sched: rework enqueue/dequeue_entity() to get rid of set_curr_task()
[linux-2.6/kmemtrace.git] / kernel / sched_fair.c
blob568e922255c6946f98f5981e6db5ab77d05f0d4a
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35 * Targeted preemption latency for CPU-bound tasks:
37 const_debug unsigned int sysctl_sched_latency = 20000000ULL;
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
43 const_debug unsigned int sysctl_sched_child_runs_first = 1;
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
49 unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
52 * sys_sched_yield() compat mode
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
57 unsigned int __read_mostly sysctl_sched_compat_yield;
60 * SCHED_BATCH wake-up granularity.
61 * (default: 25 msec, units: nanoseconds)
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
67 const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
70 * SCHED_OTHER wake-up granularity.
71 * (default: 1 msec, units: nanoseconds)
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
77 const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
79 unsigned int sysctl_sched_runtime_limit __read_mostly;
81 extern struct sched_class fair_sched_class;
83 /**************************************************************
84 * CFS operations on generic schedulable entities:
87 #ifdef CONFIG_FAIR_GROUP_SCHED
89 /* cpu runqueue to which this cfs_rq is attached */
90 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
92 return cfs_rq->rq;
95 /* An entity is a task if it doesn't "own" a runqueue */
96 #define entity_is_task(se) (!se->my_q)
98 #else /* CONFIG_FAIR_GROUP_SCHED */
100 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102 return container_of(cfs_rq, struct rq, cfs);
105 #define entity_is_task(se) 1
107 #endif /* CONFIG_FAIR_GROUP_SCHED */
109 static inline struct task_struct *task_of(struct sched_entity *se)
111 return container_of(se, struct task_struct, se);
115 /**************************************************************
116 * Scheduling class tree data structure manipulation methods:
119 static inline u64
120 max_vruntime(u64 min_vruntime, u64 vruntime)
122 if ((vruntime > min_vruntime) ||
123 (min_vruntime > (1ULL << 61) && vruntime < (1ULL << 50)))
124 min_vruntime = vruntime;
126 return min_vruntime;
129 static inline void
130 set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
132 struct sched_entity *se;
134 cfs_rq->rb_leftmost = leftmost;
135 if (leftmost)
136 se = rb_entry(leftmost, struct sched_entity, run_node);
139 static inline s64
140 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
142 return se->vruntime - cfs_rq->min_vruntime;
146 * Enqueue an entity into the rb-tree:
148 static void
149 __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
151 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
152 struct rb_node *parent = NULL;
153 struct sched_entity *entry;
154 s64 key = entity_key(cfs_rq, se);
155 int leftmost = 1;
158 * Find the right place in the rbtree:
160 while (*link) {
161 parent = *link;
162 entry = rb_entry(parent, struct sched_entity, run_node);
164 * We dont care about collisions. Nodes with
165 * the same key stay together.
167 if (key < entity_key(cfs_rq, entry)) {
168 link = &parent->rb_left;
169 } else {
170 link = &parent->rb_right;
171 leftmost = 0;
176 * Maintain a cache of leftmost tree entries (it is frequently
177 * used):
179 if (leftmost)
180 set_leftmost(cfs_rq, &se->run_node);
182 rb_link_node(&se->run_node, parent, link);
183 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
186 static void
187 __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
189 if (cfs_rq->rb_leftmost == &se->run_node)
190 set_leftmost(cfs_rq, rb_next(&se->run_node));
192 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
195 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
197 return cfs_rq->rb_leftmost;
200 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
202 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
205 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
207 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
208 struct sched_entity *se = NULL;
209 struct rb_node *parent;
211 while (*link) {
212 parent = *link;
213 se = rb_entry(parent, struct sched_entity, run_node);
214 link = &parent->rb_right;
217 return se;
220 /**************************************************************
221 * Scheduling class statistics methods:
224 static u64 __sched_period(unsigned long nr_running)
226 u64 period = sysctl_sched_latency;
227 unsigned long nr_latency =
228 sysctl_sched_latency / sysctl_sched_min_granularity;
230 if (unlikely(nr_running > nr_latency)) {
231 period *= nr_running;
232 do_div(period, nr_latency);
235 return period;
238 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
240 u64 period = __sched_period(cfs_rq->nr_running);
242 period *= se->load.weight;
243 do_div(period, cfs_rq->load.weight);
245 return period;
249 * Update the current task's runtime statistics. Skip current tasks that
250 * are not in our scheduling class.
252 static inline void
253 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
254 unsigned long delta_exec)
256 unsigned long delta_exec_weighted;
257 u64 next_vruntime, min_vruntime;
259 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
261 curr->sum_exec_runtime += delta_exec;
262 schedstat_add(cfs_rq, exec_clock, delta_exec);
263 delta_exec_weighted = delta_exec;
264 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
265 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
266 &curr->load);
268 curr->vruntime += delta_exec_weighted;
271 * maintain cfs_rq->min_vruntime to be a monotonic increasing
272 * value tracking the leftmost vruntime in the tree.
274 if (first_fair(cfs_rq)) {
275 next_vruntime = __pick_next_entity(cfs_rq)->vruntime;
277 /* min_vruntime() := !max_vruntime() */
278 min_vruntime = max_vruntime(curr->vruntime, next_vruntime);
279 if (min_vruntime == next_vruntime)
280 min_vruntime = curr->vruntime;
281 else
282 min_vruntime = next_vruntime;
283 } else
284 min_vruntime = curr->vruntime;
286 cfs_rq->min_vruntime =
287 max_vruntime(cfs_rq->min_vruntime, min_vruntime);
290 static void update_curr(struct cfs_rq *cfs_rq)
292 struct sched_entity *curr = cfs_rq->curr;
293 u64 now = rq_of(cfs_rq)->clock;
294 unsigned long delta_exec;
296 if (unlikely(!curr))
297 return;
300 * Get the amount of time the current task was running
301 * since the last time we changed load (this cannot
302 * overflow on 32 bits):
304 delta_exec = (unsigned long)(now - curr->exec_start);
306 __update_curr(cfs_rq, curr, delta_exec);
307 curr->exec_start = now;
310 static inline void
311 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
313 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
316 static inline unsigned long
317 calc_weighted(unsigned long delta, struct sched_entity *se)
319 unsigned long weight = se->load.weight;
321 if (unlikely(weight != NICE_0_LOAD))
322 return (u64)delta * se->load.weight >> NICE_0_SHIFT;
323 else
324 return delta;
328 * Task is being enqueued - update stats:
330 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
333 * Are we enqueueing a waiting task? (for current tasks
334 * a dequeue/enqueue event is a NOP)
336 if (se != cfs_rq->curr)
337 update_stats_wait_start(cfs_rq, se);
340 static void
341 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
343 schedstat_set(se->wait_max, max(se->wait_max,
344 rq_of(cfs_rq)->clock - se->wait_start));
345 schedstat_set(se->wait_start, 0);
348 static inline void
349 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
351 update_curr(cfs_rq);
353 * Mark the end of the wait period if dequeueing a
354 * waiting task:
356 if (se != cfs_rq->curr)
357 update_stats_wait_end(cfs_rq, se);
361 * We are picking a new current task - update its stats:
363 static inline void
364 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
367 * We are starting a new run period:
369 se->exec_start = rq_of(cfs_rq)->clock;
373 * We are descheduling a task - update its stats:
375 static inline void
376 update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
378 se->exec_start = 0;
381 /**************************************************
382 * Scheduling class queueing methods:
385 static void
386 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
388 update_load_add(&cfs_rq->load, se->load.weight);
389 cfs_rq->nr_running++;
390 se->on_rq = 1;
393 static void
394 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
396 update_load_sub(&cfs_rq->load, se->load.weight);
397 cfs_rq->nr_running--;
398 se->on_rq = 0;
401 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
403 #ifdef CONFIG_SCHEDSTATS
404 if (se->sleep_start) {
405 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
407 if ((s64)delta < 0)
408 delta = 0;
410 if (unlikely(delta > se->sleep_max))
411 se->sleep_max = delta;
413 se->sleep_start = 0;
414 se->sum_sleep_runtime += delta;
416 if (se->block_start) {
417 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
419 if ((s64)delta < 0)
420 delta = 0;
422 if (unlikely(delta > se->block_max))
423 se->block_max = delta;
425 se->block_start = 0;
426 se->sum_sleep_runtime += delta;
429 * Blocking time is in units of nanosecs, so shift by 20 to
430 * get a milliseconds-range estimation of the amount of
431 * time that the task spent sleeping:
433 if (unlikely(prof_on == SLEEP_PROFILING)) {
434 struct task_struct *tsk = task_of(se);
436 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
437 delta >> 20);
440 #endif
443 static void
444 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
446 u64 min_runtime, latency;
448 min_runtime = cfs_rq->min_vruntime;
450 if (sched_feat(USE_TREE_AVG)) {
451 struct sched_entity *last = __pick_last_entity(cfs_rq);
452 if (last) {
453 min_runtime = __pick_next_entity(cfs_rq)->vruntime;
454 min_runtime += last->vruntime;
455 min_runtime >>= 1;
457 } else if (sched_feat(APPROX_AVG))
458 min_runtime += sysctl_sched_latency/2;
460 if (initial && sched_feat(START_DEBIT))
461 min_runtime += sched_slice(cfs_rq, se);
463 if (!initial && sched_feat(NEW_FAIR_SLEEPERS)) {
464 latency = sysctl_sched_latency;
465 if (min_runtime > latency)
466 min_runtime -= latency;
467 else
468 min_runtime = 0;
471 se->vruntime = max(se->vruntime, min_runtime);
474 static void
475 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
476 int wakeup, int set_curr)
479 * In case of the 'current'.
481 if (unlikely(set_curr)) {
482 update_stats_curr_start(cfs_rq, se);
483 cfs_rq->curr = se;
484 account_entity_enqueue(cfs_rq, se);
485 return;
489 * Update the fair clock.
491 update_curr(cfs_rq);
493 if (wakeup) {
494 place_entity(cfs_rq, se, 0);
495 enqueue_sleeper(cfs_rq, se);
498 update_stats_enqueue(cfs_rq, se);
499 __enqueue_entity(cfs_rq, se);
500 account_entity_enqueue(cfs_rq, se);
503 static void
504 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
506 update_stats_dequeue(cfs_rq, se);
507 #ifdef CONFIG_SCHEDSTATS
508 if (sleep) {
509 if (entity_is_task(se)) {
510 struct task_struct *tsk = task_of(se);
512 if (tsk->state & TASK_INTERRUPTIBLE)
513 se->sleep_start = rq_of(cfs_rq)->clock;
514 if (tsk->state & TASK_UNINTERRUPTIBLE)
515 se->block_start = rq_of(cfs_rq)->clock;
518 #endif
519 if (likely(se != cfs_rq->curr))
520 __dequeue_entity(cfs_rq, se);
521 else {
522 update_stats_curr_end(cfs_rq, se);
523 cfs_rq->curr = NULL;
525 account_entity_dequeue(cfs_rq, se);
529 * Preempt the current task with a newly woken task if needed:
531 static void
532 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
534 unsigned long ideal_runtime, delta_exec;
536 ideal_runtime = sched_slice(cfs_rq, curr);
537 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
538 if (delta_exec > ideal_runtime)
539 resched_task(rq_of(cfs_rq)->curr);
542 static inline void
543 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
546 * Any task has to be enqueued before it get to execute on
547 * a CPU. So account for the time it spent waiting on the
548 * runqueue.
550 update_stats_wait_end(cfs_rq, se);
551 update_stats_curr_start(cfs_rq, se);
552 cfs_rq->curr = se;
553 #ifdef CONFIG_SCHEDSTATS
555 * Track our maximum slice length, if the CPU's load is at
556 * least twice that of our own weight (i.e. dont track it
557 * when there are only lesser-weight tasks around):
559 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
560 se->slice_max = max(se->slice_max,
561 se->sum_exec_runtime - se->prev_sum_exec_runtime);
563 #endif
564 se->prev_sum_exec_runtime = se->sum_exec_runtime;
567 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
569 struct sched_entity *se = __pick_next_entity(cfs_rq);
571 /* 'current' is not kept within the tree. */
572 if (se)
573 __dequeue_entity(cfs_rq, se);
575 set_next_entity(cfs_rq, se);
577 return se;
580 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
583 * If still on the runqueue then deactivate_task()
584 * was not called and update_curr() has to be done:
586 if (prev->on_rq)
587 update_curr(cfs_rq);
589 update_stats_curr_end(cfs_rq, prev);
591 if (prev->on_rq) {
592 update_stats_wait_start(cfs_rq, prev);
593 /* Put 'current' back into the tree. */
594 __enqueue_entity(cfs_rq, prev);
596 cfs_rq->curr = NULL;
599 static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
602 * Update run-time statistics of the 'current'.
604 update_curr(cfs_rq);
606 if (cfs_rq->nr_running > 1)
607 check_preempt_tick(cfs_rq, curr);
610 /**************************************************
611 * CFS operations on tasks:
614 #ifdef CONFIG_FAIR_GROUP_SCHED
616 /* Walk up scheduling entities hierarchy */
617 #define for_each_sched_entity(se) \
618 for (; se; se = se->parent)
620 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
622 return p->se.cfs_rq;
625 /* runqueue on which this entity is (to be) queued */
626 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
628 return se->cfs_rq;
631 /* runqueue "owned" by this group */
632 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
634 return grp->my_q;
637 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
638 * another cpu ('this_cpu')
640 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
642 return cfs_rq->tg->cfs_rq[this_cpu];
645 /* Iterate thr' all leaf cfs_rq's on a runqueue */
646 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
647 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
649 /* Do the two (enqueued) tasks belong to the same group ? */
650 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
652 if (curr->se.cfs_rq == p->se.cfs_rq)
653 return 1;
655 return 0;
658 #else /* CONFIG_FAIR_GROUP_SCHED */
660 #define for_each_sched_entity(se) \
661 for (; se; se = NULL)
663 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
665 return &task_rq(p)->cfs;
668 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
670 struct task_struct *p = task_of(se);
671 struct rq *rq = task_rq(p);
673 return &rq->cfs;
676 /* runqueue "owned" by this group */
677 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
679 return NULL;
682 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
684 return &cpu_rq(this_cpu)->cfs;
687 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
688 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
690 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
692 return 1;
695 #endif /* CONFIG_FAIR_GROUP_SCHED */
698 * The enqueue_task method is called before nr_running is
699 * increased. Here we update the fair scheduling stats and
700 * then put the task into the rbtree:
702 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
704 struct cfs_rq *cfs_rq;
705 struct sched_entity *se = &p->se;
706 int set_curr = 0;
708 /* Are we enqueuing the current task? */
709 if (unlikely(task_running(rq, p)))
710 set_curr = 1;
712 for_each_sched_entity(se) {
713 if (se->on_rq)
714 break;
715 cfs_rq = cfs_rq_of(se);
716 enqueue_entity(cfs_rq, se, wakeup, set_curr);
721 * The dequeue_task method is called before nr_running is
722 * decreased. We remove the task from the rbtree and
723 * update the fair scheduling stats:
725 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
727 struct cfs_rq *cfs_rq;
728 struct sched_entity *se = &p->se;
730 for_each_sched_entity(se) {
731 cfs_rq = cfs_rq_of(se);
732 dequeue_entity(cfs_rq, se, sleep);
733 /* Don't dequeue parent if it has other entities besides us */
734 if (cfs_rq->load.weight)
735 break;
740 * sched_yield() support is very simple - we dequeue and enqueue.
742 * If compat_yield is turned on then we requeue to the end of the tree.
744 static void yield_task_fair(struct rq *rq)
746 struct cfs_rq *cfs_rq = &rq->cfs;
747 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
748 struct sched_entity *rightmost, *se = &rq->curr->se;
749 struct rb_node *parent;
752 * Are we the only task in the tree?
754 if (unlikely(cfs_rq->nr_running == 1))
755 return;
757 if (likely(!sysctl_sched_compat_yield)) {
758 __update_rq_clock(rq);
760 * Dequeue and enqueue the task to update its
761 * position within the tree:
763 dequeue_entity(cfs_rq, se, 0);
764 enqueue_entity(cfs_rq, se, 0, 1);
766 return;
769 * Find the rightmost entry in the rbtree:
771 do {
772 parent = *link;
773 link = &parent->rb_right;
774 } while (*link);
776 rightmost = rb_entry(parent, struct sched_entity, run_node);
778 * Already in the rightmost position?
780 if (unlikely(rightmost == se))
781 return;
784 * Minimally necessary key value to be last in the tree:
786 se->vruntime = rightmost->vruntime + 1;
788 if (cfs_rq->rb_leftmost == &se->run_node)
789 cfs_rq->rb_leftmost = rb_next(&se->run_node);
791 * Relink the task to the rightmost position:
793 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
794 rb_link_node(&se->run_node, parent, link);
795 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
799 * Preempt the current task with a newly woken task if needed:
801 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
803 struct task_struct *curr = rq->curr;
804 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
806 if (unlikely(rt_prio(p->prio))) {
807 update_rq_clock(rq);
808 update_curr(cfs_rq);
809 resched_task(curr);
810 return;
812 if (is_same_group(curr, p)) {
813 s64 delta = curr->se.vruntime - p->se.vruntime;
815 if (delta > (s64)sysctl_sched_wakeup_granularity)
816 resched_task(curr);
820 static struct task_struct *pick_next_task_fair(struct rq *rq)
822 struct cfs_rq *cfs_rq = &rq->cfs;
823 struct sched_entity *se;
825 if (unlikely(!cfs_rq->nr_running))
826 return NULL;
828 do {
829 se = pick_next_entity(cfs_rq);
830 cfs_rq = group_cfs_rq(se);
831 } while (cfs_rq);
833 return task_of(se);
837 * Account for a descheduled task:
839 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
841 struct sched_entity *se = &prev->se;
842 struct cfs_rq *cfs_rq;
844 for_each_sched_entity(se) {
845 cfs_rq = cfs_rq_of(se);
846 put_prev_entity(cfs_rq, se);
850 /**************************************************
851 * Fair scheduling class load-balancing methods:
855 * Load-balancing iterator. Note: while the runqueue stays locked
856 * during the whole iteration, the current task might be
857 * dequeued so the iterator has to be dequeue-safe. Here we
858 * achieve that by always pre-iterating before returning
859 * the current task:
861 static inline struct task_struct *
862 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
864 struct task_struct *p;
866 if (!curr)
867 return NULL;
869 p = rb_entry(curr, struct task_struct, se.run_node);
870 cfs_rq->rb_load_balance_curr = rb_next(curr);
872 return p;
875 static struct task_struct *load_balance_start_fair(void *arg)
877 struct cfs_rq *cfs_rq = arg;
879 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
882 static struct task_struct *load_balance_next_fair(void *arg)
884 struct cfs_rq *cfs_rq = arg;
886 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
889 #ifdef CONFIG_FAIR_GROUP_SCHED
890 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
892 struct sched_entity *curr;
893 struct task_struct *p;
895 if (!cfs_rq->nr_running)
896 return MAX_PRIO;
898 curr = __pick_next_entity(cfs_rq);
899 p = task_of(curr);
901 return p->prio;
903 #endif
905 static unsigned long
906 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
907 unsigned long max_nr_move, unsigned long max_load_move,
908 struct sched_domain *sd, enum cpu_idle_type idle,
909 int *all_pinned, int *this_best_prio)
911 struct cfs_rq *busy_cfs_rq;
912 unsigned long load_moved, total_nr_moved = 0, nr_moved;
913 long rem_load_move = max_load_move;
914 struct rq_iterator cfs_rq_iterator;
916 cfs_rq_iterator.start = load_balance_start_fair;
917 cfs_rq_iterator.next = load_balance_next_fair;
919 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
920 #ifdef CONFIG_FAIR_GROUP_SCHED
921 struct cfs_rq *this_cfs_rq;
922 long imbalance;
923 unsigned long maxload;
925 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
927 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
928 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
929 if (imbalance <= 0)
930 continue;
932 /* Don't pull more than imbalance/2 */
933 imbalance /= 2;
934 maxload = min(rem_load_move, imbalance);
936 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
937 #else
938 # define maxload rem_load_move
939 #endif
940 /* pass busy_cfs_rq argument into
941 * load_balance_[start|next]_fair iterators
943 cfs_rq_iterator.arg = busy_cfs_rq;
944 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
945 max_nr_move, maxload, sd, idle, all_pinned,
946 &load_moved, this_best_prio, &cfs_rq_iterator);
948 total_nr_moved += nr_moved;
949 max_nr_move -= nr_moved;
950 rem_load_move -= load_moved;
952 if (max_nr_move <= 0 || rem_load_move <= 0)
953 break;
956 return max_load_move - rem_load_move;
960 * scheduler tick hitting a task of our scheduling class:
962 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
964 struct cfs_rq *cfs_rq;
965 struct sched_entity *se = &curr->se;
967 for_each_sched_entity(se) {
968 cfs_rq = cfs_rq_of(se);
969 entity_tick(cfs_rq, se);
973 #define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
976 * Share the fairness runtime between parent and child, thus the
977 * total amount of pressure for CPU stays equal - new tasks
978 * get a chance to run but frequent forkers are not allowed to
979 * monopolize the CPU. Note: the parent runqueue is locked,
980 * the child is not running yet.
982 static void task_new_fair(struct rq *rq, struct task_struct *p)
984 struct cfs_rq *cfs_rq = task_cfs_rq(p);
985 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
987 sched_info_queued(p);
989 update_curr(cfs_rq);
990 place_entity(cfs_rq, se, 1);
992 if (sysctl_sched_child_runs_first &&
993 curr->vruntime < se->vruntime) {
995 * Upon rescheduling, sched_class::put_prev_task() will place
996 * 'current' within the tree based on its new key value.
998 swap(curr->vruntime, se->vruntime);
1001 update_stats_enqueue(cfs_rq, se);
1002 __enqueue_entity(cfs_rq, se);
1003 account_entity_enqueue(cfs_rq, se);
1004 resched_task(rq->curr);
1008 * All the scheduling class methods:
1010 struct sched_class fair_sched_class __read_mostly = {
1011 .enqueue_task = enqueue_task_fair,
1012 .dequeue_task = dequeue_task_fair,
1013 .yield_task = yield_task_fair,
1015 .check_preempt_curr = check_preempt_wakeup,
1017 .pick_next_task = pick_next_task_fair,
1018 .put_prev_task = put_prev_task_fair,
1020 .load_balance = load_balance_fair,
1022 .task_tick = task_tick_fair,
1023 .task_new = task_new_fair,
1026 #ifdef CONFIG_SCHED_DEBUG
1027 static void print_cfs_stats(struct seq_file *m, int cpu)
1029 struct cfs_rq *cfs_rq;
1031 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1032 print_cfs_rq(m, cpu, cfs_rq);
1034 #endif