OSS msnd: fix array overflows
[linux-2.6/kmemtrace.git] / mm / filemap.c
blobf4d0cded0e10aa21b02707fcaf99c4cbcafa4f06
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/security.h>
33 #include <linux/syscalls.h>
34 #include <linux/cpuset.h>
35 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
36 #include "internal.h"
39 * FIXME: remove all knowledge of the buffer layer from the core VM
41 #include <linux/buffer_head.h> /* for generic_osync_inode */
43 #include <asm/mman.h>
45 static ssize_t
46 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
47 loff_t offset, unsigned long nr_segs);
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
53 * Shared mappings now work. 15.8.1995 Bruno.
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
62 * Lock ordering:
64 * ->i_mmap_lock (vmtruncate)
65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
68 * ->zone.lock
70 * ->i_mutex
71 * ->i_mmap_lock (truncate->unmap_mapping_range)
73 * ->mmap_sem
74 * ->i_mmap_lock
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
81 * ->i_mutex (generic_file_buffered_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
84 * ->i_mutex
85 * ->i_alloc_sem (various)
87 * ->inode_lock
88 * ->sb_lock (fs/fs-writeback.c)
89 * ->mapping->tree_lock (__sync_single_inode)
91 * ->i_mmap_lock
92 * ->anon_vma.lock (vma_adjust)
94 * ->anon_vma.lock
95 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
97 * ->page_table_lock or pte_lock
98 * ->swap_lock (try_to_unmap_one)
99 * ->private_lock (try_to_unmap_one)
100 * ->tree_lock (try_to_unmap_one)
101 * ->zone.lru_lock (follow_page->mark_page_accessed)
102 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
103 * ->private_lock (page_remove_rmap->set_page_dirty)
104 * ->tree_lock (page_remove_rmap->set_page_dirty)
105 * ->inode_lock (page_remove_rmap->set_page_dirty)
106 * ->inode_lock (zap_pte_range->set_page_dirty)
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 * ->task->proc_lock
110 * ->dcache_lock (proc_pid_lookup)
114 * Remove a page from the page cache and free it. Caller has to make
115 * sure the page is locked and that nobody else uses it - or that usage
116 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
118 void __remove_from_page_cache(struct page *page)
120 struct address_space *mapping = page->mapping;
122 radix_tree_delete(&mapping->page_tree, page->index);
123 page->mapping = NULL;
124 mapping->nrpages--;
125 __dec_zone_page_state(page, NR_FILE_PAGES);
126 BUG_ON(page_mapped(page));
129 * Some filesystems seem to re-dirty the page even after
130 * the VM has canceled the dirty bit (eg ext3 journaling).
132 * Fix it up by doing a final dirty accounting check after
133 * having removed the page entirely.
135 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
136 dec_zone_page_state(page, NR_FILE_DIRTY);
137 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
141 void remove_from_page_cache(struct page *page)
143 struct address_space *mapping = page->mapping;
145 BUG_ON(!PageLocked(page));
147 write_lock_irq(&mapping->tree_lock);
148 __remove_from_page_cache(page);
149 write_unlock_irq(&mapping->tree_lock);
152 static int sync_page(void *word)
154 struct address_space *mapping;
155 struct page *page;
157 page = container_of((unsigned long *)word, struct page, flags);
160 * page_mapping() is being called without PG_locked held.
161 * Some knowledge of the state and use of the page is used to
162 * reduce the requirements down to a memory barrier.
163 * The danger here is of a stale page_mapping() return value
164 * indicating a struct address_space different from the one it's
165 * associated with when it is associated with one.
166 * After smp_mb(), it's either the correct page_mapping() for
167 * the page, or an old page_mapping() and the page's own
168 * page_mapping() has gone NULL.
169 * The ->sync_page() address_space operation must tolerate
170 * page_mapping() going NULL. By an amazing coincidence,
171 * this comes about because none of the users of the page
172 * in the ->sync_page() methods make essential use of the
173 * page_mapping(), merely passing the page down to the backing
174 * device's unplug functions when it's non-NULL, which in turn
175 * ignore it for all cases but swap, where only page_private(page) is
176 * of interest. When page_mapping() does go NULL, the entire
177 * call stack gracefully ignores the page and returns.
178 * -- wli
180 smp_mb();
181 mapping = page_mapping(page);
182 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
183 mapping->a_ops->sync_page(page);
184 io_schedule();
185 return 0;
189 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
190 * @mapping: address space structure to write
191 * @start: offset in bytes where the range starts
192 * @end: offset in bytes where the range ends (inclusive)
193 * @sync_mode: enable synchronous operation
195 * Start writeback against all of a mapping's dirty pages that lie
196 * within the byte offsets <start, end> inclusive.
198 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
199 * opposed to a regular memory cleansing writeback. The difference between
200 * these two operations is that if a dirty page/buffer is encountered, it must
201 * be waited upon, and not just skipped over.
203 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
204 loff_t end, int sync_mode)
206 int ret;
207 struct writeback_control wbc = {
208 .sync_mode = sync_mode,
209 .nr_to_write = mapping->nrpages * 2,
210 .range_start = start,
211 .range_end = end,
214 if (!mapping_cap_writeback_dirty(mapping))
215 return 0;
217 ret = do_writepages(mapping, &wbc);
218 return ret;
221 static inline int __filemap_fdatawrite(struct address_space *mapping,
222 int sync_mode)
224 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
227 int filemap_fdatawrite(struct address_space *mapping)
229 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
231 EXPORT_SYMBOL(filemap_fdatawrite);
233 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
234 loff_t end)
236 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
240 * filemap_flush - mostly a non-blocking flush
241 * @mapping: target address_space
243 * This is a mostly non-blocking flush. Not suitable for data-integrity
244 * purposes - I/O may not be started against all dirty pages.
246 int filemap_flush(struct address_space *mapping)
248 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
250 EXPORT_SYMBOL(filemap_flush);
253 * wait_on_page_writeback_range - wait for writeback to complete
254 * @mapping: target address_space
255 * @start: beginning page index
256 * @end: ending page index
258 * Wait for writeback to complete against pages indexed by start->end
259 * inclusive
261 int wait_on_page_writeback_range(struct address_space *mapping,
262 pgoff_t start, pgoff_t end)
264 struct pagevec pvec;
265 int nr_pages;
266 int ret = 0;
267 pgoff_t index;
269 if (end < start)
270 return 0;
272 pagevec_init(&pvec, 0);
273 index = start;
274 while ((index <= end) &&
275 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
276 PAGECACHE_TAG_WRITEBACK,
277 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
278 unsigned i;
280 for (i = 0; i < nr_pages; i++) {
281 struct page *page = pvec.pages[i];
283 /* until radix tree lookup accepts end_index */
284 if (page->index > end)
285 continue;
287 wait_on_page_writeback(page);
288 if (PageError(page))
289 ret = -EIO;
291 pagevec_release(&pvec);
292 cond_resched();
295 /* Check for outstanding write errors */
296 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
297 ret = -ENOSPC;
298 if (test_and_clear_bit(AS_EIO, &mapping->flags))
299 ret = -EIO;
301 return ret;
305 * sync_page_range - write and wait on all pages in the passed range
306 * @inode: target inode
307 * @mapping: target address_space
308 * @pos: beginning offset in pages to write
309 * @count: number of bytes to write
311 * Write and wait upon all the pages in the passed range. This is a "data
312 * integrity" operation. It waits upon in-flight writeout before starting and
313 * waiting upon new writeout. If there was an IO error, return it.
315 * We need to re-take i_mutex during the generic_osync_inode list walk because
316 * it is otherwise livelockable.
318 int sync_page_range(struct inode *inode, struct address_space *mapping,
319 loff_t pos, loff_t count)
321 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
322 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
323 int ret;
325 if (!mapping_cap_writeback_dirty(mapping) || !count)
326 return 0;
327 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
328 if (ret == 0) {
329 mutex_lock(&inode->i_mutex);
330 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
331 mutex_unlock(&inode->i_mutex);
333 if (ret == 0)
334 ret = wait_on_page_writeback_range(mapping, start, end);
335 return ret;
337 EXPORT_SYMBOL(sync_page_range);
340 * sync_page_range_nolock
341 * @inode: target inode
342 * @mapping: target address_space
343 * @pos: beginning offset in pages to write
344 * @count: number of bytes to write
346 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
347 * as it forces O_SYNC writers to different parts of the same file
348 * to be serialised right until io completion.
350 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
351 loff_t pos, loff_t count)
353 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
354 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
355 int ret;
357 if (!mapping_cap_writeback_dirty(mapping) || !count)
358 return 0;
359 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
360 if (ret == 0)
361 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
362 if (ret == 0)
363 ret = wait_on_page_writeback_range(mapping, start, end);
364 return ret;
366 EXPORT_SYMBOL(sync_page_range_nolock);
369 * filemap_fdatawait - wait for all under-writeback pages to complete
370 * @mapping: address space structure to wait for
372 * Walk the list of under-writeback pages of the given address space
373 * and wait for all of them.
375 int filemap_fdatawait(struct address_space *mapping)
377 loff_t i_size = i_size_read(mapping->host);
379 if (i_size == 0)
380 return 0;
382 return wait_on_page_writeback_range(mapping, 0,
383 (i_size - 1) >> PAGE_CACHE_SHIFT);
385 EXPORT_SYMBOL(filemap_fdatawait);
387 int filemap_write_and_wait(struct address_space *mapping)
389 int err = 0;
391 if (mapping->nrpages) {
392 err = filemap_fdatawrite(mapping);
394 * Even if the above returned error, the pages may be
395 * written partially (e.g. -ENOSPC), so we wait for it.
396 * But the -EIO is special case, it may indicate the worst
397 * thing (e.g. bug) happened, so we avoid waiting for it.
399 if (err != -EIO) {
400 int err2 = filemap_fdatawait(mapping);
401 if (!err)
402 err = err2;
405 return err;
407 EXPORT_SYMBOL(filemap_write_and_wait);
410 * filemap_write_and_wait_range - write out & wait on a file range
411 * @mapping: the address_space for the pages
412 * @lstart: offset in bytes where the range starts
413 * @lend: offset in bytes where the range ends (inclusive)
415 * Write out and wait upon file offsets lstart->lend, inclusive.
417 * Note that `lend' is inclusive (describes the last byte to be written) so
418 * that this function can be used to write to the very end-of-file (end = -1).
420 int filemap_write_and_wait_range(struct address_space *mapping,
421 loff_t lstart, loff_t lend)
423 int err = 0;
425 if (mapping->nrpages) {
426 err = __filemap_fdatawrite_range(mapping, lstart, lend,
427 WB_SYNC_ALL);
428 /* See comment of filemap_write_and_wait() */
429 if (err != -EIO) {
430 int err2 = wait_on_page_writeback_range(mapping,
431 lstart >> PAGE_CACHE_SHIFT,
432 lend >> PAGE_CACHE_SHIFT);
433 if (!err)
434 err = err2;
437 return err;
441 * add_to_page_cache - add newly allocated pagecache pages
442 * @page: page to add
443 * @mapping: the page's address_space
444 * @offset: page index
445 * @gfp_mask: page allocation mode
447 * This function is used to add newly allocated pagecache pages;
448 * the page is new, so we can just run SetPageLocked() against it.
449 * The other page state flags were set by rmqueue().
451 * This function does not add the page to the LRU. The caller must do that.
453 int add_to_page_cache(struct page *page, struct address_space *mapping,
454 pgoff_t offset, gfp_t gfp_mask)
456 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
458 if (error == 0) {
459 write_lock_irq(&mapping->tree_lock);
460 error = radix_tree_insert(&mapping->page_tree, offset, page);
461 if (!error) {
462 page_cache_get(page);
463 SetPageLocked(page);
464 page->mapping = mapping;
465 page->index = offset;
466 mapping->nrpages++;
467 __inc_zone_page_state(page, NR_FILE_PAGES);
469 write_unlock_irq(&mapping->tree_lock);
470 radix_tree_preload_end();
472 return error;
474 EXPORT_SYMBOL(add_to_page_cache);
476 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
477 pgoff_t offset, gfp_t gfp_mask)
479 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
480 if (ret == 0)
481 lru_cache_add(page);
482 return ret;
485 #ifdef CONFIG_NUMA
486 struct page *__page_cache_alloc(gfp_t gfp)
488 if (cpuset_do_page_mem_spread()) {
489 int n = cpuset_mem_spread_node();
490 return alloc_pages_node(n, gfp, 0);
492 return alloc_pages(gfp, 0);
494 EXPORT_SYMBOL(__page_cache_alloc);
495 #endif
497 static int __sleep_on_page_lock(void *word)
499 io_schedule();
500 return 0;
504 * In order to wait for pages to become available there must be
505 * waitqueues associated with pages. By using a hash table of
506 * waitqueues where the bucket discipline is to maintain all
507 * waiters on the same queue and wake all when any of the pages
508 * become available, and for the woken contexts to check to be
509 * sure the appropriate page became available, this saves space
510 * at a cost of "thundering herd" phenomena during rare hash
511 * collisions.
513 static wait_queue_head_t *page_waitqueue(struct page *page)
515 const struct zone *zone = page_zone(page);
517 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
520 static inline void wake_up_page(struct page *page, int bit)
522 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
525 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
527 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
529 if (test_bit(bit_nr, &page->flags))
530 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
531 TASK_UNINTERRUPTIBLE);
533 EXPORT_SYMBOL(wait_on_page_bit);
536 * unlock_page - unlock a locked page
537 * @page: the page
539 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
540 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
541 * mechananism between PageLocked pages and PageWriteback pages is shared.
542 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
544 * The first mb is necessary to safely close the critical section opened by the
545 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
546 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
547 * parallel wait_on_page_locked()).
549 void fastcall unlock_page(struct page *page)
551 smp_mb__before_clear_bit();
552 if (!TestClearPageLocked(page))
553 BUG();
554 smp_mb__after_clear_bit();
555 wake_up_page(page, PG_locked);
557 EXPORT_SYMBOL(unlock_page);
560 * end_page_writeback - end writeback against a page
561 * @page: the page
563 void end_page_writeback(struct page *page)
565 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
566 if (!test_clear_page_writeback(page))
567 BUG();
569 smp_mb__after_clear_bit();
570 wake_up_page(page, PG_writeback);
572 EXPORT_SYMBOL(end_page_writeback);
575 * __lock_page - get a lock on the page, assuming we need to sleep to get it
576 * @page: the page to lock
578 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
579 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
580 * chances are that on the second loop, the block layer's plug list is empty,
581 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
583 void fastcall __lock_page(struct page *page)
585 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
587 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
588 TASK_UNINTERRUPTIBLE);
590 EXPORT_SYMBOL(__lock_page);
593 * Variant of lock_page that does not require the caller to hold a reference
594 * on the page's mapping.
596 void fastcall __lock_page_nosync(struct page *page)
598 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
599 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
600 TASK_UNINTERRUPTIBLE);
604 * find_get_page - find and get a page reference
605 * @mapping: the address_space to search
606 * @offset: the page index
608 * Is there a pagecache struct page at the given (mapping, offset) tuple?
609 * If yes, increment its refcount and return it; if no, return NULL.
611 struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
613 struct page *page;
615 read_lock_irq(&mapping->tree_lock);
616 page = radix_tree_lookup(&mapping->page_tree, offset);
617 if (page)
618 page_cache_get(page);
619 read_unlock_irq(&mapping->tree_lock);
620 return page;
622 EXPORT_SYMBOL(find_get_page);
625 * find_lock_page - locate, pin and lock a pagecache page
626 * @mapping: the address_space to search
627 * @offset: the page index
629 * Locates the desired pagecache page, locks it, increments its reference
630 * count and returns its address.
632 * Returns zero if the page was not present. find_lock_page() may sleep.
634 struct page *find_lock_page(struct address_space *mapping,
635 pgoff_t offset)
637 struct page *page;
639 repeat:
640 read_lock_irq(&mapping->tree_lock);
641 page = radix_tree_lookup(&mapping->page_tree, offset);
642 if (page) {
643 page_cache_get(page);
644 if (TestSetPageLocked(page)) {
645 read_unlock_irq(&mapping->tree_lock);
646 __lock_page(page);
648 /* Has the page been truncated while we slept? */
649 if (unlikely(page->mapping != mapping)) {
650 unlock_page(page);
651 page_cache_release(page);
652 goto repeat;
654 VM_BUG_ON(page->index != offset);
655 goto out;
658 read_unlock_irq(&mapping->tree_lock);
659 out:
660 return page;
662 EXPORT_SYMBOL(find_lock_page);
665 * find_or_create_page - locate or add a pagecache page
666 * @mapping: the page's address_space
667 * @index: the page's index into the mapping
668 * @gfp_mask: page allocation mode
670 * Locates a page in the pagecache. If the page is not present, a new page
671 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
672 * LRU list. The returned page is locked and has its reference count
673 * incremented.
675 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
676 * allocation!
678 * find_or_create_page() returns the desired page's address, or zero on
679 * memory exhaustion.
681 struct page *find_or_create_page(struct address_space *mapping,
682 pgoff_t index, gfp_t gfp_mask)
684 struct page *page;
685 int err;
686 repeat:
687 page = find_lock_page(mapping, index);
688 if (!page) {
689 page = __page_cache_alloc(gfp_mask);
690 if (!page)
691 return NULL;
692 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
693 if (unlikely(err)) {
694 page_cache_release(page);
695 page = NULL;
696 if (err == -EEXIST)
697 goto repeat;
700 return page;
702 EXPORT_SYMBOL(find_or_create_page);
705 * find_get_pages - gang pagecache lookup
706 * @mapping: The address_space to search
707 * @start: The starting page index
708 * @nr_pages: The maximum number of pages
709 * @pages: Where the resulting pages are placed
711 * find_get_pages() will search for and return a group of up to
712 * @nr_pages pages in the mapping. The pages are placed at @pages.
713 * find_get_pages() takes a reference against the returned pages.
715 * The search returns a group of mapping-contiguous pages with ascending
716 * indexes. There may be holes in the indices due to not-present pages.
718 * find_get_pages() returns the number of pages which were found.
720 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
721 unsigned int nr_pages, struct page **pages)
723 unsigned int i;
724 unsigned int ret;
726 read_lock_irq(&mapping->tree_lock);
727 ret = radix_tree_gang_lookup(&mapping->page_tree,
728 (void **)pages, start, nr_pages);
729 for (i = 0; i < ret; i++)
730 page_cache_get(pages[i]);
731 read_unlock_irq(&mapping->tree_lock);
732 return ret;
736 * find_get_pages_contig - gang contiguous pagecache lookup
737 * @mapping: The address_space to search
738 * @index: The starting page index
739 * @nr_pages: The maximum number of pages
740 * @pages: Where the resulting pages are placed
742 * find_get_pages_contig() works exactly like find_get_pages(), except
743 * that the returned number of pages are guaranteed to be contiguous.
745 * find_get_pages_contig() returns the number of pages which were found.
747 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
748 unsigned int nr_pages, struct page **pages)
750 unsigned int i;
751 unsigned int ret;
753 read_lock_irq(&mapping->tree_lock);
754 ret = radix_tree_gang_lookup(&mapping->page_tree,
755 (void **)pages, index, nr_pages);
756 for (i = 0; i < ret; i++) {
757 if (pages[i]->mapping == NULL || pages[i]->index != index)
758 break;
760 page_cache_get(pages[i]);
761 index++;
763 read_unlock_irq(&mapping->tree_lock);
764 return i;
766 EXPORT_SYMBOL(find_get_pages_contig);
769 * find_get_pages_tag - find and return pages that match @tag
770 * @mapping: the address_space to search
771 * @index: the starting page index
772 * @tag: the tag index
773 * @nr_pages: the maximum number of pages
774 * @pages: where the resulting pages are placed
776 * Like find_get_pages, except we only return pages which are tagged with
777 * @tag. We update @index to index the next page for the traversal.
779 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
780 int tag, unsigned int nr_pages, struct page **pages)
782 unsigned int i;
783 unsigned int ret;
785 read_lock_irq(&mapping->tree_lock);
786 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
787 (void **)pages, *index, nr_pages, tag);
788 for (i = 0; i < ret; i++)
789 page_cache_get(pages[i]);
790 if (ret)
791 *index = pages[ret - 1]->index + 1;
792 read_unlock_irq(&mapping->tree_lock);
793 return ret;
795 EXPORT_SYMBOL(find_get_pages_tag);
798 * grab_cache_page_nowait - returns locked page at given index in given cache
799 * @mapping: target address_space
800 * @index: the page index
802 * Same as grab_cache_page(), but do not wait if the page is unavailable.
803 * This is intended for speculative data generators, where the data can
804 * be regenerated if the page couldn't be grabbed. This routine should
805 * be safe to call while holding the lock for another page.
807 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
808 * and deadlock against the caller's locked page.
810 struct page *
811 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
813 struct page *page = find_get_page(mapping, index);
815 if (page) {
816 if (!TestSetPageLocked(page))
817 return page;
818 page_cache_release(page);
819 return NULL;
821 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
822 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
823 page_cache_release(page);
824 page = NULL;
826 return page;
828 EXPORT_SYMBOL(grab_cache_page_nowait);
831 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
832 * a _large_ part of the i/o request. Imagine the worst scenario:
834 * ---R__________________________________________B__________
835 * ^ reading here ^ bad block(assume 4k)
837 * read(R) => miss => readahead(R...B) => media error => frustrating retries
838 * => failing the whole request => read(R) => read(R+1) =>
839 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
840 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
841 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
843 * It is going insane. Fix it by quickly scaling down the readahead size.
845 static void shrink_readahead_size_eio(struct file *filp,
846 struct file_ra_state *ra)
848 if (!ra->ra_pages)
849 return;
851 ra->ra_pages /= 4;
855 * do_generic_mapping_read - generic file read routine
856 * @mapping: address_space to be read
857 * @ra: file's readahead state
858 * @filp: the file to read
859 * @ppos: current file position
860 * @desc: read_descriptor
861 * @actor: read method
863 * This is a generic file read routine, and uses the
864 * mapping->a_ops->readpage() function for the actual low-level stuff.
866 * This is really ugly. But the goto's actually try to clarify some
867 * of the logic when it comes to error handling etc.
869 * Note the struct file* is only passed for the use of readpage.
870 * It may be NULL.
872 void do_generic_mapping_read(struct address_space *mapping,
873 struct file_ra_state *ra,
874 struct file *filp,
875 loff_t *ppos,
876 read_descriptor_t *desc,
877 read_actor_t actor)
879 struct inode *inode = mapping->host;
880 pgoff_t index;
881 pgoff_t last_index;
882 pgoff_t prev_index;
883 unsigned long offset; /* offset into pagecache page */
884 unsigned int prev_offset;
885 int error;
887 index = *ppos >> PAGE_CACHE_SHIFT;
888 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
889 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
890 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
891 offset = *ppos & ~PAGE_CACHE_MASK;
893 for (;;) {
894 struct page *page;
895 pgoff_t end_index;
896 loff_t isize;
897 unsigned long nr, ret;
899 cond_resched();
900 find_page:
901 page = find_get_page(mapping, index);
902 if (!page) {
903 page_cache_sync_readahead(mapping,
904 ra, filp,
905 index, last_index - index);
906 page = find_get_page(mapping, index);
907 if (unlikely(page == NULL))
908 goto no_cached_page;
910 if (PageReadahead(page)) {
911 page_cache_async_readahead(mapping,
912 ra, filp, page,
913 index, last_index - index);
915 if (!PageUptodate(page))
916 goto page_not_up_to_date;
917 page_ok:
919 * i_size must be checked after we know the page is Uptodate.
921 * Checking i_size after the check allows us to calculate
922 * the correct value for "nr", which means the zero-filled
923 * part of the page is not copied back to userspace (unless
924 * another truncate extends the file - this is desired though).
927 isize = i_size_read(inode);
928 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
929 if (unlikely(!isize || index > end_index)) {
930 page_cache_release(page);
931 goto out;
934 /* nr is the maximum number of bytes to copy from this page */
935 nr = PAGE_CACHE_SIZE;
936 if (index == end_index) {
937 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
938 if (nr <= offset) {
939 page_cache_release(page);
940 goto out;
943 nr = nr - offset;
945 /* If users can be writing to this page using arbitrary
946 * virtual addresses, take care about potential aliasing
947 * before reading the page on the kernel side.
949 if (mapping_writably_mapped(mapping))
950 flush_dcache_page(page);
953 * When a sequential read accesses a page several times,
954 * only mark it as accessed the first time.
956 if (prev_index != index || offset != prev_offset)
957 mark_page_accessed(page);
958 prev_index = index;
961 * Ok, we have the page, and it's up-to-date, so
962 * now we can copy it to user space...
964 * The actor routine returns how many bytes were actually used..
965 * NOTE! This may not be the same as how much of a user buffer
966 * we filled up (we may be padding etc), so we can only update
967 * "pos" here (the actor routine has to update the user buffer
968 * pointers and the remaining count).
970 ret = actor(desc, page, offset, nr);
971 offset += ret;
972 index += offset >> PAGE_CACHE_SHIFT;
973 offset &= ~PAGE_CACHE_MASK;
974 prev_offset = offset;
976 page_cache_release(page);
977 if (ret == nr && desc->count)
978 continue;
979 goto out;
981 page_not_up_to_date:
982 /* Get exclusive access to the page ... */
983 lock_page(page);
985 /* Did it get truncated before we got the lock? */
986 if (!page->mapping) {
987 unlock_page(page);
988 page_cache_release(page);
989 continue;
992 /* Did somebody else fill it already? */
993 if (PageUptodate(page)) {
994 unlock_page(page);
995 goto page_ok;
998 readpage:
999 /* Start the actual read. The read will unlock the page. */
1000 error = mapping->a_ops->readpage(filp, page);
1002 if (unlikely(error)) {
1003 if (error == AOP_TRUNCATED_PAGE) {
1004 page_cache_release(page);
1005 goto find_page;
1007 goto readpage_error;
1010 if (!PageUptodate(page)) {
1011 lock_page(page);
1012 if (!PageUptodate(page)) {
1013 if (page->mapping == NULL) {
1015 * invalidate_inode_pages got it
1017 unlock_page(page);
1018 page_cache_release(page);
1019 goto find_page;
1021 unlock_page(page);
1022 error = -EIO;
1023 shrink_readahead_size_eio(filp, ra);
1024 goto readpage_error;
1026 unlock_page(page);
1029 goto page_ok;
1031 readpage_error:
1032 /* UHHUH! A synchronous read error occurred. Report it */
1033 desc->error = error;
1034 page_cache_release(page);
1035 goto out;
1037 no_cached_page:
1039 * Ok, it wasn't cached, so we need to create a new
1040 * page..
1042 page = page_cache_alloc_cold(mapping);
1043 if (!page) {
1044 desc->error = -ENOMEM;
1045 goto out;
1047 error = add_to_page_cache_lru(page, mapping,
1048 index, GFP_KERNEL);
1049 if (error) {
1050 page_cache_release(page);
1051 if (error == -EEXIST)
1052 goto find_page;
1053 desc->error = error;
1054 goto out;
1056 goto readpage;
1059 out:
1060 ra->prev_pos = prev_index;
1061 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1062 ra->prev_pos |= prev_offset;
1064 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1065 if (filp)
1066 file_accessed(filp);
1068 EXPORT_SYMBOL(do_generic_mapping_read);
1070 int file_read_actor(read_descriptor_t *desc, struct page *page,
1071 unsigned long offset, unsigned long size)
1073 char *kaddr;
1074 unsigned long left, count = desc->count;
1076 if (size > count)
1077 size = count;
1080 * Faults on the destination of a read are common, so do it before
1081 * taking the kmap.
1083 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1084 kaddr = kmap_atomic(page, KM_USER0);
1085 left = __copy_to_user_inatomic(desc->arg.buf,
1086 kaddr + offset, size);
1087 kunmap_atomic(kaddr, KM_USER0);
1088 if (left == 0)
1089 goto success;
1092 /* Do it the slow way */
1093 kaddr = kmap(page);
1094 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1095 kunmap(page);
1097 if (left) {
1098 size -= left;
1099 desc->error = -EFAULT;
1101 success:
1102 desc->count = count - size;
1103 desc->written += size;
1104 desc->arg.buf += size;
1105 return size;
1109 * Performs necessary checks before doing a write
1110 * @iov: io vector request
1111 * @nr_segs: number of segments in the iovec
1112 * @count: number of bytes to write
1113 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1115 * Adjust number of segments and amount of bytes to write (nr_segs should be
1116 * properly initialized first). Returns appropriate error code that caller
1117 * should return or zero in case that write should be allowed.
1119 int generic_segment_checks(const struct iovec *iov,
1120 unsigned long *nr_segs, size_t *count, int access_flags)
1122 unsigned long seg;
1123 size_t cnt = 0;
1124 for (seg = 0; seg < *nr_segs; seg++) {
1125 const struct iovec *iv = &iov[seg];
1128 * If any segment has a negative length, or the cumulative
1129 * length ever wraps negative then return -EINVAL.
1131 cnt += iv->iov_len;
1132 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1133 return -EINVAL;
1134 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1135 continue;
1136 if (seg == 0)
1137 return -EFAULT;
1138 *nr_segs = seg;
1139 cnt -= iv->iov_len; /* This segment is no good */
1140 break;
1142 *count = cnt;
1143 return 0;
1145 EXPORT_SYMBOL(generic_segment_checks);
1148 * generic_file_aio_read - generic filesystem read routine
1149 * @iocb: kernel I/O control block
1150 * @iov: io vector request
1151 * @nr_segs: number of segments in the iovec
1152 * @pos: current file position
1154 * This is the "read()" routine for all filesystems
1155 * that can use the page cache directly.
1157 ssize_t
1158 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1159 unsigned long nr_segs, loff_t pos)
1161 struct file *filp = iocb->ki_filp;
1162 ssize_t retval;
1163 unsigned long seg;
1164 size_t count;
1165 loff_t *ppos = &iocb->ki_pos;
1167 count = 0;
1168 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1169 if (retval)
1170 return retval;
1172 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1173 if (filp->f_flags & O_DIRECT) {
1174 loff_t size;
1175 struct address_space *mapping;
1176 struct inode *inode;
1178 mapping = filp->f_mapping;
1179 inode = mapping->host;
1180 retval = 0;
1181 if (!count)
1182 goto out; /* skip atime */
1183 size = i_size_read(inode);
1184 if (pos < size) {
1185 retval = generic_file_direct_IO(READ, iocb,
1186 iov, pos, nr_segs);
1187 if (retval > 0)
1188 *ppos = pos + retval;
1190 if (likely(retval != 0)) {
1191 file_accessed(filp);
1192 goto out;
1196 retval = 0;
1197 if (count) {
1198 for (seg = 0; seg < nr_segs; seg++) {
1199 read_descriptor_t desc;
1201 desc.written = 0;
1202 desc.arg.buf = iov[seg].iov_base;
1203 desc.count = iov[seg].iov_len;
1204 if (desc.count == 0)
1205 continue;
1206 desc.error = 0;
1207 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1208 retval += desc.written;
1209 if (desc.error) {
1210 retval = retval ?: desc.error;
1211 break;
1213 if (desc.count > 0)
1214 break;
1217 out:
1218 return retval;
1220 EXPORT_SYMBOL(generic_file_aio_read);
1222 static ssize_t
1223 do_readahead(struct address_space *mapping, struct file *filp,
1224 pgoff_t index, unsigned long nr)
1226 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1227 return -EINVAL;
1229 force_page_cache_readahead(mapping, filp, index,
1230 max_sane_readahead(nr));
1231 return 0;
1234 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1236 ssize_t ret;
1237 struct file *file;
1239 ret = -EBADF;
1240 file = fget(fd);
1241 if (file) {
1242 if (file->f_mode & FMODE_READ) {
1243 struct address_space *mapping = file->f_mapping;
1244 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1245 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1246 unsigned long len = end - start + 1;
1247 ret = do_readahead(mapping, file, start, len);
1249 fput(file);
1251 return ret;
1254 #ifdef CONFIG_MMU
1256 * page_cache_read - adds requested page to the page cache if not already there
1257 * @file: file to read
1258 * @offset: page index
1260 * This adds the requested page to the page cache if it isn't already there,
1261 * and schedules an I/O to read in its contents from disk.
1263 static int fastcall page_cache_read(struct file * file, pgoff_t offset)
1265 struct address_space *mapping = file->f_mapping;
1266 struct page *page;
1267 int ret;
1269 do {
1270 page = page_cache_alloc_cold(mapping);
1271 if (!page)
1272 return -ENOMEM;
1274 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1275 if (ret == 0)
1276 ret = mapping->a_ops->readpage(file, page);
1277 else if (ret == -EEXIST)
1278 ret = 0; /* losing race to add is OK */
1280 page_cache_release(page);
1282 } while (ret == AOP_TRUNCATED_PAGE);
1284 return ret;
1287 #define MMAP_LOTSAMISS (100)
1290 * filemap_fault - read in file data for page fault handling
1291 * @vma: vma in which the fault was taken
1292 * @vmf: struct vm_fault containing details of the fault
1294 * filemap_fault() is invoked via the vma operations vector for a
1295 * mapped memory region to read in file data during a page fault.
1297 * The goto's are kind of ugly, but this streamlines the normal case of having
1298 * it in the page cache, and handles the special cases reasonably without
1299 * having a lot of duplicated code.
1301 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1303 int error;
1304 struct file *file = vma->vm_file;
1305 struct address_space *mapping = file->f_mapping;
1306 struct file_ra_state *ra = &file->f_ra;
1307 struct inode *inode = mapping->host;
1308 struct page *page;
1309 unsigned long size;
1310 int did_readaround = 0;
1311 int ret = 0;
1313 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1314 if (vmf->pgoff >= size)
1315 return VM_FAULT_SIGBUS;
1317 /* If we don't want any read-ahead, don't bother */
1318 if (VM_RandomReadHint(vma))
1319 goto no_cached_page;
1322 * Do we have something in the page cache already?
1324 retry_find:
1325 page = find_lock_page(mapping, vmf->pgoff);
1327 * For sequential accesses, we use the generic readahead logic.
1329 if (VM_SequentialReadHint(vma)) {
1330 if (!page) {
1331 page_cache_sync_readahead(mapping, ra, file,
1332 vmf->pgoff, 1);
1333 page = find_lock_page(mapping, vmf->pgoff);
1334 if (!page)
1335 goto no_cached_page;
1337 if (PageReadahead(page)) {
1338 page_cache_async_readahead(mapping, ra, file, page,
1339 vmf->pgoff, 1);
1343 if (!page) {
1344 unsigned long ra_pages;
1346 ra->mmap_miss++;
1349 * Do we miss much more than hit in this file? If so,
1350 * stop bothering with read-ahead. It will only hurt.
1352 if (ra->mmap_miss > MMAP_LOTSAMISS)
1353 goto no_cached_page;
1356 * To keep the pgmajfault counter straight, we need to
1357 * check did_readaround, as this is an inner loop.
1359 if (!did_readaround) {
1360 ret = VM_FAULT_MAJOR;
1361 count_vm_event(PGMAJFAULT);
1363 did_readaround = 1;
1364 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1365 if (ra_pages) {
1366 pgoff_t start = 0;
1368 if (vmf->pgoff > ra_pages / 2)
1369 start = vmf->pgoff - ra_pages / 2;
1370 do_page_cache_readahead(mapping, file, start, ra_pages);
1372 page = find_lock_page(mapping, vmf->pgoff);
1373 if (!page)
1374 goto no_cached_page;
1377 if (!did_readaround)
1378 ra->mmap_miss--;
1381 * We have a locked page in the page cache, now we need to check
1382 * that it's up-to-date. If not, it is going to be due to an error.
1384 if (unlikely(!PageUptodate(page)))
1385 goto page_not_uptodate;
1387 /* Must recheck i_size under page lock */
1388 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1389 if (unlikely(vmf->pgoff >= size)) {
1390 unlock_page(page);
1391 page_cache_release(page);
1392 return VM_FAULT_SIGBUS;
1396 * Found the page and have a reference on it.
1398 mark_page_accessed(page);
1399 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1400 vmf->page = page;
1401 return ret | VM_FAULT_LOCKED;
1403 no_cached_page:
1405 * We're only likely to ever get here if MADV_RANDOM is in
1406 * effect.
1408 error = page_cache_read(file, vmf->pgoff);
1411 * The page we want has now been added to the page cache.
1412 * In the unlikely event that someone removed it in the
1413 * meantime, we'll just come back here and read it again.
1415 if (error >= 0)
1416 goto retry_find;
1419 * An error return from page_cache_read can result if the
1420 * system is low on memory, or a problem occurs while trying
1421 * to schedule I/O.
1423 if (error == -ENOMEM)
1424 return VM_FAULT_OOM;
1425 return VM_FAULT_SIGBUS;
1427 page_not_uptodate:
1428 /* IO error path */
1429 if (!did_readaround) {
1430 ret = VM_FAULT_MAJOR;
1431 count_vm_event(PGMAJFAULT);
1435 * Umm, take care of errors if the page isn't up-to-date.
1436 * Try to re-read it _once_. We do this synchronously,
1437 * because there really aren't any performance issues here
1438 * and we need to check for errors.
1440 ClearPageError(page);
1441 error = mapping->a_ops->readpage(file, page);
1442 page_cache_release(page);
1444 if (!error || error == AOP_TRUNCATED_PAGE)
1445 goto retry_find;
1447 /* Things didn't work out. Return zero to tell the mm layer so. */
1448 shrink_readahead_size_eio(file, ra);
1449 return VM_FAULT_SIGBUS;
1451 EXPORT_SYMBOL(filemap_fault);
1453 struct vm_operations_struct generic_file_vm_ops = {
1454 .fault = filemap_fault,
1457 /* This is used for a general mmap of a disk file */
1459 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1461 struct address_space *mapping = file->f_mapping;
1463 if (!mapping->a_ops->readpage)
1464 return -ENOEXEC;
1465 file_accessed(file);
1466 vma->vm_ops = &generic_file_vm_ops;
1467 vma->vm_flags |= VM_CAN_NONLINEAR;
1468 return 0;
1472 * This is for filesystems which do not implement ->writepage.
1474 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1476 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1477 return -EINVAL;
1478 return generic_file_mmap(file, vma);
1480 #else
1481 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1483 return -ENOSYS;
1485 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1487 return -ENOSYS;
1489 #endif /* CONFIG_MMU */
1491 EXPORT_SYMBOL(generic_file_mmap);
1492 EXPORT_SYMBOL(generic_file_readonly_mmap);
1494 static struct page *__read_cache_page(struct address_space *mapping,
1495 pgoff_t index,
1496 int (*filler)(void *,struct page*),
1497 void *data)
1499 struct page *page;
1500 int err;
1501 repeat:
1502 page = find_get_page(mapping, index);
1503 if (!page) {
1504 page = page_cache_alloc_cold(mapping);
1505 if (!page)
1506 return ERR_PTR(-ENOMEM);
1507 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1508 if (unlikely(err)) {
1509 page_cache_release(page);
1510 if (err == -EEXIST)
1511 goto repeat;
1512 /* Presumably ENOMEM for radix tree node */
1513 return ERR_PTR(err);
1515 err = filler(data, page);
1516 if (err < 0) {
1517 page_cache_release(page);
1518 page = ERR_PTR(err);
1521 return page;
1525 * Same as read_cache_page, but don't wait for page to become unlocked
1526 * after submitting it to the filler.
1528 struct page *read_cache_page_async(struct address_space *mapping,
1529 pgoff_t index,
1530 int (*filler)(void *,struct page*),
1531 void *data)
1533 struct page *page;
1534 int err;
1536 retry:
1537 page = __read_cache_page(mapping, index, filler, data);
1538 if (IS_ERR(page))
1539 return page;
1540 if (PageUptodate(page))
1541 goto out;
1543 lock_page(page);
1544 if (!page->mapping) {
1545 unlock_page(page);
1546 page_cache_release(page);
1547 goto retry;
1549 if (PageUptodate(page)) {
1550 unlock_page(page);
1551 goto out;
1553 err = filler(data, page);
1554 if (err < 0) {
1555 page_cache_release(page);
1556 return ERR_PTR(err);
1558 out:
1559 mark_page_accessed(page);
1560 return page;
1562 EXPORT_SYMBOL(read_cache_page_async);
1565 * read_cache_page - read into page cache, fill it if needed
1566 * @mapping: the page's address_space
1567 * @index: the page index
1568 * @filler: function to perform the read
1569 * @data: destination for read data
1571 * Read into the page cache. If a page already exists, and PageUptodate() is
1572 * not set, try to fill the page then wait for it to become unlocked.
1574 * If the page does not get brought uptodate, return -EIO.
1576 struct page *read_cache_page(struct address_space *mapping,
1577 pgoff_t index,
1578 int (*filler)(void *,struct page*),
1579 void *data)
1581 struct page *page;
1583 page = read_cache_page_async(mapping, index, filler, data);
1584 if (IS_ERR(page))
1585 goto out;
1586 wait_on_page_locked(page);
1587 if (!PageUptodate(page)) {
1588 page_cache_release(page);
1589 page = ERR_PTR(-EIO);
1591 out:
1592 return page;
1594 EXPORT_SYMBOL(read_cache_page);
1597 * The logic we want is
1599 * if suid or (sgid and xgrp)
1600 * remove privs
1602 int should_remove_suid(struct dentry *dentry)
1604 mode_t mode = dentry->d_inode->i_mode;
1605 int kill = 0;
1607 /* suid always must be killed */
1608 if (unlikely(mode & S_ISUID))
1609 kill = ATTR_KILL_SUID;
1612 * sgid without any exec bits is just a mandatory locking mark; leave
1613 * it alone. If some exec bits are set, it's a real sgid; kill it.
1615 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1616 kill |= ATTR_KILL_SGID;
1618 if (unlikely(kill && !capable(CAP_FSETID)))
1619 return kill;
1621 return 0;
1623 EXPORT_SYMBOL(should_remove_suid);
1625 int __remove_suid(struct dentry *dentry, int kill)
1627 struct iattr newattrs;
1629 newattrs.ia_valid = ATTR_FORCE | kill;
1630 return notify_change(dentry, &newattrs);
1633 int remove_suid(struct dentry *dentry)
1635 int killsuid = should_remove_suid(dentry);
1636 int killpriv = security_inode_need_killpriv(dentry);
1637 int error = 0;
1639 if (killpriv < 0)
1640 return killpriv;
1641 if (killpriv)
1642 error = security_inode_killpriv(dentry);
1643 if (!error && killsuid)
1644 error = __remove_suid(dentry, killsuid);
1646 return error;
1648 EXPORT_SYMBOL(remove_suid);
1650 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1651 const struct iovec *iov, size_t base, size_t bytes)
1653 size_t copied = 0, left = 0;
1655 while (bytes) {
1656 char __user *buf = iov->iov_base + base;
1657 int copy = min(bytes, iov->iov_len - base);
1659 base = 0;
1660 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1661 copied += copy;
1662 bytes -= copy;
1663 vaddr += copy;
1664 iov++;
1666 if (unlikely(left))
1667 break;
1669 return copied - left;
1673 * Copy as much as we can into the page and return the number of bytes which
1674 * were sucessfully copied. If a fault is encountered then return the number of
1675 * bytes which were copied.
1677 size_t iov_iter_copy_from_user_atomic(struct page *page,
1678 struct iov_iter *i, unsigned long offset, size_t bytes)
1680 char *kaddr;
1681 size_t copied;
1683 BUG_ON(!in_atomic());
1684 kaddr = kmap_atomic(page, KM_USER0);
1685 if (likely(i->nr_segs == 1)) {
1686 int left;
1687 char __user *buf = i->iov->iov_base + i->iov_offset;
1688 left = __copy_from_user_inatomic_nocache(kaddr + offset,
1689 buf, bytes);
1690 copied = bytes - left;
1691 } else {
1692 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1693 i->iov, i->iov_offset, bytes);
1695 kunmap_atomic(kaddr, KM_USER0);
1697 return copied;
1699 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1702 * This has the same sideeffects and return value as
1703 * iov_iter_copy_from_user_atomic().
1704 * The difference is that it attempts to resolve faults.
1705 * Page must not be locked.
1707 size_t iov_iter_copy_from_user(struct page *page,
1708 struct iov_iter *i, unsigned long offset, size_t bytes)
1710 char *kaddr;
1711 size_t copied;
1713 kaddr = kmap(page);
1714 if (likely(i->nr_segs == 1)) {
1715 int left;
1716 char __user *buf = i->iov->iov_base + i->iov_offset;
1717 left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1718 copied = bytes - left;
1719 } else {
1720 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1721 i->iov, i->iov_offset, bytes);
1723 kunmap(page);
1724 return copied;
1726 EXPORT_SYMBOL(iov_iter_copy_from_user);
1728 static void __iov_iter_advance_iov(struct iov_iter *i, size_t bytes)
1730 if (likely(i->nr_segs == 1)) {
1731 i->iov_offset += bytes;
1732 } else {
1733 const struct iovec *iov = i->iov;
1734 size_t base = i->iov_offset;
1736 while (bytes) {
1737 int copy = min(bytes, iov->iov_len - base);
1739 bytes -= copy;
1740 base += copy;
1741 if (iov->iov_len == base) {
1742 iov++;
1743 base = 0;
1746 i->iov = iov;
1747 i->iov_offset = base;
1751 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1753 BUG_ON(i->count < bytes);
1755 __iov_iter_advance_iov(i, bytes);
1756 i->count -= bytes;
1758 EXPORT_SYMBOL(iov_iter_advance);
1761 * Fault in the first iovec of the given iov_iter, to a maximum length
1762 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1763 * accessed (ie. because it is an invalid address).
1765 * writev-intensive code may want this to prefault several iovecs -- that
1766 * would be possible (callers must not rely on the fact that _only_ the
1767 * first iovec will be faulted with the current implementation).
1769 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1771 char __user *buf = i->iov->iov_base + i->iov_offset;
1772 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1773 return fault_in_pages_readable(buf, bytes);
1775 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1778 * Return the count of just the current iov_iter segment.
1780 size_t iov_iter_single_seg_count(struct iov_iter *i)
1782 const struct iovec *iov = i->iov;
1783 if (i->nr_segs == 1)
1784 return i->count;
1785 else
1786 return min(i->count, iov->iov_len - i->iov_offset);
1788 EXPORT_SYMBOL(iov_iter_single_seg_count);
1791 * Performs necessary checks before doing a write
1793 * Can adjust writing position or amount of bytes to write.
1794 * Returns appropriate error code that caller should return or
1795 * zero in case that write should be allowed.
1797 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1799 struct inode *inode = file->f_mapping->host;
1800 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1802 if (unlikely(*pos < 0))
1803 return -EINVAL;
1805 if (!isblk) {
1806 /* FIXME: this is for backwards compatibility with 2.4 */
1807 if (file->f_flags & O_APPEND)
1808 *pos = i_size_read(inode);
1810 if (limit != RLIM_INFINITY) {
1811 if (*pos >= limit) {
1812 send_sig(SIGXFSZ, current, 0);
1813 return -EFBIG;
1815 if (*count > limit - (typeof(limit))*pos) {
1816 *count = limit - (typeof(limit))*pos;
1822 * LFS rule
1824 if (unlikely(*pos + *count > MAX_NON_LFS &&
1825 !(file->f_flags & O_LARGEFILE))) {
1826 if (*pos >= MAX_NON_LFS) {
1827 return -EFBIG;
1829 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1830 *count = MAX_NON_LFS - (unsigned long)*pos;
1835 * Are we about to exceed the fs block limit ?
1837 * If we have written data it becomes a short write. If we have
1838 * exceeded without writing data we send a signal and return EFBIG.
1839 * Linus frestrict idea will clean these up nicely..
1841 if (likely(!isblk)) {
1842 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1843 if (*count || *pos > inode->i_sb->s_maxbytes) {
1844 return -EFBIG;
1846 /* zero-length writes at ->s_maxbytes are OK */
1849 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1850 *count = inode->i_sb->s_maxbytes - *pos;
1851 } else {
1852 #ifdef CONFIG_BLOCK
1853 loff_t isize;
1854 if (bdev_read_only(I_BDEV(inode)))
1855 return -EPERM;
1856 isize = i_size_read(inode);
1857 if (*pos >= isize) {
1858 if (*count || *pos > isize)
1859 return -ENOSPC;
1862 if (*pos + *count > isize)
1863 *count = isize - *pos;
1864 #else
1865 return -EPERM;
1866 #endif
1868 return 0;
1870 EXPORT_SYMBOL(generic_write_checks);
1872 int pagecache_write_begin(struct file *file, struct address_space *mapping,
1873 loff_t pos, unsigned len, unsigned flags,
1874 struct page **pagep, void **fsdata)
1876 const struct address_space_operations *aops = mapping->a_ops;
1878 if (aops->write_begin) {
1879 return aops->write_begin(file, mapping, pos, len, flags,
1880 pagep, fsdata);
1881 } else {
1882 int ret;
1883 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1884 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1885 struct inode *inode = mapping->host;
1886 struct page *page;
1887 again:
1888 page = __grab_cache_page(mapping, index);
1889 *pagep = page;
1890 if (!page)
1891 return -ENOMEM;
1893 if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1895 * There is no way to resolve a short write situation
1896 * for a !Uptodate page (except by double copying in
1897 * the caller done by generic_perform_write_2copy).
1899 * Instead, we have to bring it uptodate here.
1901 ret = aops->readpage(file, page);
1902 page_cache_release(page);
1903 if (ret) {
1904 if (ret == AOP_TRUNCATED_PAGE)
1905 goto again;
1906 return ret;
1908 goto again;
1911 ret = aops->prepare_write(file, page, offset, offset+len);
1912 if (ret) {
1913 unlock_page(page);
1914 page_cache_release(page);
1915 if (pos + len > inode->i_size)
1916 vmtruncate(inode, inode->i_size);
1918 return ret;
1921 EXPORT_SYMBOL(pagecache_write_begin);
1923 int pagecache_write_end(struct file *file, struct address_space *mapping,
1924 loff_t pos, unsigned len, unsigned copied,
1925 struct page *page, void *fsdata)
1927 const struct address_space_operations *aops = mapping->a_ops;
1928 int ret;
1930 if (aops->write_end) {
1931 mark_page_accessed(page);
1932 ret = aops->write_end(file, mapping, pos, len, copied,
1933 page, fsdata);
1934 } else {
1935 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1936 struct inode *inode = mapping->host;
1938 flush_dcache_page(page);
1939 ret = aops->commit_write(file, page, offset, offset+len);
1940 unlock_page(page);
1941 mark_page_accessed(page);
1942 page_cache_release(page);
1944 if (ret < 0) {
1945 if (pos + len > inode->i_size)
1946 vmtruncate(inode, inode->i_size);
1947 } else if (ret > 0)
1948 ret = min_t(size_t, copied, ret);
1949 else
1950 ret = copied;
1953 return ret;
1955 EXPORT_SYMBOL(pagecache_write_end);
1957 ssize_t
1958 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1959 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1960 size_t count, size_t ocount)
1962 struct file *file = iocb->ki_filp;
1963 struct address_space *mapping = file->f_mapping;
1964 struct inode *inode = mapping->host;
1965 ssize_t written;
1967 if (count != ocount)
1968 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1970 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1971 if (written > 0) {
1972 loff_t end = pos + written;
1973 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1974 i_size_write(inode, end);
1975 mark_inode_dirty(inode);
1977 *ppos = end;
1981 * Sync the fs metadata but not the minor inode changes and
1982 * of course not the data as we did direct DMA for the IO.
1983 * i_mutex is held, which protects generic_osync_inode() from
1984 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
1986 if ((written >= 0 || written == -EIOCBQUEUED) &&
1987 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1988 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1989 if (err < 0)
1990 written = err;
1992 return written;
1994 EXPORT_SYMBOL(generic_file_direct_write);
1997 * Find or create a page at the given pagecache position. Return the locked
1998 * page. This function is specifically for buffered writes.
2000 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
2002 int status;
2003 struct page *page;
2004 repeat:
2005 page = find_lock_page(mapping, index);
2006 if (likely(page))
2007 return page;
2009 page = page_cache_alloc(mapping);
2010 if (!page)
2011 return NULL;
2012 status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2013 if (unlikely(status)) {
2014 page_cache_release(page);
2015 if (status == -EEXIST)
2016 goto repeat;
2017 return NULL;
2019 return page;
2021 EXPORT_SYMBOL(__grab_cache_page);
2023 static ssize_t generic_perform_write_2copy(struct file *file,
2024 struct iov_iter *i, loff_t pos)
2026 struct address_space *mapping = file->f_mapping;
2027 const struct address_space_operations *a_ops = mapping->a_ops;
2028 struct inode *inode = mapping->host;
2029 long status = 0;
2030 ssize_t written = 0;
2032 do {
2033 struct page *src_page;
2034 struct page *page;
2035 pgoff_t index; /* Pagecache index for current page */
2036 unsigned long offset; /* Offset into pagecache page */
2037 unsigned long bytes; /* Bytes to write to page */
2038 size_t copied; /* Bytes copied from user */
2040 offset = (pos & (PAGE_CACHE_SIZE - 1));
2041 index = pos >> PAGE_CACHE_SHIFT;
2042 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2043 iov_iter_count(i));
2046 * a non-NULL src_page indicates that we're doing the
2047 * copy via get_user_pages and kmap.
2049 src_page = NULL;
2052 * Bring in the user page that we will copy from _first_.
2053 * Otherwise there's a nasty deadlock on copying from the
2054 * same page as we're writing to, without it being marked
2055 * up-to-date.
2057 * Not only is this an optimisation, but it is also required
2058 * to check that the address is actually valid, when atomic
2059 * usercopies are used, below.
2061 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2062 status = -EFAULT;
2063 break;
2066 page = __grab_cache_page(mapping, index);
2067 if (!page) {
2068 status = -ENOMEM;
2069 break;
2073 * non-uptodate pages cannot cope with short copies, and we
2074 * cannot take a pagefault with the destination page locked.
2075 * So pin the source page to copy it.
2077 if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2078 unlock_page(page);
2080 src_page = alloc_page(GFP_KERNEL);
2081 if (!src_page) {
2082 page_cache_release(page);
2083 status = -ENOMEM;
2084 break;
2088 * Cannot get_user_pages with a page locked for the
2089 * same reason as we can't take a page fault with a
2090 * page locked (as explained below).
2092 copied = iov_iter_copy_from_user(src_page, i,
2093 offset, bytes);
2094 if (unlikely(copied == 0)) {
2095 status = -EFAULT;
2096 page_cache_release(page);
2097 page_cache_release(src_page);
2098 break;
2100 bytes = copied;
2102 lock_page(page);
2104 * Can't handle the page going uptodate here, because
2105 * that means we would use non-atomic usercopies, which
2106 * zero out the tail of the page, which can cause
2107 * zeroes to become transiently visible. We could just
2108 * use a non-zeroing copy, but the APIs aren't too
2109 * consistent.
2111 if (unlikely(!page->mapping || PageUptodate(page))) {
2112 unlock_page(page);
2113 page_cache_release(page);
2114 page_cache_release(src_page);
2115 continue;
2119 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2120 if (unlikely(status))
2121 goto fs_write_aop_error;
2123 if (!src_page) {
2125 * Must not enter the pagefault handler here, because
2126 * we hold the page lock, so we might recursively
2127 * deadlock on the same lock, or get an ABBA deadlock
2128 * against a different lock, or against the mmap_sem
2129 * (which nests outside the page lock). So increment
2130 * preempt count, and use _atomic usercopies.
2132 * The page is uptodate so we are OK to encounter a
2133 * short copy: if unmodified parts of the page are
2134 * marked dirty and written out to disk, it doesn't
2135 * really matter.
2137 pagefault_disable();
2138 copied = iov_iter_copy_from_user_atomic(page, i,
2139 offset, bytes);
2140 pagefault_enable();
2141 } else {
2142 void *src, *dst;
2143 src = kmap_atomic(src_page, KM_USER0);
2144 dst = kmap_atomic(page, KM_USER1);
2145 memcpy(dst + offset, src + offset, bytes);
2146 kunmap_atomic(dst, KM_USER1);
2147 kunmap_atomic(src, KM_USER0);
2148 copied = bytes;
2150 flush_dcache_page(page);
2152 status = a_ops->commit_write(file, page, offset, offset+bytes);
2153 if (unlikely(status < 0))
2154 goto fs_write_aop_error;
2155 if (unlikely(status > 0)) /* filesystem did partial write */
2156 copied = min_t(size_t, copied, status);
2158 unlock_page(page);
2159 mark_page_accessed(page);
2160 page_cache_release(page);
2161 if (src_page)
2162 page_cache_release(src_page);
2164 iov_iter_advance(i, copied);
2165 pos += copied;
2166 written += copied;
2168 balance_dirty_pages_ratelimited(mapping);
2169 cond_resched();
2170 continue;
2172 fs_write_aop_error:
2173 unlock_page(page);
2174 page_cache_release(page);
2175 if (src_page)
2176 page_cache_release(src_page);
2179 * prepare_write() may have instantiated a few blocks
2180 * outside i_size. Trim these off again. Don't need
2181 * i_size_read because we hold i_mutex.
2183 if (pos + bytes > inode->i_size)
2184 vmtruncate(inode, inode->i_size);
2185 break;
2186 } while (iov_iter_count(i));
2188 return written ? written : status;
2191 static ssize_t generic_perform_write(struct file *file,
2192 struct iov_iter *i, loff_t pos)
2194 struct address_space *mapping = file->f_mapping;
2195 const struct address_space_operations *a_ops = mapping->a_ops;
2196 long status = 0;
2197 ssize_t written = 0;
2198 unsigned int flags = 0;
2201 * Copies from kernel address space cannot fail (NFSD is a big user).
2203 if (segment_eq(get_fs(), KERNEL_DS))
2204 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2206 do {
2207 struct page *page;
2208 pgoff_t index; /* Pagecache index for current page */
2209 unsigned long offset; /* Offset into pagecache page */
2210 unsigned long bytes; /* Bytes to write to page */
2211 size_t copied; /* Bytes copied from user */
2212 void *fsdata;
2214 offset = (pos & (PAGE_CACHE_SIZE - 1));
2215 index = pos >> PAGE_CACHE_SHIFT;
2216 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2217 iov_iter_count(i));
2219 again:
2222 * Bring in the user page that we will copy from _first_.
2223 * Otherwise there's a nasty deadlock on copying from the
2224 * same page as we're writing to, without it being marked
2225 * up-to-date.
2227 * Not only is this an optimisation, but it is also required
2228 * to check that the address is actually valid, when atomic
2229 * usercopies are used, below.
2231 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2232 status = -EFAULT;
2233 break;
2236 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2237 &page, &fsdata);
2238 if (unlikely(status))
2239 break;
2241 pagefault_disable();
2242 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2243 pagefault_enable();
2244 flush_dcache_page(page);
2246 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2247 page, fsdata);
2248 if (unlikely(status < 0))
2249 break;
2250 copied = status;
2252 cond_resched();
2254 if (unlikely(copied == 0)) {
2256 * If we were unable to copy any data at all, we must
2257 * fall back to a single segment length write.
2259 * If we didn't fallback here, we could livelock
2260 * because not all segments in the iov can be copied at
2261 * once without a pagefault.
2263 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2264 iov_iter_single_seg_count(i));
2265 goto again;
2267 iov_iter_advance(i, copied);
2268 pos += copied;
2269 written += copied;
2271 balance_dirty_pages_ratelimited(mapping);
2273 } while (iov_iter_count(i));
2275 return written ? written : status;
2278 ssize_t
2279 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2280 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2281 size_t count, ssize_t written)
2283 struct file *file = iocb->ki_filp;
2284 struct address_space *mapping = file->f_mapping;
2285 const struct address_space_operations *a_ops = mapping->a_ops;
2286 struct inode *inode = mapping->host;
2287 ssize_t status;
2288 struct iov_iter i;
2290 iov_iter_init(&i, iov, nr_segs, count, written);
2291 if (a_ops->write_begin)
2292 status = generic_perform_write(file, &i, pos);
2293 else
2294 status = generic_perform_write_2copy(file, &i, pos);
2296 if (likely(status >= 0)) {
2297 written += status;
2298 *ppos = pos + status;
2301 * For now, when the user asks for O_SYNC, we'll actually give
2302 * O_DSYNC
2304 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2305 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2306 status = generic_osync_inode(inode, mapping,
2307 OSYNC_METADATA|OSYNC_DATA);
2312 * If we get here for O_DIRECT writes then we must have fallen through
2313 * to buffered writes (block instantiation inside i_size). So we sync
2314 * the file data here, to try to honour O_DIRECT expectations.
2316 if (unlikely(file->f_flags & O_DIRECT) && written)
2317 status = filemap_write_and_wait(mapping);
2319 return written ? written : status;
2321 EXPORT_SYMBOL(generic_file_buffered_write);
2323 static ssize_t
2324 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2325 unsigned long nr_segs, loff_t *ppos)
2327 struct file *file = iocb->ki_filp;
2328 struct address_space * mapping = file->f_mapping;
2329 size_t ocount; /* original count */
2330 size_t count; /* after file limit checks */
2331 struct inode *inode = mapping->host;
2332 loff_t pos;
2333 ssize_t written;
2334 ssize_t err;
2336 ocount = 0;
2337 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2338 if (err)
2339 return err;
2341 count = ocount;
2342 pos = *ppos;
2344 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2346 /* We can write back this queue in page reclaim */
2347 current->backing_dev_info = mapping->backing_dev_info;
2348 written = 0;
2350 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2351 if (err)
2352 goto out;
2354 if (count == 0)
2355 goto out;
2357 err = remove_suid(file->f_path.dentry);
2358 if (err)
2359 goto out;
2361 file_update_time(file);
2363 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2364 if (unlikely(file->f_flags & O_DIRECT)) {
2365 loff_t endbyte;
2366 ssize_t written_buffered;
2368 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2369 ppos, count, ocount);
2370 if (written < 0 || written == count)
2371 goto out;
2373 * direct-io write to a hole: fall through to buffered I/O
2374 * for completing the rest of the request.
2376 pos += written;
2377 count -= written;
2378 written_buffered = generic_file_buffered_write(iocb, iov,
2379 nr_segs, pos, ppos, count,
2380 written);
2382 * If generic_file_buffered_write() retuned a synchronous error
2383 * then we want to return the number of bytes which were
2384 * direct-written, or the error code if that was zero. Note
2385 * that this differs from normal direct-io semantics, which
2386 * will return -EFOO even if some bytes were written.
2388 if (written_buffered < 0) {
2389 err = written_buffered;
2390 goto out;
2394 * We need to ensure that the page cache pages are written to
2395 * disk and invalidated to preserve the expected O_DIRECT
2396 * semantics.
2398 endbyte = pos + written_buffered - written - 1;
2399 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2400 SYNC_FILE_RANGE_WAIT_BEFORE|
2401 SYNC_FILE_RANGE_WRITE|
2402 SYNC_FILE_RANGE_WAIT_AFTER);
2403 if (err == 0) {
2404 written = written_buffered;
2405 invalidate_mapping_pages(mapping,
2406 pos >> PAGE_CACHE_SHIFT,
2407 endbyte >> PAGE_CACHE_SHIFT);
2408 } else {
2410 * We don't know how much we wrote, so just return
2411 * the number of bytes which were direct-written
2414 } else {
2415 written = generic_file_buffered_write(iocb, iov, nr_segs,
2416 pos, ppos, count, written);
2418 out:
2419 current->backing_dev_info = NULL;
2420 return written ? written : err;
2423 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2424 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2426 struct file *file = iocb->ki_filp;
2427 struct address_space *mapping = file->f_mapping;
2428 struct inode *inode = mapping->host;
2429 ssize_t ret;
2431 BUG_ON(iocb->ki_pos != pos);
2433 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2434 &iocb->ki_pos);
2436 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2437 ssize_t err;
2439 err = sync_page_range_nolock(inode, mapping, pos, ret);
2440 if (err < 0)
2441 ret = err;
2443 return ret;
2445 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2447 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2448 unsigned long nr_segs, loff_t pos)
2450 struct file *file = iocb->ki_filp;
2451 struct address_space *mapping = file->f_mapping;
2452 struct inode *inode = mapping->host;
2453 ssize_t ret;
2455 BUG_ON(iocb->ki_pos != pos);
2457 mutex_lock(&inode->i_mutex);
2458 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2459 &iocb->ki_pos);
2460 mutex_unlock(&inode->i_mutex);
2462 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2463 ssize_t err;
2465 err = sync_page_range(inode, mapping, pos, ret);
2466 if (err < 0)
2467 ret = err;
2469 return ret;
2471 EXPORT_SYMBOL(generic_file_aio_write);
2474 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2475 * went wrong during pagecache shootdown.
2477 static ssize_t
2478 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2479 loff_t offset, unsigned long nr_segs)
2481 struct file *file = iocb->ki_filp;
2482 struct address_space *mapping = file->f_mapping;
2483 ssize_t retval;
2484 size_t write_len;
2485 pgoff_t end = 0; /* silence gcc */
2488 * If it's a write, unmap all mmappings of the file up-front. This
2489 * will cause any pte dirty bits to be propagated into the pageframes
2490 * for the subsequent filemap_write_and_wait().
2492 if (rw == WRITE) {
2493 write_len = iov_length(iov, nr_segs);
2494 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2495 if (mapping_mapped(mapping))
2496 unmap_mapping_range(mapping, offset, write_len, 0);
2499 retval = filemap_write_and_wait(mapping);
2500 if (retval)
2501 goto out;
2504 * After a write we want buffered reads to be sure to go to disk to get
2505 * the new data. We invalidate clean cached page from the region we're
2506 * about to write. We do this *before* the write so that we can return
2507 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2509 if (rw == WRITE && mapping->nrpages) {
2510 retval = invalidate_inode_pages2_range(mapping,
2511 offset >> PAGE_CACHE_SHIFT, end);
2512 if (retval)
2513 goto out;
2516 retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2519 * Finally, try again to invalidate clean pages which might have been
2520 * cached by non-direct readahead, or faulted in by get_user_pages()
2521 * if the source of the write was an mmap'ed region of the file
2522 * we're writing. Either one is a pretty crazy thing to do,
2523 * so we don't support it 100%. If this invalidation
2524 * fails, tough, the write still worked...
2526 if (rw == WRITE && mapping->nrpages) {
2527 invalidate_inode_pages2_range(mapping, offset >> PAGE_CACHE_SHIFT, end);
2529 out:
2530 return retval;
2534 * try_to_release_page() - release old fs-specific metadata on a page
2536 * @page: the page which the kernel is trying to free
2537 * @gfp_mask: memory allocation flags (and I/O mode)
2539 * The address_space is to try to release any data against the page
2540 * (presumably at page->private). If the release was successful, return `1'.
2541 * Otherwise return zero.
2543 * The @gfp_mask argument specifies whether I/O may be performed to release
2544 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2546 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2548 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2550 struct address_space * const mapping = page->mapping;
2552 BUG_ON(!PageLocked(page));
2553 if (PageWriteback(page))
2554 return 0;
2556 if (mapping && mapping->a_ops->releasepage)
2557 return mapping->a_ops->releasepage(page, gfp_mask);
2558 return try_to_free_buffers(page);
2561 EXPORT_SYMBOL(try_to_release_page);