take declarations of enable_irq() et.al. to linux/interrupt.h
[linux-2.6/kmemtrace.git] / arch / arm26 / kernel / irq.c
blob2ffe695b062e7f3b3fe7f72d64ab27fda474b6bb
1 /*
2 * linux/arch/arm/kernel/irq.c
4 * Copyright (C) 1992 Linus Torvalds
5 * Modifications for ARM processor Copyright (C) 1995-2000 Russell King.
6 * 'Borrowed' for ARM26 and (C) 2003 Ian Molton.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
12 * This file contains the code used by various IRQ handling routines:
13 * asking for different IRQ's should be done through these routines
14 * instead of just grabbing them. Thus setups with different IRQ numbers
15 * shouldn't result in any weird surprises, and installing new handlers
16 * should be easier.
18 * IRQ's are in fact implemented a bit like signal handlers for the kernel.
19 * Naturally it's not a 1:1 relation, but there are similarities.
21 #include <linux/module.h>
22 #include <linux/ptrace.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/ioport.h>
27 #include <linux/interrupt.h>
28 #include <linux/slab.h>
29 #include <linux/random.h>
30 #include <linux/smp.h>
31 #include <linux/init.h>
32 #include <linux/seq_file.h>
33 #include <linux/errno.h>
35 #include <asm/irq.h>
36 #include <asm/system.h>
37 #include <asm/irqchip.h>
39 //FIXME - this ought to be in a header IMO
40 void __init arc_init_irq(void);
43 * Maximum IRQ count. Currently, this is arbitary. However, it should
44 * not be set too low to prevent false triggering. Conversely, if it
45 * is set too high, then you could miss a stuck IRQ.
47 * FIXME Maybe we ought to set a timer and re-enable the IRQ at a later time?
49 #define MAX_IRQ_CNT 100000
51 static volatile unsigned long irq_err_count;
52 static DEFINE_SPINLOCK(irq_controller_lock);
54 struct irqdesc irq_desc[NR_IRQS];
57 * Dummy mask/unmask handler
59 void dummy_mask_unmask_irq(unsigned int irq)
63 void do_bad_IRQ(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
65 irq_err_count += 1;
66 printk(KERN_ERR "IRQ: spurious interrupt %d\n", irq);
69 static struct irqchip bad_chip = {
70 .ack = dummy_mask_unmask_irq,
71 .mask = dummy_mask_unmask_irq,
72 .unmask = dummy_mask_unmask_irq,
75 static struct irqdesc bad_irq_desc = {
76 .chip = &bad_chip,
77 .handle = do_bad_IRQ,
78 .depth = 1,
81 /**
82 * disable_irq - disable an irq and wait for completion
83 * @irq: Interrupt to disable
85 * Disable the selected interrupt line. We do this lazily.
87 * This function may be called from IRQ context.
89 void disable_irq(unsigned int irq)
91 struct irqdesc *desc = irq_desc + irq;
92 unsigned long flags;
93 spin_lock_irqsave(&irq_controller_lock, flags);
94 if (!desc->depth++)
95 desc->enabled = 0;
96 spin_unlock_irqrestore(&irq_controller_lock, flags);
98 EXPORT_SYMBOL(disable_irq);
100 void disable_irq_nosync(unsigned int irq) __attribute__((alias("disable_irq")));
102 EXPORT_SYMBOL(disable_irq_nosync);
105 * enable_irq - enable interrupt handling on an irq
106 * @irq: Interrupt to enable
108 * Re-enables the processing of interrupts on this IRQ line.
109 * Note that this may call the interrupt handler, so you may
110 * get unexpected results if you hold IRQs disabled.
112 * This function may be called from IRQ context.
114 void enable_irq(unsigned int irq)
116 struct irqdesc *desc = irq_desc + irq;
117 unsigned long flags;
118 int pending = 0;
120 spin_lock_irqsave(&irq_controller_lock, flags);
121 if (unlikely(!desc->depth)) {
122 printk("enable_irq(%u) unbalanced from %p\n", irq,
123 __builtin_return_address(0)); //FIXME bum addresses reported - why?
124 } else if (!--desc->depth) {
125 desc->probing = 0;
126 desc->enabled = 1;
127 desc->chip->unmask(irq);
128 pending = desc->pending;
129 desc->pending = 0;
131 * If the interrupt was waiting to be processed,
132 * retrigger it.
134 if (pending)
135 desc->chip->rerun(irq);
137 spin_unlock_irqrestore(&irq_controller_lock, flags);
139 EXPORT_SYMBOL(enable_irq);
141 int show_interrupts(struct seq_file *p, void *v)
143 int i = *(loff_t *) v;
144 struct irqaction * action;
146 if (i < NR_IRQS) {
147 action = irq_desc[i].action;
148 if (!action)
149 goto out;
150 seq_printf(p, "%3d: %10u ", i, kstat_irqs(i));
151 seq_printf(p, " %s", action->name);
152 for (action = action->next; action; action = action->next) {
153 seq_printf(p, ", %s", action->name);
155 seq_putc(p, '\n');
156 } else if (i == NR_IRQS) {
157 show_fiq_list(p, v);
158 seq_printf(p, "Err: %10lu\n", irq_err_count);
160 out:
161 return 0;
165 * IRQ lock detection.
167 * Hopefully, this should get us out of a few locked situations.
168 * However, it may take a while for this to happen, since we need
169 * a large number if IRQs to appear in the same jiffie with the
170 * same instruction pointer (or within 2 instructions).
172 static int check_irq_lock(struct irqdesc *desc, int irq, struct pt_regs *regs)
174 unsigned long instr_ptr = instruction_pointer(regs);
176 if (desc->lck_jif == jiffies &&
177 desc->lck_pc >= instr_ptr && desc->lck_pc < instr_ptr + 8) {
178 desc->lck_cnt += 1;
180 if (desc->lck_cnt > MAX_IRQ_CNT) {
181 printk(KERN_ERR "IRQ LOCK: IRQ%d is locking the system, disabled\n", irq);
182 return 1;
184 } else {
185 desc->lck_cnt = 0;
186 desc->lck_pc = instruction_pointer(regs);
187 desc->lck_jif = jiffies;
189 return 0;
192 static void
193 __do_irq(unsigned int irq, struct irqaction *action, struct pt_regs *regs)
195 unsigned int status;
196 int ret;
198 spin_unlock(&irq_controller_lock);
199 if (!(action->flags & IRQF_DISABLED))
200 local_irq_enable();
202 status = 0;
203 do {
204 ret = action->handler(irq, action->dev_id, regs);
205 if (ret == IRQ_HANDLED)
206 status |= action->flags;
207 action = action->next;
208 } while (action);
210 if (status & IRQF_SAMPLE_RANDOM)
211 add_interrupt_randomness(irq);
213 spin_lock_irq(&irq_controller_lock);
217 * This is for software-decoded IRQs. The caller is expected to
218 * handle the ack, clear, mask and unmask issues.
220 void
221 do_simple_IRQ(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
223 struct irqaction *action;
224 const int cpu = smp_processor_id();
226 desc->triggered = 1;
228 kstat_cpu(cpu).irqs[irq]++;
230 action = desc->action;
231 if (action)
232 __do_irq(irq, desc->action, regs);
236 * Most edge-triggered IRQ implementations seem to take a broken
237 * approach to this. Hence the complexity.
239 void
240 do_edge_IRQ(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
242 const int cpu = smp_processor_id();
244 desc->triggered = 1;
247 * If we're currently running this IRQ, or its disabled,
248 * we shouldn't process the IRQ. Instead, turn on the
249 * hardware masks.
251 if (unlikely(desc->running || !desc->enabled))
252 goto running;
255 * Acknowledge and clear the IRQ, but don't mask it.
257 desc->chip->ack(irq);
260 * Mark the IRQ currently in progress.
262 desc->running = 1;
264 kstat_cpu(cpu).irqs[irq]++;
266 do {
267 struct irqaction *action;
269 action = desc->action;
270 if (!action)
271 break;
273 if (desc->pending && desc->enabled) {
274 desc->pending = 0;
275 desc->chip->unmask(irq);
278 __do_irq(irq, action, regs);
279 } while (desc->pending);
281 desc->running = 0;
284 * If we were disabled or freed, shut down the handler.
286 if (likely(desc->action && !check_irq_lock(desc, irq, regs)))
287 return;
289 running:
291 * We got another IRQ while this one was masked or
292 * currently running. Delay it.
294 desc->pending = 1;
295 desc->chip->mask(irq);
296 desc->chip->ack(irq);
300 * Level-based IRQ handler. Nice and simple.
302 void
303 do_level_IRQ(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
305 struct irqaction *action;
306 const int cpu = smp_processor_id();
308 desc->triggered = 1;
311 * Acknowledge, clear _AND_ disable the interrupt.
313 desc->chip->ack(irq);
315 if (likely(desc->enabled)) {
316 kstat_cpu(cpu).irqs[irq]++;
319 * Return with this interrupt masked if no action
321 action = desc->action;
322 if (action) {
323 __do_irq(irq, desc->action, regs);
325 if (likely(desc->enabled &&
326 !check_irq_lock(desc, irq, regs)))
327 desc->chip->unmask(irq);
333 * do_IRQ handles all hardware IRQ's. Decoded IRQs should not
334 * come via this function. Instead, they should provide their
335 * own 'handler'
337 asmlinkage void asm_do_IRQ(int irq, struct pt_regs *regs)
339 struct irqdesc *desc = irq_desc + irq;
342 * Some hardware gives randomly wrong interrupts. Rather
343 * than crashing, do something sensible.
345 if (irq >= NR_IRQS)
346 desc = &bad_irq_desc;
348 irq_enter();
349 spin_lock(&irq_controller_lock);
350 desc->handle(irq, desc, regs);
351 spin_unlock(&irq_controller_lock);
352 irq_exit();
355 void __set_irq_handler(unsigned int irq, irq_handler_t handle, int is_chained)
357 struct irqdesc *desc;
358 unsigned long flags;
360 if (irq >= NR_IRQS) {
361 printk(KERN_ERR "Trying to install handler for IRQ%d\n", irq);
362 return;
365 if (handle == NULL)
366 handle = do_bad_IRQ;
368 desc = irq_desc + irq;
370 if (is_chained && desc->chip == &bad_chip)
371 printk(KERN_WARNING "Trying to install chained handler for IRQ%d\n", irq);
373 spin_lock_irqsave(&irq_controller_lock, flags);
374 if (handle == do_bad_IRQ) {
375 desc->chip->mask(irq);
376 desc->chip->ack(irq);
377 desc->depth = 1;
378 desc->enabled = 0;
380 desc->handle = handle;
381 if (handle != do_bad_IRQ && is_chained) {
382 desc->valid = 0;
383 desc->probe_ok = 0;
384 desc->depth = 0;
385 desc->chip->unmask(irq);
387 spin_unlock_irqrestore(&irq_controller_lock, flags);
390 void set_irq_chip(unsigned int irq, struct irqchip *chip)
392 struct irqdesc *desc;
393 unsigned long flags;
395 if (irq >= NR_IRQS) {
396 printk(KERN_ERR "Trying to install chip for IRQ%d\n", irq);
397 return;
400 if (chip == NULL)
401 chip = &bad_chip;
403 desc = irq_desc + irq;
404 spin_lock_irqsave(&irq_controller_lock, flags);
405 desc->chip = chip;
406 spin_unlock_irqrestore(&irq_controller_lock, flags);
409 int set_irq_type(unsigned int irq, unsigned int type)
411 struct irqdesc *desc;
412 unsigned long flags;
413 int ret = -ENXIO;
415 if (irq >= NR_IRQS) {
416 printk(KERN_ERR "Trying to set irq type for IRQ%d\n", irq);
417 return -ENODEV;
420 desc = irq_desc + irq;
421 if (desc->chip->type) {
422 spin_lock_irqsave(&irq_controller_lock, flags);
423 ret = desc->chip->type(irq, type);
424 spin_unlock_irqrestore(&irq_controller_lock, flags);
427 return ret;
430 void set_irq_flags(unsigned int irq, unsigned int iflags)
432 struct irqdesc *desc;
433 unsigned long flags;
435 if (irq >= NR_IRQS) {
436 printk(KERN_ERR "Trying to set irq flags for IRQ%d\n", irq);
437 return;
440 desc = irq_desc + irq;
441 spin_lock_irqsave(&irq_controller_lock, flags);
442 desc->valid = (iflags & IRQF_VALID) != 0;
443 desc->probe_ok = (iflags & IRQF_PROBE) != 0;
444 desc->noautoenable = (iflags & IRQF_NOAUTOEN) != 0;
445 spin_unlock_irqrestore(&irq_controller_lock, flags);
448 int setup_irq(unsigned int irq, struct irqaction *new)
450 int shared = 0;
451 struct irqaction *old, **p;
452 unsigned long flags;
453 struct irqdesc *desc;
456 * Some drivers like serial.c use request_irq() heavily,
457 * so we have to be careful not to interfere with a
458 * running system.
460 if (new->flags & IRQF_SAMPLE_RANDOM) {
462 * This function might sleep, we want to call it first,
463 * outside of the atomic block.
464 * Yes, this might clear the entropy pool if the wrong
465 * driver is attempted to be loaded, without actually
466 * installing a new handler, but is this really a problem,
467 * only the sysadmin is able to do this.
469 rand_initialize_irq(irq);
473 * The following block of code has to be executed atomically
475 desc = irq_desc + irq;
476 spin_lock_irqsave(&irq_controller_lock, flags);
477 p = &desc->action;
478 if ((old = *p) != NULL) {
479 /* Can't share interrupts unless both agree to */
480 if (!(old->flags & new->flags & IRQF_SHARED)) {
481 spin_unlock_irqrestore(&irq_controller_lock, flags);
482 return -EBUSY;
485 /* add new interrupt at end of irq queue */
486 do {
487 p = &old->next;
488 old = *p;
489 } while (old);
490 shared = 1;
493 *p = new;
495 if (!shared) {
496 desc->probing = 0;
497 desc->running = 0;
498 desc->pending = 0;
499 desc->depth = 1;
500 if (!desc->noautoenable) {
501 desc->depth = 0;
502 desc->enabled = 1;
503 desc->chip->unmask(irq);
507 spin_unlock_irqrestore(&irq_controller_lock, flags);
508 return 0;
512 * request_irq - allocate an interrupt line
513 * @irq: Interrupt line to allocate
514 * @handler: Function to be called when the IRQ occurs
515 * @irqflags: Interrupt type flags
516 * @devname: An ascii name for the claiming device
517 * @dev_id: A cookie passed back to the handler function
519 * This call allocates interrupt resources and enables the
520 * interrupt line and IRQ handling. From the point this
521 * call is made your handler function may be invoked. Since
522 * your handler function must clear any interrupt the board
523 * raises, you must take care both to initialise your hardware
524 * and to set up the interrupt handler in the right order.
526 * Dev_id must be globally unique. Normally the address of the
527 * device data structure is used as the cookie. Since the handler
528 * receives this value it makes sense to use it.
530 * If your interrupt is shared you must pass a non NULL dev_id
531 * as this is required when freeing the interrupt.
533 * Flags:
535 * IRQF_SHARED Interrupt is shared
537 * IRQF_DISABLED Disable local interrupts while processing
539 * IRQF_SAMPLE_RANDOM The interrupt can be used for entropy
543 //FIXME - handler used to return void - whats the significance of the change?
544 int request_irq(unsigned int irq, irqreturn_t (*handler)(int, void *, struct pt_regs *),
545 unsigned long irq_flags, const char * devname, void *dev_id)
547 unsigned long retval;
548 struct irqaction *action;
550 if (irq >= NR_IRQS || !irq_desc[irq].valid || !handler ||
551 (irq_flags & IRQF_SHARED && !dev_id))
552 return -EINVAL;
554 action = kmalloc(sizeof(struct irqaction), GFP_KERNEL);
555 if (!action)
556 return -ENOMEM;
558 action->handler = handler;
559 action->flags = irq_flags;
560 cpus_clear(action->mask);
561 action->name = devname;
562 action->next = NULL;
563 action->dev_id = dev_id;
565 retval = setup_irq(irq, action);
567 if (retval)
568 kfree(action);
569 return retval;
572 EXPORT_SYMBOL(request_irq);
575 * free_irq - free an interrupt
576 * @irq: Interrupt line to free
577 * @dev_id: Device identity to free
579 * Remove an interrupt handler. The handler is removed and if the
580 * interrupt line is no longer in use by any driver it is disabled.
581 * On a shared IRQ the caller must ensure the interrupt is disabled
582 * on the card it drives before calling this function.
584 * This function may be called from interrupt context.
586 void free_irq(unsigned int irq, void *dev_id)
588 struct irqaction * action, **p;
589 unsigned long flags;
591 if (irq >= NR_IRQS || !irq_desc[irq].valid) {
592 printk(KERN_ERR "Trying to free IRQ%d\n",irq);
593 #ifdef CONFIG_DEBUG_ERRORS
594 __backtrace();
595 #endif
596 return;
599 spin_lock_irqsave(&irq_controller_lock, flags);
600 for (p = &irq_desc[irq].action; (action = *p) != NULL; p = &action->next) {
601 if (action->dev_id != dev_id)
602 continue;
604 /* Found it - now free it */
605 *p = action->next;
606 kfree(action);
607 goto out;
609 printk(KERN_ERR "Trying to free free IRQ%d\n",irq);
610 #ifdef CONFIG_DEBUG_ERRORS
611 __backtrace();
612 #endif
613 out:
614 spin_unlock_irqrestore(&irq_controller_lock, flags);
617 EXPORT_SYMBOL(free_irq);
619 /* Start the interrupt probing. Unlike other architectures,
620 * we don't return a mask of interrupts from probe_irq_on,
621 * but return the number of interrupts enabled for the probe.
622 * The interrupts which have been enabled for probing is
623 * instead recorded in the irq_desc structure.
625 unsigned long probe_irq_on(void)
627 unsigned int i, irqs = 0;
628 unsigned long delay;
631 * first snaffle up any unassigned but
632 * probe-able interrupts
634 spin_lock_irq(&irq_controller_lock);
635 for (i = 0; i < NR_IRQS; i++) {
636 if (!irq_desc[i].probe_ok || irq_desc[i].action)
637 continue;
639 irq_desc[i].probing = 1;
640 irq_desc[i].triggered = 0;
641 if (irq_desc[i].chip->type)
642 irq_desc[i].chip->type(i, IRQT_PROBE);
643 irq_desc[i].chip->unmask(i);
644 irqs += 1;
646 spin_unlock_irq(&irq_controller_lock);
649 * wait for spurious interrupts to mask themselves out again
651 for (delay = jiffies + HZ/10; time_before(jiffies, delay); )
652 /* min 100ms delay */;
655 * now filter out any obviously spurious interrupts
657 spin_lock_irq(&irq_controller_lock);
658 for (i = 0; i < NR_IRQS; i++) {
659 if (irq_desc[i].probing && irq_desc[i].triggered) {
660 irq_desc[i].probing = 0;
661 irqs -= 1;
664 spin_unlock_irq(&irq_controller_lock);
666 return irqs;
669 EXPORT_SYMBOL(probe_irq_on);
672 * Possible return values:
673 * >= 0 - interrupt number
674 * -1 - no interrupt/many interrupts
676 int probe_irq_off(unsigned long irqs)
678 unsigned int i;
679 int irq_found = NO_IRQ;
682 * look at the interrupts, and find exactly one
683 * that we were probing has been triggered
685 spin_lock_irq(&irq_controller_lock);
686 for (i = 0; i < NR_IRQS; i++) {
687 if (irq_desc[i].probing &&
688 irq_desc[i].triggered) {
689 if (irq_found != NO_IRQ) {
690 irq_found = NO_IRQ;
691 goto out;
693 irq_found = i;
697 if (irq_found == -1)
698 irq_found = NO_IRQ;
699 out:
700 spin_unlock_irq(&irq_controller_lock);
702 return irq_found;
705 EXPORT_SYMBOL(probe_irq_off);
707 void __init init_irq_proc(void)
711 void __init init_IRQ(void)
713 struct irqdesc *desc;
714 extern void init_dma(void);
715 int irq;
717 for (irq = 0, desc = irq_desc; irq < NR_IRQS; irq++, desc++)
718 *desc = bad_irq_desc;
720 arc_init_irq();
721 init_dma();