock_acquired(cachep);
2505 while (slabp->inuse < cachep->num && batchcount--) {
2506 kmem_bufctl_t next;
2507 STATS_INC_ALLOCED(cachep);
2508 STATS_INC_ACTIVE(cachep);
2509 STATS_SET_HIGH(cachep);
2511 /* get obj pointer */
2512 ac->entry[ac->avail++] = slabp->s_mem +
2513 slabp->free * cachep->buffer_size;
2515 slabp->inuse++;
2516 next = slab_bufctl(slabp)[slabp->free];
2517 #if DEBUG
2518 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2519 WARN_ON(numa_node_id() != slabp->nodeid);
2520 #endif
2521 slabp->free = next;
2523 check_slabp(cachep, slabp);
2525 /* move slabp to correct slabp list: */
2526 list_del(&slabp->list);
2527 if (slabp->free == BUFCTL_END)
2528 list_add(&slabp->list, &l3->slabs_full);
2529 else
2530 list_add(&slabp->list, &l3->slabs_partial);
2533 must_grow:
2534 l3->free_objects -= ac->avail;
2535 alloc_done:
2536 spin_unlock(&l3->list_lock);
2538 if (unlikely(!ac->avail)) {
2539 int x;
2540 x = cache_grow(cachep, flags, numa_node_id());
2542 // cache_grow can reenable interrupts, then ac could change.
2543 ac = ac_data(cachep);
2544 if (!x && ac->avail == 0) // no objects in sight? abort
2545 return NULL;
2547 if (!ac->avail) // objects refilled by interrupt?
2548 goto retry;
2550 ac->touched = 1;
2551 return ac->entry[--ac->avail];
2554 static inline void
2555 cache_alloc_debugcheck_before(kmem_cache_t *cachep, gfp_t flags)
2557 might_sleep_if(flags & __GFP_WAIT);
2558 #if DEBUG
2559 kmem_flagcheck(cachep, flags);
2560 #endif
2563 #if DEBUG
2564 static void *cache_alloc_debugcheck_after(kmem_cache_t *cachep, gfp_t flags,
2565 void *objp, void *caller)
2567 if (!objp)
2568 return objp;
2569 if (cachep->flags & SLAB_POISON) {
2570 #ifdef CONFIG_DEBUG_PAGEALLOC
2571 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2572 kernel_map_pages(virt_to_page(objp),
2573 cachep->buffer_size / PAGE_SIZE, 1);
2574 else
2575 check_poison_obj(cachep, objp);
2576 #else
2577 check_poison_obj(cachep, objp);
2578 #endif
2579 poison_obj(cachep, objp, POISON_INUSE);
2581 if (cachep->flags & SLAB_STORE_USER)
2582 *dbg_userword(cachep, objp) = caller;
2584 if (cachep->flags & SLAB_RED_ZONE) {
2585 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE
2586 || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2587 slab_error(cachep,
2588 "double free, or memory outside"
2589 " object was overwritten");
2590 printk(KERN_ERR
2591 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2592 objp, *dbg_redzone1(cachep, objp),
2593 *dbg_redzone2(cachep, objp));
2595 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2596 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2598 objp += obj_offset(cachep);
2599 if (cachep->ctor && cachep->flags & SLAB_POISON) {
2600 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2602 if (!(flags & __GFP_WAIT))
2603 ctor_flags |= SLAB_CTOR_ATOMIC;
2605 cachep->ctor(objp, cachep, ctor_flags);
2607 return objp;
2609 #else
2610 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2611 #endif
2613 static inline void *____cache_alloc(kmem_cache_t *cachep, gfp_t flags)
2615 void *objp;
2616 struct array_cache *ac;
2618 #ifdef CONFIG_NUMA
2619 if (unlikely(current->mempolicy && !in_interrupt())) {
2620 int nid = slab_node(current->mempolicy);
2622 if (nid != numa_node_id())
2623 return __cache_alloc_node(cachep, flags, nid);
2625 #endif
2627 check_irq_off();
2628 ac = ac_data(cachep);
2629 if (likely(ac->avail)) {
2630 STATS_INC_ALLOCHIT(cachep);
2631 ac->touched = 1;
2632 objp = ac->entry[--ac->avail];
2633 } else {
2634 STATS_INC_ALLOCMISS(cachep);
2635 objp = cache_alloc_refill(cachep, flags);
2637 return objp;
2640 static inline void *__cache_alloc(kmem_cache_t *cachep, gfp_t flags)
2642 unsigned long save_flags;
2643 void *objp;
2645 cache_alloc_debugcheck_before(cachep, flags);
2647 local_irq_save(save_flags);
2648 objp = ____cache_alloc(cachep, flags);
2649 local_irq_restore(save_flags);
2650 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2651 __builtin_return_address(0));
2652 prefetchw(objp);
2653 return objp;
2656 #ifdef CONFIG_NUMA
2658 * A interface to enable slab creation on nodeid
2660 static void *__cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
2662 struct list_head *entry;
2663 struct slab *slabp;
2664 struct kmem_list3 *l3;
2665 void *obj;
2666 kmem_bufctl_t next;
2667 int x;
2669 l3 = cachep->nodelists[nodeid];
2670 BUG_ON(!l3);
2672 retry:
2673 spin_lock(&l3->list_lock);
2674 entry = l3->slabs_partial.next;
2675 if (entry == &l3->slabs_partial) {
2676 l3->free_touched = 1;
2677 entry = l3->slabs_free.next;
2678 if (entry == &l3->slabs_free)
2679 goto must_grow;
2682 slabp = list_entry(entry, struct slab, list);
2683 check_spinlock_acquired_node(cachep, nodeid);
2684 check_slabp(cachep, slabp);
2686 STATS_INC_NODEALLOCS(cachep);
2687 STATS_INC_ACTIVE(cachep);
2688 STATS_SET_HIGH(cachep);
2690 BUG_ON(slabp->inuse == cachep->num);
2692 /* get obj pointer */
2693 obj = slabp->s_mem + slabp->free * cachep->buffer_size;
2694 slabp->inuse++;
2695 next = slab_bufctl(slabp)[slabp->free];
2696 #if DEBUG
2697 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2698 #endif
2699 slabp->free = next;
2700 check_slabp(cachep, slabp);
2701 l3->free_objects--;
2702 /* move slabp to correct slabp list: */
2703 list_del(&slabp->list);
2705 if (slabp->free == BUFCTL_END) {
2706 list_add(&slabp->list, &l3->slabs_full);
2707 } else {
2708 list_add(&slabp->list, &l3->slabs_partial);
2711 spin_unlock(&l3->list_lock);
2712 goto done;
2714 must_grow:
2715 spin_unlock(&l3->list_lock);
2716 x = cache_grow(cachep, flags, nodeid);
2718 if (!x)
2719 return NULL;
2721 goto retry;
2722 done:
2723 return obj;
2725 #endif
2728 * Caller needs to acquire correct kmem_list's list_lock
2730 static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects,
2731 int node)
2733 int i;
2734 struct kmem_list3 *l3;
2736 for (i = 0; i < nr_objects; i++) {
2737 void *objp = objpp[i];
2738 struct slab *slabp;
2739 unsigned int objnr;
2741 slabp = page_get_slab(virt_to_page(objp));
2742 l3 = cachep->nodelists[node];
2743 list_del(&slabp->list);
2744 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2745 check_spinlock_acquired_node(cachep, node);
2746 check_slabp(cachep, slabp);
2748 #if DEBUG
2749 /* Verify that the slab belongs to the intended node */
2750 WARN_ON(slabp->nodeid != node);
2752 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
2753 printk(KERN_ERR "slab: double free detected in cache "
2754 "'%s', objp %p\n", cachep->name, objp);
2755 BUG();
2757 #endif
2758 slab_bufctl(slabp)[objnr] = slabp->free;
2759 slabp->free = objnr;
2760 STATS_DEC_ACTIVE(cachep);
2761 slabp->inuse--;
2762 l3->free_objects++;
2763 check_slabp(cachep, slabp);
2765 /* fixup slab chains */
2766 if (slabp->inuse == 0) {
2767 if (l3->free_objects > l3->free_limit) {
2768 l3->free_objects -= cachep->num;
2769 slab_destroy(cachep, slabp);
2770 } else {
2771 list_add(&slabp->list, &l3->slabs_free);
2773 } else {
2774 /* Unconditionally move a slab to the end of the
2775 * partial list on free - maximum time for the
2776 * other objects to be freed, too.
2778 list_add_tail(&slabp->list, &l3->slabs_partial);
2783 static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac)
2785 int batchcount;
2786 struct kmem_list3 *l3;
2787 int node = numa_node_id();
2789 batchcount = ac->batchcount;
2790 #if DEBUG
2791 BUG_ON(!batchcount || batchcount > ac->avail);
2792 #endif
2793 check_irq_off();
2794 l3 = cachep->nodelists[node];
2795 spin_lock(&l3->list_lock);
2796 if (l3->shared) {
2797 struct array_cache *shared_array = l3->shared;
2798 int max = shared_array->limit - shared_array->avail;
2799 if (max) {
2800 if (batchcount > max)
2801 batchcount = max;
2802 memcpy(&(shared_array->entry[shared_array->avail]),
2803 ac->entry, sizeof(void *) * batchcount);
2804 shared_array->avail += batchcount;
2805 goto free_done;
2809 free_block(cachep, ac->entry, batchcount, node);
2810 free_done:
2811 #if STATS
2813 int i = 0;
2814 struct list_head *p;
2816 p = l3->slabs_free.next;
2817 while (p != &(l3->slabs_free)) {
2818 struct slab *slabp;
2820 slabp = list_entry(p, struct slab, list);
2821 BUG_ON(slabp->inuse);
2823 i++;
2824 p = p->next;
2826 STATS_SET_FREEABLE(cachep, i);
2828 #endif
2829 spin_unlock(&l3->list_lock);
2830 ac->avail -= batchcount;
2831 memmove(ac->entry, &(ac->entry[batchcount]),
2832 sizeof(void *) * ac->avail);
2836 * __cache_free
2837 * Release an obj back to its cache. If the obj has a constructed
2838 * state, it must be in this state _before_ it is released.
2840 * Called with disabled ints.
2842 static inline void __cache_free(kmem_cache_t *cachep, void *objp)
2844 struct array_cache *ac = ac_data(cachep);
2846 check_irq_off();
2847 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
2849 /* Make sure we are not freeing a object from another
2850 * node to the array cache on this cpu.
2852 #ifdef CONFIG_NUMA
2854 struct slab *slabp;
2855 slabp = page_get_slab(virt_to_page(objp));
2856 if (unlikely(slabp->nodeid != numa_node_id())) {
2857 struct array_cache *alien = NULL;
2858 int nodeid = slabp->nodeid;
2859 struct kmem_list3 *l3 =
2860 cachep->nodelists[numa_node_id()];
2862 STATS_INC_NODEFREES(cachep);
2863 if (l3->alien && l3->alien[nodeid]) {
2864 alien = l3->alien[nodeid];
2865 spin_lock(&alien->lock);
2866 if (unlikely(alien->avail == alien->limit))
2867 __drain_alien_cache(cachep,
2868 alien, nodeid);
2869 alien->entry[alien->avail++] = objp;
2870 spin_unlock(&alien->lock);
2871 } else {
2872 spin_lock(&(cachep->nodelists[nodeid])->
2873 list_lock);
2874 free_block(cachep, &objp, 1, nodeid);
2875 spin_unlock(&(cachep->nodelists[nodeid])->
2876 list_lock);
2878 return;
2881 #endif
2882 if (likely(ac->avail < ac->limit)) {
2883 STATS_INC_FREEHIT(cachep);
2884 ac->entry[ac->avail++] = objp;
2885 return;
2886 } else {
2887 STATS_INC_FREEMISS(cachep);
2888 cache_flusharray(cachep, ac);
2889 ac->entry[ac->avail++] = objp;
2894 * kmem_cache_alloc - Allocate an object
2895 * @cachep: The cache to allocate from.
2896 * @flags: See kmalloc().
2898 * Allocate an object from this cache. The flags are only relevant
2899 * if the cache has no available objects.
2901 void *kmem_cache_alloc(kmem_cache_t *cachep, gfp_t flags)
2903 return __cache_alloc(cachep, flags);
2905 EXPORT_SYMBOL(kmem_cache_alloc);
2908 * kmem_ptr_validate - check if an untrusted pointer might
2909 * be a slab entry.
2910 * @cachep: the cache we're checking against
2911 * @ptr: pointer to validate
2913 * This verifies that the untrusted pointer looks sane:
2914 * it is _not_ a guarantee that the pointer is actually
2915 * part of the slab cache in question, but it at least
2916 * validates that the pointer can be dereferenced and
2917 * looks half-way sane.
2919 * Currently only used for dentry validation.
2921 int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr)
2923 unsigned long addr = (unsigned long)ptr;
2924 unsigned long min_addr = PAGE_OFFSET;
2925 unsigned long align_mask = BYTES_PER_WORD - 1;
2926 unsigned long size = cachep->buffer_size;
2927 struct page *page;
2929 if (unlikely(addr < min_addr))
2930 goto out;
2931 if (unlikely(addr > (unsigned long)high_memory - size))
2932 goto out;
2933 if (unlikely(addr & align_mask))
2934 goto out;
2935 if (unlikely(!kern_addr_valid(addr)))
2936 goto out;
2937 if (unlikely(!kern_addr_valid(addr + size - 1)))
2938 goto out;
2939 page = virt_to_page(ptr);
2940 if (unlikely(!PageSlab(page)))
2941 goto out;
2942 if (unlikely(page_get_cache(page) != cachep))
2943 goto out;
2944 return 1;
2945 out:
2946 return 0;
2949 #ifdef CONFIG_NUMA
2951 * kmem_cache_alloc_node - Allocate an object on the specified node
2952 * @cachep: The cache to allocate from.
2953 * @flags: See kmalloc().
2954 * @nodeid: node number of the target node.
2956 * Identical to kmem_cache_alloc, except that this function is slow
2957 * and can sleep. And it will allocate memory on the given node, which
2958 * can improve the performance for cpu bound structures.
2959 * New and improved: it will now make sure that the object gets
2960 * put on the correct node list so that there is no false sharing.
2962 void *kmem_cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
2964 unsigned long save_flags;
2965 void *ptr;
2967 cache_alloc_debugcheck_before(cachep, flags);
2968 local_irq_save(save_flags);
2970 if (nodeid == -1 || nodeid == numa_node_id() ||
2971 !cachep->nodelists[nodeid])
2972 ptr = ____cache_alloc(cachep, flags);
2973 else
2974 ptr = __cache_alloc_node(cachep, flags, nodeid);
2975 local_irq_restore(save_flags);
2977 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
2978 __builtin_return_address(0));
2980 return ptr;
2982 EXPORT_SYMBOL(kmem_cache_alloc_node);
2984 void *kmalloc_node(size_t size, gfp_t flags, int node)
2986 kmem_cache_t *cachep;
2988 cachep = kmem_find_general_cachep(size, flags);
2989 if (unlikely(cachep == NULL))
2990 return NULL;
2991 return kmem_cache_alloc_node(cachep, flags, node);
2993 EXPORT_SYMBOL(kmalloc_node);
2994 #endif
2997 * kmalloc - allocate memory
2998 * @size: how many bytes of memory are required.
2999 * @flags: the type of memory to allocate.
3001 * kmalloc is the normal method of allocating memory
3002 * in the kernel.
3004 * The @flags argument may be one of:
3006 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3008 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3010 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3012 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3013 * must be suitable for DMA. This can mean different things on different
3014 * platforms. For example, on i386, it means that the memory must come
3015 * from the first 16MB.
3017 void *__kmalloc(size_t size, gfp_t flags)
3019 kmem_cache_t *cachep;
3021 /* If you want to save a few bytes .text space: replace
3022 * __ with kmem_.
3023 * Then kmalloc uses the uninlined functions instead of the inline
3024 * functions.
3026 cachep = __find_general_cachep(size, flags);
3027 if (unlikely(cachep == NULL))
3028 return NULL;
3029 return __cache_alloc(cachep, flags);
3031 EXPORT_SYMBOL(__kmalloc);
3033 #ifdef CONFIG_SMP
3035 * __alloc_percpu - allocate one copy of the object for every present
3036 * cpu in the system, zeroing them.
3037 * Objects should be dereferenced using the per_cpu_ptr macro only.
3039 * @size: how many bytes of memory are required.
3041 void *__alloc_percpu(size_t size)
3043 int i;
3044 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
3046 if (!pdata)
3047 return NULL;
3050 * Cannot use for_each_online_cpu since a cpu may come online
3051 * and we have no way of figuring out how to fix the array
3052 * that we have allocated then....
3054 for_each_cpu(i) {
3055 int node = cpu_to_node(i);
3057 if (node_online(node))
3058 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3059 else
3060 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
3062 if (!pdata->ptrs[i])
3063 goto unwind_oom;
3064 memset(pdata->ptrs[i], 0, size);
3067 /* Catch derefs w/o wrappers */
3068 return (void *)(~(unsigned long)pdata);
3070 unwind_oom:
3071 while (--i >= 0) {
3072 if (!cpu_possible(i))
3073 continue;
3074 kfree(pdata->ptrs[i]);
3076 kfree(pdata);
3077 return NULL;
3079 EXPORT_SYMBOL(__alloc_percpu);
3080 #endif
3083 * kmem_cache_free - Deallocate an object
3084 * @cachep: The cache the allocation was from.
3085 * @objp: The previously allocated object.
3087 * Free an object which was previously allocated from this
3088 * cache.
3090 void kmem_cache_free(kmem_cache_t *cachep, void *objp)
3092 unsigned long flags;
3094 local_irq_save(flags);
3095 __cache_free(cachep, objp);
3096 local_irq_restore(flags);
3098 EXPORT_SYMBOL(kmem_cache_free);
3101 * kfree - free previously allocated memory
3102 * @objp: pointer returned by kmalloc.
3104 * If @objp is NULL, no operation is performed.
3106 * Don't free memory not originally allocated by kmalloc()
3107 * or you will run into trouble.
3109 void kfree(const void *objp)
3111 kmem_cache_t *c;
3112 unsigned long flags;
3114 if (unlikely(!objp))
3115 return;
3116 local_irq_save(flags);
3117 kfree_debugcheck(objp);
3118 c = page_get_cache(virt_to_page(objp));
3119 mutex_debug_check_no_locks_freed(objp, obj_size(c));
3120 __cache_free(c, (void *)objp);
3121 local_irq_restore(flags);
3123 EXPORT_SYMBOL(kfree);
3125 #ifdef CONFIG_SMP
3127 * free_percpu - free previously allocated percpu memory
3128 * @objp: pointer returned by alloc_percpu.
3130 * Don't free memory not originally allocated by alloc_percpu()
3131 * The complemented objp is to check for that.
3133 void free_percpu(const void *objp)
3135 int i;
3136 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
3139 * We allocate for all cpus so we cannot use for online cpu here.
3141 for_each_cpu(i)
3142 kfree(p->ptrs[i]);
3143 kfree(p);
3145 EXPORT_SYMBOL(free_percpu);
3146 #endif
3148 unsigned int kmem_cache_size(kmem_cache_t *cachep)
3150 return obj_size(cachep);
3152 EXPORT_SYMBOL(kmem_cache_size);
3154 const char *kmem_cache_name(kmem_cache_t *cachep)
3156 return cachep->name;
3158 EXPORT_SYMBOL_GPL(kmem_cache_name);
3161 * This initializes kmem_list3 for all nodes.
3163 static int alloc_kmemlist(kmem_cache_t *cachep)
3165 int node;
3166 struct kmem_list3 *l3;
3167 int err = 0;
3169 for_each_online_node(node) {
3170 struct array_cache *nc = NULL, *new;
3171 struct array_cache **new_alien = NULL;
3172 #ifdef CONFIG_NUMA
3173 if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
3174 goto fail;
3175 #endif
3176 if (!(new = alloc_arraycache(node, (cachep->shared *
3177 cachep->batchcount),
3178 0xbaadf00d)))
3179 goto fail;
3180 if ((l3 = cachep->nodelists[node])) {
3182 spin_lock_irq(&l3->list_lock);
3184 if ((nc = cachep->nodelists[node]->shared))
3185 free_block(cachep, nc->entry, nc->avail, node);
3187 l3->shared = new;
3188 if (!cachep->nodelists[node]->alien) {
3189 l3->alien = new_alien;
3190 new_alien = NULL;
3192 l3->free_limit = (1 + nr_cpus_node(node)) *
3193 cachep->batchcount + cachep->num;
3194 spin_unlock_irq(&l3->list_lock);
3195 kfree(nc);
3196 free_alien_cache(new_alien);
3197 continue;
3199 if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
3200 GFP_KERNEL, node)))
3201 goto fail;
3203 kmem_list3_init(l3);
3204 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3205 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3206 l3->shared = new;
3207 l3->alien = new_alien;
3208 l3->free_limit = (1 + nr_cpus_node(node)) *
3209 cachep->batchcount + cachep->num;
3210 cachep->nodelists[node] = l3;
3212 return err;
3213 fail:
3214 err = -ENOMEM;
3215 return err;
3218 struct ccupdate_struct {
3219 kmem_cache_t *cachep;
3220 struct array_cache *new[NR_CPUS];
3223 static void do_ccupdate_local(void *info)
3225 struct ccupdate_struct *new = (struct ccupdate_struct *)info;
3226 struct array_cache *old;
3228 check_irq_off();
3229 old = ac_data(new->cachep);
3231 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3232 new->new[smp_processor_id()] = old;
3235 static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount,
3236 int shared)
3238 struct ccupdate_struct new;
3239 int i, err;
3241 memset(&new.new, 0, sizeof(new.new));
3242 for_each_online_cpu(i) {
3243 new.new[i] =
3244 alloc_arraycache(cpu_to_node(i), limit, batchcount);
3245 if (!new.new[i]) {
3246 for (i--; i >= 0; i--)
3247 kfree(new.new[i]);
3248 return -ENOMEM;
3251 new.cachep = cachep;
3253 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
3255 check_irq_on();
3256 spin_lock_irq(&cachep->spinlock);
3257 cachep->batchcount = batchcount;
3258 cachep->limit = limit;
3259 cachep->shared = shared;
3260 spin_unlock_irq(&cachep->spinlock);
3262 for_each_online_cpu(i) {
3263 struct array_cache *ccold = new.new[i];
3264 if (!ccold)
3265 continue;
3266 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3267 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3268 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3269 kfree(ccold);
3272 err = alloc_kmemlist(cachep);
3273 if (err) {
3274 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3275 cachep->name, -err);
3276 BUG();
3278 return 0;
3281 static void enable_cpucache(kmem_cache_t *cachep)
3283 int err;
3284 int limit, shared;
3286 /* The head array serves three purposes:
3287 * - create a LIFO ordering, i.e. return objects that are cache-warm
3288 * - reduce the number of spinlock operations.
3289 * - reduce the number of linked list operations on the slab and
3290 * bufctl chains: array operations are cheaper.
3291 * The numbers are guessed, we should auto-tune as described by
3292 * Bonwick.
3294 if (cachep->buffer_size > 131072)
3295 limit = 1;
3296 else if (cachep->buffer_size > PAGE_SIZE)
3297 limit = 8;
3298 else if (cachep->buffer_size > 1024)
3299 limit = 24;
3300 else if (cachep->buffer_size > 256)
3301 limit = 54;
3302 else
3303 limit = 120;
3305 /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
3306 * allocation behaviour: Most allocs on one cpu, most free operations
3307 * on another cpu. For these cases, an efficient object passing between
3308 * cpus is necessary. This is provided by a shared array. The array
3309 * replaces Bonwick's magazine layer.
3310 * On uniprocessor, it's functionally equivalent (but less efficient)
3311 * to a larger limit. Thus disabled by default.
3313 shared = 0;
3314 #ifdef CONFIG_SMP
3315 if (cachep->buffer_size <= PAGE_SIZE)
3316 shared = 8;
3317 #endif
3319 #if DEBUG
3320 /* With debugging enabled, large batchcount lead to excessively
3321 * long periods with disabled local interrupts. Limit the
3322 * batchcount
3324 if (limit > 32)
3325 limit = 32;
3326 #endif
3327 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3328 if (err)
3329 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3330 cachep->name, -err);
3333 static void drain_array_locked(kmem_cache_t *cachep, struct array_cache *ac,
3334 int force, int node)
3336 int tofree;
3338 check_spinlock_acquired_node(cachep, node);
3339 if (ac->touched && !force) {
3340 ac->touched = 0;
3341 } else if (ac->avail) {
3342 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3343 if (tofree > ac->avail) {
3344 tofree = (ac->avail + 1) / 2;
3346 free_block(cachep, ac->entry, tofree, node);
3347 ac->avail -= tofree;
3348 memmove(ac->entry, &(ac->entry[tofree]),
3349 sizeof(void *) * ac->avail);
3354 * cache_reap - Reclaim memory from caches.
3355 * @unused: unused parameter
3357 * Called from workqueue/eventd every few seconds.
3358 * Purpose:
3359 * - clear the per-cpu caches for this CPU.
3360 * - return freeable pages to the main free memory pool.
3362 * If we cannot acquire the cache chain mutex then just give up - we'll
3363 * try again on the next iteration.
3365 static void cache_reap(void *unused)
3367 struct list_head *walk;
3368 struct kmem_list3 *l3;
3370 if (!mutex_trylock(&cache_chain_mutex)) {
3371 /* Give up. Setup the next iteration. */
3372 schedule_delayed_work(&__get_cpu_var(reap_work),
3373 REAPTIMEOUT_CPUC);
3374 return;
3377 list_for_each(walk, &cache_chain) {
3378 kmem_cache_t *searchp;
3379 struct list_head *p;
3380 int tofree;
3381 struct slab *slabp;
3383 searchp = list_entry(walk, kmem_cache_t, next);
3385 if (searchp->flags & SLAB_NO_REAP)
3386 goto next;
3388 check_irq_on();
3390 l3 = searchp->nodelists[numa_node_id()];
3391 if (l3->alien)
3392 drain_alien_cache(searchp, l3);
3393 spin_lock_irq(&l3->list_lock);
3395 drain_array_locked(searchp, ac_data(searchp), 0,
3396 numa_node_id());
3398 if (time_after(l3->next_reap, jiffies))
3399 goto next_unlock;
3401 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3403 if (l3->shared)
3404 drain_array_locked(searchp, l3->shared, 0,
3405 numa_node_id());
3407 if (l3->free_touched) {
3408 l3->free_touched = 0;
3409 goto next_unlock;
3412 tofree =
3413 (l3->free_limit + 5 * searchp->num -
3414 1) / (5 * searchp->num);
3415 do {
3416 p = l3->slabs_free.next;
3417 if (p == &(l3->slabs_free))
3418 break;
3420 slabp = list_entry(p, struct slab, list);
3421 BUG_ON(slabp->inuse);
3422 list_del(&slabp->list);
3423 STATS_INC_REAPED(searchp);
3425 /* Safe to drop the lock. The slab is no longer
3426 * linked to the cache.
3427 * searchp cannot disappear, we hold
3428 * cache_chain_lock
3430 l3->free_objects -= searchp->num;
3431 spin_unlock_irq(&l3->list_lock);
3432 slab_destroy(searchp, slabp);
3433 spin_lock_irq(&l3->list_lock);
3434 } while (--tofree > 0);
3435 next_unlock:
3436 spin_unlock_irq(&l3->list_lock);
3437 next:
3438 cond_resched();
3440 check_irq_on();
3441 mutex_unlock(&cache_chain_mutex);
3442 drain_remote_pages();
3443 /* Setup the next iteration */
3444 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3447 #ifdef CONFIG_PROC_FS
3449 static void print_slabinfo_header(struct seq_file *m)
3452 * Output format version, so at least we can change it
3453 * without _too_ many complaints.
3455 #if STATS
3456 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3457 #else
3458 seq_puts(m, "slabinfo - version: 2.1\n");
3459 #endif
3460 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3461 "<objperslab> <pagesperslab>");
3462 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3463 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3464 #if STATS
3465 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3466 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3467 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3468 #endif
3469 seq_putc(m, '\n');
3472 static void *s_start(struct seq_file *m, loff_t *pos)
3474 loff_t n = *pos;
3475 struct list_head *p;
3477 mutex_lock(&cache_chain_mutex);
3478 if (!n)
3479 print_slabinfo_header(m);
3480 p = cache_chain.next;
3481 while (n--) {
3482 p = p->next;
3483 if (p == &cache_chain)
3484 return NULL;
3486 return list_entry(p, kmem_cache_t, next);
3489 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3491 kmem_cache_t *cachep = p;
3492 ++*pos;
3493 return cachep->next.next == &cache_chain ? NULL
3494 : list_entry(cachep->next.next, kmem_cache_t, next);
3497 static void s_stop(struct seq_file *m, void *p)
3499 mutex_unlock(&cache_chain_mutex);
3502 static int s_show(struct seq_file *m, void *p)
3504 kmem_cache_t *cachep = p;
3505 struct list_head *q;
3506 struct slab *slabp;
3507 unsigned long active_objs;
3508 unsigned long num_objs;
3509 unsigned long active_slabs = 0;
3510 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3511 const char *name;
3512 char *error = NULL;
3513 int node;
3514 struct kmem_list3 *l3;
3516 check_irq_on();
3517 spin_lock_irq(&cachep->spinlock);
3518 active_objs = 0;
3519 num_slabs = 0;
3520 for_each_online_node(node) {
3521 l3 = cachep->nodelists[node];
3522 if (!l3)
3523 continue;
3525 spin_lock(&l3->list_lock);
3527 list_for_each(q, &l3->slabs_full) {
3528 slabp = list_entry(q, struct slab, list);
3529 if (slabp->inuse != cachep->num && !error)
3530 error = "slabs_full accounting error";
3531 active_objs += cachep->num;
3532 active_slabs++;
3534 list_for_each(q, &l3->slabs_partial) {
3535 slabp = list_entry(q, struct slab, list);
3536 if (slabp->inuse == cachep->num && !error)
3537 error = "slabs_partial inuse accounting error";
3538 if (!slabp->inuse && !error)
3539 error = "slabs_partial/inuse accounting error";
3540 active_objs += slabp->inuse;
3541 active_slabs++;
3543 list_for_each(q, &l3->slabs_free) {
3544 slabp = list_entry(q, struct slab, list);
3545 if (slabp->inuse && !error)
3546 error = "slabs_free/inuse accounting error";
3547 num_slabs++;
3549 free_objects += l3->free_objects;
3550 shared_avail += l3->shared->avail;
3552 spin_unlock(&l3->list_lock);
3554 num_slabs += active_slabs;
3555 num_objs = num_slabs * cachep->num;
3556 if (num_objs - active_objs != free_objects && !error)
3557 error = "free_objects accounting error";
3559 name = cachep->name;
3560 if (error)
3561 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3563 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3564 name, active_objs, num_objs, cachep->buffer_size,
3565 cachep->num, (1 << cachep->gfporder));
3566 seq_printf(m, " : tunables %4u %4u %4u",
3567 cachep->limit, cachep->batchcount, cachep->shared);
3568 seq_printf(m, " : slabdata %6lu %6lu %6lu",
3569 active_slabs, num_slabs, shared_avail);
3570 #if STATS
3571 { /* list3 stats */
3572 unsigned long high = cachep->high_mark;
3573 unsigned long allocs = cachep->num_allocations;
3574 unsigned long grown = cachep->grown;
3575 unsigned long reaped = cachep->reaped;
3576 unsigned long errors = cachep->errors;
3577 unsigned long max_freeable = cachep->max_freeable;
3578 unsigned long node_allocs = cachep->node_allocs;
3579 unsigned long node_frees = cachep->node_frees;
3581 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3582 %4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees);
3584 /* cpu stats */
3586 unsigned long allochit = atomic_read(&cachep->allochit);
3587 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3588 unsigned long freehit = atomic_read(&cachep->freehit);
3589 unsigned long freemiss = atomic_read(&cachep->freemiss);
3591 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3592 allochit, allocmiss, freehit, freemiss);
3594 #endif
3595 seq_putc(m, '\n');
3596 spin_unlock_irq(&cachep->spinlock);
3597 return 0;
3601 * slabinfo_op - iterator that generates /proc/slabinfo
3603 * Output layout:
3604 * cache-name
3605 * num-active-objs
3606 * total-objs
3607 * object size
3608 * num-active-slabs
3609 * total-slabs
3610 * num-pages-per-slab
3611 * + further values on SMP and with statistics enabled
3614 struct seq_operations slabinfo_op = {
3615 .start = s_start,
3616 .next = s_next,
3617 .stop = s_stop,
3618 .show = s_show,
3621 #define MAX_SLABINFO_WRITE 128
3623 * slabinfo_write - Tuning for the slab allocator
3624 * @file: unused
3625 * @buffer: user buffer
3626 * @count: data length
3627 * @ppos: unused
3629 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3630 size_t count, loff_t *ppos)
3632 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3633 int limit, batchcount, shared, res;
3634 struct list_head *p;
3636 if (count > MAX_SLABINFO_WRITE)
3637 return -EINVAL;
3638 if (copy_from_user(&kbuf, buffer, count))
3639 return -EFAULT;
3640 kbuf[MAX_SLABINFO_WRITE] = '\0';
3642 tmp = strchr(kbuf, ' ');
3643 if (!tmp)
3644 return -EINVAL;
3645 *tmp = '\0';
3646 tmp++;
3647 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3648 return -EINVAL;
3650 /* Find the cache in the chain of caches. */
3651 mutex_lock(&cache_chain_mutex);
3652 res = -EINVAL;
3653 list_for_each(p, &cache_chain) {
3654 kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);
3656 if (!strcmp(cachep->name, kbuf)) {
3657 if (limit < 1 ||
3658 batchcount < 1 ||
3659 batchcount > limit || shared < 0) {
3660 res = 0;
3661 } else {
3662 res = do_tune_cpucache(cachep, limit,
3663 batchcount, shared);
3665 break;
3668 mutex_unlock(&cache_chain_mutex);
3669 if (res >= 0)
3670 res = count;
3671 return res;
3673 #endif
3676 * ksize - get the actual amount of memory allocated for a given object
3677 * @objp: Pointer to the object
3679 * kmalloc may internally round up allocations and return more memory
3680 * than requested. ksize() can be used to determine the actual amount of
3681 * memory allocated. The caller may use this additional memory, even though
3682 * a smaller amount of memory was initially specified with the kmalloc call.
3683 * The caller must guarantee that objp points to a valid object previously
3684 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3685 * must not be freed during the duration of the call.
3687 unsigned int ksize(const void *objp)
3689 if (unlikely(objp == NULL))
3690 return 0;
3692 return obj_size(page_get_cache(virt_to_page(objp)));