2 * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * This driver is designed for the Broadcom SiByte SOC built-in
20 * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/string.h>
25 #include <linux/timer.h>
26 #include <linux/errno.h>
27 #include <linux/ioport.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/init.h>
34 #include <linux/config.h>
35 #include <linux/bitops.h>
36 #include <asm/processor.h> /* Processor type for cache alignment. */
38 #include <asm/cache.h>
40 /* This is only here until the firmware is ready. In that case,
41 the firmware leaves the ethernet address in the register for us. */
42 #ifdef CONFIG_SIBYTE_STANDALONE
43 #define SBMAC_ETH0_HWADDR "40:00:00:00:01:00"
44 #define SBMAC_ETH1_HWADDR "40:00:00:00:01:01"
45 #define SBMAC_ETH2_HWADDR "40:00:00:00:01:02"
46 #define SBMAC_ETH3_HWADDR "40:00:00:00:01:03"
50 /* These identify the driver base version and may not be removed. */
52 static char version1
[] __devinitdata
=
53 "sb1250-mac.c:1.00 1/11/2001 Written by Mitch Lichtenberg\n";
57 /* Operational parameters that usually are not changed. */
59 #define CONFIG_SBMAC_COALESCE
61 #define MAX_UNITS 4 /* More are supported, limit only on options */
63 /* Time in jiffies before concluding the transmitter is hung. */
64 #define TX_TIMEOUT (2*HZ)
67 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
68 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
70 /* A few user-configurable values which may be modified when a driver
73 /* 1 normal messages, 0 quiet .. 7 verbose. */
75 module_param(debug
, int, S_IRUGO
);
76 MODULE_PARM_DESC(debug
, "Debug messages");
79 static int noisy_mii
= 1;
80 module_param(noisy_mii
, int, S_IRUGO
);
81 MODULE_PARM_DESC(noisy_mii
, "MII status messages");
83 /* Used to pass the media type, etc.
84 Both 'options[]' and 'full_duplex[]' should exist for driver
86 The media type is usually passed in 'options[]'.
89 static int options
[MAX_UNITS
] = {-1, -1, -1, -1};
90 module_param_array(options
, int, NULL
, S_IRUGO
);
91 MODULE_PARM_DESC(options
, "1-" __MODULE_STRING(MAX_UNITS
));
93 static int full_duplex
[MAX_UNITS
] = {-1, -1, -1, -1};
94 module_param_array(full_duplex
, int, NULL
, S_IRUGO
);
95 MODULE_PARM_DESC(full_duplex
, "1-" __MODULE_STRING(MAX_UNITS
));
98 #ifdef CONFIG_SBMAC_COALESCE
99 static int int_pktcnt
= 0;
100 module_param(int_pktcnt
, int, S_IRUGO
);
101 MODULE_PARM_DESC(int_pktcnt
, "Packet count");
103 static int int_timeout
= 0;
104 module_param(int_timeout
, int, S_IRUGO
);
105 MODULE_PARM_DESC(int_timeout
, "Timeout value");
108 #include <asm/sibyte/sb1250.h>
109 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
110 #include <asm/sibyte/bcm1480_regs.h>
111 #include <asm/sibyte/bcm1480_int.h>
112 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
113 #include <asm/sibyte/sb1250_regs.h>
114 #include <asm/sibyte/sb1250_int.h>
116 #error invalid SiByte MAC configuation
118 #include <asm/sibyte/sb1250_scd.h>
119 #include <asm/sibyte/sb1250_mac.h>
120 #include <asm/sibyte/sb1250_dma.h>
122 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
123 #define UNIT_INT(n) (K_BCM1480_INT_MAC_0 + ((n) * 2))
124 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
125 #define UNIT_INT(n) (K_INT_MAC_0 + (n))
127 #error invalid SiByte MAC configuation
130 /**********************************************************************
132 ********************************************************************* */
135 typedef enum { sbmac_speed_auto
, sbmac_speed_10
,
136 sbmac_speed_100
, sbmac_speed_1000
} sbmac_speed_t
;
138 typedef enum { sbmac_duplex_auto
, sbmac_duplex_half
,
139 sbmac_duplex_full
} sbmac_duplex_t
;
141 typedef enum { sbmac_fc_auto
, sbmac_fc_disabled
, sbmac_fc_frame
,
142 sbmac_fc_collision
, sbmac_fc_carrier
} sbmac_fc_t
;
144 typedef enum { sbmac_state_uninit
, sbmac_state_off
, sbmac_state_on
,
145 sbmac_state_broken
} sbmac_state_t
;
148 /**********************************************************************
150 ********************************************************************* */
153 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
154 (d)->sbdma_dscrtable : (d)->f+1)
157 #define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
159 #define SBMAC_MAX_TXDESCR 32
160 #define SBMAC_MAX_RXDESCR 32
162 #define ETHER_ALIGN 2
163 #define ETHER_ADDR_LEN 6
164 #define ENET_PACKET_SIZE 1518
165 /*#define ENET_PACKET_SIZE 9216 */
167 /**********************************************************************
168 * DMA Descriptor structure
169 ********************************************************************* */
171 typedef struct sbdmadscr_s
{
176 typedef unsigned long paddr_t
;
178 /**********************************************************************
179 * DMA Controller structure
180 ********************************************************************* */
182 typedef struct sbmacdma_s
{
185 * This stuff is used to identify the channel and the registers
186 * associated with it.
189 struct sbmac_softc
*sbdma_eth
; /* back pointer to associated MAC */
190 int sbdma_channel
; /* channel number */
191 int sbdma_txdir
; /* direction (1=transmit) */
192 int sbdma_maxdescr
; /* total # of descriptors in ring */
193 #ifdef CONFIG_SBMAC_COALESCE
194 int sbdma_int_pktcnt
; /* # descriptors rx/tx before interrupt*/
195 int sbdma_int_timeout
; /* # usec rx/tx interrupt */
198 volatile void __iomem
*sbdma_config0
; /* DMA config register 0 */
199 volatile void __iomem
*sbdma_config1
; /* DMA config register 1 */
200 volatile void __iomem
*sbdma_dscrbase
; /* Descriptor base address */
201 volatile void __iomem
*sbdma_dscrcnt
; /* Descriptor count register */
202 volatile void __iomem
*sbdma_curdscr
; /* current descriptor address */
205 * This stuff is for maintenance of the ring
208 sbdmadscr_t
*sbdma_dscrtable
; /* base of descriptor table */
209 sbdmadscr_t
*sbdma_dscrtable_end
; /* end of descriptor table */
211 struct sk_buff
**sbdma_ctxtable
; /* context table, one per descr */
213 paddr_t sbdma_dscrtable_phys
; /* and also the phys addr */
214 sbdmadscr_t
*sbdma_addptr
; /* next dscr for sw to add */
215 sbdmadscr_t
*sbdma_remptr
; /* next dscr for sw to remove */
219 /**********************************************************************
220 * Ethernet softc structure
221 ********************************************************************* */
226 * Linux-specific things
229 struct net_device
*sbm_dev
; /* pointer to linux device */
230 spinlock_t sbm_lock
; /* spin lock */
231 struct timer_list sbm_timer
; /* for monitoring MII */
232 struct net_device_stats sbm_stats
;
233 int sbm_devflags
; /* current device flags */
236 int sbm_phy_oldanlpar
;
237 int sbm_phy_oldk1stsr
;
238 int sbm_phy_oldlinkstat
;
241 unsigned char sbm_phys
[2];
244 * Controller-specific things
247 volatile void __iomem
*sbm_base
; /* MAC's base address */
248 sbmac_state_t sbm_state
; /* current state */
250 volatile void __iomem
*sbm_macenable
; /* MAC Enable Register */
251 volatile void __iomem
*sbm_maccfg
; /* MAC Configuration Register */
252 volatile void __iomem
*sbm_fifocfg
; /* FIFO configuration register */
253 volatile void __iomem
*sbm_framecfg
; /* Frame configuration register */
254 volatile void __iomem
*sbm_rxfilter
; /* receive filter register */
255 volatile void __iomem
*sbm_isr
; /* Interrupt status register */
256 volatile void __iomem
*sbm_imr
; /* Interrupt mask register */
257 volatile void __iomem
*sbm_mdio
; /* MDIO register */
259 sbmac_speed_t sbm_speed
; /* current speed */
260 sbmac_duplex_t sbm_duplex
; /* current duplex */
261 sbmac_fc_t sbm_fc
; /* current flow control setting */
263 unsigned char sbm_hwaddr
[ETHER_ADDR_LEN
];
265 sbmacdma_t sbm_txdma
; /* for now, only use channel 0 */
266 sbmacdma_t sbm_rxdma
;
272 /**********************************************************************
274 ********************************************************************* */
276 /**********************************************************************
278 ********************************************************************* */
280 static void sbdma_initctx(sbmacdma_t
*d
,
281 struct sbmac_softc
*s
,
285 static void sbdma_channel_start(sbmacdma_t
*d
, int rxtx
);
286 static int sbdma_add_rcvbuffer(sbmacdma_t
*d
,struct sk_buff
*m
);
287 static int sbdma_add_txbuffer(sbmacdma_t
*d
,struct sk_buff
*m
);
288 static void sbdma_emptyring(sbmacdma_t
*d
);
289 static void sbdma_fillring(sbmacdma_t
*d
);
290 static void sbdma_rx_process(struct sbmac_softc
*sc
,sbmacdma_t
*d
);
291 static void sbdma_tx_process(struct sbmac_softc
*sc
,sbmacdma_t
*d
);
292 static int sbmac_initctx(struct sbmac_softc
*s
);
293 static void sbmac_channel_start(struct sbmac_softc
*s
);
294 static void sbmac_channel_stop(struct sbmac_softc
*s
);
295 static sbmac_state_t
sbmac_set_channel_state(struct sbmac_softc
*,sbmac_state_t
);
296 static void sbmac_promiscuous_mode(struct sbmac_softc
*sc
,int onoff
);
297 static uint64_t sbmac_addr2reg(unsigned char *ptr
);
298 static irqreturn_t
sbmac_intr(int irq
,void *dev_instance
,struct pt_regs
*rgs
);
299 static int sbmac_start_tx(struct sk_buff
*skb
, struct net_device
*dev
);
300 static void sbmac_setmulti(struct sbmac_softc
*sc
);
301 static int sbmac_init(struct net_device
*dev
, int idx
);
302 static int sbmac_set_speed(struct sbmac_softc
*s
,sbmac_speed_t speed
);
303 static int sbmac_set_duplex(struct sbmac_softc
*s
,sbmac_duplex_t duplex
,sbmac_fc_t fc
);
305 static int sbmac_open(struct net_device
*dev
);
306 static void sbmac_timer(unsigned long data
);
307 static void sbmac_tx_timeout (struct net_device
*dev
);
308 static struct net_device_stats
*sbmac_get_stats(struct net_device
*dev
);
309 static void sbmac_set_rx_mode(struct net_device
*dev
);
310 static int sbmac_mii_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
311 static int sbmac_close(struct net_device
*dev
);
312 static int sbmac_mii_poll(struct sbmac_softc
*s
,int noisy
);
313 static int sbmac_mii_probe(struct net_device
*dev
);
315 static void sbmac_mii_sync(struct sbmac_softc
*s
);
316 static void sbmac_mii_senddata(struct sbmac_softc
*s
,unsigned int data
, int bitcnt
);
317 static unsigned int sbmac_mii_read(struct sbmac_softc
*s
,int phyaddr
,int regidx
);
318 static void sbmac_mii_write(struct sbmac_softc
*s
,int phyaddr
,int regidx
,
319 unsigned int regval
);
322 /**********************************************************************
324 ********************************************************************* */
326 static uint64_t sbmac_orig_hwaddr
[MAX_UNITS
];
329 /**********************************************************************
331 ********************************************************************* */
333 #define MII_COMMAND_START 0x01
334 #define MII_COMMAND_READ 0x02
335 #define MII_COMMAND_WRITE 0x01
336 #define MII_COMMAND_ACK 0x02
338 #define BMCR_RESET 0x8000
339 #define BMCR_LOOPBACK 0x4000
340 #define BMCR_SPEED0 0x2000
341 #define BMCR_ANENABLE 0x1000
342 #define BMCR_POWERDOWN 0x0800
343 #define BMCR_ISOLATE 0x0400
344 #define BMCR_RESTARTAN 0x0200
345 #define BMCR_DUPLEX 0x0100
346 #define BMCR_COLTEST 0x0080
347 #define BMCR_SPEED1 0x0040
348 #define BMCR_SPEED1000 BMCR_SPEED1
349 #define BMCR_SPEED100 BMCR_SPEED0
350 #define BMCR_SPEED10 0
352 #define BMSR_100BT4 0x8000
353 #define BMSR_100BT_FDX 0x4000
354 #define BMSR_100BT_HDX 0x2000
355 #define BMSR_10BT_FDX 0x1000
356 #define BMSR_10BT_HDX 0x0800
357 #define BMSR_100BT2_FDX 0x0400
358 #define BMSR_100BT2_HDX 0x0200
359 #define BMSR_1000BT_XSR 0x0100
360 #define BMSR_PRESUP 0x0040
361 #define BMSR_ANCOMPLT 0x0020
362 #define BMSR_REMFAULT 0x0010
363 #define BMSR_AUTONEG 0x0008
364 #define BMSR_LINKSTAT 0x0004
365 #define BMSR_JABDETECT 0x0002
366 #define BMSR_EXTCAPAB 0x0001
368 #define PHYIDR1 0x2000
369 #define PHYIDR2 0x5C60
371 #define ANAR_NP 0x8000
372 #define ANAR_RF 0x2000
373 #define ANAR_ASYPAUSE 0x0800
374 #define ANAR_PAUSE 0x0400
375 #define ANAR_T4 0x0200
376 #define ANAR_TXFD 0x0100
377 #define ANAR_TXHD 0x0080
378 #define ANAR_10FD 0x0040
379 #define ANAR_10HD 0x0020
380 #define ANAR_PSB 0x0001
382 #define ANLPAR_NP 0x8000
383 #define ANLPAR_ACK 0x4000
384 #define ANLPAR_RF 0x2000
385 #define ANLPAR_ASYPAUSE 0x0800
386 #define ANLPAR_PAUSE 0x0400
387 #define ANLPAR_T4 0x0200
388 #define ANLPAR_TXFD 0x0100
389 #define ANLPAR_TXHD 0x0080
390 #define ANLPAR_10FD 0x0040
391 #define ANLPAR_10HD 0x0020
392 #define ANLPAR_PSB 0x0001 /* 802.3 */
394 #define ANER_PDF 0x0010
395 #define ANER_LPNPABLE 0x0008
396 #define ANER_NPABLE 0x0004
397 #define ANER_PAGERX 0x0002
398 #define ANER_LPANABLE 0x0001
400 #define ANNPTR_NP 0x8000
401 #define ANNPTR_MP 0x2000
402 #define ANNPTR_ACK2 0x1000
403 #define ANNPTR_TOGTX 0x0800
404 #define ANNPTR_CODE 0x0008
406 #define ANNPRR_NP 0x8000
407 #define ANNPRR_MP 0x2000
408 #define ANNPRR_ACK3 0x1000
409 #define ANNPRR_TOGTX 0x0800
410 #define ANNPRR_CODE 0x0008
412 #define K1TCR_TESTMODE 0x0000
413 #define K1TCR_MSMCE 0x1000
414 #define K1TCR_MSCV 0x0800
415 #define K1TCR_RPTR 0x0400
416 #define K1TCR_1000BT_FDX 0x200
417 #define K1TCR_1000BT_HDX 0x100
419 #define K1STSR_MSMCFLT 0x8000
420 #define K1STSR_MSCFGRES 0x4000
421 #define K1STSR_LRSTAT 0x2000
422 #define K1STSR_RRSTAT 0x1000
423 #define K1STSR_LP1KFD 0x0800
424 #define K1STSR_LP1KHD 0x0400
425 #define K1STSR_LPASMDIR 0x0200
427 #define K1SCR_1KX_FDX 0x8000
428 #define K1SCR_1KX_HDX 0x4000
429 #define K1SCR_1KT_FDX 0x2000
430 #define K1SCR_1KT_HDX 0x1000
432 #define STRAP_PHY1 0x0800
433 #define STRAP_NCMODE 0x0400
434 #define STRAP_MANMSCFG 0x0200
435 #define STRAP_ANENABLE 0x0100
436 #define STRAP_MSVAL 0x0080
437 #define STRAP_1KHDXADV 0x0010
438 #define STRAP_1KFDXADV 0x0008
439 #define STRAP_100ADV 0x0004
440 #define STRAP_SPEEDSEL 0x0000
441 #define STRAP_SPEED100 0x0001
443 #define PHYSUP_SPEED1000 0x10
444 #define PHYSUP_SPEED100 0x08
445 #define PHYSUP_SPEED10 0x00
446 #define PHYSUP_LINKUP 0x04
447 #define PHYSUP_FDX 0x02
449 #define MII_BMCR 0x00 /* Basic mode control register (rw) */
450 #define MII_BMSR 0x01 /* Basic mode status register (ro) */
451 #define MII_PHYIDR1 0x02
452 #define MII_PHYIDR2 0x03
454 #define MII_K1STSR 0x0A /* 1K Status Register (ro) */
455 #define MII_ANLPAR 0x05 /* Autonegotiation lnk partner abilities (rw) */
458 #define M_MAC_MDIO_DIR_OUTPUT 0 /* for clarity */
463 /**********************************************************************
466 * Synchronize with the MII - send a pattern of bits to the MII
467 * that will guarantee that it is ready to accept a command.
470 * s - sbmac structure
474 ********************************************************************* */
476 static void sbmac_mii_sync(struct sbmac_softc
*s
)
482 mac_mdio_genc
= __raw_readq(s
->sbm_mdio
) & M_MAC_GENC
;
484 bits
= M_MAC_MDIO_DIR_OUTPUT
| M_MAC_MDIO_OUT
;
486 __raw_writeq(bits
| mac_mdio_genc
, s
->sbm_mdio
);
488 for (cnt
= 0; cnt
< 32; cnt
++) {
489 __raw_writeq(bits
| M_MAC_MDC
| mac_mdio_genc
, s
->sbm_mdio
);
490 __raw_writeq(bits
| mac_mdio_genc
, s
->sbm_mdio
);
494 /**********************************************************************
495 * SBMAC_MII_SENDDATA(s,data,bitcnt)
497 * Send some bits to the MII. The bits to be sent are right-
498 * justified in the 'data' parameter.
501 * s - sbmac structure
502 * data - data to send
503 * bitcnt - number of bits to send
504 ********************************************************************* */
506 static void sbmac_mii_senddata(struct sbmac_softc
*s
,unsigned int data
, int bitcnt
)
510 unsigned int curmask
;
513 mac_mdio_genc
= __raw_readq(s
->sbm_mdio
) & M_MAC_GENC
;
515 bits
= M_MAC_MDIO_DIR_OUTPUT
;
516 __raw_writeq(bits
| mac_mdio_genc
, s
->sbm_mdio
);
518 curmask
= 1 << (bitcnt
- 1);
520 for (i
= 0; i
< bitcnt
; i
++) {
522 bits
|= M_MAC_MDIO_OUT
;
523 else bits
&= ~M_MAC_MDIO_OUT
;
524 __raw_writeq(bits
| mac_mdio_genc
, s
->sbm_mdio
);
525 __raw_writeq(bits
| M_MAC_MDC
| mac_mdio_genc
, s
->sbm_mdio
);
526 __raw_writeq(bits
| mac_mdio_genc
, s
->sbm_mdio
);
533 /**********************************************************************
534 * SBMAC_MII_READ(s,phyaddr,regidx)
536 * Read a PHY register.
539 * s - sbmac structure
540 * phyaddr - PHY's address
541 * regidx = index of register to read
544 * value read, or 0 if an error occurred.
545 ********************************************************************* */
547 static unsigned int sbmac_mii_read(struct sbmac_softc
*s
,int phyaddr
,int regidx
)
555 * Synchronize ourselves so that the PHY knows the next
556 * thing coming down is a command
562 * Send the data to the PHY. The sequence is
563 * a "start" command (2 bits)
564 * a "read" command (2 bits)
565 * the PHY addr (5 bits)
566 * the register index (5 bits)
569 sbmac_mii_senddata(s
,MII_COMMAND_START
, 2);
570 sbmac_mii_senddata(s
,MII_COMMAND_READ
, 2);
571 sbmac_mii_senddata(s
,phyaddr
, 5);
572 sbmac_mii_senddata(s
,regidx
, 5);
574 mac_mdio_genc
= __raw_readq(s
->sbm_mdio
) & M_MAC_GENC
;
577 * Switch the port around without a clock transition.
579 __raw_writeq(M_MAC_MDIO_DIR_INPUT
| mac_mdio_genc
, s
->sbm_mdio
);
582 * Send out a clock pulse to signal we want the status
585 __raw_writeq(M_MAC_MDIO_DIR_INPUT
| M_MAC_MDC
| mac_mdio_genc
, s
->sbm_mdio
);
586 __raw_writeq(M_MAC_MDIO_DIR_INPUT
| mac_mdio_genc
, s
->sbm_mdio
);
589 * If an error occurred, the PHY will signal '1' back
591 error
= __raw_readq(s
->sbm_mdio
) & M_MAC_MDIO_IN
;
594 * Issue an 'idle' clock pulse, but keep the direction
597 __raw_writeq(M_MAC_MDIO_DIR_INPUT
| M_MAC_MDC
| mac_mdio_genc
, s
->sbm_mdio
);
598 __raw_writeq(M_MAC_MDIO_DIR_INPUT
| mac_mdio_genc
, s
->sbm_mdio
);
602 for (idx
= 0; idx
< 16; idx
++) {
606 if (__raw_readq(s
->sbm_mdio
) & M_MAC_MDIO_IN
)
610 __raw_writeq(M_MAC_MDIO_DIR_INPUT
|M_MAC_MDC
| mac_mdio_genc
, s
->sbm_mdio
);
611 __raw_writeq(M_MAC_MDIO_DIR_INPUT
| mac_mdio_genc
, s
->sbm_mdio
);
614 /* Switch back to output */
615 __raw_writeq(M_MAC_MDIO_DIR_OUTPUT
| mac_mdio_genc
, s
->sbm_mdio
);
623 /**********************************************************************
624 * SBMAC_MII_WRITE(s,phyaddr,regidx,regval)
626 * Write a value to a PHY register.
629 * s - sbmac structure
630 * phyaddr - PHY to use
631 * regidx - register within the PHY
632 * regval - data to write to register
636 ********************************************************************* */
638 static void sbmac_mii_write(struct sbmac_softc
*s
,int phyaddr
,int regidx
,
645 sbmac_mii_senddata(s
,MII_COMMAND_START
,2);
646 sbmac_mii_senddata(s
,MII_COMMAND_WRITE
,2);
647 sbmac_mii_senddata(s
,phyaddr
, 5);
648 sbmac_mii_senddata(s
,regidx
, 5);
649 sbmac_mii_senddata(s
,MII_COMMAND_ACK
,2);
650 sbmac_mii_senddata(s
,regval
,16);
652 mac_mdio_genc
= __raw_readq(s
->sbm_mdio
) & M_MAC_GENC
;
654 __raw_writeq(M_MAC_MDIO_DIR_OUTPUT
| mac_mdio_genc
, s
->sbm_mdio
);
659 /**********************************************************************
660 * SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
662 * Initialize a DMA channel context. Since there are potentially
663 * eight DMA channels per MAC, it's nice to do this in a standard
667 * d - sbmacdma_t structure (DMA channel context)
668 * s - sbmac_softc structure (pointer to a MAC)
669 * chan - channel number (0..1 right now)
670 * txrx - Identifies DMA_TX or DMA_RX for channel direction
671 * maxdescr - number of descriptors
675 ********************************************************************* */
677 static void sbdma_initctx(sbmacdma_t
*d
,
678 struct sbmac_softc
*s
,
684 * Save away interesting stuff in the structure
688 d
->sbdma_channel
= chan
;
689 d
->sbdma_txdir
= txrx
;
693 s
->sbe_idx
=(s
->sbm_base
- A_MAC_BASE_0
)/MAC_SPACING
;
696 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_TX_BYTES
)));
697 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_COLLISIONS
)));
698 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_LATE_COL
)));
699 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_EX_COL
)));
700 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_FCS_ERROR
)));
701 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_TX_ABORT
)));
702 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_TX_BAD
)));
703 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_TX_GOOD
)));
704 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_TX_RUNT
)));
705 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_TX_OVERSIZE
)));
706 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_BYTES
)));
707 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_MCAST
)));
708 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_BCAST
)));
709 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_BAD
)));
710 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_GOOD
)));
711 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_RUNT
)));
712 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_OVERSIZE
)));
713 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_FCS_ERROR
)));
714 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_LENGTH_ERROR
)));
715 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_CODE_ERROR
)));
716 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_ALIGN_ERROR
)));
719 * initialize register pointers
723 s
->sbm_base
+ R_MAC_DMA_REGISTER(txrx
,chan
,R_MAC_DMA_CONFIG0
);
725 s
->sbm_base
+ R_MAC_DMA_REGISTER(txrx
,chan
,R_MAC_DMA_CONFIG1
);
727 s
->sbm_base
+ R_MAC_DMA_REGISTER(txrx
,chan
,R_MAC_DMA_DSCR_BASE
);
729 s
->sbm_base
+ R_MAC_DMA_REGISTER(txrx
,chan
,R_MAC_DMA_DSCR_CNT
);
731 s
->sbm_base
+ R_MAC_DMA_REGISTER(txrx
,chan
,R_MAC_DMA_CUR_DSCRADDR
);
734 * Allocate memory for the ring
737 d
->sbdma_maxdescr
= maxdescr
;
739 d
->sbdma_dscrtable
= (sbdmadscr_t
*)
740 kmalloc((d
->sbdma_maxdescr
+1)*sizeof(sbdmadscr_t
), GFP_KERNEL
);
743 * The descriptor table must be aligned to at least 16 bytes or the
744 * MAC will corrupt it.
746 d
->sbdma_dscrtable
= (sbdmadscr_t
*)
747 ALIGN((unsigned long)d
->sbdma_dscrtable
, sizeof(sbdmadscr_t
));
749 memset(d
->sbdma_dscrtable
,0,d
->sbdma_maxdescr
*sizeof(sbdmadscr_t
));
751 d
->sbdma_dscrtable_end
= d
->sbdma_dscrtable
+ d
->sbdma_maxdescr
;
753 d
->sbdma_dscrtable_phys
= virt_to_phys(d
->sbdma_dscrtable
);
759 d
->sbdma_ctxtable
= (struct sk_buff
**)
760 kmalloc(d
->sbdma_maxdescr
*sizeof(struct sk_buff
*), GFP_KERNEL
);
762 memset(d
->sbdma_ctxtable
,0,d
->sbdma_maxdescr
*sizeof(struct sk_buff
*));
764 #ifdef CONFIG_SBMAC_COALESCE
766 * Setup Rx/Tx DMA coalescing defaults
770 d
->sbdma_int_pktcnt
= int_pktcnt
;
772 d
->sbdma_int_pktcnt
= 1;
776 d
->sbdma_int_timeout
= int_timeout
;
778 d
->sbdma_int_timeout
= 0;
784 /**********************************************************************
785 * SBDMA_CHANNEL_START(d)
787 * Initialize the hardware registers for a DMA channel.
790 * d - DMA channel to init (context must be previously init'd
791 * rxtx - DMA_RX or DMA_TX depending on what type of channel
795 ********************************************************************* */
797 static void sbdma_channel_start(sbmacdma_t
*d
, int rxtx
)
800 * Turn on the DMA channel
803 #ifdef CONFIG_SBMAC_COALESCE
804 __raw_writeq(V_DMA_INT_TIMEOUT(d
->sbdma_int_timeout
) |
805 0, d
->sbdma_config1
);
806 __raw_writeq(M_DMA_EOP_INT_EN
|
807 V_DMA_RINGSZ(d
->sbdma_maxdescr
) |
808 V_DMA_INT_PKTCNT(d
->sbdma_int_pktcnt
) |
809 0, d
->sbdma_config0
);
811 __raw_writeq(0, d
->sbdma_config1
);
812 __raw_writeq(V_DMA_RINGSZ(d
->sbdma_maxdescr
) |
813 0, d
->sbdma_config0
);
816 __raw_writeq(d
->sbdma_dscrtable_phys
, d
->sbdma_dscrbase
);
819 * Initialize ring pointers
822 d
->sbdma_addptr
= d
->sbdma_dscrtable
;
823 d
->sbdma_remptr
= d
->sbdma_dscrtable
;
826 /**********************************************************************
827 * SBDMA_CHANNEL_STOP(d)
829 * Initialize the hardware registers for a DMA channel.
832 * d - DMA channel to init (context must be previously init'd
836 ********************************************************************* */
838 static void sbdma_channel_stop(sbmacdma_t
*d
)
841 * Turn off the DMA channel
844 __raw_writeq(0, d
->sbdma_config1
);
846 __raw_writeq(0, d
->sbdma_dscrbase
);
848 __raw_writeq(0, d
->sbdma_config0
);
854 d
->sbdma_addptr
= NULL
;
855 d
->sbdma_remptr
= NULL
;
858 static void sbdma_align_skb(struct sk_buff
*skb
,int power2
,int offset
)
861 unsigned long newaddr
;
863 addr
= (unsigned long) skb
->data
;
865 newaddr
= (addr
+ power2
- 1) & ~(power2
- 1);
867 skb_reserve(skb
,newaddr
-addr
+offset
);
871 /**********************************************************************
872 * SBDMA_ADD_RCVBUFFER(d,sb)
874 * Add a buffer to the specified DMA channel. For receive channels,
875 * this queues a buffer for inbound packets.
878 * d - DMA channel descriptor
879 * sb - sk_buff to add, or NULL if we should allocate one
882 * 0 if buffer could not be added (ring is full)
883 * 1 if buffer added successfully
884 ********************************************************************* */
887 static int sbdma_add_rcvbuffer(sbmacdma_t
*d
,struct sk_buff
*sb
)
890 sbdmadscr_t
*nextdsc
;
891 struct sk_buff
*sb_new
= NULL
;
892 int pktsize
= ENET_PACKET_SIZE
;
894 /* get pointer to our current place in the ring */
896 dsc
= d
->sbdma_addptr
;
897 nextdsc
= SBDMA_NEXTBUF(d
,sbdma_addptr
);
900 * figure out if the ring is full - if the next descriptor
901 * is the same as the one that we're going to remove from
902 * the ring, the ring is full
905 if (nextdsc
== d
->sbdma_remptr
) {
910 * Allocate a sk_buff if we don't already have one.
911 * If we do have an sk_buff, reset it so that it's empty.
913 * Note: sk_buffs don't seem to be guaranteed to have any sort
914 * of alignment when they are allocated. Therefore, allocate enough
915 * extra space to make sure that:
917 * 1. the data does not start in the middle of a cache line.
918 * 2. The data does not end in the middle of a cache line
919 * 3. The buffer can be aligned such that the IP addresses are
922 * Remember, the SOCs MAC writes whole cache lines at a time,
923 * without reading the old contents first. So, if the sk_buff's
924 * data portion starts in the middle of a cache line, the SOC
925 * DMA will trash the beginning (and ending) portions.
929 sb_new
= dev_alloc_skb(ENET_PACKET_SIZE
+ SMP_CACHE_BYTES
* 2 + ETHER_ALIGN
);
930 if (sb_new
== NULL
) {
931 printk(KERN_INFO
"%s: sk_buff allocation failed\n",
932 d
->sbdma_eth
->sbm_dev
->name
);
936 sbdma_align_skb(sb_new
, SMP_CACHE_BYTES
, ETHER_ALIGN
);
938 /* mark skbuff owned by our device */
939 sb_new
->dev
= d
->sbdma_eth
->sbm_dev
;
944 * nothing special to reinit buffer, it's already aligned
945 * and sb->data already points to a good place.
950 * fill in the descriptor
953 #ifdef CONFIG_SBMAC_COALESCE
955 * Do not interrupt per DMA transfer.
957 dsc
->dscr_a
= virt_to_phys(sb_new
->data
) |
958 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize
+ETHER_ALIGN
)) | 0;
960 dsc
->dscr_a
= virt_to_phys(sb_new
->data
) |
961 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize
+ETHER_ALIGN
)) |
962 M_DMA_DSCRA_INTERRUPT
;
965 /* receiving: no options */
969 * fill in the context
972 d
->sbdma_ctxtable
[dsc
-d
->sbdma_dscrtable
] = sb_new
;
975 * point at next packet
978 d
->sbdma_addptr
= nextdsc
;
981 * Give the buffer to the DMA engine.
984 __raw_writeq(1, d
->sbdma_dscrcnt
);
986 return 0; /* we did it */
989 /**********************************************************************
990 * SBDMA_ADD_TXBUFFER(d,sb)
992 * Add a transmit buffer to the specified DMA channel, causing a
996 * d - DMA channel descriptor
997 * sb - sk_buff to add
1000 * 0 transmit queued successfully
1001 * otherwise error code
1002 ********************************************************************* */
1005 static int sbdma_add_txbuffer(sbmacdma_t
*d
,struct sk_buff
*sb
)
1008 sbdmadscr_t
*nextdsc
;
1013 /* get pointer to our current place in the ring */
1015 dsc
= d
->sbdma_addptr
;
1016 nextdsc
= SBDMA_NEXTBUF(d
,sbdma_addptr
);
1019 * figure out if the ring is full - if the next descriptor
1020 * is the same as the one that we're going to remove from
1021 * the ring, the ring is full
1024 if (nextdsc
== d
->sbdma_remptr
) {
1029 * Under Linux, it's not necessary to copy/coalesce buffers
1030 * like it is on NetBSD. We think they're all contiguous,
1031 * but that may not be true for GBE.
1037 * fill in the descriptor. Note that the number of cache
1038 * blocks in the descriptor is the number of blocks
1039 * *spanned*, so we need to add in the offset (if any)
1040 * while doing the calculation.
1043 phys
= virt_to_phys(sb
->data
);
1044 ncb
= NUMCACHEBLKS(length
+(phys
& (SMP_CACHE_BYTES
- 1)));
1046 dsc
->dscr_a
= phys
|
1047 V_DMA_DSCRA_A_SIZE(ncb
) |
1048 #ifndef CONFIG_SBMAC_COALESCE
1049 M_DMA_DSCRA_INTERRUPT
|
1053 /* transmitting: set outbound options and length */
1055 dsc
->dscr_b
= V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD
) |
1056 V_DMA_DSCRB_PKT_SIZE(length
);
1059 * fill in the context
1062 d
->sbdma_ctxtable
[dsc
-d
->sbdma_dscrtable
] = sb
;
1065 * point at next packet
1068 d
->sbdma_addptr
= nextdsc
;
1071 * Give the buffer to the DMA engine.
1074 __raw_writeq(1, d
->sbdma_dscrcnt
);
1076 return 0; /* we did it */
1082 /**********************************************************************
1083 * SBDMA_EMPTYRING(d)
1085 * Free all allocated sk_buffs on the specified DMA channel;
1092 ********************************************************************* */
1094 static void sbdma_emptyring(sbmacdma_t
*d
)
1099 for (idx
= 0; idx
< d
->sbdma_maxdescr
; idx
++) {
1100 sb
= d
->sbdma_ctxtable
[idx
];
1103 d
->sbdma_ctxtable
[idx
] = NULL
;
1109 /**********************************************************************
1112 * Fill the specified DMA channel (must be receive channel)
1120 ********************************************************************* */
1122 static void sbdma_fillring(sbmacdma_t
*d
)
1126 for (idx
= 0; idx
< SBMAC_MAX_RXDESCR
-1; idx
++) {
1127 if (sbdma_add_rcvbuffer(d
,NULL
) != 0)
1133 /**********************************************************************
1134 * SBDMA_RX_PROCESS(sc,d)
1136 * Process "completed" receive buffers on the specified DMA channel.
1137 * Note that this isn't really ideal for priority channels, since
1138 * it processes all of the packets on a given channel before
1142 * sc - softc structure
1143 * d - DMA channel context
1147 ********************************************************************* */
1149 static void sbdma_rx_process(struct sbmac_softc
*sc
,sbmacdma_t
*d
)
1159 * figure out where we are (as an index) and where
1160 * the hardware is (also as an index)
1162 * This could be done faster if (for example) the
1163 * descriptor table was page-aligned and contiguous in
1164 * both virtual and physical memory -- you could then
1165 * just compare the low-order bits of the virtual address
1166 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1169 curidx
= d
->sbdma_remptr
- d
->sbdma_dscrtable
;
1170 hwidx
= (int) (((__raw_readq(d
->sbdma_curdscr
) & M_DMA_CURDSCR_ADDR
) -
1171 d
->sbdma_dscrtable_phys
) / sizeof(sbdmadscr_t
));
1174 * If they're the same, that means we've processed all
1175 * of the descriptors up to (but not including) the one that
1176 * the hardware is working on right now.
1179 if (curidx
== hwidx
)
1183 * Otherwise, get the packet's sk_buff ptr back
1186 dsc
= &(d
->sbdma_dscrtable
[curidx
]);
1187 sb
= d
->sbdma_ctxtable
[curidx
];
1188 d
->sbdma_ctxtable
[curidx
] = NULL
;
1190 len
= (int)G_DMA_DSCRB_PKT_SIZE(dsc
->dscr_b
) - 4;
1193 * Check packet status. If good, process it.
1194 * If not, silently drop it and put it back on the
1198 if (!(dsc
->dscr_a
& M_DMA_ETHRX_BAD
)) {
1201 * Add a new buffer to replace the old one. If we fail
1202 * to allocate a buffer, we're going to drop this
1203 * packet and put it right back on the receive ring.
1206 if (sbdma_add_rcvbuffer(d
,NULL
) == -ENOBUFS
) {
1207 sc
->sbm_stats
.rx_dropped
++;
1208 sbdma_add_rcvbuffer(d
,sb
); /* re-add old buffer */
1211 * Set length into the packet
1216 * Buffer has been replaced on the
1217 * receive ring. Pass the buffer to
1220 sc
->sbm_stats
.rx_bytes
+= len
;
1221 sc
->sbm_stats
.rx_packets
++;
1222 sb
->protocol
= eth_type_trans(sb
,d
->sbdma_eth
->sbm_dev
);
1223 /* Check hw IPv4/TCP checksum if supported */
1224 if (sc
->rx_hw_checksum
== ENABLE
) {
1225 if (!((dsc
->dscr_a
) & M_DMA_ETHRX_BADIP4CS
) &&
1226 !((dsc
->dscr_a
) & M_DMA_ETHRX_BADTCPCS
)) {
1227 sb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1228 /* don't need to set sb->csum */
1230 sb
->ip_summed
= CHECKSUM_NONE
;
1238 * Packet was mangled somehow. Just drop it and
1239 * put it back on the receive ring.
1241 sc
->sbm_stats
.rx_errors
++;
1242 sbdma_add_rcvbuffer(d
,sb
);
1247 * .. and advance to the next buffer.
1250 d
->sbdma_remptr
= SBDMA_NEXTBUF(d
,sbdma_remptr
);
1257 /**********************************************************************
1258 * SBDMA_TX_PROCESS(sc,d)
1260 * Process "completed" transmit buffers on the specified DMA channel.
1261 * This is normally called within the interrupt service routine.
1262 * Note that this isn't really ideal for priority channels, since
1263 * it processes all of the packets on a given channel before
1267 * sc - softc structure
1268 * d - DMA channel context
1272 ********************************************************************* */
1274 static void sbdma_tx_process(struct sbmac_softc
*sc
,sbmacdma_t
*d
)
1280 unsigned long flags
;
1282 spin_lock_irqsave(&(sc
->sbm_lock
), flags
);
1286 * figure out where we are (as an index) and where
1287 * the hardware is (also as an index)
1289 * This could be done faster if (for example) the
1290 * descriptor table was page-aligned and contiguous in
1291 * both virtual and physical memory -- you could then
1292 * just compare the low-order bits of the virtual address
1293 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1296 curidx
= d
->sbdma_remptr
- d
->sbdma_dscrtable
;
1297 hwidx
= (int) (((__raw_readq(d
->sbdma_curdscr
) & M_DMA_CURDSCR_ADDR
) -
1298 d
->sbdma_dscrtable_phys
) / sizeof(sbdmadscr_t
));
1301 * If they're the same, that means we've processed all
1302 * of the descriptors up to (but not including) the one that
1303 * the hardware is working on right now.
1306 if (curidx
== hwidx
)
1310 * Otherwise, get the packet's sk_buff ptr back
1313 dsc
= &(d
->sbdma_dscrtable
[curidx
]);
1314 sb
= d
->sbdma_ctxtable
[curidx
];
1315 d
->sbdma_ctxtable
[curidx
] = NULL
;
1321 sc
->sbm_stats
.tx_bytes
+= sb
->len
;
1322 sc
->sbm_stats
.tx_packets
++;
1325 * for transmits, we just free buffers.
1328 dev_kfree_skb_irq(sb
);
1331 * .. and advance to the next buffer.
1334 d
->sbdma_remptr
= SBDMA_NEXTBUF(d
,sbdma_remptr
);
1339 * Decide if we should wake up the protocol or not.
1340 * Other drivers seem to do this when we reach a low
1341 * watermark on the transmit queue.
1344 netif_wake_queue(d
->sbdma_eth
->sbm_dev
);
1346 spin_unlock_irqrestore(&(sc
->sbm_lock
), flags
);
1352 /**********************************************************************
1355 * Initialize an Ethernet context structure - this is called
1356 * once per MAC on the 1250. Memory is allocated here, so don't
1357 * call it again from inside the ioctl routines that bring the
1361 * s - sbmac context structure
1365 ********************************************************************* */
1367 static int sbmac_initctx(struct sbmac_softc
*s
)
1371 * figure out the addresses of some ports
1374 s
->sbm_macenable
= s
->sbm_base
+ R_MAC_ENABLE
;
1375 s
->sbm_maccfg
= s
->sbm_base
+ R_MAC_CFG
;
1376 s
->sbm_fifocfg
= s
->sbm_base
+ R_MAC_THRSH_CFG
;
1377 s
->sbm_framecfg
= s
->sbm_base
+ R_MAC_FRAMECFG
;
1378 s
->sbm_rxfilter
= s
->sbm_base
+ R_MAC_ADFILTER_CFG
;
1379 s
->sbm_isr
= s
->sbm_base
+ R_MAC_STATUS
;
1380 s
->sbm_imr
= s
->sbm_base
+ R_MAC_INT_MASK
;
1381 s
->sbm_mdio
= s
->sbm_base
+ R_MAC_MDIO
;
1386 s
->sbm_phy_oldbmsr
= 0;
1387 s
->sbm_phy_oldanlpar
= 0;
1388 s
->sbm_phy_oldk1stsr
= 0;
1389 s
->sbm_phy_oldlinkstat
= 0;
1392 * Initialize the DMA channels. Right now, only one per MAC is used
1393 * Note: Only do this _once_, as it allocates memory from the kernel!
1396 sbdma_initctx(&(s
->sbm_txdma
),s
,0,DMA_TX
,SBMAC_MAX_TXDESCR
);
1397 sbdma_initctx(&(s
->sbm_rxdma
),s
,0,DMA_RX
,SBMAC_MAX_RXDESCR
);
1400 * initial state is OFF
1403 s
->sbm_state
= sbmac_state_off
;
1406 * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
1409 s
->sbm_speed
= sbmac_speed_10
;
1410 s
->sbm_duplex
= sbmac_duplex_half
;
1411 s
->sbm_fc
= sbmac_fc_disabled
;
1417 static void sbdma_uninitctx(struct sbmacdma_s
*d
)
1419 if (d
->sbdma_dscrtable
) {
1420 kfree(d
->sbdma_dscrtable
);
1421 d
->sbdma_dscrtable
= NULL
;
1424 if (d
->sbdma_ctxtable
) {
1425 kfree(d
->sbdma_ctxtable
);
1426 d
->sbdma_ctxtable
= NULL
;
1431 static void sbmac_uninitctx(struct sbmac_softc
*sc
)
1433 sbdma_uninitctx(&(sc
->sbm_txdma
));
1434 sbdma_uninitctx(&(sc
->sbm_rxdma
));
1438 /**********************************************************************
1439 * SBMAC_CHANNEL_START(s)
1441 * Start packet processing on this MAC.
1444 * s - sbmac structure
1448 ********************************************************************* */
1450 static void sbmac_channel_start(struct sbmac_softc
*s
)
1453 volatile void __iomem
*port
;
1454 uint64_t cfg
,fifo
,framecfg
;
1458 * Don't do this if running
1461 if (s
->sbm_state
== sbmac_state_on
)
1465 * Bring the controller out of reset, but leave it off.
1468 __raw_writeq(0, s
->sbm_macenable
);
1471 * Ignore all received packets
1474 __raw_writeq(0, s
->sbm_rxfilter
);
1477 * Calculate values for various control registers.
1480 cfg
= M_MAC_RETRY_EN
|
1481 M_MAC_TX_HOLD_SOP_EN
|
1482 V_MAC_TX_PAUSE_CNT_16K
|
1489 * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1490 * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1491 * Use a larger RD_THRSH for gigabit
1493 if (soc_type
== K_SYS_SOC_TYPE_BCM1250
&& periph_rev
< 2)
1498 fifo
= V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */
1499 ((s
->sbm_speed
== sbmac_speed_1000
)
1500 ? V_MAC_TX_RD_THRSH(th_value
) : V_MAC_TX_RD_THRSH(4)) |
1501 V_MAC_TX_RL_THRSH(4) |
1502 V_MAC_RX_PL_THRSH(4) |
1503 V_MAC_RX_RD_THRSH(4) | /* Must be '4' */
1504 V_MAC_RX_PL_THRSH(4) |
1505 V_MAC_RX_RL_THRSH(8) |
1508 framecfg
= V_MAC_MIN_FRAMESZ_DEFAULT
|
1509 V_MAC_MAX_FRAMESZ_DEFAULT
|
1510 V_MAC_BACKOFF_SEL(1);
1513 * Clear out the hash address map
1516 port
= s
->sbm_base
+ R_MAC_HASH_BASE
;
1517 for (idx
= 0; idx
< MAC_HASH_COUNT
; idx
++) {
1518 __raw_writeq(0, port
);
1519 port
+= sizeof(uint64_t);
1523 * Clear out the exact-match table
1526 port
= s
->sbm_base
+ R_MAC_ADDR_BASE
;
1527 for (idx
= 0; idx
< MAC_ADDR_COUNT
; idx
++) {
1528 __raw_writeq(0, port
);
1529 port
+= sizeof(uint64_t);
1533 * Clear out the DMA Channel mapping table registers
1536 port
= s
->sbm_base
+ R_MAC_CHUP0_BASE
;
1537 for (idx
= 0; idx
< MAC_CHMAP_COUNT
; idx
++) {
1538 __raw_writeq(0, port
);
1539 port
+= sizeof(uint64_t);
1543 port
= s
->sbm_base
+ R_MAC_CHLO0_BASE
;
1544 for (idx
= 0; idx
< MAC_CHMAP_COUNT
; idx
++) {
1545 __raw_writeq(0, port
);
1546 port
+= sizeof(uint64_t);
1550 * Program the hardware address. It goes into the hardware-address
1551 * register as well as the first filter register.
1554 reg
= sbmac_addr2reg(s
->sbm_hwaddr
);
1556 port
= s
->sbm_base
+ R_MAC_ADDR_BASE
;
1557 __raw_writeq(reg
, port
);
1558 port
= s
->sbm_base
+ R_MAC_ETHERNET_ADDR
;
1560 #ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1562 * Pass1 SOCs do not receive packets addressed to the
1563 * destination address in the R_MAC_ETHERNET_ADDR register.
1564 * Set the value to zero.
1566 __raw_writeq(0, port
);
1568 __raw_writeq(reg
, port
);
1572 * Set the receive filter for no packets, and write values
1573 * to the various config registers
1576 __raw_writeq(0, s
->sbm_rxfilter
);
1577 __raw_writeq(0, s
->sbm_imr
);
1578 __raw_writeq(framecfg
, s
->sbm_framecfg
);
1579 __raw_writeq(fifo
, s
->sbm_fifocfg
);
1580 __raw_writeq(cfg
, s
->sbm_maccfg
);
1583 * Initialize DMA channels (rings should be ok now)
1586 sbdma_channel_start(&(s
->sbm_rxdma
), DMA_RX
);
1587 sbdma_channel_start(&(s
->sbm_txdma
), DMA_TX
);
1590 * Configure the speed, duplex, and flow control
1593 sbmac_set_speed(s
,s
->sbm_speed
);
1594 sbmac_set_duplex(s
,s
->sbm_duplex
,s
->sbm_fc
);
1597 * Fill the receive ring
1600 sbdma_fillring(&(s
->sbm_rxdma
));
1603 * Turn on the rest of the bits in the enable register
1606 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1607 __raw_writeq(M_MAC_RXDMA_EN0
|
1608 M_MAC_TXDMA_EN0
, s
->sbm_macenable
);
1609 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1610 __raw_writeq(M_MAC_RXDMA_EN0
|
1613 M_MAC_TX_ENABLE
, s
->sbm_macenable
);
1615 #error invalid SiByte MAC configuation
1618 #ifdef CONFIG_SBMAC_COALESCE
1620 * Accept any TX interrupt and EOP count/timer RX interrupts on ch 0
1622 __raw_writeq(((M_MAC_INT_EOP_COUNT
| M_MAC_INT_EOP_TIMER
) << S_MAC_TX_CH0
) |
1623 ((M_MAC_INT_EOP_COUNT
| M_MAC_INT_EOP_TIMER
) << S_MAC_RX_CH0
), s
->sbm_imr
);
1626 * Accept any kind of interrupt on TX and RX DMA channel 0
1628 __raw_writeq((M_MAC_INT_CHANNEL
<< S_MAC_TX_CH0
) |
1629 (M_MAC_INT_CHANNEL
<< S_MAC_RX_CH0
), s
->sbm_imr
);
1633 * Enable receiving unicasts and broadcasts
1636 __raw_writeq(M_MAC_UCAST_EN
| M_MAC_BCAST_EN
, s
->sbm_rxfilter
);
1639 * we're running now.
1642 s
->sbm_state
= sbmac_state_on
;
1645 * Program multicast addresses
1651 * If channel was in promiscuous mode before, turn that on
1654 if (s
->sbm_devflags
& IFF_PROMISC
) {
1655 sbmac_promiscuous_mode(s
,1);
1661 /**********************************************************************
1662 * SBMAC_CHANNEL_STOP(s)
1664 * Stop packet processing on this MAC.
1667 * s - sbmac structure
1671 ********************************************************************* */
1673 static void sbmac_channel_stop(struct sbmac_softc
*s
)
1675 /* don't do this if already stopped */
1677 if (s
->sbm_state
== sbmac_state_off
)
1680 /* don't accept any packets, disable all interrupts */
1682 __raw_writeq(0, s
->sbm_rxfilter
);
1683 __raw_writeq(0, s
->sbm_imr
);
1685 /* Turn off ticker */
1689 /* turn off receiver and transmitter */
1691 __raw_writeq(0, s
->sbm_macenable
);
1693 /* We're stopped now. */
1695 s
->sbm_state
= sbmac_state_off
;
1698 * Stop DMA channels (rings should be ok now)
1701 sbdma_channel_stop(&(s
->sbm_rxdma
));
1702 sbdma_channel_stop(&(s
->sbm_txdma
));
1704 /* Empty the receive and transmit rings */
1706 sbdma_emptyring(&(s
->sbm_rxdma
));
1707 sbdma_emptyring(&(s
->sbm_txdma
));
1711 /**********************************************************************
1712 * SBMAC_SET_CHANNEL_STATE(state)
1714 * Set the channel's state ON or OFF
1721 ********************************************************************* */
1722 static sbmac_state_t
sbmac_set_channel_state(struct sbmac_softc
*sc
,
1723 sbmac_state_t state
)
1725 sbmac_state_t oldstate
= sc
->sbm_state
;
1728 * If same as previous state, return
1731 if (state
== oldstate
) {
1736 * If new state is ON, turn channel on
1739 if (state
== sbmac_state_on
) {
1740 sbmac_channel_start(sc
);
1743 sbmac_channel_stop(sc
);
1747 * Return previous state
1754 /**********************************************************************
1755 * SBMAC_PROMISCUOUS_MODE(sc,onoff)
1757 * Turn on or off promiscuous mode
1761 * onoff - 1 to turn on, 0 to turn off
1765 ********************************************************************* */
1767 static void sbmac_promiscuous_mode(struct sbmac_softc
*sc
,int onoff
)
1771 if (sc
->sbm_state
!= sbmac_state_on
)
1775 reg
= __raw_readq(sc
->sbm_rxfilter
);
1776 reg
|= M_MAC_ALLPKT_EN
;
1777 __raw_writeq(reg
, sc
->sbm_rxfilter
);
1780 reg
= __raw_readq(sc
->sbm_rxfilter
);
1781 reg
&= ~M_MAC_ALLPKT_EN
;
1782 __raw_writeq(reg
, sc
->sbm_rxfilter
);
1786 /**********************************************************************
1787 * SBMAC_SETIPHDR_OFFSET(sc,onoff)
1789 * Set the iphdr offset as 15 assuming ethernet encapsulation
1796 ********************************************************************* */
1798 static void sbmac_set_iphdr_offset(struct sbmac_softc
*sc
)
1802 /* Hard code the off set to 15 for now */
1803 reg
= __raw_readq(sc
->sbm_rxfilter
);
1804 reg
&= ~M_MAC_IPHDR_OFFSET
| V_MAC_IPHDR_OFFSET(15);
1805 __raw_writeq(reg
, sc
->sbm_rxfilter
);
1807 /* BCM1250 pass1 didn't have hardware checksum. Everything
1809 if (soc_type
== K_SYS_SOC_TYPE_BCM1250
&& periph_rev
< 2) {
1810 sc
->rx_hw_checksum
= DISABLE
;
1812 sc
->rx_hw_checksum
= ENABLE
;
1817 /**********************************************************************
1818 * SBMAC_ADDR2REG(ptr)
1820 * Convert six bytes into the 64-bit register value that
1821 * we typically write into the SBMAC's address/mcast registers
1824 * ptr - pointer to 6 bytes
1828 ********************************************************************* */
1830 static uint64_t sbmac_addr2reg(unsigned char *ptr
)
1836 reg
|= (uint64_t) *(--ptr
);
1838 reg
|= (uint64_t) *(--ptr
);
1840 reg
|= (uint64_t) *(--ptr
);
1842 reg
|= (uint64_t) *(--ptr
);
1844 reg
|= (uint64_t) *(--ptr
);
1846 reg
|= (uint64_t) *(--ptr
);
1852 /**********************************************************************
1853 * SBMAC_SET_SPEED(s,speed)
1855 * Configure LAN speed for the specified MAC.
1856 * Warning: must be called when MAC is off!
1859 * s - sbmac structure
1860 * speed - speed to set MAC to (see sbmac_speed_t enum)
1864 * 0 indicates invalid parameters
1865 ********************************************************************* */
1867 static int sbmac_set_speed(struct sbmac_softc
*s
,sbmac_speed_t speed
)
1873 * Save new current values
1876 s
->sbm_speed
= speed
;
1878 if (s
->sbm_state
== sbmac_state_on
)
1879 return 0; /* save for next restart */
1882 * Read current register values
1885 cfg
= __raw_readq(s
->sbm_maccfg
);
1886 framecfg
= __raw_readq(s
->sbm_framecfg
);
1889 * Mask out the stuff we want to change
1892 cfg
&= ~(M_MAC_BURST_EN
| M_MAC_SPEED_SEL
);
1893 framecfg
&= ~(M_MAC_IFG_RX
| M_MAC_IFG_TX
| M_MAC_IFG_THRSH
|
1897 * Now add in the new bits
1901 case sbmac_speed_10
:
1902 framecfg
|= V_MAC_IFG_RX_10
|
1904 K_MAC_IFG_THRSH_10
|
1906 cfg
|= V_MAC_SPEED_SEL_10MBPS
;
1909 case sbmac_speed_100
:
1910 framecfg
|= V_MAC_IFG_RX_100
|
1912 V_MAC_IFG_THRSH_100
|
1913 V_MAC_SLOT_SIZE_100
;
1914 cfg
|= V_MAC_SPEED_SEL_100MBPS
;
1917 case sbmac_speed_1000
:
1918 framecfg
|= V_MAC_IFG_RX_1000
|
1920 V_MAC_IFG_THRSH_1000
|
1921 V_MAC_SLOT_SIZE_1000
;
1922 cfg
|= V_MAC_SPEED_SEL_1000MBPS
| M_MAC_BURST_EN
;
1925 case sbmac_speed_auto
: /* XXX not implemented */
1932 * Send the bits back to the hardware
1935 __raw_writeq(framecfg
, s
->sbm_framecfg
);
1936 __raw_writeq(cfg
, s
->sbm_maccfg
);
1941 /**********************************************************************
1942 * SBMAC_SET_DUPLEX(s,duplex,fc)
1944 * Set Ethernet duplex and flow control options for this MAC
1945 * Warning: must be called when MAC is off!
1948 * s - sbmac structure
1949 * duplex - duplex setting (see sbmac_duplex_t)
1950 * fc - flow control setting (see sbmac_fc_t)
1954 * 0 if an invalid parameter combination was specified
1955 ********************************************************************* */
1957 static int sbmac_set_duplex(struct sbmac_softc
*s
,sbmac_duplex_t duplex
,sbmac_fc_t fc
)
1962 * Save new current values
1965 s
->sbm_duplex
= duplex
;
1968 if (s
->sbm_state
== sbmac_state_on
)
1969 return 0; /* save for next restart */
1972 * Read current register values
1975 cfg
= __raw_readq(s
->sbm_maccfg
);
1978 * Mask off the stuff we're about to change
1981 cfg
&= ~(M_MAC_FC_SEL
| M_MAC_FC_CMD
| M_MAC_HDX_EN
);
1985 case sbmac_duplex_half
:
1987 case sbmac_fc_disabled
:
1988 cfg
|= M_MAC_HDX_EN
| V_MAC_FC_CMD_DISABLED
;
1991 case sbmac_fc_collision
:
1992 cfg
|= M_MAC_HDX_EN
| V_MAC_FC_CMD_ENABLED
;
1995 case sbmac_fc_carrier
:
1996 cfg
|= M_MAC_HDX_EN
| V_MAC_FC_CMD_ENAB_FALSECARR
;
1999 case sbmac_fc_auto
: /* XXX not implemented */
2001 case sbmac_fc_frame
: /* not valid in half duplex */
2002 default: /* invalid selection */
2007 case sbmac_duplex_full
:
2009 case sbmac_fc_disabled
:
2010 cfg
|= V_MAC_FC_CMD_DISABLED
;
2013 case sbmac_fc_frame
:
2014 cfg
|= V_MAC_FC_CMD_ENABLED
;
2017 case sbmac_fc_collision
: /* not valid in full duplex */
2018 case sbmac_fc_carrier
: /* not valid in full duplex */
2019 case sbmac_fc_auto
: /* XXX not implemented */
2025 case sbmac_duplex_auto
:
2026 /* XXX not implemented */
2031 * Send the bits back to the hardware
2034 __raw_writeq(cfg
, s
->sbm_maccfg
);
2042 /**********************************************************************
2045 * Interrupt handler for MAC interrupts
2052 ********************************************************************* */
2053 static irqreturn_t
sbmac_intr(int irq
,void *dev_instance
,struct pt_regs
*rgs
)
2055 struct net_device
*dev
= (struct net_device
*) dev_instance
;
2056 struct sbmac_softc
*sc
= netdev_priv(dev
);
2063 * Read the ISR (this clears the bits in the real
2064 * register, except for counter addr)
2067 isr
= __raw_readq(sc
->sbm_isr
) & ~M_MAC_COUNTER_ADDR
;
2075 * Transmits on channel 0
2078 if (isr
& (M_MAC_INT_CHANNEL
<< S_MAC_TX_CH0
)) {
2079 sbdma_tx_process(sc
,&(sc
->sbm_txdma
));
2083 * Receives on channel 0
2087 * It's important to test all the bits (or at least the
2088 * EOP_SEEN bit) when deciding to do the RX process
2089 * particularly when coalescing, to make sure we
2090 * take care of the following:
2092 * If you have some packets waiting (have been received
2093 * but no interrupt) and get a TX interrupt before
2094 * the RX timer or counter expires, reading the ISR
2095 * above will clear the timer and counter, and you
2096 * won't get another interrupt until a packet shows
2097 * up to start the timer again. Testing
2098 * EOP_SEEN here takes care of this case.
2099 * (EOP_SEEN is part of M_MAC_INT_CHANNEL << S_MAC_RX_CH0)
2103 if (isr
& (M_MAC_INT_CHANNEL
<< S_MAC_RX_CH0
)) {
2104 sbdma_rx_process(sc
,&(sc
->sbm_rxdma
));
2107 return IRQ_RETVAL(handled
);
2111 /**********************************************************************
2112 * SBMAC_START_TX(skb,dev)
2114 * Start output on the specified interface. Basically, we
2115 * queue as many buffers as we can until the ring fills up, or
2116 * we run off the end of the queue, whichever comes first.
2123 ********************************************************************* */
2124 static int sbmac_start_tx(struct sk_buff
*skb
, struct net_device
*dev
)
2126 struct sbmac_softc
*sc
= netdev_priv(dev
);
2129 spin_lock_irq (&sc
->sbm_lock
);
2132 * Put the buffer on the transmit ring. If we
2133 * don't have room, stop the queue.
2136 if (sbdma_add_txbuffer(&(sc
->sbm_txdma
),skb
)) {
2137 /* XXX save skb that we could not send */
2138 netif_stop_queue(dev
);
2139 spin_unlock_irq(&sc
->sbm_lock
);
2144 dev
->trans_start
= jiffies
;
2146 spin_unlock_irq (&sc
->sbm_lock
);
2151 /**********************************************************************
2152 * SBMAC_SETMULTI(sc)
2154 * Reprogram the multicast table into the hardware, given
2155 * the list of multicasts associated with the interface
2163 ********************************************************************* */
2165 static void sbmac_setmulti(struct sbmac_softc
*sc
)
2168 volatile void __iomem
*port
;
2170 struct dev_mc_list
*mclist
;
2171 struct net_device
*dev
= sc
->sbm_dev
;
2174 * Clear out entire multicast table. We do this by nuking
2175 * the entire hash table and all the direct matches except
2176 * the first one, which is used for our station address
2179 for (idx
= 1; idx
< MAC_ADDR_COUNT
; idx
++) {
2180 port
= sc
->sbm_base
+ R_MAC_ADDR_BASE
+(idx
*sizeof(uint64_t));
2181 __raw_writeq(0, port
);
2184 for (idx
= 0; idx
< MAC_HASH_COUNT
; idx
++) {
2185 port
= sc
->sbm_base
+ R_MAC_HASH_BASE
+(idx
*sizeof(uint64_t));
2186 __raw_writeq(0, port
);
2190 * Clear the filter to say we don't want any multicasts.
2193 reg
= __raw_readq(sc
->sbm_rxfilter
);
2194 reg
&= ~(M_MAC_MCAST_INV
| M_MAC_MCAST_EN
);
2195 __raw_writeq(reg
, sc
->sbm_rxfilter
);
2197 if (dev
->flags
& IFF_ALLMULTI
) {
2199 * Enable ALL multicasts. Do this by inverting the
2200 * multicast enable bit.
2202 reg
= __raw_readq(sc
->sbm_rxfilter
);
2203 reg
|= (M_MAC_MCAST_INV
| M_MAC_MCAST_EN
);
2204 __raw_writeq(reg
, sc
->sbm_rxfilter
);
2210 * Progam new multicast entries. For now, only use the
2211 * perfect filter. In the future we'll need to use the
2212 * hash filter if the perfect filter overflows
2215 /* XXX only using perfect filter for now, need to use hash
2216 * XXX if the table overflows */
2218 idx
= 1; /* skip station address */
2219 mclist
= dev
->mc_list
;
2220 while (mclist
&& (idx
< MAC_ADDR_COUNT
)) {
2221 reg
= sbmac_addr2reg(mclist
->dmi_addr
);
2222 port
= sc
->sbm_base
+ R_MAC_ADDR_BASE
+(idx
* sizeof(uint64_t));
2223 __raw_writeq(reg
, port
);
2225 mclist
= mclist
->next
;
2229 * Enable the "accept multicast bits" if we programmed at least one
2234 reg
= __raw_readq(sc
->sbm_rxfilter
);
2235 reg
|= M_MAC_MCAST_EN
;
2236 __raw_writeq(reg
, sc
->sbm_rxfilter
);
2242 #if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR) || defined(SBMAC_ETH3_HWADDR)
2243 /**********************************************************************
2244 * SBMAC_PARSE_XDIGIT(str)
2246 * Parse a hex digit, returning its value
2252 * hex value, or -1 if invalid
2253 ********************************************************************* */
2255 static int sbmac_parse_xdigit(char str
)
2259 if ((str
>= '0') && (str
<= '9'))
2261 else if ((str
>= 'a') && (str
<= 'f'))
2262 digit
= str
- 'a' + 10;
2263 else if ((str
>= 'A') && (str
<= 'F'))
2264 digit
= str
- 'A' + 10;
2271 /**********************************************************************
2272 * SBMAC_PARSE_HWADDR(str,hwaddr)
2274 * Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
2279 * hwaddr - pointer to hardware address
2283 ********************************************************************* */
2285 static int sbmac_parse_hwaddr(char *str
, unsigned char *hwaddr
)
2290 while (*str
&& (idx
> 0)) {
2291 digit1
= sbmac_parse_xdigit(*str
);
2298 if ((*str
== ':') || (*str
== '-')) {
2303 digit2
= sbmac_parse_xdigit(*str
);
2309 *hwaddr
++ = (digit1
<< 4) | digit2
;
2321 static int sb1250_change_mtu(struct net_device
*_dev
, int new_mtu
)
2323 if (new_mtu
> ENET_PACKET_SIZE
)
2325 _dev
->mtu
= new_mtu
;
2326 printk(KERN_INFO
"changing the mtu to %d\n", new_mtu
);
2330 /**********************************************************************
2333 * Attach routine - init hardware and hook ourselves into linux
2336 * dev - net_device structure
2340 ********************************************************************* */
2342 static int sbmac_init(struct net_device
*dev
, int idx
)
2344 struct sbmac_softc
*sc
;
2345 unsigned char *eaddr
;
2350 sc
= netdev_priv(dev
);
2352 /* Determine controller base address */
2354 sc
->sbm_base
= IOADDR(dev
->base_addr
);
2358 eaddr
= sc
->sbm_hwaddr
;
2361 * Read the ethernet address. The firwmare left this programmed
2362 * for us in the ethernet address register for each mac.
2365 ea_reg
= __raw_readq(sc
->sbm_base
+ R_MAC_ETHERNET_ADDR
);
2366 __raw_writeq(0, sc
->sbm_base
+ R_MAC_ETHERNET_ADDR
);
2367 for (i
= 0; i
< 6; i
++) {
2368 eaddr
[i
] = (uint8_t) (ea_reg
& 0xFF);
2372 for (i
= 0; i
< 6; i
++) {
2373 dev
->dev_addr
[i
] = eaddr
[i
];
2381 sc
->sbm_buffersize
= ENET_PACKET_SIZE
+ SMP_CACHE_BYTES
* 2 + ETHER_ALIGN
;
2384 * Initialize context (get pointers to registers and stuff), then
2385 * allocate the memory for the descriptor tables.
2391 * Set up Linux device callins
2394 spin_lock_init(&(sc
->sbm_lock
));
2396 dev
->open
= sbmac_open
;
2397 dev
->hard_start_xmit
= sbmac_start_tx
;
2398 dev
->stop
= sbmac_close
;
2399 dev
->get_stats
= sbmac_get_stats
;
2400 dev
->set_multicast_list
= sbmac_set_rx_mode
;
2401 dev
->do_ioctl
= sbmac_mii_ioctl
;
2402 dev
->tx_timeout
= sbmac_tx_timeout
;
2403 dev
->watchdog_timeo
= TX_TIMEOUT
;
2405 dev
->change_mtu
= sb1250_change_mtu
;
2407 /* This is needed for PASS2 for Rx H/W checksum feature */
2408 sbmac_set_iphdr_offset(sc
);
2410 err
= register_netdev(dev
);
2414 if (sc
->rx_hw_checksum
== ENABLE
) {
2415 printk(KERN_INFO
"%s: enabling TCP rcv checksum\n",
2420 * Display Ethernet address (this is called during the config
2421 * process so we need to finish off the config message that
2422 * was being displayed)
2425 "%s: SiByte Ethernet at 0x%08lX, address: %02X:%02X:%02X:%02X:%02X:%02X\n",
2426 dev
->name
, dev
->base_addr
,
2427 eaddr
[0],eaddr
[1],eaddr
[2],eaddr
[3],eaddr
[4],eaddr
[5]);
2433 sbmac_uninitctx(sc
);
2439 static int sbmac_open(struct net_device
*dev
)
2441 struct sbmac_softc
*sc
= netdev_priv(dev
);
2444 printk(KERN_DEBUG
"%s: sbmac_open() irq %d.\n", dev
->name
, dev
->irq
);
2448 * map/route interrupt (clear status first, in case something
2449 * weird is pending; we haven't initialized the mac registers
2453 __raw_readq(sc
->sbm_isr
);
2454 if (request_irq(dev
->irq
, &sbmac_intr
, SA_SHIRQ
, dev
->name
, dev
))
2461 if(sbmac_mii_probe(dev
) == -1) {
2462 printk("%s: failed to probe PHY.\n", dev
->name
);
2467 * Configure default speed
2470 sbmac_mii_poll(sc
,noisy_mii
);
2473 * Turn on the channel
2476 sbmac_set_channel_state(sc
,sbmac_state_on
);
2479 * XXX Station address is in dev->dev_addr
2482 if (dev
->if_port
== 0)
2485 netif_start_queue(dev
);
2487 sbmac_set_rx_mode(dev
);
2489 /* Set the timer to check for link beat. */
2490 init_timer(&sc
->sbm_timer
);
2491 sc
->sbm_timer
.expires
= jiffies
+ 2 * HZ
/100;
2492 sc
->sbm_timer
.data
= (unsigned long)dev
;
2493 sc
->sbm_timer
.function
= &sbmac_timer
;
2494 add_timer(&sc
->sbm_timer
);
2499 static int sbmac_mii_probe(struct net_device
*dev
)
2502 struct sbmac_softc
*s
= netdev_priv(dev
);
2506 for (i
=1; i
<31; i
++) {
2507 bmsr
= sbmac_mii_read(s
, i
, MII_BMSR
);
2510 id1
= sbmac_mii_read(s
, i
, MII_PHYIDR1
);
2511 id2
= sbmac_mii_read(s
, i
, MII_PHYIDR2
);
2512 vendor
= ((u32
)id1
<< 6) | ((id2
>> 10) & 0x3f);
2513 device
= (id2
>> 4) & 0x3f;
2515 printk(KERN_INFO
"%s: found phy %d, vendor %06x part %02x\n",
2516 dev
->name
, i
, vendor
, device
);
2524 static int sbmac_mii_poll(struct sbmac_softc
*s
,int noisy
)
2526 int bmsr
,bmcr
,k1stsr
,anlpar
;
2531 /* Read the mode status and mode control registers. */
2532 bmsr
= sbmac_mii_read(s
,s
->sbm_phys
[0],MII_BMSR
);
2533 bmcr
= sbmac_mii_read(s
,s
->sbm_phys
[0],MII_BMCR
);
2535 /* get the link partner status */
2536 anlpar
= sbmac_mii_read(s
,s
->sbm_phys
[0],MII_ANLPAR
);
2538 /* if supported, read the 1000baseT register */
2539 if (bmsr
& BMSR_1000BT_XSR
) {
2540 k1stsr
= sbmac_mii_read(s
,s
->sbm_phys
[0],MII_K1STSR
);
2548 if ((bmsr
& BMSR_LINKSTAT
) == 0) {
2550 * If link status is down, clear out old info so that when
2551 * it comes back up it will force us to reconfigure speed
2553 s
->sbm_phy_oldbmsr
= 0;
2554 s
->sbm_phy_oldanlpar
= 0;
2555 s
->sbm_phy_oldk1stsr
= 0;
2559 if ((s
->sbm_phy_oldbmsr
!= bmsr
) ||
2560 (s
->sbm_phy_oldanlpar
!= anlpar
) ||
2561 (s
->sbm_phy_oldk1stsr
!= k1stsr
)) {
2563 printk(KERN_DEBUG
"%s: bmsr:%x/%x anlpar:%x/%x k1stsr:%x/%x\n",
2565 s
->sbm_phy_oldbmsr
,bmsr
,
2566 s
->sbm_phy_oldanlpar
,anlpar
,
2567 s
->sbm_phy_oldk1stsr
,k1stsr
);
2569 s
->sbm_phy_oldbmsr
= bmsr
;
2570 s
->sbm_phy_oldanlpar
= anlpar
;
2571 s
->sbm_phy_oldk1stsr
= k1stsr
;
2578 p
+= sprintf(p
,"Link speed: ");
2580 if (k1stsr
& K1STSR_LP1KFD
) {
2581 s
->sbm_speed
= sbmac_speed_1000
;
2582 s
->sbm_duplex
= sbmac_duplex_full
;
2583 s
->sbm_fc
= sbmac_fc_frame
;
2584 p
+= sprintf(p
,"1000BaseT FDX");
2586 else if (k1stsr
& K1STSR_LP1KHD
) {
2587 s
->sbm_speed
= sbmac_speed_1000
;
2588 s
->sbm_duplex
= sbmac_duplex_half
;
2589 s
->sbm_fc
= sbmac_fc_disabled
;
2590 p
+= sprintf(p
,"1000BaseT HDX");
2592 else if (anlpar
& ANLPAR_TXFD
) {
2593 s
->sbm_speed
= sbmac_speed_100
;
2594 s
->sbm_duplex
= sbmac_duplex_full
;
2595 s
->sbm_fc
= (anlpar
& ANLPAR_PAUSE
) ? sbmac_fc_frame
: sbmac_fc_disabled
;
2596 p
+= sprintf(p
,"100BaseT FDX");
2598 else if (anlpar
& ANLPAR_TXHD
) {
2599 s
->sbm_speed
= sbmac_speed_100
;
2600 s
->sbm_duplex
= sbmac_duplex_half
;
2601 s
->sbm_fc
= sbmac_fc_disabled
;
2602 p
+= sprintf(p
,"100BaseT HDX");
2604 else if (anlpar
& ANLPAR_10FD
) {
2605 s
->sbm_speed
= sbmac_speed_10
;
2606 s
->sbm_duplex
= sbmac_duplex_full
;
2607 s
->sbm_fc
= sbmac_fc_frame
;
2608 p
+= sprintf(p
,"10BaseT FDX");
2610 else if (anlpar
& ANLPAR_10HD
) {
2611 s
->sbm_speed
= sbmac_speed_10
;
2612 s
->sbm_duplex
= sbmac_duplex_half
;
2613 s
->sbm_fc
= sbmac_fc_collision
;
2614 p
+= sprintf(p
,"10BaseT HDX");
2617 p
+= sprintf(p
,"Unknown");
2621 printk(KERN_INFO
"%s: %s\n",s
->sbm_dev
->name
,buffer
);
2628 static void sbmac_timer(unsigned long data
)
2630 struct net_device
*dev
= (struct net_device
*)data
;
2631 struct sbmac_softc
*sc
= netdev_priv(dev
);
2635 spin_lock_irq (&sc
->sbm_lock
);
2637 /* make IFF_RUNNING follow the MII status bit "Link established" */
2638 mii_status
= sbmac_mii_read(sc
, sc
->sbm_phys
[0], MII_BMSR
);
2640 if ( (mii_status
& BMSR_LINKSTAT
) != (sc
->sbm_phy_oldlinkstat
) ) {
2641 sc
->sbm_phy_oldlinkstat
= mii_status
& BMSR_LINKSTAT
;
2642 if (mii_status
& BMSR_LINKSTAT
) {
2643 netif_carrier_on(dev
);
2646 netif_carrier_off(dev
);
2651 * Poll the PHY to see what speed we should be running at
2654 if (sbmac_mii_poll(sc
,noisy_mii
)) {
2655 if (sc
->sbm_state
!= sbmac_state_off
) {
2657 * something changed, restart the channel
2660 printk("%s: restarting channel because speed changed\n",
2663 sbmac_channel_stop(sc
);
2664 sbmac_channel_start(sc
);
2668 spin_unlock_irq (&sc
->sbm_lock
);
2670 sc
->sbm_timer
.expires
= jiffies
+ next_tick
;
2671 add_timer(&sc
->sbm_timer
);
2675 static void sbmac_tx_timeout (struct net_device
*dev
)
2677 struct sbmac_softc
*sc
= netdev_priv(dev
);
2679 spin_lock_irq (&sc
->sbm_lock
);
2682 dev
->trans_start
= jiffies
;
2683 sc
->sbm_stats
.tx_errors
++;
2685 spin_unlock_irq (&sc
->sbm_lock
);
2687 printk (KERN_WARNING
"%s: Transmit timed out\n",dev
->name
);
2693 static struct net_device_stats
*sbmac_get_stats(struct net_device
*dev
)
2695 struct sbmac_softc
*sc
= netdev_priv(dev
);
2696 unsigned long flags
;
2698 spin_lock_irqsave(&sc
->sbm_lock
, flags
);
2700 /* XXX update other stats here */
2702 spin_unlock_irqrestore(&sc
->sbm_lock
, flags
);
2704 return &sc
->sbm_stats
;
2709 static void sbmac_set_rx_mode(struct net_device
*dev
)
2711 unsigned long flags
;
2713 struct sbmac_softc
*sc
= netdev_priv(dev
);
2715 spin_lock_irqsave(&sc
->sbm_lock
, flags
);
2716 if ((dev
->flags
^ sc
->sbm_devflags
) & IFF_PROMISC
) {
2718 * Promiscuous changed.
2721 if (dev
->flags
& IFF_PROMISC
) {
2722 /* Unconditionally log net taps. */
2724 sbmac_promiscuous_mode(sc
,1);
2728 sbmac_promiscuous_mode(sc
,0);
2731 spin_unlock_irqrestore(&sc
->sbm_lock
, flags
);
2734 printk(KERN_NOTICE
"%s: Promiscuous mode %sabled.\n",
2735 dev
->name
,(msg_flag
==1)?"en":"dis");
2739 * Program the multicasts. Do this every time.
2746 static int sbmac_mii_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
2748 struct sbmac_softc
*sc
= netdev_priv(dev
);
2749 u16
*data
= (u16
*)&rq
->ifr_ifru
;
2750 unsigned long flags
;
2753 spin_lock_irqsave(&sc
->sbm_lock
, flags
);
2757 case SIOCDEVPRIVATE
: /* Get the address of the PHY in use. */
2758 data
[0] = sc
->sbm_phys
[0] & 0x1f;
2760 case SIOCDEVPRIVATE
+1: /* Read the specified MII register. */
2761 data
[3] = sbmac_mii_read(sc
, data
[0] & 0x1f, data
[1] & 0x1f);
2763 case SIOCDEVPRIVATE
+2: /* Write the specified MII register */
2764 if (!capable(CAP_NET_ADMIN
)) {
2769 printk(KERN_DEBUG
"%s: sbmac_mii_ioctl: write %02X %02X %02X\n",dev
->name
,
2770 data
[0],data
[1],data
[2]);
2772 sbmac_mii_write(sc
, data
[0] & 0x1f, data
[1] & 0x1f, data
[2]);
2775 retval
= -EOPNOTSUPP
;
2778 spin_unlock_irqrestore(&sc
->sbm_lock
, flags
);
2782 static int sbmac_close(struct net_device
*dev
)
2784 struct sbmac_softc
*sc
= netdev_priv(dev
);
2785 unsigned long flags
;
2788 sbmac_set_channel_state(sc
,sbmac_state_off
);
2790 del_timer_sync(&sc
->sbm_timer
);
2792 spin_lock_irqsave(&sc
->sbm_lock
, flags
);
2794 netif_stop_queue(dev
);
2797 printk(KERN_DEBUG
"%s: Shutting down ethercard\n",dev
->name
);
2800 spin_unlock_irqrestore(&sc
->sbm_lock
, flags
);
2803 synchronize_irq(irq
);
2806 sbdma_emptyring(&(sc
->sbm_txdma
));
2807 sbdma_emptyring(&(sc
->sbm_rxdma
));
2814 #if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR) || defined(SBMAC_ETH3_HWADDR)
2816 sbmac_setup_hwaddr(int chan
,char *addr
)
2822 port
= A_MAC_CHANNEL_BASE(chan
);
2823 sbmac_parse_hwaddr(addr
,eaddr
);
2824 val
= sbmac_addr2reg(eaddr
);
2825 __raw_writeq(val
, IOADDR(port
+R_MAC_ETHERNET_ADDR
));
2826 val
= __raw_readq(IOADDR(port
+R_MAC_ETHERNET_ADDR
));
2830 static struct net_device
*dev_sbmac
[MAX_UNITS
];
2833 sbmac_init_module(void)
2836 struct net_device
*dev
;
2840 /* Set the number of available units based on the SOC type. */
2842 case K_SYS_SOC_TYPE_BCM1250
:
2843 case K_SYS_SOC_TYPE_BCM1250_ALT
:
2846 case K_SYS_SOC_TYPE_BCM1120
:
2847 case K_SYS_SOC_TYPE_BCM1125
:
2848 case K_SYS_SOC_TYPE_BCM1125H
:
2849 case K_SYS_SOC_TYPE_BCM1250_ALT2
: /* Hybrid */
2852 case K_SYS_SOC_TYPE_BCM1x55
:
2853 case K_SYS_SOC_TYPE_BCM1x80
:
2860 if (chip_max_units
> MAX_UNITS
)
2861 chip_max_units
= MAX_UNITS
;
2864 * For bringup when not using the firmware, we can pre-fill
2865 * the MAC addresses using the environment variables
2866 * specified in this file (or maybe from the config file?)
2868 #ifdef SBMAC_ETH0_HWADDR
2869 if (chip_max_units
> 0)
2870 sbmac_setup_hwaddr(0,SBMAC_ETH0_HWADDR
);
2872 #ifdef SBMAC_ETH1_HWADDR
2873 if (chip_max_units
> 1)
2874 sbmac_setup_hwaddr(1,SBMAC_ETH1_HWADDR
);
2876 #ifdef SBMAC_ETH2_HWADDR
2877 if (chip_max_units
> 2)
2878 sbmac_setup_hwaddr(2,SBMAC_ETH2_HWADDR
);
2880 #ifdef SBMAC_ETH3_HWADDR
2881 if (chip_max_units
> 3)
2882 sbmac_setup_hwaddr(3,SBMAC_ETH3_HWADDR
);
2886 * Walk through the Ethernet controllers and find
2887 * those who have their MAC addresses set.
2889 for (idx
= 0; idx
< chip_max_units
; idx
++) {
2892 * This is the base address of the MAC.
2895 port
= A_MAC_CHANNEL_BASE(idx
);
2898 * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2899 * value for us by the firmware if we're going to use this MAC.
2900 * If we find a zero, skip this MAC.
2903 sbmac_orig_hwaddr
[idx
] = __raw_readq(IOADDR(port
+R_MAC_ETHERNET_ADDR
));
2904 if (sbmac_orig_hwaddr
[idx
] == 0) {
2905 printk(KERN_DEBUG
"sbmac: not configuring MAC at "
2911 * Okay, cool. Initialize this MAC.
2914 dev
= alloc_etherdev(sizeof(struct sbmac_softc
));
2916 return -ENOMEM
; /* return ENOMEM */
2918 printk(KERN_DEBUG
"sbmac: configuring MAC at %lx\n", port
);
2920 dev
->irq
= UNIT_INT(idx
);
2921 dev
->base_addr
= port
;
2923 if (sbmac_init(dev
, idx
)) {
2924 port
= A_MAC_CHANNEL_BASE(idx
);
2925 __raw_writeq(sbmac_orig_hwaddr
[idx
], IOADDR(port
+R_MAC_ETHERNET_ADDR
));
2929 dev_sbmac
[idx
] = dev
;
2936 sbmac_cleanup_module(void)
2938 struct net_device
*dev
;
2941 for (idx
= 0; idx
< MAX_UNITS
; idx
++) {
2942 struct sbmac_softc
*sc
;
2943 dev
= dev_sbmac
[idx
];
2947 sc
= netdev_priv(dev
);
2948 unregister_netdev(dev
);
2949 sbmac_uninitctx(sc
);
2954 module_init(sbmac_init_module
);
2955 module_exit(sbmac_cleanup_module
);