[CIFS] fix mempool destroy done in wrong order in cifs error path
[linux-2.6/kmemtrace.git] / net / socket.c
blobf4530196a70a30c10f87450ad47bdfaa9e28f925
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
88 #include <asm/uaccess.h>
89 #include <asm/unistd.h>
91 #include <net/compat.h>
93 #include <net/sock.h>
94 #include <linux/netfilter.h>
96 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
97 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
98 unsigned long nr_segs, loff_t pos);
99 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
100 unsigned long nr_segs, loff_t pos);
101 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
103 static int sock_close(struct inode *inode, struct file *file);
104 static unsigned int sock_poll(struct file *file,
105 struct poll_table_struct *wait);
106 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
107 #ifdef CONFIG_COMPAT
108 static long compat_sock_ioctl(struct file *file,
109 unsigned int cmd, unsigned long arg);
110 #endif
111 static int sock_fasync(int fd, struct file *filp, int on);
112 static ssize_t sock_sendpage(struct file *file, struct page *page,
113 int offset, size_t size, loff_t *ppos, int more);
116 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
117 * in the operation structures but are done directly via the socketcall() multiplexor.
120 static const struct file_operations socket_file_ops = {
121 .owner = THIS_MODULE,
122 .llseek = no_llseek,
123 .aio_read = sock_aio_read,
124 .aio_write = sock_aio_write,
125 .poll = sock_poll,
126 .unlocked_ioctl = sock_ioctl,
127 #ifdef CONFIG_COMPAT
128 .compat_ioctl = compat_sock_ioctl,
129 #endif
130 .mmap = sock_mmap,
131 .open = sock_no_open, /* special open code to disallow open via /proc */
132 .release = sock_close,
133 .fasync = sock_fasync,
134 .sendpage = sock_sendpage,
135 .splice_write = generic_splice_sendpage,
139 * The protocol list. Each protocol is registered in here.
142 static DEFINE_SPINLOCK(net_family_lock);
143 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
146 * Statistics counters of the socket lists
149 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
152 * Support routines.
153 * Move socket addresses back and forth across the kernel/user
154 * divide and look after the messy bits.
157 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
158 16 for IP, 16 for IPX,
159 24 for IPv6,
160 about 80 for AX.25
161 must be at least one bigger than
162 the AF_UNIX size (see net/unix/af_unix.c
163 :unix_mkname()).
167 * move_addr_to_kernel - copy a socket address into kernel space
168 * @uaddr: Address in user space
169 * @kaddr: Address in kernel space
170 * @ulen: Length in user space
172 * The address is copied into kernel space. If the provided address is
173 * too long an error code of -EINVAL is returned. If the copy gives
174 * invalid addresses -EFAULT is returned. On a success 0 is returned.
177 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
179 if (ulen < 0 || ulen > MAX_SOCK_ADDR)
180 return -EINVAL;
181 if (ulen == 0)
182 return 0;
183 if (copy_from_user(kaddr, uaddr, ulen))
184 return -EFAULT;
185 return audit_sockaddr(ulen, kaddr);
189 * move_addr_to_user - copy an address to user space
190 * @kaddr: kernel space address
191 * @klen: length of address in kernel
192 * @uaddr: user space address
193 * @ulen: pointer to user length field
195 * The value pointed to by ulen on entry is the buffer length available.
196 * This is overwritten with the buffer space used. -EINVAL is returned
197 * if an overlong buffer is specified or a negative buffer size. -EFAULT
198 * is returned if either the buffer or the length field are not
199 * accessible.
200 * After copying the data up to the limit the user specifies, the true
201 * length of the data is written over the length limit the user
202 * specified. Zero is returned for a success.
205 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr,
206 int __user *ulen)
208 int err;
209 int len;
211 err = get_user(len, ulen);
212 if (err)
213 return err;
214 if (len > klen)
215 len = klen;
216 if (len < 0 || len > MAX_SOCK_ADDR)
217 return -EINVAL;
218 if (len) {
219 if (audit_sockaddr(klen, kaddr))
220 return -ENOMEM;
221 if (copy_to_user(uaddr, kaddr, len))
222 return -EFAULT;
225 * "fromlen shall refer to the value before truncation.."
226 * 1003.1g
228 return __put_user(klen, ulen);
231 #define SOCKFS_MAGIC 0x534F434B
233 static struct kmem_cache *sock_inode_cachep __read_mostly;
235 static struct inode *sock_alloc_inode(struct super_block *sb)
237 struct socket_alloc *ei;
239 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
240 if (!ei)
241 return NULL;
242 init_waitqueue_head(&ei->socket.wait);
244 ei->socket.fasync_list = NULL;
245 ei->socket.state = SS_UNCONNECTED;
246 ei->socket.flags = 0;
247 ei->socket.ops = NULL;
248 ei->socket.sk = NULL;
249 ei->socket.file = NULL;
251 return &ei->vfs_inode;
254 static void sock_destroy_inode(struct inode *inode)
256 kmem_cache_free(sock_inode_cachep,
257 container_of(inode, struct socket_alloc, vfs_inode));
260 static void init_once(void *foo, struct kmem_cache *cachep, unsigned long flags)
262 struct socket_alloc *ei = (struct socket_alloc *)foo;
264 inode_init_once(&ei->vfs_inode);
267 static int init_inodecache(void)
269 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
270 sizeof(struct socket_alloc),
272 (SLAB_HWCACHE_ALIGN |
273 SLAB_RECLAIM_ACCOUNT |
274 SLAB_MEM_SPREAD),
275 init_once,
276 NULL);
277 if (sock_inode_cachep == NULL)
278 return -ENOMEM;
279 return 0;
282 static struct super_operations sockfs_ops = {
283 .alloc_inode = sock_alloc_inode,
284 .destroy_inode =sock_destroy_inode,
285 .statfs = simple_statfs,
288 static int sockfs_get_sb(struct file_system_type *fs_type,
289 int flags, const char *dev_name, void *data,
290 struct vfsmount *mnt)
292 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
293 mnt);
296 static struct vfsmount *sock_mnt __read_mostly;
298 static struct file_system_type sock_fs_type = {
299 .name = "sockfs",
300 .get_sb = sockfs_get_sb,
301 .kill_sb = kill_anon_super,
304 static int sockfs_delete_dentry(struct dentry *dentry)
307 * At creation time, we pretended this dentry was hashed
308 * (by clearing DCACHE_UNHASHED bit in d_flags)
309 * At delete time, we restore the truth : not hashed.
310 * (so that dput() can proceed correctly)
312 dentry->d_flags |= DCACHE_UNHASHED;
313 return 0;
317 * sockfs_dname() is called from d_path().
319 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
321 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
322 dentry->d_inode->i_ino);
325 static struct dentry_operations sockfs_dentry_operations = {
326 .d_delete = sockfs_delete_dentry,
327 .d_dname = sockfs_dname,
331 * Obtains the first available file descriptor and sets it up for use.
333 * These functions create file structures and maps them to fd space
334 * of the current process. On success it returns file descriptor
335 * and file struct implicitly stored in sock->file.
336 * Note that another thread may close file descriptor before we return
337 * from this function. We use the fact that now we do not refer
338 * to socket after mapping. If one day we will need it, this
339 * function will increment ref. count on file by 1.
341 * In any case returned fd MAY BE not valid!
342 * This race condition is unavoidable
343 * with shared fd spaces, we cannot solve it inside kernel,
344 * but we take care of internal coherence yet.
347 static int sock_alloc_fd(struct file **filep)
349 int fd;
351 fd = get_unused_fd();
352 if (likely(fd >= 0)) {
353 struct file *file = get_empty_filp();
355 *filep = file;
356 if (unlikely(!file)) {
357 put_unused_fd(fd);
358 return -ENFILE;
360 } else
361 *filep = NULL;
362 return fd;
365 static int sock_attach_fd(struct socket *sock, struct file *file)
367 struct qstr name = { .name = "" };
369 file->f_path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
370 if (unlikely(!file->f_path.dentry))
371 return -ENOMEM;
373 file->f_path.dentry->d_op = &sockfs_dentry_operations;
375 * We dont want to push this dentry into global dentry hash table.
376 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
377 * This permits a working /proc/$pid/fd/XXX on sockets
379 file->f_path.dentry->d_flags &= ~DCACHE_UNHASHED;
380 d_instantiate(file->f_path.dentry, SOCK_INODE(sock));
381 file->f_path.mnt = mntget(sock_mnt);
382 file->f_mapping = file->f_path.dentry->d_inode->i_mapping;
384 sock->file = file;
385 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
386 file->f_mode = FMODE_READ | FMODE_WRITE;
387 file->f_flags = O_RDWR;
388 file->f_pos = 0;
389 file->private_data = sock;
391 return 0;
394 int sock_map_fd(struct socket *sock)
396 struct file *newfile;
397 int fd = sock_alloc_fd(&newfile);
399 if (likely(fd >= 0)) {
400 int err = sock_attach_fd(sock, newfile);
402 if (unlikely(err < 0)) {
403 put_filp(newfile);
404 put_unused_fd(fd);
405 return err;
407 fd_install(fd, newfile);
409 return fd;
412 static struct socket *sock_from_file(struct file *file, int *err)
414 if (file->f_op == &socket_file_ops)
415 return file->private_data; /* set in sock_map_fd */
417 *err = -ENOTSOCK;
418 return NULL;
422 * sockfd_lookup - Go from a file number to its socket slot
423 * @fd: file handle
424 * @err: pointer to an error code return
426 * The file handle passed in is locked and the socket it is bound
427 * too is returned. If an error occurs the err pointer is overwritten
428 * with a negative errno code and NULL is returned. The function checks
429 * for both invalid handles and passing a handle which is not a socket.
431 * On a success the socket object pointer is returned.
434 struct socket *sockfd_lookup(int fd, int *err)
436 struct file *file;
437 struct socket *sock;
439 file = fget(fd);
440 if (!file) {
441 *err = -EBADF;
442 return NULL;
445 sock = sock_from_file(file, err);
446 if (!sock)
447 fput(file);
448 return sock;
451 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
453 struct file *file;
454 struct socket *sock;
456 *err = -EBADF;
457 file = fget_light(fd, fput_needed);
458 if (file) {
459 sock = sock_from_file(file, err);
460 if (sock)
461 return sock;
462 fput_light(file, *fput_needed);
464 return NULL;
468 * sock_alloc - allocate a socket
470 * Allocate a new inode and socket object. The two are bound together
471 * and initialised. The socket is then returned. If we are out of inodes
472 * NULL is returned.
475 static struct socket *sock_alloc(void)
477 struct inode *inode;
478 struct socket *sock;
480 inode = new_inode(sock_mnt->mnt_sb);
481 if (!inode)
482 return NULL;
484 sock = SOCKET_I(inode);
486 inode->i_mode = S_IFSOCK | S_IRWXUGO;
487 inode->i_uid = current->fsuid;
488 inode->i_gid = current->fsgid;
490 get_cpu_var(sockets_in_use)++;
491 put_cpu_var(sockets_in_use);
492 return sock;
496 * In theory you can't get an open on this inode, but /proc provides
497 * a back door. Remember to keep it shut otherwise you'll let the
498 * creepy crawlies in.
501 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
503 return -ENXIO;
506 const struct file_operations bad_sock_fops = {
507 .owner = THIS_MODULE,
508 .open = sock_no_open,
512 * sock_release - close a socket
513 * @sock: socket to close
515 * The socket is released from the protocol stack if it has a release
516 * callback, and the inode is then released if the socket is bound to
517 * an inode not a file.
520 void sock_release(struct socket *sock)
522 if (sock->ops) {
523 struct module *owner = sock->ops->owner;
525 sock->ops->release(sock);
526 sock->ops = NULL;
527 module_put(owner);
530 if (sock->fasync_list)
531 printk(KERN_ERR "sock_release: fasync list not empty!\n");
533 get_cpu_var(sockets_in_use)--;
534 put_cpu_var(sockets_in_use);
535 if (!sock->file) {
536 iput(SOCK_INODE(sock));
537 return;
539 sock->file = NULL;
542 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
543 struct msghdr *msg, size_t size)
545 struct sock_iocb *si = kiocb_to_siocb(iocb);
546 int err;
548 si->sock = sock;
549 si->scm = NULL;
550 si->msg = msg;
551 si->size = size;
553 err = security_socket_sendmsg(sock, msg, size);
554 if (err)
555 return err;
557 return sock->ops->sendmsg(iocb, sock, msg, size);
560 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
562 struct kiocb iocb;
563 struct sock_iocb siocb;
564 int ret;
566 init_sync_kiocb(&iocb, NULL);
567 iocb.private = &siocb;
568 ret = __sock_sendmsg(&iocb, sock, msg, size);
569 if (-EIOCBQUEUED == ret)
570 ret = wait_on_sync_kiocb(&iocb);
571 return ret;
574 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
575 struct kvec *vec, size_t num, size_t size)
577 mm_segment_t oldfs = get_fs();
578 int result;
580 set_fs(KERNEL_DS);
582 * the following is safe, since for compiler definitions of kvec and
583 * iovec are identical, yielding the same in-core layout and alignment
585 msg->msg_iov = (struct iovec *)vec;
586 msg->msg_iovlen = num;
587 result = sock_sendmsg(sock, msg, size);
588 set_fs(oldfs);
589 return result;
593 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
595 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
596 struct sk_buff *skb)
598 ktime_t kt = skb->tstamp;
600 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
601 struct timeval tv;
602 /* Race occurred between timestamp enabling and packet
603 receiving. Fill in the current time for now. */
604 if (kt.tv64 == 0)
605 kt = ktime_get_real();
606 skb->tstamp = kt;
607 tv = ktime_to_timeval(kt);
608 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv);
609 } else {
610 struct timespec ts;
611 /* Race occurred between timestamp enabling and packet
612 receiving. Fill in the current time for now. */
613 if (kt.tv64 == 0)
614 kt = ktime_get_real();
615 skb->tstamp = kt;
616 ts = ktime_to_timespec(kt);
617 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts);
621 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
623 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
624 struct msghdr *msg, size_t size, int flags)
626 int err;
627 struct sock_iocb *si = kiocb_to_siocb(iocb);
629 si->sock = sock;
630 si->scm = NULL;
631 si->msg = msg;
632 si->size = size;
633 si->flags = flags;
635 err = security_socket_recvmsg(sock, msg, size, flags);
636 if (err)
637 return err;
639 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
642 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
643 size_t size, int flags)
645 struct kiocb iocb;
646 struct sock_iocb siocb;
647 int ret;
649 init_sync_kiocb(&iocb, NULL);
650 iocb.private = &siocb;
651 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
652 if (-EIOCBQUEUED == ret)
653 ret = wait_on_sync_kiocb(&iocb);
654 return ret;
657 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
658 struct kvec *vec, size_t num, size_t size, int flags)
660 mm_segment_t oldfs = get_fs();
661 int result;
663 set_fs(KERNEL_DS);
665 * the following is safe, since for compiler definitions of kvec and
666 * iovec are identical, yielding the same in-core layout and alignment
668 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
669 result = sock_recvmsg(sock, msg, size, flags);
670 set_fs(oldfs);
671 return result;
674 static void sock_aio_dtor(struct kiocb *iocb)
676 kfree(iocb->private);
679 static ssize_t sock_sendpage(struct file *file, struct page *page,
680 int offset, size_t size, loff_t *ppos, int more)
682 struct socket *sock;
683 int flags;
685 sock = file->private_data;
687 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
688 if (more)
689 flags |= MSG_MORE;
691 return sock->ops->sendpage(sock, page, offset, size, flags);
694 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
695 struct sock_iocb *siocb)
697 if (!is_sync_kiocb(iocb)) {
698 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
699 if (!siocb)
700 return NULL;
701 iocb->ki_dtor = sock_aio_dtor;
704 siocb->kiocb = iocb;
705 iocb->private = siocb;
706 return siocb;
709 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
710 struct file *file, const struct iovec *iov,
711 unsigned long nr_segs)
713 struct socket *sock = file->private_data;
714 size_t size = 0;
715 int i;
717 for (i = 0; i < nr_segs; i++)
718 size += iov[i].iov_len;
720 msg->msg_name = NULL;
721 msg->msg_namelen = 0;
722 msg->msg_control = NULL;
723 msg->msg_controllen = 0;
724 msg->msg_iov = (struct iovec *)iov;
725 msg->msg_iovlen = nr_segs;
726 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
728 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
731 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
732 unsigned long nr_segs, loff_t pos)
734 struct sock_iocb siocb, *x;
736 if (pos != 0)
737 return -ESPIPE;
739 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
740 return 0;
743 x = alloc_sock_iocb(iocb, &siocb);
744 if (!x)
745 return -ENOMEM;
746 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
749 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
750 struct file *file, const struct iovec *iov,
751 unsigned long nr_segs)
753 struct socket *sock = file->private_data;
754 size_t size = 0;
755 int i;
757 for (i = 0; i < nr_segs; i++)
758 size += iov[i].iov_len;
760 msg->msg_name = NULL;
761 msg->msg_namelen = 0;
762 msg->msg_control = NULL;
763 msg->msg_controllen = 0;
764 msg->msg_iov = (struct iovec *)iov;
765 msg->msg_iovlen = nr_segs;
766 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
767 if (sock->type == SOCK_SEQPACKET)
768 msg->msg_flags |= MSG_EOR;
770 return __sock_sendmsg(iocb, sock, msg, size);
773 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
774 unsigned long nr_segs, loff_t pos)
776 struct sock_iocb siocb, *x;
778 if (pos != 0)
779 return -ESPIPE;
781 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
782 return 0;
784 x = alloc_sock_iocb(iocb, &siocb);
785 if (!x)
786 return -ENOMEM;
788 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
792 * Atomic setting of ioctl hooks to avoid race
793 * with module unload.
796 static DEFINE_MUTEX(br_ioctl_mutex);
797 static int (*br_ioctl_hook) (unsigned int cmd, void __user *arg) = NULL;
799 void brioctl_set(int (*hook) (unsigned int, void __user *))
801 mutex_lock(&br_ioctl_mutex);
802 br_ioctl_hook = hook;
803 mutex_unlock(&br_ioctl_mutex);
806 EXPORT_SYMBOL(brioctl_set);
808 static DEFINE_MUTEX(vlan_ioctl_mutex);
809 static int (*vlan_ioctl_hook) (void __user *arg);
811 void vlan_ioctl_set(int (*hook) (void __user *))
813 mutex_lock(&vlan_ioctl_mutex);
814 vlan_ioctl_hook = hook;
815 mutex_unlock(&vlan_ioctl_mutex);
818 EXPORT_SYMBOL(vlan_ioctl_set);
820 static DEFINE_MUTEX(dlci_ioctl_mutex);
821 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
823 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
825 mutex_lock(&dlci_ioctl_mutex);
826 dlci_ioctl_hook = hook;
827 mutex_unlock(&dlci_ioctl_mutex);
830 EXPORT_SYMBOL(dlci_ioctl_set);
833 * With an ioctl, arg may well be a user mode pointer, but we don't know
834 * what to do with it - that's up to the protocol still.
837 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
839 struct socket *sock;
840 void __user *argp = (void __user *)arg;
841 int pid, err;
843 sock = file->private_data;
844 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
845 err = dev_ioctl(cmd, argp);
846 } else
847 #ifdef CONFIG_WIRELESS_EXT
848 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
849 err = dev_ioctl(cmd, argp);
850 } else
851 #endif /* CONFIG_WIRELESS_EXT */
852 switch (cmd) {
853 case FIOSETOWN:
854 case SIOCSPGRP:
855 err = -EFAULT;
856 if (get_user(pid, (int __user *)argp))
857 break;
858 err = f_setown(sock->file, pid, 1);
859 break;
860 case FIOGETOWN:
861 case SIOCGPGRP:
862 err = put_user(f_getown(sock->file),
863 (int __user *)argp);
864 break;
865 case SIOCGIFBR:
866 case SIOCSIFBR:
867 case SIOCBRADDBR:
868 case SIOCBRDELBR:
869 err = -ENOPKG;
870 if (!br_ioctl_hook)
871 request_module("bridge");
873 mutex_lock(&br_ioctl_mutex);
874 if (br_ioctl_hook)
875 err = br_ioctl_hook(cmd, argp);
876 mutex_unlock(&br_ioctl_mutex);
877 break;
878 case SIOCGIFVLAN:
879 case SIOCSIFVLAN:
880 err = -ENOPKG;
881 if (!vlan_ioctl_hook)
882 request_module("8021q");
884 mutex_lock(&vlan_ioctl_mutex);
885 if (vlan_ioctl_hook)
886 err = vlan_ioctl_hook(argp);
887 mutex_unlock(&vlan_ioctl_mutex);
888 break;
889 case SIOCADDDLCI:
890 case SIOCDELDLCI:
891 err = -ENOPKG;
892 if (!dlci_ioctl_hook)
893 request_module("dlci");
895 if (dlci_ioctl_hook) {
896 mutex_lock(&dlci_ioctl_mutex);
897 err = dlci_ioctl_hook(cmd, argp);
898 mutex_unlock(&dlci_ioctl_mutex);
900 break;
901 default:
902 err = sock->ops->ioctl(sock, cmd, arg);
905 * If this ioctl is unknown try to hand it down
906 * to the NIC driver.
908 if (err == -ENOIOCTLCMD)
909 err = dev_ioctl(cmd, argp);
910 break;
912 return err;
915 int sock_create_lite(int family, int type, int protocol, struct socket **res)
917 int err;
918 struct socket *sock = NULL;
920 err = security_socket_create(family, type, protocol, 1);
921 if (err)
922 goto out;
924 sock = sock_alloc();
925 if (!sock) {
926 err = -ENOMEM;
927 goto out;
930 sock->type = type;
931 err = security_socket_post_create(sock, family, type, protocol, 1);
932 if (err)
933 goto out_release;
935 out:
936 *res = sock;
937 return err;
938 out_release:
939 sock_release(sock);
940 sock = NULL;
941 goto out;
944 /* No kernel lock held - perfect */
945 static unsigned int sock_poll(struct file *file, poll_table *wait)
947 struct socket *sock;
950 * We can't return errors to poll, so it's either yes or no.
952 sock = file->private_data;
953 return sock->ops->poll(file, sock, wait);
956 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
958 struct socket *sock = file->private_data;
960 return sock->ops->mmap(file, sock, vma);
963 static int sock_close(struct inode *inode, struct file *filp)
966 * It was possible the inode is NULL we were
967 * closing an unfinished socket.
970 if (!inode) {
971 printk(KERN_DEBUG "sock_close: NULL inode\n");
972 return 0;
974 sock_fasync(-1, filp, 0);
975 sock_release(SOCKET_I(inode));
976 return 0;
980 * Update the socket async list
982 * Fasync_list locking strategy.
984 * 1. fasync_list is modified only under process context socket lock
985 * i.e. under semaphore.
986 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
987 * or under socket lock.
988 * 3. fasync_list can be used from softirq context, so that
989 * modification under socket lock have to be enhanced with
990 * write_lock_bh(&sk->sk_callback_lock).
991 * --ANK (990710)
994 static int sock_fasync(int fd, struct file *filp, int on)
996 struct fasync_struct *fa, *fna = NULL, **prev;
997 struct socket *sock;
998 struct sock *sk;
1000 if (on) {
1001 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1002 if (fna == NULL)
1003 return -ENOMEM;
1006 sock = filp->private_data;
1008 sk = sock->sk;
1009 if (sk == NULL) {
1010 kfree(fna);
1011 return -EINVAL;
1014 lock_sock(sk);
1016 prev = &(sock->fasync_list);
1018 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1019 if (fa->fa_file == filp)
1020 break;
1022 if (on) {
1023 if (fa != NULL) {
1024 write_lock_bh(&sk->sk_callback_lock);
1025 fa->fa_fd = fd;
1026 write_unlock_bh(&sk->sk_callback_lock);
1028 kfree(fna);
1029 goto out;
1031 fna->fa_file = filp;
1032 fna->fa_fd = fd;
1033 fna->magic = FASYNC_MAGIC;
1034 fna->fa_next = sock->fasync_list;
1035 write_lock_bh(&sk->sk_callback_lock);
1036 sock->fasync_list = fna;
1037 write_unlock_bh(&sk->sk_callback_lock);
1038 } else {
1039 if (fa != NULL) {
1040 write_lock_bh(&sk->sk_callback_lock);
1041 *prev = fa->fa_next;
1042 write_unlock_bh(&sk->sk_callback_lock);
1043 kfree(fa);
1047 out:
1048 release_sock(sock->sk);
1049 return 0;
1052 /* This function may be called only under socket lock or callback_lock */
1054 int sock_wake_async(struct socket *sock, int how, int band)
1056 if (!sock || !sock->fasync_list)
1057 return -1;
1058 switch (how) {
1059 case 1:
1061 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1062 break;
1063 goto call_kill;
1064 case 2:
1065 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1066 break;
1067 /* fall through */
1068 case 0:
1069 call_kill:
1070 __kill_fasync(sock->fasync_list, SIGIO, band);
1071 break;
1072 case 3:
1073 __kill_fasync(sock->fasync_list, SIGURG, band);
1075 return 0;
1078 static int __sock_create(int family, int type, int protocol,
1079 struct socket **res, int kern)
1081 int err;
1082 struct socket *sock;
1083 const struct net_proto_family *pf;
1086 * Check protocol is in range
1088 if (family < 0 || family >= NPROTO)
1089 return -EAFNOSUPPORT;
1090 if (type < 0 || type >= SOCK_MAX)
1091 return -EINVAL;
1093 /* Compatibility.
1095 This uglymoron is moved from INET layer to here to avoid
1096 deadlock in module load.
1098 if (family == PF_INET && type == SOCK_PACKET) {
1099 static int warned;
1100 if (!warned) {
1101 warned = 1;
1102 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1103 current->comm);
1105 family = PF_PACKET;
1108 err = security_socket_create(family, type, protocol, kern);
1109 if (err)
1110 return err;
1113 * Allocate the socket and allow the family to set things up. if
1114 * the protocol is 0, the family is instructed to select an appropriate
1115 * default.
1117 sock = sock_alloc();
1118 if (!sock) {
1119 if (net_ratelimit())
1120 printk(KERN_WARNING "socket: no more sockets\n");
1121 return -ENFILE; /* Not exactly a match, but its the
1122 closest posix thing */
1125 sock->type = type;
1127 #if defined(CONFIG_KMOD)
1128 /* Attempt to load a protocol module if the find failed.
1130 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1131 * requested real, full-featured networking support upon configuration.
1132 * Otherwise module support will break!
1134 if (net_families[family] == NULL)
1135 request_module("net-pf-%d", family);
1136 #endif
1138 rcu_read_lock();
1139 pf = rcu_dereference(net_families[family]);
1140 err = -EAFNOSUPPORT;
1141 if (!pf)
1142 goto out_release;
1145 * We will call the ->create function, that possibly is in a loadable
1146 * module, so we have to bump that loadable module refcnt first.
1148 if (!try_module_get(pf->owner))
1149 goto out_release;
1151 /* Now protected by module ref count */
1152 rcu_read_unlock();
1154 err = pf->create(sock, protocol);
1155 if (err < 0)
1156 goto out_module_put;
1159 * Now to bump the refcnt of the [loadable] module that owns this
1160 * socket at sock_release time we decrement its refcnt.
1162 if (!try_module_get(sock->ops->owner))
1163 goto out_module_busy;
1166 * Now that we're done with the ->create function, the [loadable]
1167 * module can have its refcnt decremented
1169 module_put(pf->owner);
1170 err = security_socket_post_create(sock, family, type, protocol, kern);
1171 if (err)
1172 goto out_release;
1173 *res = sock;
1175 return 0;
1177 out_module_busy:
1178 err = -EAFNOSUPPORT;
1179 out_module_put:
1180 sock->ops = NULL;
1181 module_put(pf->owner);
1182 out_sock_release:
1183 sock_release(sock);
1184 return err;
1186 out_release:
1187 rcu_read_unlock();
1188 goto out_sock_release;
1191 int sock_create(int family, int type, int protocol, struct socket **res)
1193 return __sock_create(family, type, protocol, res, 0);
1196 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1198 return __sock_create(family, type, protocol, res, 1);
1201 asmlinkage long sys_socket(int family, int type, int protocol)
1203 int retval;
1204 struct socket *sock;
1206 retval = sock_create(family, type, protocol, &sock);
1207 if (retval < 0)
1208 goto out;
1210 retval = sock_map_fd(sock);
1211 if (retval < 0)
1212 goto out_release;
1214 out:
1215 /* It may be already another descriptor 8) Not kernel problem. */
1216 return retval;
1218 out_release:
1219 sock_release(sock);
1220 return retval;
1224 * Create a pair of connected sockets.
1227 asmlinkage long sys_socketpair(int family, int type, int protocol,
1228 int __user *usockvec)
1230 struct socket *sock1, *sock2;
1231 int fd1, fd2, err;
1232 struct file *newfile1, *newfile2;
1235 * Obtain the first socket and check if the underlying protocol
1236 * supports the socketpair call.
1239 err = sock_create(family, type, protocol, &sock1);
1240 if (err < 0)
1241 goto out;
1243 err = sock_create(family, type, protocol, &sock2);
1244 if (err < 0)
1245 goto out_release_1;
1247 err = sock1->ops->socketpair(sock1, sock2);
1248 if (err < 0)
1249 goto out_release_both;
1251 fd1 = sock_alloc_fd(&newfile1);
1252 if (unlikely(fd1 < 0))
1253 goto out_release_both;
1255 fd2 = sock_alloc_fd(&newfile2);
1256 if (unlikely(fd2 < 0)) {
1257 put_filp(newfile1);
1258 put_unused_fd(fd1);
1259 goto out_release_both;
1262 err = sock_attach_fd(sock1, newfile1);
1263 if (unlikely(err < 0)) {
1264 goto out_fd2;
1267 err = sock_attach_fd(sock2, newfile2);
1268 if (unlikely(err < 0)) {
1269 fput(newfile1);
1270 goto out_fd1;
1273 err = audit_fd_pair(fd1, fd2);
1274 if (err < 0) {
1275 fput(newfile1);
1276 fput(newfile2);
1277 goto out_fd;
1280 fd_install(fd1, newfile1);
1281 fd_install(fd2, newfile2);
1282 /* fd1 and fd2 may be already another descriptors.
1283 * Not kernel problem.
1286 err = put_user(fd1, &usockvec[0]);
1287 if (!err)
1288 err = put_user(fd2, &usockvec[1]);
1289 if (!err)
1290 return 0;
1292 sys_close(fd2);
1293 sys_close(fd1);
1294 return err;
1296 out_release_both:
1297 sock_release(sock2);
1298 out_release_1:
1299 sock_release(sock1);
1300 out:
1301 return err;
1303 out_fd2:
1304 put_filp(newfile1);
1305 sock_release(sock1);
1306 out_fd1:
1307 put_filp(newfile2);
1308 sock_release(sock2);
1309 out_fd:
1310 put_unused_fd(fd1);
1311 put_unused_fd(fd2);
1312 goto out;
1316 * Bind a name to a socket. Nothing much to do here since it's
1317 * the protocol's responsibility to handle the local address.
1319 * We move the socket address to kernel space before we call
1320 * the protocol layer (having also checked the address is ok).
1323 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1325 struct socket *sock;
1326 char address[MAX_SOCK_ADDR];
1327 int err, fput_needed;
1329 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1330 if (sock) {
1331 err = move_addr_to_kernel(umyaddr, addrlen, address);
1332 if (err >= 0) {
1333 err = security_socket_bind(sock,
1334 (struct sockaddr *)address,
1335 addrlen);
1336 if (!err)
1337 err = sock->ops->bind(sock,
1338 (struct sockaddr *)
1339 address, addrlen);
1341 fput_light(sock->file, fput_needed);
1343 return err;
1347 * Perform a listen. Basically, we allow the protocol to do anything
1348 * necessary for a listen, and if that works, we mark the socket as
1349 * ready for listening.
1352 int sysctl_somaxconn __read_mostly = SOMAXCONN;
1354 asmlinkage long sys_listen(int fd, int backlog)
1356 struct socket *sock;
1357 int err, fput_needed;
1359 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1360 if (sock) {
1361 if ((unsigned)backlog > sysctl_somaxconn)
1362 backlog = sysctl_somaxconn;
1364 err = security_socket_listen(sock, backlog);
1365 if (!err)
1366 err = sock->ops->listen(sock, backlog);
1368 fput_light(sock->file, fput_needed);
1370 return err;
1374 * For accept, we attempt to create a new socket, set up the link
1375 * with the client, wake up the client, then return the new
1376 * connected fd. We collect the address of the connector in kernel
1377 * space and move it to user at the very end. This is unclean because
1378 * we open the socket then return an error.
1380 * 1003.1g adds the ability to recvmsg() to query connection pending
1381 * status to recvmsg. We need to add that support in a way thats
1382 * clean when we restucture accept also.
1385 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1386 int __user *upeer_addrlen)
1388 struct socket *sock, *newsock;
1389 struct file *newfile;
1390 int err, len, newfd, fput_needed;
1391 char address[MAX_SOCK_ADDR];
1393 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1394 if (!sock)
1395 goto out;
1397 err = -ENFILE;
1398 if (!(newsock = sock_alloc()))
1399 goto out_put;
1401 newsock->type = sock->type;
1402 newsock->ops = sock->ops;
1405 * We don't need try_module_get here, as the listening socket (sock)
1406 * has the protocol module (sock->ops->owner) held.
1408 __module_get(newsock->ops->owner);
1410 newfd = sock_alloc_fd(&newfile);
1411 if (unlikely(newfd < 0)) {
1412 err = newfd;
1413 sock_release(newsock);
1414 goto out_put;
1417 err = sock_attach_fd(newsock, newfile);
1418 if (err < 0)
1419 goto out_fd_simple;
1421 err = security_socket_accept(sock, newsock);
1422 if (err)
1423 goto out_fd;
1425 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1426 if (err < 0)
1427 goto out_fd;
1429 if (upeer_sockaddr) {
1430 if (newsock->ops->getname(newsock, (struct sockaddr *)address,
1431 &len, 2) < 0) {
1432 err = -ECONNABORTED;
1433 goto out_fd;
1435 err = move_addr_to_user(address, len, upeer_sockaddr,
1436 upeer_addrlen);
1437 if (err < 0)
1438 goto out_fd;
1441 /* File flags are not inherited via accept() unlike another OSes. */
1443 fd_install(newfd, newfile);
1444 err = newfd;
1446 security_socket_post_accept(sock, newsock);
1448 out_put:
1449 fput_light(sock->file, fput_needed);
1450 out:
1451 return err;
1452 out_fd_simple:
1453 sock_release(newsock);
1454 put_filp(newfile);
1455 put_unused_fd(newfd);
1456 goto out_put;
1457 out_fd:
1458 fput(newfile);
1459 put_unused_fd(newfd);
1460 goto out_put;
1464 * Attempt to connect to a socket with the server address. The address
1465 * is in user space so we verify it is OK and move it to kernel space.
1467 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1468 * break bindings
1470 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1471 * other SEQPACKET protocols that take time to connect() as it doesn't
1472 * include the -EINPROGRESS status for such sockets.
1475 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1476 int addrlen)
1478 struct socket *sock;
1479 char address[MAX_SOCK_ADDR];
1480 int err, fput_needed;
1482 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1483 if (!sock)
1484 goto out;
1485 err = move_addr_to_kernel(uservaddr, addrlen, address);
1486 if (err < 0)
1487 goto out_put;
1489 err =
1490 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1491 if (err)
1492 goto out_put;
1494 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1495 sock->file->f_flags);
1496 out_put:
1497 fput_light(sock->file, fput_needed);
1498 out:
1499 return err;
1503 * Get the local address ('name') of a socket object. Move the obtained
1504 * name to user space.
1507 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1508 int __user *usockaddr_len)
1510 struct socket *sock;
1511 char address[MAX_SOCK_ADDR];
1512 int len, err, fput_needed;
1514 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1515 if (!sock)
1516 goto out;
1518 err = security_socket_getsockname(sock);
1519 if (err)
1520 goto out_put;
1522 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1523 if (err)
1524 goto out_put;
1525 err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1527 out_put:
1528 fput_light(sock->file, fput_needed);
1529 out:
1530 return err;
1534 * Get the remote address ('name') of a socket object. Move the obtained
1535 * name to user space.
1538 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1539 int __user *usockaddr_len)
1541 struct socket *sock;
1542 char address[MAX_SOCK_ADDR];
1543 int len, err, fput_needed;
1545 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1546 if (sock != NULL) {
1547 err = security_socket_getpeername(sock);
1548 if (err) {
1549 fput_light(sock->file, fput_needed);
1550 return err;
1553 err =
1554 sock->ops->getname(sock, (struct sockaddr *)address, &len,
1556 if (!err)
1557 err = move_addr_to_user(address, len, usockaddr,
1558 usockaddr_len);
1559 fput_light(sock->file, fput_needed);
1561 return err;
1565 * Send a datagram to a given address. We move the address into kernel
1566 * space and check the user space data area is readable before invoking
1567 * the protocol.
1570 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1571 unsigned flags, struct sockaddr __user *addr,
1572 int addr_len)
1574 struct socket *sock;
1575 char address[MAX_SOCK_ADDR];
1576 int err;
1577 struct msghdr msg;
1578 struct iovec iov;
1579 int fput_needed;
1580 struct file *sock_file;
1582 sock_file = fget_light(fd, &fput_needed);
1583 err = -EBADF;
1584 if (!sock_file)
1585 goto out;
1587 sock = sock_from_file(sock_file, &err);
1588 if (!sock)
1589 goto out_put;
1590 iov.iov_base = buff;
1591 iov.iov_len = len;
1592 msg.msg_name = NULL;
1593 msg.msg_iov = &iov;
1594 msg.msg_iovlen = 1;
1595 msg.msg_control = NULL;
1596 msg.msg_controllen = 0;
1597 msg.msg_namelen = 0;
1598 if (addr) {
1599 err = move_addr_to_kernel(addr, addr_len, address);
1600 if (err < 0)
1601 goto out_put;
1602 msg.msg_name = address;
1603 msg.msg_namelen = addr_len;
1605 if (sock->file->f_flags & O_NONBLOCK)
1606 flags |= MSG_DONTWAIT;
1607 msg.msg_flags = flags;
1608 err = sock_sendmsg(sock, &msg, len);
1610 out_put:
1611 fput_light(sock_file, fput_needed);
1612 out:
1613 return err;
1617 * Send a datagram down a socket.
1620 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1622 return sys_sendto(fd, buff, len, flags, NULL, 0);
1626 * Receive a frame from the socket and optionally record the address of the
1627 * sender. We verify the buffers are writable and if needed move the
1628 * sender address from kernel to user space.
1631 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1632 unsigned flags, struct sockaddr __user *addr,
1633 int __user *addr_len)
1635 struct socket *sock;
1636 struct iovec iov;
1637 struct msghdr msg;
1638 char address[MAX_SOCK_ADDR];
1639 int err, err2;
1640 struct file *sock_file;
1641 int fput_needed;
1643 sock_file = fget_light(fd, &fput_needed);
1644 err = -EBADF;
1645 if (!sock_file)
1646 goto out;
1648 sock = sock_from_file(sock_file, &err);
1649 if (!sock)
1650 goto out_put;
1652 msg.msg_control = NULL;
1653 msg.msg_controllen = 0;
1654 msg.msg_iovlen = 1;
1655 msg.msg_iov = &iov;
1656 iov.iov_len = size;
1657 iov.iov_base = ubuf;
1658 msg.msg_name = address;
1659 msg.msg_namelen = MAX_SOCK_ADDR;
1660 if (sock->file->f_flags & O_NONBLOCK)
1661 flags |= MSG_DONTWAIT;
1662 err = sock_recvmsg(sock, &msg, size, flags);
1664 if (err >= 0 && addr != NULL) {
1665 err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1666 if (err2 < 0)
1667 err = err2;
1669 out_put:
1670 fput_light(sock_file, fput_needed);
1671 out:
1672 return err;
1676 * Receive a datagram from a socket.
1679 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1680 unsigned flags)
1682 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1686 * Set a socket option. Because we don't know the option lengths we have
1687 * to pass the user mode parameter for the protocols to sort out.
1690 asmlinkage long sys_setsockopt(int fd, int level, int optname,
1691 char __user *optval, int optlen)
1693 int err, fput_needed;
1694 struct socket *sock;
1696 if (optlen < 0)
1697 return -EINVAL;
1699 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1700 if (sock != NULL) {
1701 err = security_socket_setsockopt(sock, level, optname);
1702 if (err)
1703 goto out_put;
1705 if (level == SOL_SOCKET)
1706 err =
1707 sock_setsockopt(sock, level, optname, optval,
1708 optlen);
1709 else
1710 err =
1711 sock->ops->setsockopt(sock, level, optname, optval,
1712 optlen);
1713 out_put:
1714 fput_light(sock->file, fput_needed);
1716 return err;
1720 * Get a socket option. Because we don't know the option lengths we have
1721 * to pass a user mode parameter for the protocols to sort out.
1724 asmlinkage long sys_getsockopt(int fd, int level, int optname,
1725 char __user *optval, int __user *optlen)
1727 int err, fput_needed;
1728 struct socket *sock;
1730 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1731 if (sock != NULL) {
1732 err = security_socket_getsockopt(sock, level, optname);
1733 if (err)
1734 goto out_put;
1736 if (level == SOL_SOCKET)
1737 err =
1738 sock_getsockopt(sock, level, optname, optval,
1739 optlen);
1740 else
1741 err =
1742 sock->ops->getsockopt(sock, level, optname, optval,
1743 optlen);
1744 out_put:
1745 fput_light(sock->file, fput_needed);
1747 return err;
1751 * Shutdown a socket.
1754 asmlinkage long sys_shutdown(int fd, int how)
1756 int err, fput_needed;
1757 struct socket *sock;
1759 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1760 if (sock != NULL) {
1761 err = security_socket_shutdown(sock, how);
1762 if (!err)
1763 err = sock->ops->shutdown(sock, how);
1764 fput_light(sock->file, fput_needed);
1766 return err;
1769 /* A couple of helpful macros for getting the address of the 32/64 bit
1770 * fields which are the same type (int / unsigned) on our platforms.
1772 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1773 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1774 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1777 * BSD sendmsg interface
1780 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1782 struct compat_msghdr __user *msg_compat =
1783 (struct compat_msghdr __user *)msg;
1784 struct socket *sock;
1785 char address[MAX_SOCK_ADDR];
1786 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1787 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1788 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1789 /* 20 is size of ipv6_pktinfo */
1790 unsigned char *ctl_buf = ctl;
1791 struct msghdr msg_sys;
1792 int err, ctl_len, iov_size, total_len;
1793 int fput_needed;
1795 err = -EFAULT;
1796 if (MSG_CMSG_COMPAT & flags) {
1797 if (get_compat_msghdr(&msg_sys, msg_compat))
1798 return -EFAULT;
1800 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1801 return -EFAULT;
1803 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1804 if (!sock)
1805 goto out;
1807 /* do not move before msg_sys is valid */
1808 err = -EMSGSIZE;
1809 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1810 goto out_put;
1812 /* Check whether to allocate the iovec area */
1813 err = -ENOMEM;
1814 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1815 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1816 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1817 if (!iov)
1818 goto out_put;
1821 /* This will also move the address data into kernel space */
1822 if (MSG_CMSG_COMPAT & flags) {
1823 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1824 } else
1825 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1826 if (err < 0)
1827 goto out_freeiov;
1828 total_len = err;
1830 err = -ENOBUFS;
1832 if (msg_sys.msg_controllen > INT_MAX)
1833 goto out_freeiov;
1834 ctl_len = msg_sys.msg_controllen;
1835 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1836 err =
1837 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1838 sizeof(ctl));
1839 if (err)
1840 goto out_freeiov;
1841 ctl_buf = msg_sys.msg_control;
1842 ctl_len = msg_sys.msg_controllen;
1843 } else if (ctl_len) {
1844 if (ctl_len > sizeof(ctl)) {
1845 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1846 if (ctl_buf == NULL)
1847 goto out_freeiov;
1849 err = -EFAULT;
1851 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1852 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1853 * checking falls down on this.
1855 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1856 ctl_len))
1857 goto out_freectl;
1858 msg_sys.msg_control = ctl_buf;
1860 msg_sys.msg_flags = flags;
1862 if (sock->file->f_flags & O_NONBLOCK)
1863 msg_sys.msg_flags |= MSG_DONTWAIT;
1864 err = sock_sendmsg(sock, &msg_sys, total_len);
1866 out_freectl:
1867 if (ctl_buf != ctl)
1868 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1869 out_freeiov:
1870 if (iov != iovstack)
1871 sock_kfree_s(sock->sk, iov, iov_size);
1872 out_put:
1873 fput_light(sock->file, fput_needed);
1874 out:
1875 return err;
1879 * BSD recvmsg interface
1882 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1883 unsigned int flags)
1885 struct compat_msghdr __user *msg_compat =
1886 (struct compat_msghdr __user *)msg;
1887 struct socket *sock;
1888 struct iovec iovstack[UIO_FASTIOV];
1889 struct iovec *iov = iovstack;
1890 struct msghdr msg_sys;
1891 unsigned long cmsg_ptr;
1892 int err, iov_size, total_len, len;
1893 int fput_needed;
1895 /* kernel mode address */
1896 char addr[MAX_SOCK_ADDR];
1898 /* user mode address pointers */
1899 struct sockaddr __user *uaddr;
1900 int __user *uaddr_len;
1902 if (MSG_CMSG_COMPAT & flags) {
1903 if (get_compat_msghdr(&msg_sys, msg_compat))
1904 return -EFAULT;
1906 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1907 return -EFAULT;
1909 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1910 if (!sock)
1911 goto out;
1913 err = -EMSGSIZE;
1914 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1915 goto out_put;
1917 /* Check whether to allocate the iovec area */
1918 err = -ENOMEM;
1919 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1920 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1921 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1922 if (!iov)
1923 goto out_put;
1927 * Save the user-mode address (verify_iovec will change the
1928 * kernel msghdr to use the kernel address space)
1931 uaddr = (void __user *)msg_sys.msg_name;
1932 uaddr_len = COMPAT_NAMELEN(msg);
1933 if (MSG_CMSG_COMPAT & flags) {
1934 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1935 } else
1936 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1937 if (err < 0)
1938 goto out_freeiov;
1939 total_len = err;
1941 cmsg_ptr = (unsigned long)msg_sys.msg_control;
1942 msg_sys.msg_flags = 0;
1943 if (MSG_CMSG_COMPAT & flags)
1944 msg_sys.msg_flags = MSG_CMSG_COMPAT;
1946 if (sock->file->f_flags & O_NONBLOCK)
1947 flags |= MSG_DONTWAIT;
1948 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1949 if (err < 0)
1950 goto out_freeiov;
1951 len = err;
1953 if (uaddr != NULL) {
1954 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr,
1955 uaddr_len);
1956 if (err < 0)
1957 goto out_freeiov;
1959 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1960 COMPAT_FLAGS(msg));
1961 if (err)
1962 goto out_freeiov;
1963 if (MSG_CMSG_COMPAT & flags)
1964 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1965 &msg_compat->msg_controllen);
1966 else
1967 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1968 &msg->msg_controllen);
1969 if (err)
1970 goto out_freeiov;
1971 err = len;
1973 out_freeiov:
1974 if (iov != iovstack)
1975 sock_kfree_s(sock->sk, iov, iov_size);
1976 out_put:
1977 fput_light(sock->file, fput_needed);
1978 out:
1979 return err;
1982 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1984 /* Argument list sizes for sys_socketcall */
1985 #define AL(x) ((x) * sizeof(unsigned long))
1986 static const unsigned char nargs[18]={
1987 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1988 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1989 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
1992 #undef AL
1995 * System call vectors.
1997 * Argument checking cleaned up. Saved 20% in size.
1998 * This function doesn't need to set the kernel lock because
1999 * it is set by the callees.
2002 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
2004 unsigned long a[6];
2005 unsigned long a0, a1;
2006 int err;
2008 if (call < 1 || call > SYS_RECVMSG)
2009 return -EINVAL;
2011 /* copy_from_user should be SMP safe. */
2012 if (copy_from_user(a, args, nargs[call]))
2013 return -EFAULT;
2015 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2016 if (err)
2017 return err;
2019 a0 = a[0];
2020 a1 = a[1];
2022 switch (call) {
2023 case SYS_SOCKET:
2024 err = sys_socket(a0, a1, a[2]);
2025 break;
2026 case SYS_BIND:
2027 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2028 break;
2029 case SYS_CONNECT:
2030 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2031 break;
2032 case SYS_LISTEN:
2033 err = sys_listen(a0, a1);
2034 break;
2035 case SYS_ACCEPT:
2036 err =
2037 sys_accept(a0, (struct sockaddr __user *)a1,
2038 (int __user *)a[2]);
2039 break;
2040 case SYS_GETSOCKNAME:
2041 err =
2042 sys_getsockname(a0, (struct sockaddr __user *)a1,
2043 (int __user *)a[2]);
2044 break;
2045 case SYS_GETPEERNAME:
2046 err =
2047 sys_getpeername(a0, (struct sockaddr __user *)a1,
2048 (int __user *)a[2]);
2049 break;
2050 case SYS_SOCKETPAIR:
2051 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2052 break;
2053 case SYS_SEND:
2054 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2055 break;
2056 case SYS_SENDTO:
2057 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2058 (struct sockaddr __user *)a[4], a[5]);
2059 break;
2060 case SYS_RECV:
2061 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2062 break;
2063 case SYS_RECVFROM:
2064 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2065 (struct sockaddr __user *)a[4],
2066 (int __user *)a[5]);
2067 break;
2068 case SYS_SHUTDOWN:
2069 err = sys_shutdown(a0, a1);
2070 break;
2071 case SYS_SETSOCKOPT:
2072 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2073 break;
2074 case SYS_GETSOCKOPT:
2075 err =
2076 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2077 (int __user *)a[4]);
2078 break;
2079 case SYS_SENDMSG:
2080 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2081 break;
2082 case SYS_RECVMSG:
2083 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2084 break;
2085 default:
2086 err = -EINVAL;
2087 break;
2089 return err;
2092 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2095 * sock_register - add a socket protocol handler
2096 * @ops: description of protocol
2098 * This function is called by a protocol handler that wants to
2099 * advertise its address family, and have it linked into the
2100 * socket interface. The value ops->family coresponds to the
2101 * socket system call protocol family.
2103 int sock_register(const struct net_proto_family *ops)
2105 int err;
2107 if (ops->family >= NPROTO) {
2108 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2109 NPROTO);
2110 return -ENOBUFS;
2113 spin_lock(&net_family_lock);
2114 if (net_families[ops->family])
2115 err = -EEXIST;
2116 else {
2117 net_families[ops->family] = ops;
2118 err = 0;
2120 spin_unlock(&net_family_lock);
2122 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2123 return err;
2127 * sock_unregister - remove a protocol handler
2128 * @family: protocol family to remove
2130 * This function is called by a protocol handler that wants to
2131 * remove its address family, and have it unlinked from the
2132 * new socket creation.
2134 * If protocol handler is a module, then it can use module reference
2135 * counts to protect against new references. If protocol handler is not
2136 * a module then it needs to provide its own protection in
2137 * the ops->create routine.
2139 void sock_unregister(int family)
2141 BUG_ON(family < 0 || family >= NPROTO);
2143 spin_lock(&net_family_lock);
2144 net_families[family] = NULL;
2145 spin_unlock(&net_family_lock);
2147 synchronize_rcu();
2149 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2152 static int __init sock_init(void)
2155 * Initialize sock SLAB cache.
2158 sk_init();
2161 * Initialize skbuff SLAB cache
2163 skb_init();
2166 * Initialize the protocols module.
2169 init_inodecache();
2170 register_filesystem(&sock_fs_type);
2171 sock_mnt = kern_mount(&sock_fs_type);
2173 /* The real protocol initialization is performed in later initcalls.
2176 #ifdef CONFIG_NETFILTER
2177 netfilter_init();
2178 #endif
2180 return 0;
2183 core_initcall(sock_init); /* early initcall */
2185 #ifdef CONFIG_PROC_FS
2186 void socket_seq_show(struct seq_file *seq)
2188 int cpu;
2189 int counter = 0;
2191 for_each_possible_cpu(cpu)
2192 counter += per_cpu(sockets_in_use, cpu);
2194 /* It can be negative, by the way. 8) */
2195 if (counter < 0)
2196 counter = 0;
2198 seq_printf(seq, "sockets: used %d\n", counter);
2200 #endif /* CONFIG_PROC_FS */
2202 #ifdef CONFIG_COMPAT
2203 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2204 unsigned long arg)
2206 struct socket *sock = file->private_data;
2207 int ret = -ENOIOCTLCMD;
2209 if (sock->ops->compat_ioctl)
2210 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2212 return ret;
2214 #endif
2216 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2218 return sock->ops->bind(sock, addr, addrlen);
2221 int kernel_listen(struct socket *sock, int backlog)
2223 return sock->ops->listen(sock, backlog);
2226 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2228 struct sock *sk = sock->sk;
2229 int err;
2231 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2232 newsock);
2233 if (err < 0)
2234 goto done;
2236 err = sock->ops->accept(sock, *newsock, flags);
2237 if (err < 0) {
2238 sock_release(*newsock);
2239 goto done;
2242 (*newsock)->ops = sock->ops;
2244 done:
2245 return err;
2248 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2249 int flags)
2251 return sock->ops->connect(sock, addr, addrlen, flags);
2254 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2255 int *addrlen)
2257 return sock->ops->getname(sock, addr, addrlen, 0);
2260 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2261 int *addrlen)
2263 return sock->ops->getname(sock, addr, addrlen, 1);
2266 int kernel_getsockopt(struct socket *sock, int level, int optname,
2267 char *optval, int *optlen)
2269 mm_segment_t oldfs = get_fs();
2270 int err;
2272 set_fs(KERNEL_DS);
2273 if (level == SOL_SOCKET)
2274 err = sock_getsockopt(sock, level, optname, optval, optlen);
2275 else
2276 err = sock->ops->getsockopt(sock, level, optname, optval,
2277 optlen);
2278 set_fs(oldfs);
2279 return err;
2282 int kernel_setsockopt(struct socket *sock, int level, int optname,
2283 char *optval, int optlen)
2285 mm_segment_t oldfs = get_fs();
2286 int err;
2288 set_fs(KERNEL_DS);
2289 if (level == SOL_SOCKET)
2290 err = sock_setsockopt(sock, level, optname, optval, optlen);
2291 else
2292 err = sock->ops->setsockopt(sock, level, optname, optval,
2293 optlen);
2294 set_fs(oldfs);
2295 return err;
2298 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2299 size_t size, int flags)
2301 if (sock->ops->sendpage)
2302 return sock->ops->sendpage(sock, page, offset, size, flags);
2304 return sock_no_sendpage(sock, page, offset, size, flags);
2307 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2309 mm_segment_t oldfs = get_fs();
2310 int err;
2312 set_fs(KERNEL_DS);
2313 err = sock->ops->ioctl(sock, cmd, arg);
2314 set_fs(oldfs);
2316 return err;
2319 /* ABI emulation layers need these two */
2320 EXPORT_SYMBOL(move_addr_to_kernel);
2321 EXPORT_SYMBOL(move_addr_to_user);
2322 EXPORT_SYMBOL(sock_create);
2323 EXPORT_SYMBOL(sock_create_kern);
2324 EXPORT_SYMBOL(sock_create_lite);
2325 EXPORT_SYMBOL(sock_map_fd);
2326 EXPORT_SYMBOL(sock_recvmsg);
2327 EXPORT_SYMBOL(sock_register);
2328 EXPORT_SYMBOL(sock_release);
2329 EXPORT_SYMBOL(sock_sendmsg);
2330 EXPORT_SYMBOL(sock_unregister);
2331 EXPORT_SYMBOL(sock_wake_async);
2332 EXPORT_SYMBOL(sockfd_lookup);
2333 EXPORT_SYMBOL(kernel_sendmsg);
2334 EXPORT_SYMBOL(kernel_recvmsg);
2335 EXPORT_SYMBOL(kernel_bind);
2336 EXPORT_SYMBOL(kernel_listen);
2337 EXPORT_SYMBOL(kernel_accept);
2338 EXPORT_SYMBOL(kernel_connect);
2339 EXPORT_SYMBOL(kernel_getsockname);
2340 EXPORT_SYMBOL(kernel_getpeername);
2341 EXPORT_SYMBOL(kernel_getsockopt);
2342 EXPORT_SYMBOL(kernel_setsockopt);
2343 EXPORT_SYMBOL(kernel_sendpage);
2344 EXPORT_SYMBOL(kernel_sock_ioctl);