[ALSA] hdspm - Fix module parameter description
[linux-2.6/kmemtrace.git] / kernel / power / swsusp.c
blobf2bc71b9fe8be2dd226addc38ea7a7e48783317e
1 /*
2 * linux/kernel/power/swsusp.c
4 * This file is to realize architecture-independent
5 * machine suspend feature using pretty near only high-level routines
7 * Copyright (C) 1998-2001 Gabor Kuti <seasons@fornax.hu>
8 * Copyright (C) 1998,2001-2004 Pavel Machek <pavel@suse.cz>
10 * This file is released under the GPLv2.
12 * I'd like to thank the following people for their work:
14 * Pavel Machek <pavel@ucw.cz>:
15 * Modifications, defectiveness pointing, being with me at the very beginning,
16 * suspend to swap space, stop all tasks. Port to 2.4.18-ac and 2.5.17.
18 * Steve Doddi <dirk@loth.demon.co.uk>:
19 * Support the possibility of hardware state restoring.
21 * Raph <grey.havens@earthling.net>:
22 * Support for preserving states of network devices and virtual console
23 * (including X and svgatextmode)
25 * Kurt Garloff <garloff@suse.de>:
26 * Straightened the critical function in order to prevent compilers from
27 * playing tricks with local variables.
29 * Andreas Mohr <a.mohr@mailto.de>
31 * Alex Badea <vampire@go.ro>:
32 * Fixed runaway init
34 * More state savers are welcome. Especially for the scsi layer...
36 * For TODOs,FIXMEs also look in Documentation/power/swsusp.txt
39 #include <linux/module.h>
40 #include <linux/mm.h>
41 #include <linux/suspend.h>
42 #include <linux/smp_lock.h>
43 #include <linux/file.h>
44 #include <linux/utsname.h>
45 #include <linux/version.h>
46 #include <linux/delay.h>
47 #include <linux/reboot.h>
48 #include <linux/bitops.h>
49 #include <linux/vt_kern.h>
50 #include <linux/kbd_kern.h>
51 #include <linux/keyboard.h>
52 #include <linux/spinlock.h>
53 #include <linux/genhd.h>
54 #include <linux/kernel.h>
55 #include <linux/major.h>
56 #include <linux/swap.h>
57 #include <linux/pm.h>
58 #include <linux/device.h>
59 #include <linux/buffer_head.h>
60 #include <linux/swapops.h>
61 #include <linux/bootmem.h>
62 #include <linux/syscalls.h>
63 #include <linux/console.h>
64 #include <linux/highmem.h>
65 #include <linux/bio.h>
66 #include <linux/mount.h>
68 #include <asm/uaccess.h>
69 #include <asm/mmu_context.h>
70 #include <asm/pgtable.h>
71 #include <asm/tlbflush.h>
72 #include <asm/io.h>
74 #include "power.h"
76 /* References to section boundaries */
77 extern const void __nosave_begin, __nosave_end;
79 /* Variables to be preserved over suspend */
80 static int nr_copy_pages_check;
82 extern char resume_file[];
84 /* Local variables that should not be affected by save */
85 static unsigned int nr_copy_pages __nosavedata = 0;
87 /* Suspend pagedir is allocated before final copy, therefore it
88 must be freed after resume
90 Warning: this is evil. There are actually two pagedirs at time of
91 resume. One is "pagedir_save", which is empty frame allocated at
92 time of suspend, that must be freed. Second is "pagedir_nosave",
93 allocated at time of resume, that travels through memory not to
94 collide with anything.
96 Warning: this is even more evil than it seems. Pagedirs this file
97 talks about are completely different from page directories used by
98 MMU hardware.
100 suspend_pagedir_t *pagedir_nosave __nosavedata = NULL;
101 static suspend_pagedir_t *pagedir_save;
103 #define SWSUSP_SIG "S1SUSPEND"
105 static struct swsusp_header {
106 char reserved[PAGE_SIZE - 20 - sizeof(swp_entry_t)];
107 swp_entry_t swsusp_info;
108 char orig_sig[10];
109 char sig[10];
110 } __attribute__((packed, aligned(PAGE_SIZE))) swsusp_header;
112 static struct swsusp_info swsusp_info;
115 * XXX: We try to keep some more pages free so that I/O operations succeed
116 * without paging. Might this be more?
118 #define PAGES_FOR_IO 512
121 * Saving part...
124 /* We memorize in swapfile_used what swap devices are used for suspension */
125 #define SWAPFILE_UNUSED 0
126 #define SWAPFILE_SUSPEND 1 /* This is the suspending device */
127 #define SWAPFILE_IGNORED 2 /* Those are other swap devices ignored for suspension */
129 static unsigned short swapfile_used[MAX_SWAPFILES];
130 static unsigned short root_swap;
132 static int mark_swapfiles(swp_entry_t prev)
134 int error;
136 rw_swap_page_sync(READ,
137 swp_entry(root_swap, 0),
138 virt_to_page((unsigned long)&swsusp_header));
139 if (!memcmp("SWAP-SPACE",swsusp_header.sig, 10) ||
140 !memcmp("SWAPSPACE2",swsusp_header.sig, 10)) {
141 memcpy(swsusp_header.orig_sig,swsusp_header.sig, 10);
142 memcpy(swsusp_header.sig,SWSUSP_SIG, 10);
143 swsusp_header.swsusp_info = prev;
144 error = rw_swap_page_sync(WRITE,
145 swp_entry(root_swap, 0),
146 virt_to_page((unsigned long)
147 &swsusp_header));
148 } else {
149 pr_debug("swsusp: Partition is not swap space.\n");
150 error = -ENODEV;
152 return error;
156 * Check whether the swap device is the specified resume
157 * device, irrespective of whether they are specified by
158 * identical names.
160 * (Thus, device inode aliasing is allowed. You can say /dev/hda4
161 * instead of /dev/ide/host0/bus0/target0/lun0/part4 [if using devfs]
162 * and they'll be considered the same device. This is *necessary* for
163 * devfs, since the resume code can only recognize the form /dev/hda4,
164 * but the suspend code would see the long name.)
166 static int is_resume_device(const struct swap_info_struct *swap_info)
168 struct file *file = swap_info->swap_file;
169 struct inode *inode = file->f_dentry->d_inode;
171 return S_ISBLK(inode->i_mode) &&
172 swsusp_resume_device == MKDEV(imajor(inode), iminor(inode));
175 static int swsusp_swap_check(void) /* This is called before saving image */
177 int i, len;
179 len=strlen(resume_file);
180 root_swap = 0xFFFF;
182 swap_list_lock();
183 for (i=0; i<MAX_SWAPFILES; i++) {
184 if (swap_info[i].flags == 0) {
185 swapfile_used[i]=SWAPFILE_UNUSED;
186 } else {
187 if (!len) {
188 printk(KERN_WARNING "resume= option should be used to set suspend device" );
189 if (root_swap == 0xFFFF) {
190 swapfile_used[i] = SWAPFILE_SUSPEND;
191 root_swap = i;
192 } else
193 swapfile_used[i] = SWAPFILE_IGNORED;
194 } else {
195 /* we ignore all swap devices that are not the resume_file */
196 if (is_resume_device(&swap_info[i])) {
197 swapfile_used[i] = SWAPFILE_SUSPEND;
198 root_swap = i;
199 } else {
200 swapfile_used[i] = SWAPFILE_IGNORED;
205 swap_list_unlock();
206 return (root_swap != 0xffff) ? 0 : -ENODEV;
210 * This is called after saving image so modification
211 * will be lost after resume... and that's what we want.
212 * we make the device unusable. A new call to
213 * lock_swapdevices can unlock the devices.
215 static void lock_swapdevices(void)
217 int i;
219 swap_list_lock();
220 for (i = 0; i< MAX_SWAPFILES; i++)
221 if (swapfile_used[i] == SWAPFILE_IGNORED) {
222 swap_info[i].flags ^= 0xFF;
224 swap_list_unlock();
228 * write_swap_page - Write one page to a fresh swap location.
229 * @addr: Address we're writing.
230 * @loc: Place to store the entry we used.
232 * Allocate a new swap entry and 'sync' it. Note we discard -EIO
233 * errors. That is an artifact left over from swsusp. It did not
234 * check the return of rw_swap_page_sync() at all, since most pages
235 * written back to swap would return -EIO.
236 * This is a partial improvement, since we will at least return other
237 * errors, though we need to eventually fix the damn code.
239 static int write_page(unsigned long addr, swp_entry_t * loc)
241 swp_entry_t entry;
242 int error = 0;
244 entry = get_swap_page();
245 if (swp_offset(entry) &&
246 swapfile_used[swp_type(entry)] == SWAPFILE_SUSPEND) {
247 error = rw_swap_page_sync(WRITE, entry,
248 virt_to_page(addr));
249 if (error == -EIO)
250 error = 0;
251 if (!error)
252 *loc = entry;
253 } else
254 error = -ENOSPC;
255 return error;
259 * data_free - Free the swap entries used by the saved image.
261 * Walk the list of used swap entries and free each one.
262 * This is only used for cleanup when suspend fails.
264 static void data_free(void)
266 swp_entry_t entry;
267 int i;
269 for (i = 0; i < nr_copy_pages; i++) {
270 entry = (pagedir_nosave + i)->swap_address;
271 if (entry.val)
272 swap_free(entry);
273 else
274 break;
275 (pagedir_nosave + i)->swap_address = (swp_entry_t){0};
280 * data_write - Write saved image to swap.
282 * Walk the list of pages in the image and sync each one to swap.
284 static int data_write(void)
286 int error = 0, i = 0;
287 unsigned int mod = nr_copy_pages / 100;
288 struct pbe *p;
290 if (!mod)
291 mod = 1;
293 printk( "Writing data to swap (%d pages)... ", nr_copy_pages );
294 for_each_pbe (p, pagedir_nosave) {
295 if (!(i%mod))
296 printk( "\b\b\b\b%3d%%", i / mod );
297 if ((error = write_page(p->address, &(p->swap_address))))
298 return error;
299 i++;
301 printk("\b\b\b\bdone\n");
302 return error;
305 static void dump_info(void)
307 pr_debug(" swsusp: Version: %u\n",swsusp_info.version_code);
308 pr_debug(" swsusp: Num Pages: %ld\n",swsusp_info.num_physpages);
309 pr_debug(" swsusp: UTS Sys: %s\n",swsusp_info.uts.sysname);
310 pr_debug(" swsusp: UTS Node: %s\n",swsusp_info.uts.nodename);
311 pr_debug(" swsusp: UTS Release: %s\n",swsusp_info.uts.release);
312 pr_debug(" swsusp: UTS Version: %s\n",swsusp_info.uts.version);
313 pr_debug(" swsusp: UTS Machine: %s\n",swsusp_info.uts.machine);
314 pr_debug(" swsusp: UTS Domain: %s\n",swsusp_info.uts.domainname);
315 pr_debug(" swsusp: CPUs: %d\n",swsusp_info.cpus);
316 pr_debug(" swsusp: Image: %ld Pages\n",swsusp_info.image_pages);
317 pr_debug(" swsusp: Pagedir: %ld Pages\n",swsusp_info.pagedir_pages);
320 static void init_header(void)
322 memset(&swsusp_info, 0, sizeof(swsusp_info));
323 swsusp_info.version_code = LINUX_VERSION_CODE;
324 swsusp_info.num_physpages = num_physpages;
325 memcpy(&swsusp_info.uts, &system_utsname, sizeof(system_utsname));
327 swsusp_info.suspend_pagedir = pagedir_nosave;
328 swsusp_info.cpus = num_online_cpus();
329 swsusp_info.image_pages = nr_copy_pages;
332 static int close_swap(void)
334 swp_entry_t entry;
335 int error;
337 dump_info();
338 error = write_page((unsigned long)&swsusp_info, &entry);
339 if (!error) {
340 printk( "S" );
341 error = mark_swapfiles(entry);
342 printk( "|\n" );
344 return error;
348 * free_pagedir_entries - Free pages used by the page directory.
350 * This is used during suspend for error recovery.
353 static void free_pagedir_entries(void)
355 int i;
357 for (i = 0; i < swsusp_info.pagedir_pages; i++)
358 swap_free(swsusp_info.pagedir[i]);
363 * write_pagedir - Write the array of pages holding the page directory.
364 * @last: Last swap entry we write (needed for header).
367 static int write_pagedir(void)
369 int error = 0;
370 unsigned n = 0;
371 struct pbe * pbe;
373 printk( "Writing pagedir...");
374 for_each_pb_page (pbe, pagedir_nosave) {
375 if ((error = write_page((unsigned long)pbe, &swsusp_info.pagedir[n++])))
376 return error;
379 swsusp_info.pagedir_pages = n;
380 printk("done (%u pages)\n", n);
381 return error;
385 * write_suspend_image - Write entire image and metadata.
389 static int write_suspend_image(void)
391 int error;
393 init_header();
394 if ((error = data_write()))
395 goto FreeData;
397 if ((error = write_pagedir()))
398 goto FreePagedir;
400 if ((error = close_swap()))
401 goto FreePagedir;
402 Done:
403 return error;
404 FreePagedir:
405 free_pagedir_entries();
406 FreeData:
407 data_free();
408 goto Done;
412 #ifdef CONFIG_HIGHMEM
413 struct highmem_page {
414 char *data;
415 struct page *page;
416 struct highmem_page *next;
419 static struct highmem_page *highmem_copy;
421 static int save_highmem_zone(struct zone *zone)
423 unsigned long zone_pfn;
424 mark_free_pages(zone);
425 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
426 struct page *page;
427 struct highmem_page *save;
428 void *kaddr;
429 unsigned long pfn = zone_pfn + zone->zone_start_pfn;
431 if (!(pfn%1000))
432 printk(".");
433 if (!pfn_valid(pfn))
434 continue;
435 page = pfn_to_page(pfn);
437 * This condition results from rvmalloc() sans vmalloc_32()
438 * and architectural memory reservations. This should be
439 * corrected eventually when the cases giving rise to this
440 * are better understood.
442 if (PageReserved(page)) {
443 printk("highmem reserved page?!\n");
444 continue;
446 BUG_ON(PageNosave(page));
447 if (PageNosaveFree(page))
448 continue;
449 save = kmalloc(sizeof(struct highmem_page), GFP_ATOMIC);
450 if (!save)
451 return -ENOMEM;
452 save->next = highmem_copy;
453 save->page = page;
454 save->data = (void *) get_zeroed_page(GFP_ATOMIC);
455 if (!save->data) {
456 kfree(save);
457 return -ENOMEM;
459 kaddr = kmap_atomic(page, KM_USER0);
460 memcpy(save->data, kaddr, PAGE_SIZE);
461 kunmap_atomic(kaddr, KM_USER0);
462 highmem_copy = save;
464 return 0;
466 #endif /* CONFIG_HIGHMEM */
469 static int save_highmem(void)
471 #ifdef CONFIG_HIGHMEM
472 struct zone *zone;
473 int res = 0;
475 pr_debug("swsusp: Saving Highmem\n");
476 for_each_zone (zone) {
477 if (is_highmem(zone))
478 res = save_highmem_zone(zone);
479 if (res)
480 return res;
482 #endif
483 return 0;
486 static int restore_highmem(void)
488 #ifdef CONFIG_HIGHMEM
489 printk("swsusp: Restoring Highmem\n");
490 while (highmem_copy) {
491 struct highmem_page *save = highmem_copy;
492 void *kaddr;
493 highmem_copy = save->next;
495 kaddr = kmap_atomic(save->page, KM_USER0);
496 memcpy(kaddr, save->data, PAGE_SIZE);
497 kunmap_atomic(kaddr, KM_USER0);
498 free_page((long) save->data);
499 kfree(save);
501 #endif
502 return 0;
506 static int pfn_is_nosave(unsigned long pfn)
508 unsigned long nosave_begin_pfn = __pa(&__nosave_begin) >> PAGE_SHIFT;
509 unsigned long nosave_end_pfn = PAGE_ALIGN(__pa(&__nosave_end)) >> PAGE_SHIFT;
510 return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
514 * saveable - Determine whether a page should be cloned or not.
515 * @pfn: The page
517 * We save a page if it's Reserved, and not in the range of pages
518 * statically defined as 'unsaveable', or if it isn't reserved, and
519 * isn't part of a free chunk of pages.
522 static int saveable(struct zone * zone, unsigned long * zone_pfn)
524 unsigned long pfn = *zone_pfn + zone->zone_start_pfn;
525 struct page * page;
527 if (!pfn_valid(pfn))
528 return 0;
530 page = pfn_to_page(pfn);
531 BUG_ON(PageReserved(page) && PageNosave(page));
532 if (PageNosave(page))
533 return 0;
534 if (PageReserved(page) && pfn_is_nosave(pfn)) {
535 pr_debug("[nosave pfn 0x%lx]", pfn);
536 return 0;
538 if (PageNosaveFree(page))
539 return 0;
541 return 1;
544 static void count_data_pages(void)
546 struct zone *zone;
547 unsigned long zone_pfn;
549 nr_copy_pages = 0;
551 for_each_zone (zone) {
552 if (is_highmem(zone))
553 continue;
554 mark_free_pages(zone);
555 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
556 nr_copy_pages += saveable(zone, &zone_pfn);
561 static void copy_data_pages(void)
563 struct zone *zone;
564 unsigned long zone_pfn;
565 struct pbe * pbe = pagedir_nosave;
567 pr_debug("copy_data_pages(): pages to copy: %d\n", nr_copy_pages);
568 for_each_zone (zone) {
569 if (is_highmem(zone))
570 continue;
571 mark_free_pages(zone);
572 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
573 if (saveable(zone, &zone_pfn)) {
574 struct page * page;
575 page = pfn_to_page(zone_pfn + zone->zone_start_pfn);
576 BUG_ON(!pbe);
577 pbe->orig_address = (long) page_address(page);
578 /* copy_page is not usable for copying task structs. */
579 memcpy((void *)pbe->address, (void *)pbe->orig_address, PAGE_SIZE);
580 pbe = pbe->next;
584 BUG_ON(pbe);
589 * calc_nr - Determine the number of pages needed for a pbe list.
592 static int calc_nr(int nr_copy)
594 int extra = 0;
595 int mod = !!(nr_copy % PBES_PER_PAGE);
596 int diff = (nr_copy / PBES_PER_PAGE) + mod;
598 do {
599 extra += diff;
600 nr_copy += diff;
601 mod = !!(nr_copy % PBES_PER_PAGE);
602 diff = (nr_copy / PBES_PER_PAGE) + mod - extra;
603 } while (diff > 0);
605 return nr_copy;
609 * free_pagedir - free pages allocated with alloc_pagedir()
612 static inline void free_pagedir(struct pbe *pblist)
614 struct pbe *pbe;
616 while (pblist) {
617 pbe = (pblist + PB_PAGE_SKIP)->next;
618 free_page((unsigned long)pblist);
619 pblist = pbe;
624 * fill_pb_page - Create a list of PBEs on a given memory page
627 static inline void fill_pb_page(struct pbe *pbpage)
629 struct pbe *p;
631 p = pbpage;
632 pbpage += PB_PAGE_SKIP;
634 p->next = p + 1;
635 while (++p < pbpage);
639 * create_pbe_list - Create a list of PBEs on top of a given chain
640 * of memory pages allocated with alloc_pagedir()
643 static void create_pbe_list(struct pbe *pblist, unsigned nr_pages)
645 struct pbe *pbpage, *p;
646 unsigned num = PBES_PER_PAGE;
648 for_each_pb_page (pbpage, pblist) {
649 if (num >= nr_pages)
650 break;
652 fill_pb_page(pbpage);
653 num += PBES_PER_PAGE;
655 if (pbpage) {
656 for (num -= PBES_PER_PAGE - 1, p = pbpage; num < nr_pages; p++, num++)
657 p->next = p + 1;
658 p->next = NULL;
660 pr_debug("create_pbe_list(): initialized %d PBEs\n", num);
664 * alloc_pagedir - Allocate the page directory.
666 * First, determine exactly how many pages we need and
667 * allocate them.
669 * We arrange the pages in a chain: each page is an array of PBES_PER_PAGE
670 * struct pbe elements (pbes) and the last element in the page points
671 * to the next page.
673 * On each page we set up a list of struct_pbe elements.
676 static struct pbe * alloc_pagedir(unsigned nr_pages)
678 unsigned num;
679 struct pbe *pblist, *pbe;
681 if (!nr_pages)
682 return NULL;
684 pr_debug("alloc_pagedir(): nr_pages = %d\n", nr_pages);
685 pblist = (struct pbe *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
686 for (pbe = pblist, num = PBES_PER_PAGE; pbe && num < nr_pages;
687 pbe = pbe->next, num += PBES_PER_PAGE) {
688 pbe += PB_PAGE_SKIP;
689 pbe->next = (struct pbe *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
691 if (!pbe) { /* get_zeroed_page() failed */
692 free_pagedir(pblist);
693 pblist = NULL;
695 return pblist;
699 * free_image_pages - Free pages allocated for snapshot
702 static void free_image_pages(void)
704 struct pbe * p;
706 for_each_pbe (p, pagedir_save) {
707 if (p->address) {
708 ClearPageNosave(virt_to_page(p->address));
709 free_page(p->address);
710 p->address = 0;
716 * alloc_image_pages - Allocate pages for the snapshot.
719 static int alloc_image_pages(void)
721 struct pbe * p;
723 for_each_pbe (p, pagedir_save) {
724 p->address = get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
725 if (!p->address)
726 return -ENOMEM;
727 SetPageNosave(virt_to_page(p->address));
729 return 0;
732 void swsusp_free(void)
734 BUG_ON(PageNosave(virt_to_page(pagedir_save)));
735 BUG_ON(PageNosaveFree(virt_to_page(pagedir_save)));
736 free_image_pages();
737 free_pagedir(pagedir_save);
742 * enough_free_mem - Make sure we enough free memory to snapshot.
744 * Returns TRUE or FALSE after checking the number of available
745 * free pages.
748 static int enough_free_mem(void)
750 if (nr_free_pages() < (nr_copy_pages + PAGES_FOR_IO)) {
751 pr_debug("swsusp: Not enough free pages: Have %d\n",
752 nr_free_pages());
753 return 0;
755 return 1;
760 * enough_swap - Make sure we have enough swap to save the image.
762 * Returns TRUE or FALSE after checking the total amount of swap
763 * space avaiable.
765 * FIXME: si_swapinfo(&i) returns all swap devices information.
766 * We should only consider resume_device.
769 static int enough_swap(void)
771 struct sysinfo i;
773 si_swapinfo(&i);
774 if (i.freeswap < (nr_copy_pages + PAGES_FOR_IO)) {
775 pr_debug("swsusp: Not enough swap. Need %ld\n",i.freeswap);
776 return 0;
778 return 1;
781 static int swsusp_alloc(void)
783 int error;
785 pagedir_nosave = NULL;
786 nr_copy_pages = calc_nr(nr_copy_pages);
788 pr_debug("suspend: (pages needed: %d + %d free: %d)\n",
789 nr_copy_pages, PAGES_FOR_IO, nr_free_pages());
791 if (!enough_free_mem())
792 return -ENOMEM;
794 if (!enough_swap())
795 return -ENOSPC;
797 if (!(pagedir_save = alloc_pagedir(nr_copy_pages))) {
798 printk(KERN_ERR "suspend: Allocating pagedir failed.\n");
799 return -ENOMEM;
801 create_pbe_list(pagedir_save, nr_copy_pages);
802 pagedir_nosave = pagedir_save;
803 if ((error = alloc_image_pages())) {
804 printk(KERN_ERR "suspend: Allocating image pages failed.\n");
805 swsusp_free();
806 return error;
809 nr_copy_pages_check = nr_copy_pages;
810 return 0;
813 static int suspend_prepare_image(void)
815 int error;
817 pr_debug("swsusp: critical section: \n");
818 if (save_highmem()) {
819 printk(KERN_CRIT "Suspend machine: Not enough free pages for highmem\n");
820 restore_highmem();
821 return -ENOMEM;
824 drain_local_pages();
825 count_data_pages();
826 printk("swsusp: Need to copy %u pages\n", nr_copy_pages);
828 error = swsusp_alloc();
829 if (error)
830 return error;
832 /* During allocating of suspend pagedir, new cold pages may appear.
833 * Kill them.
835 drain_local_pages();
836 copy_data_pages();
839 * End of critical section. From now on, we can write to memory,
840 * but we should not touch disk. This specially means we must _not_
841 * touch swap space! Except we must write out our image of course.
844 printk("swsusp: critical section/: done (%d pages copied)\n", nr_copy_pages );
845 return 0;
849 /* It is important _NOT_ to umount filesystems at this point. We want
850 * them synced (in case something goes wrong) but we DO not want to mark
851 * filesystem clean: it is not. (And it does not matter, if we resume
852 * correctly, we'll mark system clean, anyway.)
854 int swsusp_write(void)
856 int error;
857 device_resume();
858 lock_swapdevices();
859 error = write_suspend_image();
860 /* This will unlock ignored swap devices since writing is finished */
861 lock_swapdevices();
862 return error;
867 extern asmlinkage int swsusp_arch_suspend(void);
868 extern asmlinkage int swsusp_arch_resume(void);
871 asmlinkage int swsusp_save(void)
873 return suspend_prepare_image();
876 int swsusp_suspend(void)
878 int error;
879 if ((error = arch_prepare_suspend()))
880 return error;
881 local_irq_disable();
882 /* At this point, device_suspend() has been called, but *not*
883 * device_power_down(). We *must* device_power_down() now.
884 * Otherwise, drivers for some devices (e.g. interrupt controllers)
885 * become desynchronized with the actual state of the hardware
886 * at resume time, and evil weirdness ensues.
888 if ((error = device_power_down(PMSG_FREEZE))) {
889 local_irq_enable();
890 return error;
893 if ((error = swsusp_swap_check())) {
894 printk(KERN_ERR "swsusp: FATAL: cannot find swap device, try "
895 "swapon -a!\n");
896 local_irq_enable();
897 return error;
900 save_processor_state();
901 if ((error = swsusp_arch_suspend()))
902 printk("Error %d suspending\n", error);
903 /* Restore control flow magically appears here */
904 restore_processor_state();
905 BUG_ON (nr_copy_pages_check != nr_copy_pages);
906 restore_highmem();
907 device_power_up();
908 local_irq_enable();
909 return error;
912 int swsusp_resume(void)
914 int error;
915 local_irq_disable();
916 if (device_power_down(PMSG_FREEZE))
917 printk(KERN_ERR "Some devices failed to power down, very bad\n");
918 /* We'll ignore saved state, but this gets preempt count (etc) right */
919 save_processor_state();
920 error = swsusp_arch_resume();
921 /* Code below is only ever reached in case of failure. Otherwise
922 * execution continues at place where swsusp_arch_suspend was called
924 BUG_ON(!error);
925 restore_processor_state();
926 restore_highmem();
927 device_power_up();
928 local_irq_enable();
929 return error;
933 * On resume, for storing the PBE list and the image,
934 * we can only use memory pages that do not conflict with the pages
935 * which had been used before suspend.
937 * We don't know which pages are usable until we allocate them.
939 * Allocated but unusable (ie eaten) memory pages are linked together
940 * to create a list, so that we can free them easily
942 * We could have used a type other than (void *)
943 * for this purpose, but ...
945 static void **eaten_memory = NULL;
947 static inline void eat_page(void *page)
949 void **c;
951 c = eaten_memory;
952 eaten_memory = page;
953 *eaten_memory = c;
956 static unsigned long get_usable_page(unsigned gfp_mask)
958 unsigned long m;
960 m = get_zeroed_page(gfp_mask);
961 while (!PageNosaveFree(virt_to_page(m))) {
962 eat_page((void *)m);
963 m = get_zeroed_page(gfp_mask);
964 if (!m)
965 break;
967 return m;
970 static void free_eaten_memory(void)
972 unsigned long m;
973 void **c;
974 int i = 0;
976 c = eaten_memory;
977 while (c) {
978 m = (unsigned long)c;
979 c = *c;
980 free_page(m);
981 i++;
983 eaten_memory = NULL;
984 pr_debug("swsusp: %d unused pages freed\n", i);
988 * check_pagedir - We ensure here that pages that the PBEs point to
989 * won't collide with pages where we're going to restore from the loaded
990 * pages later
993 static int check_pagedir(struct pbe *pblist)
995 struct pbe *p;
997 /* This is necessary, so that we can free allocated pages
998 * in case of failure
1000 for_each_pbe (p, pblist)
1001 p->address = 0UL;
1003 for_each_pbe (p, pblist) {
1004 p->address = get_usable_page(GFP_ATOMIC);
1005 if (!p->address)
1006 return -ENOMEM;
1008 return 0;
1012 * swsusp_pagedir_relocate - It is possible, that some memory pages
1013 * occupied by the list of PBEs collide with pages where we're going to
1014 * restore from the loaded pages later. We relocate them here.
1017 static struct pbe * swsusp_pagedir_relocate(struct pbe *pblist)
1019 struct zone *zone;
1020 unsigned long zone_pfn;
1021 struct pbe *pbpage, *tail, *p;
1022 void *m;
1023 int rel = 0, error = 0;
1025 if (!pblist) /* a sanity check */
1026 return NULL;
1028 pr_debug("swsusp: Relocating pagedir (%lu pages to check)\n",
1029 swsusp_info.pagedir_pages);
1031 /* Set page flags */
1033 for_each_zone (zone) {
1034 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
1035 SetPageNosaveFree(pfn_to_page(zone_pfn +
1036 zone->zone_start_pfn));
1039 /* Clear orig addresses */
1041 for_each_pbe (p, pblist)
1042 ClearPageNosaveFree(virt_to_page(p->orig_address));
1044 tail = pblist + PB_PAGE_SKIP;
1046 /* Relocate colliding pages */
1048 for_each_pb_page (pbpage, pblist) {
1049 if (!PageNosaveFree(virt_to_page((unsigned long)pbpage))) {
1050 m = (void *)get_usable_page(GFP_ATOMIC | __GFP_COLD);
1051 if (!m) {
1052 error = -ENOMEM;
1053 break;
1055 memcpy(m, (void *)pbpage, PAGE_SIZE);
1056 if (pbpage == pblist)
1057 pblist = (struct pbe *)m;
1058 else
1059 tail->next = (struct pbe *)m;
1061 eat_page((void *)pbpage);
1062 pbpage = (struct pbe *)m;
1064 /* We have to link the PBEs again */
1066 for (p = pbpage; p < pbpage + PB_PAGE_SKIP; p++)
1067 if (p->next) /* needed to save the end */
1068 p->next = p + 1;
1070 rel++;
1072 tail = pbpage + PB_PAGE_SKIP;
1075 if (error) {
1076 printk("\nswsusp: Out of memory\n\n");
1077 free_pagedir(pblist);
1078 free_eaten_memory();
1079 pblist = NULL;
1081 else
1082 printk("swsusp: Relocated %d pages\n", rel);
1084 return pblist;
1088 * Using bio to read from swap.
1089 * This code requires a bit more work than just using buffer heads
1090 * but, it is the recommended way for 2.5/2.6.
1091 * The following are to signal the beginning and end of I/O. Bios
1092 * finish asynchronously, while we want them to happen synchronously.
1093 * A simple atomic_t, and a wait loop take care of this problem.
1096 static atomic_t io_done = ATOMIC_INIT(0);
1098 static int end_io(struct bio * bio, unsigned int num, int err)
1100 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1101 panic("I/O error reading memory image");
1102 atomic_set(&io_done, 0);
1103 return 0;
1106 static struct block_device * resume_bdev;
1109 * submit - submit BIO request.
1110 * @rw: READ or WRITE.
1111 * @off physical offset of page.
1112 * @page: page we're reading or writing.
1114 * Straight from the textbook - allocate and initialize the bio.
1115 * If we're writing, make sure the page is marked as dirty.
1116 * Then submit it and wait.
1119 static int submit(int rw, pgoff_t page_off, void * page)
1121 int error = 0;
1122 struct bio * bio;
1124 bio = bio_alloc(GFP_ATOMIC, 1);
1125 if (!bio)
1126 return -ENOMEM;
1127 bio->bi_sector = page_off * (PAGE_SIZE >> 9);
1128 bio_get(bio);
1129 bio->bi_bdev = resume_bdev;
1130 bio->bi_end_io = end_io;
1132 if (bio_add_page(bio, virt_to_page(page), PAGE_SIZE, 0) < PAGE_SIZE) {
1133 printk("swsusp: ERROR: adding page to bio at %ld\n",page_off);
1134 error = -EFAULT;
1135 goto Done;
1138 if (rw == WRITE)
1139 bio_set_pages_dirty(bio);
1141 atomic_set(&io_done, 1);
1142 submit_bio(rw | (1 << BIO_RW_SYNC), bio);
1143 while (atomic_read(&io_done))
1144 yield();
1146 Done:
1147 bio_put(bio);
1148 return error;
1151 static int bio_read_page(pgoff_t page_off, void * page)
1153 return submit(READ, page_off, page);
1156 static int bio_write_page(pgoff_t page_off, void * page)
1158 return submit(WRITE, page_off, page);
1162 * Sanity check if this image makes sense with this kernel/swap context
1163 * I really don't think that it's foolproof but more than nothing..
1166 static const char * sanity_check(void)
1168 dump_info();
1169 if (swsusp_info.version_code != LINUX_VERSION_CODE)
1170 return "kernel version";
1171 if (swsusp_info.num_physpages != num_physpages)
1172 return "memory size";
1173 if (strcmp(swsusp_info.uts.sysname,system_utsname.sysname))
1174 return "system type";
1175 if (strcmp(swsusp_info.uts.release,system_utsname.release))
1176 return "kernel release";
1177 if (strcmp(swsusp_info.uts.version,system_utsname.version))
1178 return "version";
1179 if (strcmp(swsusp_info.uts.machine,system_utsname.machine))
1180 return "machine";
1181 #if 0
1182 if(swsusp_info.cpus != num_online_cpus())
1183 return "number of cpus";
1184 #endif
1185 return NULL;
1189 static int check_header(void)
1191 const char * reason = NULL;
1192 int error;
1194 if ((error = bio_read_page(swp_offset(swsusp_header.swsusp_info), &swsusp_info)))
1195 return error;
1197 /* Is this same machine? */
1198 if ((reason = sanity_check())) {
1199 printk(KERN_ERR "swsusp: Resume mismatch: %s\n",reason);
1200 return -EPERM;
1202 nr_copy_pages = swsusp_info.image_pages;
1203 return error;
1206 static int check_sig(void)
1208 int error;
1210 memset(&swsusp_header, 0, sizeof(swsusp_header));
1211 if ((error = bio_read_page(0, &swsusp_header)))
1212 return error;
1213 if (!memcmp(SWSUSP_SIG, swsusp_header.sig, 10)) {
1214 memcpy(swsusp_header.sig, swsusp_header.orig_sig, 10);
1217 * Reset swap signature now.
1219 error = bio_write_page(0, &swsusp_header);
1220 } else {
1221 printk(KERN_ERR "swsusp: Suspend partition has wrong signature?\n");
1222 return -EINVAL;
1224 if (!error)
1225 pr_debug("swsusp: Signature found, resuming\n");
1226 return error;
1230 * data_read - Read image pages from swap.
1232 * You do not need to check for overlaps, check_pagedir()
1233 * already did that.
1236 static int data_read(struct pbe *pblist)
1238 struct pbe * p;
1239 int error = 0;
1240 int i = 0;
1241 int mod = swsusp_info.image_pages / 100;
1243 if (!mod)
1244 mod = 1;
1246 printk("swsusp: Reading image data (%lu pages): ",
1247 swsusp_info.image_pages);
1249 for_each_pbe (p, pblist) {
1250 if (!(i % mod))
1251 printk("\b\b\b\b%3d%%", i / mod);
1253 error = bio_read_page(swp_offset(p->swap_address),
1254 (void *)p->address);
1255 if (error)
1256 return error;
1258 i++;
1260 printk("\b\b\b\bdone\n");
1261 return error;
1265 * read_pagedir - Read page backup list pages from swap
1268 static int read_pagedir(struct pbe *pblist)
1270 struct pbe *pbpage, *p;
1271 unsigned i = 0;
1272 int error;
1274 if (!pblist)
1275 return -EFAULT;
1277 printk("swsusp: Reading pagedir (%lu pages)\n",
1278 swsusp_info.pagedir_pages);
1280 for_each_pb_page (pbpage, pblist) {
1281 unsigned long offset = swp_offset(swsusp_info.pagedir[i++]);
1283 error = -EFAULT;
1284 if (offset) {
1285 p = (pbpage + PB_PAGE_SKIP)->next;
1286 error = bio_read_page(offset, (void *)pbpage);
1287 (pbpage + PB_PAGE_SKIP)->next = p;
1289 if (error)
1290 break;
1293 if (error)
1294 free_page((unsigned long)pblist);
1296 BUG_ON(i != swsusp_info.pagedir_pages);
1298 return error;
1302 static int check_suspend_image(void)
1304 int error = 0;
1306 if ((error = check_sig()))
1307 return error;
1309 if ((error = check_header()))
1310 return error;
1312 return 0;
1315 static int read_suspend_image(void)
1317 int error = 0;
1318 struct pbe *p;
1320 if (!(p = alloc_pagedir(nr_copy_pages)))
1321 return -ENOMEM;
1323 if ((error = read_pagedir(p)))
1324 return error;
1326 create_pbe_list(p, nr_copy_pages);
1328 if (!(pagedir_nosave = swsusp_pagedir_relocate(p)))
1329 return -ENOMEM;
1331 /* Allocate memory for the image and read the data from swap */
1333 error = check_pagedir(pagedir_nosave);
1334 free_eaten_memory();
1335 if (!error)
1336 error = data_read(pagedir_nosave);
1338 if (error) { /* We fail cleanly */
1339 for_each_pbe (p, pagedir_nosave)
1340 if (p->address) {
1341 free_page(p->address);
1342 p->address = 0UL;
1344 free_pagedir(pagedir_nosave);
1346 return error;
1350 * swsusp_check - Check for saved image in swap
1353 int swsusp_check(void)
1355 int error;
1357 resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ);
1358 if (!IS_ERR(resume_bdev)) {
1359 set_blocksize(resume_bdev, PAGE_SIZE);
1360 error = check_suspend_image();
1361 if (error)
1362 blkdev_put(resume_bdev);
1363 } else
1364 error = PTR_ERR(resume_bdev);
1366 if (!error)
1367 pr_debug("swsusp: resume file found\n");
1368 else
1369 pr_debug("swsusp: Error %d check for resume file\n", error);
1370 return error;
1374 * swsusp_read - Read saved image from swap.
1377 int swsusp_read(void)
1379 int error;
1381 if (IS_ERR(resume_bdev)) {
1382 pr_debug("swsusp: block device not initialised\n");
1383 return PTR_ERR(resume_bdev);
1386 error = read_suspend_image();
1387 blkdev_put(resume_bdev);
1389 if (!error)
1390 pr_debug("swsusp: Reading resume file was successful\n");
1391 else
1392 pr_debug("swsusp: Error %d resuming\n", error);
1393 return error;
1397 * swsusp_close - close swap device.
1400 void swsusp_close(void)
1402 if (IS_ERR(resume_bdev)) {
1403 pr_debug("swsusp: block device not initialised\n");
1404 return;
1407 blkdev_put(resume_bdev);