4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
68 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
72 unsigned long long __attribute__((weak
)) sched_clock(void)
74 return (unsigned long long)jiffies
* (1000000000 / HZ
);
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
82 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
91 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
96 * Some helpers for converting nanosecond timing to jiffy resolution
98 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101 #define NICE_0_LOAD SCHED_LOAD_SCALE
102 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
105 * These are the 'tuning knobs' of the scheduler:
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
111 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112 #define DEF_TIMESLICE (100 * HZ / 1000)
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
121 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
128 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
130 sg
->__cpu_power
+= val
;
131 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
135 #define SCALE_PRIO(x, prio) \
136 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
139 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
140 * to time slice values: [800ms ... 100ms ... 5ms]
142 static unsigned int static_prio_timeslice(int static_prio
)
144 if (static_prio
== NICE_TO_PRIO(19))
147 if (static_prio
< NICE_TO_PRIO(0))
148 return SCALE_PRIO(DEF_TIMESLICE
* 4, static_prio
);
150 return SCALE_PRIO(DEF_TIMESLICE
, static_prio
);
153 static inline int rt_policy(int policy
)
155 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
160 static inline int task_has_rt_policy(struct task_struct
*p
)
162 return rt_policy(p
->policy
);
166 * This is the priority-queue data structure of the RT scheduling class:
168 struct rt_prio_array
{
169 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
170 struct list_head queue
[MAX_RT_PRIO
];
174 struct load_weight load
;
175 u64 load_update_start
, load_update_last
;
176 unsigned long delta_fair
, delta_exec
, delta_stat
;
179 /* CFS-related fields in a runqueue */
181 struct load_weight load
;
182 unsigned long nr_running
;
188 unsigned long wait_runtime_overruns
, wait_runtime_underruns
;
190 struct rb_root tasks_timeline
;
191 struct rb_node
*rb_leftmost
;
192 struct rb_node
*rb_load_balance_curr
;
193 #ifdef CONFIG_FAIR_GROUP_SCHED
194 /* 'curr' points to currently running entity on this cfs_rq.
195 * It is set to NULL otherwise (i.e when none are currently running).
197 struct sched_entity
*curr
;
198 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
207 struct list_head leaf_cfs_rq_list
; /* Better name : task_cfs_rq_list? */
211 /* Real-Time classes' related field in a runqueue: */
213 struct rt_prio_array active
;
214 int rt_load_balance_idx
;
215 struct list_head
*rt_load_balance_head
, *rt_load_balance_curr
;
219 * This is the main, per-CPU runqueue data structure.
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
226 spinlock_t lock
; /* runqueue lock */
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
232 unsigned long nr_running
;
233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
235 unsigned char idle_at_tick
;
237 unsigned char in_nohz_recently
;
239 struct load_stat ls
; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates
;
244 #ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list
; /* list of leaf cfs_rq on this cpu */
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
255 unsigned long nr_uninterruptible
;
257 struct task_struct
*curr
, *idle
;
258 unsigned long next_balance
;
259 struct mm_struct
*prev_mm
;
261 u64 clock
, prev_clock_raw
;
264 unsigned int clock_warps
, clock_overflows
;
265 unsigned int clock_unstable_events
;
270 struct sched_domain
*sd
;
272 /* For active balancing */
275 int cpu
; /* cpu of this runqueue */
277 struct task_struct
*migration_thread
;
278 struct list_head migration_queue
;
281 #ifdef CONFIG_SCHEDSTATS
283 struct sched_info rq_sched_info
;
285 /* sys_sched_yield() stats */
286 unsigned long yld_exp_empty
;
287 unsigned long yld_act_empty
;
288 unsigned long yld_both_empty
;
289 unsigned long yld_cnt
;
291 /* schedule() stats */
292 unsigned long sched_switch
;
293 unsigned long sched_cnt
;
294 unsigned long sched_goidle
;
296 /* try_to_wake_up() stats */
297 unsigned long ttwu_cnt
;
298 unsigned long ttwu_local
;
300 struct lock_class_key rq_lock_key
;
303 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
304 static DEFINE_MUTEX(sched_hotcpu_mutex
);
306 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
308 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
311 static inline int cpu_of(struct rq
*rq
)
321 * Per-runqueue clock, as finegrained as the platform can give us:
323 static unsigned long long __rq_clock(struct rq
*rq
)
325 u64 prev_raw
= rq
->prev_clock_raw
;
326 u64 now
= sched_clock();
327 s64 delta
= now
- prev_raw
;
328 u64 clock
= rq
->clock
;
331 * Protect against sched_clock() occasionally going backwards:
333 if (unlikely(delta
< 0)) {
338 * Catch too large forward jumps too:
340 if (unlikely(delta
> 2*TICK_NSEC
)) {
342 rq
->clock_overflows
++;
344 if (unlikely(delta
> rq
->clock_max_delta
))
345 rq
->clock_max_delta
= delta
;
350 rq
->prev_clock_raw
= now
;
356 static inline unsigned long long rq_clock(struct rq
*rq
)
358 int this_cpu
= smp_processor_id();
360 if (this_cpu
== cpu_of(rq
))
361 return __rq_clock(rq
);
367 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
368 * See detach_destroy_domains: synchronize_sched for details.
370 * The domain tree of any CPU may only be accessed from within
371 * preempt-disabled sections.
373 #define for_each_domain(cpu, __sd) \
374 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
376 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
377 #define this_rq() (&__get_cpu_var(runqueues))
378 #define task_rq(p) cpu_rq(task_cpu(p))
379 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
382 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
383 * clock constructed from sched_clock():
385 unsigned long long cpu_clock(int cpu
)
387 unsigned long long now
;
390 local_irq_save(flags
);
391 now
= rq_clock(cpu_rq(cpu
));
392 local_irq_restore(flags
);
397 #ifdef CONFIG_FAIR_GROUP_SCHED
398 /* Change a task's ->cfs_rq if it moves across CPUs */
399 static inline void set_task_cfs_rq(struct task_struct
*p
)
401 p
->se
.cfs_rq
= &task_rq(p
)->cfs
;
404 static inline void set_task_cfs_rq(struct task_struct
*p
)
409 #ifndef prepare_arch_switch
410 # define prepare_arch_switch(next) do { } while (0)
412 #ifndef finish_arch_switch
413 # define finish_arch_switch(prev) do { } while (0)
416 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
417 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
419 return rq
->curr
== p
;
422 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
426 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
428 #ifdef CONFIG_DEBUG_SPINLOCK
429 /* this is a valid case when another task releases the spinlock */
430 rq
->lock
.owner
= current
;
433 * If we are tracking spinlock dependencies then we have to
434 * fix up the runqueue lock - which gets 'carried over' from
437 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
439 spin_unlock_irq(&rq
->lock
);
442 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
443 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
448 return rq
->curr
== p
;
452 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
456 * We can optimise this out completely for !SMP, because the
457 * SMP rebalancing from interrupt is the only thing that cares
462 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
463 spin_unlock_irq(&rq
->lock
);
465 spin_unlock(&rq
->lock
);
469 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
473 * After ->oncpu is cleared, the task can be moved to a different CPU.
474 * We must ensure this doesn't happen until the switch is completely
480 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
484 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
487 * __task_rq_lock - lock the runqueue a given task resides on.
488 * Must be called interrupts disabled.
490 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
497 spin_lock(&rq
->lock
);
498 if (unlikely(rq
!= task_rq(p
))) {
499 spin_unlock(&rq
->lock
);
500 goto repeat_lock_task
;
506 * task_rq_lock - lock the runqueue a given task resides on and disable
507 * interrupts. Note the ordering: we can safely lookup the task_rq without
508 * explicitly disabling preemption.
510 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
516 local_irq_save(*flags
);
518 spin_lock(&rq
->lock
);
519 if (unlikely(rq
!= task_rq(p
))) {
520 spin_unlock_irqrestore(&rq
->lock
, *flags
);
521 goto repeat_lock_task
;
526 static inline void __task_rq_unlock(struct rq
*rq
)
529 spin_unlock(&rq
->lock
);
532 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
535 spin_unlock_irqrestore(&rq
->lock
, *flags
);
539 * this_rq_lock - lock this runqueue and disable interrupts.
541 static inline struct rq
*this_rq_lock(void)
548 spin_lock(&rq
->lock
);
554 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
556 void sched_clock_unstable_event(void)
561 rq
= task_rq_lock(current
, &flags
);
562 rq
->prev_clock_raw
= sched_clock();
563 rq
->clock_unstable_events
++;
564 task_rq_unlock(rq
, &flags
);
568 * resched_task - mark a task 'to be rescheduled now'.
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
576 #ifndef tsk_is_polling
577 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
580 static void resched_task(struct task_struct
*p
)
584 assert_spin_locked(&task_rq(p
)->lock
);
586 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
589 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
592 if (cpu
== smp_processor_id())
595 /* NEED_RESCHED must be visible before we test polling */
597 if (!tsk_is_polling(p
))
598 smp_send_reschedule(cpu
);
601 static void resched_cpu(int cpu
)
603 struct rq
*rq
= cpu_rq(cpu
);
606 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
608 resched_task(cpu_curr(cpu
));
609 spin_unlock_irqrestore(&rq
->lock
, flags
);
612 static inline void resched_task(struct task_struct
*p
)
614 assert_spin_locked(&task_rq(p
)->lock
);
615 set_tsk_need_resched(p
);
619 static u64
div64_likely32(u64 divident
, unsigned long divisor
)
621 #if BITS_PER_LONG == 32
622 if (likely(divident
<= 0xffffffffULL
))
623 return (u32
)divident
/ divisor
;
624 do_div(divident
, divisor
);
628 return divident
/ divisor
;
632 #if BITS_PER_LONG == 32
633 # define WMULT_CONST (~0UL)
635 # define WMULT_CONST (1UL << 32)
638 #define WMULT_SHIFT 32
640 static inline unsigned long
641 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
642 struct load_weight
*lw
)
646 if (unlikely(!lw
->inv_weight
))
647 lw
->inv_weight
= WMULT_CONST
/ lw
->weight
;
649 tmp
= (u64
)delta_exec
* weight
;
651 * Check whether we'd overflow the 64-bit multiplication:
653 if (unlikely(tmp
> WMULT_CONST
)) {
654 tmp
= ((tmp
>> WMULT_SHIFT
/2) * lw
->inv_weight
)
657 tmp
= (tmp
* lw
->inv_weight
) >> WMULT_SHIFT
;
660 return (unsigned long)min(tmp
, (u64
)sysctl_sched_runtime_limit
);
663 static inline unsigned long
664 calc_delta_fair(unsigned long delta_exec
, struct load_weight
*lw
)
666 return calc_delta_mine(delta_exec
, NICE_0_LOAD
, lw
);
669 static void update_load_add(struct load_weight
*lw
, unsigned long inc
)
675 static void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
681 static void __update_curr_load(struct rq
*rq
, struct load_stat
*ls
)
683 if (rq
->curr
!= rq
->idle
&& ls
->load
.weight
) {
684 ls
->delta_exec
+= ls
->delta_stat
;
685 ls
->delta_fair
+= calc_delta_fair(ls
->delta_stat
, &ls
->load
);
691 * Update delta_exec, delta_fair fields for rq.
693 * delta_fair clock advances at a rate inversely proportional to
694 * total load (rq->ls.load.weight) on the runqueue, while
695 * delta_exec advances at the same rate as wall-clock (provided
698 * delta_exec / delta_fair is a measure of the (smoothened) load on this
699 * runqueue over any given interval. This (smoothened) load is used
700 * during load balance.
702 * This function is called /before/ updating rq->ls.load
703 * and when switching tasks.
705 static void update_curr_load(struct rq
*rq
, u64 now
)
707 struct load_stat
*ls
= &rq
->ls
;
710 start
= ls
->load_update_start
;
711 ls
->load_update_start
= now
;
712 ls
->delta_stat
+= now
- start
;
714 * Stagger updates to ls->delta_fair. Very frequent updates
717 if (ls
->delta_stat
>= sysctl_sched_stat_granularity
)
718 __update_curr_load(rq
, ls
);
722 * To aid in avoiding the subversion of "niceness" due to uneven distribution
723 * of tasks with abnormal "nice" values across CPUs the contribution that
724 * each task makes to its run queue's load is weighted according to its
725 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
726 * scaled version of the new time slice allocation that they receive on time
731 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
732 * If static_prio_timeslice() is ever changed to break this assumption then
733 * this code will need modification
735 #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
736 #define load_weight(lp) \
737 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
738 #define PRIO_TO_LOAD_WEIGHT(prio) \
739 load_weight(static_prio_timeslice(prio))
740 #define RTPRIO_TO_LOAD_WEIGHT(rp) \
741 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + load_weight(rp))
743 #define WEIGHT_IDLEPRIO 2
744 #define WMULT_IDLEPRIO (1 << 31)
747 * Nice levels are multiplicative, with a gentle 10% change for every
748 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
749 * nice 1, it will get ~10% less CPU time than another CPU-bound task
750 * that remained on nice 0.
752 * The "10% effect" is relative and cumulative: from _any_ nice level,
753 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
754 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
755 * If a task goes up by ~10% and another task goes down by ~10% then
756 * the relative distance between them is ~25%.)
758 static const int prio_to_weight
[40] = {
759 /* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
760 /* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
761 /* 0 */ NICE_0_LOAD
/* 1024 */,
762 /* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
763 /* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
767 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
769 * In cases where the weight does not change often, we can use the
770 * precalculated inverse to speed up arithmetics by turning divisions
771 * into multiplications:
773 static const u32 prio_to_wmult
[40] = {
774 /* -20 */ 48356, 60446, 75558, 94446, 118058,
775 /* -15 */ 147573, 184467, 230589, 288233, 360285,
776 /* -10 */ 450347, 562979, 703746, 879575, 1099582,
777 /* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
778 /* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
779 /* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
780 /* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
781 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
785 inc_load(struct rq
*rq
, const struct task_struct
*p
, u64 now
)
787 update_curr_load(rq
, now
);
788 update_load_add(&rq
->ls
.load
, p
->se
.load
.weight
);
792 dec_load(struct rq
*rq
, const struct task_struct
*p
, u64 now
)
794 update_curr_load(rq
, now
);
795 update_load_sub(&rq
->ls
.load
, p
->se
.load
.weight
);
798 static inline void inc_nr_running(struct task_struct
*p
, struct rq
*rq
, u64 now
)
801 inc_load(rq
, p
, now
);
804 static inline void dec_nr_running(struct task_struct
*p
, struct rq
*rq
, u64 now
)
807 dec_load(rq
, p
, now
);
810 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
813 * runqueue iterator, to support SMP load-balancing between different
814 * scheduling classes, without having to expose their internal data
815 * structures to the load-balancing proper:
819 struct task_struct
*(*start
)(void *);
820 struct task_struct
*(*next
)(void *);
823 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
824 unsigned long max_nr_move
, unsigned long max_load_move
,
825 struct sched_domain
*sd
, enum cpu_idle_type idle
,
826 int *all_pinned
, unsigned long *load_moved
,
827 int this_best_prio
, int best_prio
, int best_prio_seen
,
828 struct rq_iterator
*iterator
);
830 #include "sched_stats.h"
831 #include "sched_rt.c"
832 #include "sched_fair.c"
833 #include "sched_idletask.c"
834 #ifdef CONFIG_SCHED_DEBUG
835 # include "sched_debug.c"
838 #define sched_class_highest (&rt_sched_class)
840 static void set_load_weight(struct task_struct
*p
)
842 task_rq(p
)->cfs
.wait_runtime
-= p
->se
.wait_runtime
;
843 p
->se
.wait_runtime
= 0;
845 if (task_has_rt_policy(p
)) {
846 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
847 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
852 * SCHED_IDLE tasks get minimal weight:
854 if (p
->policy
== SCHED_IDLE
) {
855 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
856 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
860 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
861 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
865 enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
, u64 now
)
867 sched_info_queued(p
);
868 p
->sched_class
->enqueue_task(rq
, p
, wakeup
, now
);
873 dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
, u64 now
)
875 p
->sched_class
->dequeue_task(rq
, p
, sleep
, now
);
880 * __normal_prio - return the priority that is based on the static prio
882 static inline int __normal_prio(struct task_struct
*p
)
884 return p
->static_prio
;
888 * Calculate the expected normal priority: i.e. priority
889 * without taking RT-inheritance into account. Might be
890 * boosted by interactivity modifiers. Changes upon fork,
891 * setprio syscalls, and whenever the interactivity
892 * estimator recalculates.
894 static inline int normal_prio(struct task_struct
*p
)
898 if (task_has_rt_policy(p
))
899 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
901 prio
= __normal_prio(p
);
906 * Calculate the current priority, i.e. the priority
907 * taken into account by the scheduler. This value might
908 * be boosted by RT tasks, or might be boosted by
909 * interactivity modifiers. Will be RT if the task got
910 * RT-boosted. If not then it returns p->normal_prio.
912 static int effective_prio(struct task_struct
*p
)
914 p
->normal_prio
= normal_prio(p
);
916 * If we are RT tasks or we were boosted to RT priority,
917 * keep the priority unchanged. Otherwise, update priority
918 * to the normal priority:
920 if (!rt_prio(p
->prio
))
921 return p
->normal_prio
;
926 * activate_task - move a task to the runqueue.
928 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
930 u64 now
= rq_clock(rq
);
932 if (p
->state
== TASK_UNINTERRUPTIBLE
)
933 rq
->nr_uninterruptible
--;
935 enqueue_task(rq
, p
, wakeup
, now
);
936 inc_nr_running(p
, rq
, now
);
940 * activate_idle_task - move idle task to the _front_ of runqueue.
942 static inline void activate_idle_task(struct task_struct
*p
, struct rq
*rq
)
944 u64 now
= rq_clock(rq
);
946 if (p
->state
== TASK_UNINTERRUPTIBLE
)
947 rq
->nr_uninterruptible
--;
949 enqueue_task(rq
, p
, 0, now
);
950 inc_nr_running(p
, rq
, now
);
954 * deactivate_task - remove a task from the runqueue.
956 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
958 u64 now
= rq_clock(rq
);
960 if (p
->state
== TASK_UNINTERRUPTIBLE
)
961 rq
->nr_uninterruptible
++;
963 dequeue_task(rq
, p
, sleep
, now
);
964 dec_nr_running(p
, rq
, now
);
968 * task_curr - is this task currently executing on a CPU?
969 * @p: the task in question.
971 inline int task_curr(const struct task_struct
*p
)
973 return cpu_curr(task_cpu(p
)) == p
;
976 /* Used instead of source_load when we know the type == 0 */
977 unsigned long weighted_cpuload(const int cpu
)
979 return cpu_rq(cpu
)->ls
.load
.weight
;
982 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
985 task_thread_info(p
)->cpu
= cpu
;
992 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
994 int old_cpu
= task_cpu(p
);
995 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
996 u64 clock_offset
, fair_clock_offset
;
998 clock_offset
= old_rq
->clock
- new_rq
->clock
;
999 fair_clock_offset
= old_rq
->cfs
.fair_clock
-
1000 new_rq
->cfs
.fair_clock
;
1001 if (p
->se
.wait_start
)
1002 p
->se
.wait_start
-= clock_offset
;
1003 if (p
->se
.wait_start_fair
)
1004 p
->se
.wait_start_fair
-= fair_clock_offset
;
1005 if (p
->se
.sleep_start
)
1006 p
->se
.sleep_start
-= clock_offset
;
1007 if (p
->se
.block_start
)
1008 p
->se
.block_start
-= clock_offset
;
1009 if (p
->se
.sleep_start_fair
)
1010 p
->se
.sleep_start_fair
-= fair_clock_offset
;
1012 __set_task_cpu(p
, new_cpu
);
1015 struct migration_req
{
1016 struct list_head list
;
1018 struct task_struct
*task
;
1021 struct completion done
;
1025 * The task's runqueue lock must be held.
1026 * Returns true if you have to wait for migration thread.
1029 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1031 struct rq
*rq
= task_rq(p
);
1034 * If the task is not on a runqueue (and not running), then
1035 * it is sufficient to simply update the task's cpu field.
1037 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1038 set_task_cpu(p
, dest_cpu
);
1042 init_completion(&req
->done
);
1044 req
->dest_cpu
= dest_cpu
;
1045 list_add(&req
->list
, &rq
->migration_queue
);
1051 * wait_task_inactive - wait for a thread to unschedule.
1053 * The caller must ensure that the task *will* unschedule sometime soon,
1054 * else this function might spin for a *long* time. This function can't
1055 * be called with interrupts off, or it may introduce deadlock with
1056 * smp_call_function() if an IPI is sent by the same process we are
1057 * waiting to become inactive.
1059 void wait_task_inactive(struct task_struct
*p
)
1061 unsigned long flags
;
1067 * We do the initial early heuristics without holding
1068 * any task-queue locks at all. We'll only try to get
1069 * the runqueue lock when things look like they will
1075 * If the task is actively running on another CPU
1076 * still, just relax and busy-wait without holding
1079 * NOTE! Since we don't hold any locks, it's not
1080 * even sure that "rq" stays as the right runqueue!
1081 * But we don't care, since "task_running()" will
1082 * return false if the runqueue has changed and p
1083 * is actually now running somewhere else!
1085 while (task_running(rq
, p
))
1089 * Ok, time to look more closely! We need the rq
1090 * lock now, to be *sure*. If we're wrong, we'll
1091 * just go back and repeat.
1093 rq
= task_rq_lock(p
, &flags
);
1094 running
= task_running(rq
, p
);
1095 on_rq
= p
->se
.on_rq
;
1096 task_rq_unlock(rq
, &flags
);
1099 * Was it really running after all now that we
1100 * checked with the proper locks actually held?
1102 * Oops. Go back and try again..
1104 if (unlikely(running
)) {
1110 * It's not enough that it's not actively running,
1111 * it must be off the runqueue _entirely_, and not
1114 * So if it wa still runnable (but just not actively
1115 * running right now), it's preempted, and we should
1116 * yield - it could be a while.
1118 if (unlikely(on_rq
)) {
1124 * Ahh, all good. It wasn't running, and it wasn't
1125 * runnable, which means that it will never become
1126 * running in the future either. We're all done!
1131 * kick_process - kick a running thread to enter/exit the kernel
1132 * @p: the to-be-kicked thread
1134 * Cause a process which is running on another CPU to enter
1135 * kernel-mode, without any delay. (to get signals handled.)
1137 * NOTE: this function doesnt have to take the runqueue lock,
1138 * because all it wants to ensure is that the remote task enters
1139 * the kernel. If the IPI races and the task has been migrated
1140 * to another CPU then no harm is done and the purpose has been
1143 void kick_process(struct task_struct
*p
)
1149 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1150 smp_send_reschedule(cpu
);
1155 * Return a low guess at the load of a migration-source cpu weighted
1156 * according to the scheduling class and "nice" value.
1158 * We want to under-estimate the load of migration sources, to
1159 * balance conservatively.
1161 static inline unsigned long source_load(int cpu
, int type
)
1163 struct rq
*rq
= cpu_rq(cpu
);
1164 unsigned long total
= weighted_cpuload(cpu
);
1169 return min(rq
->cpu_load
[type
-1], total
);
1173 * Return a high guess at the load of a migration-target cpu weighted
1174 * according to the scheduling class and "nice" value.
1176 static inline unsigned long target_load(int cpu
, int type
)
1178 struct rq
*rq
= cpu_rq(cpu
);
1179 unsigned long total
= weighted_cpuload(cpu
);
1184 return max(rq
->cpu_load
[type
-1], total
);
1188 * Return the average load per task on the cpu's run queue
1190 static inline unsigned long cpu_avg_load_per_task(int cpu
)
1192 struct rq
*rq
= cpu_rq(cpu
);
1193 unsigned long total
= weighted_cpuload(cpu
);
1194 unsigned long n
= rq
->nr_running
;
1196 return n
? total
/ n
: SCHED_LOAD_SCALE
;
1200 * find_idlest_group finds and returns the least busy CPU group within the
1203 static struct sched_group
*
1204 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1206 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1207 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1208 int load_idx
= sd
->forkexec_idx
;
1209 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1212 unsigned long load
, avg_load
;
1216 /* Skip over this group if it has no CPUs allowed */
1217 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1220 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1222 /* Tally up the load of all CPUs in the group */
1225 for_each_cpu_mask(i
, group
->cpumask
) {
1226 /* Bias balancing toward cpus of our domain */
1228 load
= source_load(i
, load_idx
);
1230 load
= target_load(i
, load_idx
);
1235 /* Adjust by relative CPU power of the group */
1236 avg_load
= sg_div_cpu_power(group
,
1237 avg_load
* SCHED_LOAD_SCALE
);
1240 this_load
= avg_load
;
1242 } else if (avg_load
< min_load
) {
1243 min_load
= avg_load
;
1247 group
= group
->next
;
1248 } while (group
!= sd
->groups
);
1250 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1256 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1259 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1262 unsigned long load
, min_load
= ULONG_MAX
;
1266 /* Traverse only the allowed CPUs */
1267 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1269 for_each_cpu_mask(i
, tmp
) {
1270 load
= weighted_cpuload(i
);
1272 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1282 * sched_balance_self: balance the current task (running on cpu) in domains
1283 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1286 * Balance, ie. select the least loaded group.
1288 * Returns the target CPU number, or the same CPU if no balancing is needed.
1290 * preempt must be disabled.
1292 static int sched_balance_self(int cpu
, int flag
)
1294 struct task_struct
*t
= current
;
1295 struct sched_domain
*tmp
, *sd
= NULL
;
1297 for_each_domain(cpu
, tmp
) {
1299 * If power savings logic is enabled for a domain, stop there.
1301 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1303 if (tmp
->flags
& flag
)
1309 struct sched_group
*group
;
1310 int new_cpu
, weight
;
1312 if (!(sd
->flags
& flag
)) {
1318 group
= find_idlest_group(sd
, t
, cpu
);
1324 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1325 if (new_cpu
== -1 || new_cpu
== cpu
) {
1326 /* Now try balancing at a lower domain level of cpu */
1331 /* Now try balancing at a lower domain level of new_cpu */
1334 weight
= cpus_weight(span
);
1335 for_each_domain(cpu
, tmp
) {
1336 if (weight
<= cpus_weight(tmp
->span
))
1338 if (tmp
->flags
& flag
)
1341 /* while loop will break here if sd == NULL */
1347 #endif /* CONFIG_SMP */
1350 * wake_idle() will wake a task on an idle cpu if task->cpu is
1351 * not idle and an idle cpu is available. The span of cpus to
1352 * search starts with cpus closest then further out as needed,
1353 * so we always favor a closer, idle cpu.
1355 * Returns the CPU we should wake onto.
1357 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1358 static int wake_idle(int cpu
, struct task_struct
*p
)
1361 struct sched_domain
*sd
;
1365 * If it is idle, then it is the best cpu to run this task.
1367 * This cpu is also the best, if it has more than one task already.
1368 * Siblings must be also busy(in most cases) as they didn't already
1369 * pickup the extra load from this cpu and hence we need not check
1370 * sibling runqueue info. This will avoid the checks and cache miss
1371 * penalities associated with that.
1373 if (idle_cpu(cpu
) || cpu_rq(cpu
)->nr_running
> 1)
1376 for_each_domain(cpu
, sd
) {
1377 if (sd
->flags
& SD_WAKE_IDLE
) {
1378 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1379 for_each_cpu_mask(i
, tmp
) {
1390 static inline int wake_idle(int cpu
, struct task_struct
*p
)
1397 * try_to_wake_up - wake up a thread
1398 * @p: the to-be-woken-up thread
1399 * @state: the mask of task states that can be woken
1400 * @sync: do a synchronous wakeup?
1402 * Put it on the run-queue if it's not already there. The "current"
1403 * thread is always on the run-queue (except when the actual
1404 * re-schedule is in progress), and as such you're allowed to do
1405 * the simpler "current->state = TASK_RUNNING" to mark yourself
1406 * runnable without the overhead of this.
1408 * returns failure only if the task is already active.
1410 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
1412 int cpu
, this_cpu
, success
= 0;
1413 unsigned long flags
;
1417 struct sched_domain
*sd
, *this_sd
= NULL
;
1418 unsigned long load
, this_load
;
1422 rq
= task_rq_lock(p
, &flags
);
1423 old_state
= p
->state
;
1424 if (!(old_state
& state
))
1431 this_cpu
= smp_processor_id();
1434 if (unlikely(task_running(rq
, p
)))
1439 schedstat_inc(rq
, ttwu_cnt
);
1440 if (cpu
== this_cpu
) {
1441 schedstat_inc(rq
, ttwu_local
);
1445 for_each_domain(this_cpu
, sd
) {
1446 if (cpu_isset(cpu
, sd
->span
)) {
1447 schedstat_inc(sd
, ttwu_wake_remote
);
1453 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1457 * Check for affine wakeup and passive balancing possibilities.
1460 int idx
= this_sd
->wake_idx
;
1461 unsigned int imbalance
;
1463 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1465 load
= source_load(cpu
, idx
);
1466 this_load
= target_load(this_cpu
, idx
);
1468 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1470 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1471 unsigned long tl
= this_load
;
1472 unsigned long tl_per_task
;
1474 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1477 * If sync wakeup then subtract the (maximum possible)
1478 * effect of the currently running task from the load
1479 * of the current CPU:
1482 tl
-= current
->se
.load
.weight
;
1485 tl
+ target_load(cpu
, idx
) <= tl_per_task
) ||
1486 100*(tl
+ p
->se
.load
.weight
) <= imbalance
*load
) {
1488 * This domain has SD_WAKE_AFFINE and
1489 * p is cache cold in this domain, and
1490 * there is no bad imbalance.
1492 schedstat_inc(this_sd
, ttwu_move_affine
);
1498 * Start passive balancing when half the imbalance_pct
1501 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1502 if (imbalance
*this_load
<= 100*load
) {
1503 schedstat_inc(this_sd
, ttwu_move_balance
);
1509 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1511 new_cpu
= wake_idle(new_cpu
, p
);
1512 if (new_cpu
!= cpu
) {
1513 set_task_cpu(p
, new_cpu
);
1514 task_rq_unlock(rq
, &flags
);
1515 /* might preempt at this point */
1516 rq
= task_rq_lock(p
, &flags
);
1517 old_state
= p
->state
;
1518 if (!(old_state
& state
))
1523 this_cpu
= smp_processor_id();
1528 #endif /* CONFIG_SMP */
1529 activate_task(rq
, p
, 1);
1531 * Sync wakeups (i.e. those types of wakeups where the waker
1532 * has indicated that it will leave the CPU in short order)
1533 * don't trigger a preemption, if the woken up task will run on
1534 * this cpu. (in this case the 'I will reschedule' promise of
1535 * the waker guarantees that the freshly woken up task is going
1536 * to be considered on this CPU.)
1538 if (!sync
|| cpu
!= this_cpu
)
1539 check_preempt_curr(rq
, p
);
1543 p
->state
= TASK_RUNNING
;
1545 task_rq_unlock(rq
, &flags
);
1550 int fastcall
wake_up_process(struct task_struct
*p
)
1552 return try_to_wake_up(p
, TASK_STOPPED
| TASK_TRACED
|
1553 TASK_INTERRUPTIBLE
| TASK_UNINTERRUPTIBLE
, 0);
1555 EXPORT_SYMBOL(wake_up_process
);
1557 int fastcall
wake_up_state(struct task_struct
*p
, unsigned int state
)
1559 return try_to_wake_up(p
, state
, 0);
1563 * Perform scheduler related setup for a newly forked process p.
1564 * p is forked by current.
1566 * __sched_fork() is basic setup used by init_idle() too:
1568 static void __sched_fork(struct task_struct
*p
)
1570 p
->se
.wait_start_fair
= 0;
1571 p
->se
.wait_start
= 0;
1572 p
->se
.exec_start
= 0;
1573 p
->se
.sum_exec_runtime
= 0;
1574 p
->se
.delta_exec
= 0;
1575 p
->se
.delta_fair_run
= 0;
1576 p
->se
.delta_fair_sleep
= 0;
1577 p
->se
.wait_runtime
= 0;
1578 p
->se
.sum_wait_runtime
= 0;
1579 p
->se
.sum_sleep_runtime
= 0;
1580 p
->se
.sleep_start
= 0;
1581 p
->se
.sleep_start_fair
= 0;
1582 p
->se
.block_start
= 0;
1583 p
->se
.sleep_max
= 0;
1584 p
->se
.block_max
= 0;
1587 p
->se
.wait_runtime_overruns
= 0;
1588 p
->se
.wait_runtime_underruns
= 0;
1590 INIT_LIST_HEAD(&p
->run_list
);
1593 #ifdef CONFIG_PREEMPT_NOTIFIERS
1594 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1598 * We mark the process as running here, but have not actually
1599 * inserted it onto the runqueue yet. This guarantees that
1600 * nobody will actually run it, and a signal or other external
1601 * event cannot wake it up and insert it on the runqueue either.
1603 p
->state
= TASK_RUNNING
;
1607 * fork()/clone()-time setup:
1609 void sched_fork(struct task_struct
*p
, int clone_flags
)
1611 int cpu
= get_cpu();
1616 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1618 __set_task_cpu(p
, cpu
);
1621 * Make sure we do not leak PI boosting priority to the child:
1623 p
->prio
= current
->normal_prio
;
1625 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1626 if (likely(sched_info_on()))
1627 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1629 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1632 #ifdef CONFIG_PREEMPT
1633 /* Want to start with kernel preemption disabled. */
1634 task_thread_info(p
)->preempt_count
= 1;
1640 * After fork, child runs first. (default) If set to 0 then
1641 * parent will (try to) run first.
1643 unsigned int __read_mostly sysctl_sched_child_runs_first
= 1;
1646 * wake_up_new_task - wake up a newly created task for the first time.
1648 * This function will do some initial scheduler statistics housekeeping
1649 * that must be done for every newly created context, then puts the task
1650 * on the runqueue and wakes it.
1652 void fastcall
wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
1654 unsigned long flags
;
1658 rq
= task_rq_lock(p
, &flags
);
1659 BUG_ON(p
->state
!= TASK_RUNNING
);
1660 this_cpu
= smp_processor_id(); /* parent's CPU */
1662 p
->prio
= effective_prio(p
);
1664 if (!sysctl_sched_child_runs_first
|| (clone_flags
& CLONE_VM
) ||
1665 task_cpu(p
) != this_cpu
|| !current
->se
.on_rq
) {
1666 activate_task(rq
, p
, 0);
1669 * Let the scheduling class do new task startup
1670 * management (if any):
1672 p
->sched_class
->task_new(rq
, p
);
1674 check_preempt_curr(rq
, p
);
1675 task_rq_unlock(rq
, &flags
);
1678 #ifdef CONFIG_PREEMPT_NOTIFIERS
1681 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1682 * @notifier: notifier struct to register
1684 void preempt_notifier_register(struct preempt_notifier
*notifier
)
1686 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
1688 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
1691 * preempt_notifier_unregister - no longer interested in preemption notifications
1692 * @notifier: notifier struct to unregister
1694 * This is safe to call from within a preemption notifier.
1696 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
1698 hlist_del(¬ifier
->link
);
1700 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
1702 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1704 struct preempt_notifier
*notifier
;
1705 struct hlist_node
*node
;
1707 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1708 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
1712 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1713 struct task_struct
*next
)
1715 struct preempt_notifier
*notifier
;
1716 struct hlist_node
*node
;
1718 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1719 notifier
->ops
->sched_out(notifier
, next
);
1724 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1729 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1730 struct task_struct
*next
)
1737 * prepare_task_switch - prepare to switch tasks
1738 * @rq: the runqueue preparing to switch
1739 * @prev: the current task that is being switched out
1740 * @next: the task we are going to switch to.
1742 * This is called with the rq lock held and interrupts off. It must
1743 * be paired with a subsequent finish_task_switch after the context
1746 * prepare_task_switch sets up locking and calls architecture specific
1750 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
1751 struct task_struct
*next
)
1753 fire_sched_out_preempt_notifiers(prev
, next
);
1754 prepare_lock_switch(rq
, next
);
1755 prepare_arch_switch(next
);
1759 * finish_task_switch - clean up after a task-switch
1760 * @rq: runqueue associated with task-switch
1761 * @prev: the thread we just switched away from.
1763 * finish_task_switch must be called after the context switch, paired
1764 * with a prepare_task_switch call before the context switch.
1765 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1766 * and do any other architecture-specific cleanup actions.
1768 * Note that we may have delayed dropping an mm in context_switch(). If
1769 * so, we finish that here outside of the runqueue lock. (Doing it
1770 * with the lock held can cause deadlocks; see schedule() for
1773 static inline void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
1774 __releases(rq
->lock
)
1776 struct mm_struct
*mm
= rq
->prev_mm
;
1782 * A task struct has one reference for the use as "current".
1783 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1784 * schedule one last time. The schedule call will never return, and
1785 * the scheduled task must drop that reference.
1786 * The test for TASK_DEAD must occur while the runqueue locks are
1787 * still held, otherwise prev could be scheduled on another cpu, die
1788 * there before we look at prev->state, and then the reference would
1790 * Manfred Spraul <manfred@colorfullife.com>
1792 prev_state
= prev
->state
;
1793 finish_arch_switch(prev
);
1794 finish_lock_switch(rq
, prev
);
1795 fire_sched_in_preempt_notifiers(current
);
1798 if (unlikely(prev_state
== TASK_DEAD
)) {
1800 * Remove function-return probe instances associated with this
1801 * task and put them back on the free list.
1803 kprobe_flush_task(prev
);
1804 put_task_struct(prev
);
1809 * schedule_tail - first thing a freshly forked thread must call.
1810 * @prev: the thread we just switched away from.
1812 asmlinkage
void schedule_tail(struct task_struct
*prev
)
1813 __releases(rq
->lock
)
1815 struct rq
*rq
= this_rq();
1817 finish_task_switch(rq
, prev
);
1818 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1819 /* In this case, finish_task_switch does not reenable preemption */
1822 if (current
->set_child_tid
)
1823 put_user(current
->pid
, current
->set_child_tid
);
1827 * context_switch - switch to the new MM and the new
1828 * thread's register state.
1831 context_switch(struct rq
*rq
, struct task_struct
*prev
,
1832 struct task_struct
*next
)
1834 struct mm_struct
*mm
, *oldmm
;
1836 prepare_task_switch(rq
, prev
, next
);
1838 oldmm
= prev
->active_mm
;
1840 * For paravirt, this is coupled with an exit in switch_to to
1841 * combine the page table reload and the switch backend into
1844 arch_enter_lazy_cpu_mode();
1846 if (unlikely(!mm
)) {
1847 next
->active_mm
= oldmm
;
1848 atomic_inc(&oldmm
->mm_count
);
1849 enter_lazy_tlb(oldmm
, next
);
1851 switch_mm(oldmm
, mm
, next
);
1853 if (unlikely(!prev
->mm
)) {
1854 prev
->active_mm
= NULL
;
1855 rq
->prev_mm
= oldmm
;
1858 * Since the runqueue lock will be released by the next
1859 * task (which is an invalid locking op but in the case
1860 * of the scheduler it's an obvious special-case), so we
1861 * do an early lockdep release here:
1863 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1864 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
1867 /* Here we just switch the register state and the stack. */
1868 switch_to(prev
, next
, prev
);
1872 * this_rq must be evaluated again because prev may have moved
1873 * CPUs since it called schedule(), thus the 'rq' on its stack
1874 * frame will be invalid.
1876 finish_task_switch(this_rq(), prev
);
1880 * nr_running, nr_uninterruptible and nr_context_switches:
1882 * externally visible scheduler statistics: current number of runnable
1883 * threads, current number of uninterruptible-sleeping threads, total
1884 * number of context switches performed since bootup.
1886 unsigned long nr_running(void)
1888 unsigned long i
, sum
= 0;
1890 for_each_online_cpu(i
)
1891 sum
+= cpu_rq(i
)->nr_running
;
1896 unsigned long nr_uninterruptible(void)
1898 unsigned long i
, sum
= 0;
1900 for_each_possible_cpu(i
)
1901 sum
+= cpu_rq(i
)->nr_uninterruptible
;
1904 * Since we read the counters lockless, it might be slightly
1905 * inaccurate. Do not allow it to go below zero though:
1907 if (unlikely((long)sum
< 0))
1913 unsigned long long nr_context_switches(void)
1916 unsigned long long sum
= 0;
1918 for_each_possible_cpu(i
)
1919 sum
+= cpu_rq(i
)->nr_switches
;
1924 unsigned long nr_iowait(void)
1926 unsigned long i
, sum
= 0;
1928 for_each_possible_cpu(i
)
1929 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
1934 unsigned long nr_active(void)
1936 unsigned long i
, running
= 0, uninterruptible
= 0;
1938 for_each_online_cpu(i
) {
1939 running
+= cpu_rq(i
)->nr_running
;
1940 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
1943 if (unlikely((long)uninterruptible
< 0))
1944 uninterruptible
= 0;
1946 return running
+ uninterruptible
;
1950 * Update rq->cpu_load[] statistics. This function is usually called every
1951 * scheduler tick (TICK_NSEC).
1953 static void update_cpu_load(struct rq
*this_rq
)
1955 u64 fair_delta64
, exec_delta64
, idle_delta64
, sample_interval64
, tmp64
;
1956 unsigned long total_load
= this_rq
->ls
.load
.weight
;
1957 unsigned long this_load
= total_load
;
1958 struct load_stat
*ls
= &this_rq
->ls
;
1959 u64 now
= __rq_clock(this_rq
);
1962 this_rq
->nr_load_updates
++;
1963 if (unlikely(!(sysctl_sched_features
& SCHED_FEAT_PRECISE_CPU_LOAD
)))
1966 /* Update delta_fair/delta_exec fields first */
1967 update_curr_load(this_rq
, now
);
1969 fair_delta64
= ls
->delta_fair
+ 1;
1972 exec_delta64
= ls
->delta_exec
+ 1;
1975 sample_interval64
= now
- ls
->load_update_last
;
1976 ls
->load_update_last
= now
;
1978 if ((s64
)sample_interval64
< (s64
)TICK_NSEC
)
1979 sample_interval64
= TICK_NSEC
;
1981 if (exec_delta64
> sample_interval64
)
1982 exec_delta64
= sample_interval64
;
1984 idle_delta64
= sample_interval64
- exec_delta64
;
1986 tmp64
= div64_64(SCHED_LOAD_SCALE
* exec_delta64
, fair_delta64
);
1987 tmp64
= div64_64(tmp64
* exec_delta64
, sample_interval64
);
1989 this_load
= (unsigned long)tmp64
;
1993 /* Update our load: */
1994 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
1995 unsigned long old_load
, new_load
;
1997 /* scale is effectively 1 << i now, and >> i divides by scale */
1999 old_load
= this_rq
->cpu_load
[i
];
2000 new_load
= this_load
;
2002 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2009 * double_rq_lock - safely lock two runqueues
2011 * Note this does not disable interrupts like task_rq_lock,
2012 * you need to do so manually before calling.
2014 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2015 __acquires(rq1
->lock
)
2016 __acquires(rq2
->lock
)
2018 BUG_ON(!irqs_disabled());
2020 spin_lock(&rq1
->lock
);
2021 __acquire(rq2
->lock
); /* Fake it out ;) */
2024 spin_lock(&rq1
->lock
);
2025 spin_lock(&rq2
->lock
);
2027 spin_lock(&rq2
->lock
);
2028 spin_lock(&rq1
->lock
);
2034 * double_rq_unlock - safely unlock two runqueues
2036 * Note this does not restore interrupts like task_rq_unlock,
2037 * you need to do so manually after calling.
2039 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2040 __releases(rq1
->lock
)
2041 __releases(rq2
->lock
)
2043 spin_unlock(&rq1
->lock
);
2045 spin_unlock(&rq2
->lock
);
2047 __release(rq2
->lock
);
2051 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2053 static void double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2054 __releases(this_rq
->lock
)
2055 __acquires(busiest
->lock
)
2056 __acquires(this_rq
->lock
)
2058 if (unlikely(!irqs_disabled())) {
2059 /* printk() doesn't work good under rq->lock */
2060 spin_unlock(&this_rq
->lock
);
2063 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2064 if (busiest
< this_rq
) {
2065 spin_unlock(&this_rq
->lock
);
2066 spin_lock(&busiest
->lock
);
2067 spin_lock(&this_rq
->lock
);
2069 spin_lock(&busiest
->lock
);
2074 * If dest_cpu is allowed for this process, migrate the task to it.
2075 * This is accomplished by forcing the cpu_allowed mask to only
2076 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2077 * the cpu_allowed mask is restored.
2079 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2081 struct migration_req req
;
2082 unsigned long flags
;
2085 rq
= task_rq_lock(p
, &flags
);
2086 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2087 || unlikely(cpu_is_offline(dest_cpu
)))
2090 /* force the process onto the specified CPU */
2091 if (migrate_task(p
, dest_cpu
, &req
)) {
2092 /* Need to wait for migration thread (might exit: take ref). */
2093 struct task_struct
*mt
= rq
->migration_thread
;
2095 get_task_struct(mt
);
2096 task_rq_unlock(rq
, &flags
);
2097 wake_up_process(mt
);
2098 put_task_struct(mt
);
2099 wait_for_completion(&req
.done
);
2104 task_rq_unlock(rq
, &flags
);
2108 * sched_exec - execve() is a valuable balancing opportunity, because at
2109 * this point the task has the smallest effective memory and cache footprint.
2111 void sched_exec(void)
2113 int new_cpu
, this_cpu
= get_cpu();
2114 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2116 if (new_cpu
!= this_cpu
)
2117 sched_migrate_task(current
, new_cpu
);
2121 * pull_task - move a task from a remote runqueue to the local runqueue.
2122 * Both runqueues must be locked.
2124 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2125 struct rq
*this_rq
, int this_cpu
)
2127 deactivate_task(src_rq
, p
, 0);
2128 set_task_cpu(p
, this_cpu
);
2129 activate_task(this_rq
, p
, 0);
2131 * Note that idle threads have a prio of MAX_PRIO, for this test
2132 * to be always true for them.
2134 check_preempt_curr(this_rq
, p
);
2138 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2141 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2142 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2146 * We do not migrate tasks that are:
2147 * 1) running (obviously), or
2148 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2149 * 3) are cache-hot on their current CPU.
2151 if (!cpu_isset(this_cpu
, p
->cpus_allowed
))
2155 if (task_running(rq
, p
))
2159 * Aggressive migration if too many balance attempts have failed:
2161 if (sd
->nr_balance_failed
> sd
->cache_nice_tries
)
2167 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2168 unsigned long max_nr_move
, unsigned long max_load_move
,
2169 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2170 int *all_pinned
, unsigned long *load_moved
,
2171 int this_best_prio
, int best_prio
, int best_prio_seen
,
2172 struct rq_iterator
*iterator
)
2174 int pulled
= 0, pinned
= 0, skip_for_load
;
2175 struct task_struct
*p
;
2176 long rem_load_move
= max_load_move
;
2178 if (max_nr_move
== 0 || max_load_move
== 0)
2184 * Start the load-balancing iterator:
2186 p
= iterator
->start(iterator
->arg
);
2191 * To help distribute high priority tasks accross CPUs we don't
2192 * skip a task if it will be the highest priority task (i.e. smallest
2193 * prio value) on its new queue regardless of its load weight
2195 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
2196 SCHED_LOAD_SCALE_FUZZ
;
2197 if (skip_for_load
&& p
->prio
< this_best_prio
)
2198 skip_for_load
= !best_prio_seen
&& p
->prio
== best_prio
;
2199 if (skip_for_load
||
2200 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2202 best_prio_seen
|= p
->prio
== best_prio
;
2203 p
= iterator
->next(iterator
->arg
);
2207 pull_task(busiest
, p
, this_rq
, this_cpu
);
2209 rem_load_move
-= p
->se
.load
.weight
;
2212 * We only want to steal up to the prescribed number of tasks
2213 * and the prescribed amount of weighted load.
2215 if (pulled
< max_nr_move
&& rem_load_move
> 0) {
2216 if (p
->prio
< this_best_prio
)
2217 this_best_prio
= p
->prio
;
2218 p
= iterator
->next(iterator
->arg
);
2223 * Right now, this is the only place pull_task() is called,
2224 * so we can safely collect pull_task() stats here rather than
2225 * inside pull_task().
2227 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2230 *all_pinned
= pinned
;
2231 *load_moved
= max_load_move
- rem_load_move
;
2236 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2237 * load from busiest to this_rq, as part of a balancing operation within
2238 * "domain". Returns the number of tasks moved.
2240 * Called with both runqueues locked.
2242 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2243 unsigned long max_nr_move
, unsigned long max_load_move
,
2244 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2247 struct sched_class
*class = sched_class_highest
;
2248 unsigned long load_moved
, total_nr_moved
= 0, nr_moved
;
2249 long rem_load_move
= max_load_move
;
2252 nr_moved
= class->load_balance(this_rq
, this_cpu
, busiest
,
2253 max_nr_move
, (unsigned long)rem_load_move
,
2254 sd
, idle
, all_pinned
, &load_moved
);
2255 total_nr_moved
+= nr_moved
;
2256 max_nr_move
-= nr_moved
;
2257 rem_load_move
-= load_moved
;
2258 class = class->next
;
2259 } while (class && max_nr_move
&& rem_load_move
> 0);
2261 return total_nr_moved
;
2265 * find_busiest_group finds and returns the busiest CPU group within the
2266 * domain. It calculates and returns the amount of weighted load which
2267 * should be moved to restore balance via the imbalance parameter.
2269 static struct sched_group
*
2270 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2271 unsigned long *imbalance
, enum cpu_idle_type idle
,
2272 int *sd_idle
, cpumask_t
*cpus
, int *balance
)
2274 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2275 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2276 unsigned long max_pull
;
2277 unsigned long busiest_load_per_task
, busiest_nr_running
;
2278 unsigned long this_load_per_task
, this_nr_running
;
2280 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2281 int power_savings_balance
= 1;
2282 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
2283 unsigned long min_nr_running
= ULONG_MAX
;
2284 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
2287 max_load
= this_load
= total_load
= total_pwr
= 0;
2288 busiest_load_per_task
= busiest_nr_running
= 0;
2289 this_load_per_task
= this_nr_running
= 0;
2290 if (idle
== CPU_NOT_IDLE
)
2291 load_idx
= sd
->busy_idx
;
2292 else if (idle
== CPU_NEWLY_IDLE
)
2293 load_idx
= sd
->newidle_idx
;
2295 load_idx
= sd
->idle_idx
;
2298 unsigned long load
, group_capacity
;
2301 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2302 unsigned long sum_nr_running
, sum_weighted_load
;
2304 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2307 balance_cpu
= first_cpu(group
->cpumask
);
2309 /* Tally up the load of all CPUs in the group */
2310 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
2312 for_each_cpu_mask(i
, group
->cpumask
) {
2315 if (!cpu_isset(i
, *cpus
))
2320 if (*sd_idle
&& rq
->nr_running
)
2323 /* Bias balancing toward cpus of our domain */
2325 if (idle_cpu(i
) && !first_idle_cpu
) {
2330 load
= target_load(i
, load_idx
);
2332 load
= source_load(i
, load_idx
);
2335 sum_nr_running
+= rq
->nr_running
;
2336 sum_weighted_load
+= weighted_cpuload(i
);
2340 * First idle cpu or the first cpu(busiest) in this sched group
2341 * is eligible for doing load balancing at this and above
2342 * domains. In the newly idle case, we will allow all the cpu's
2343 * to do the newly idle load balance.
2345 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
2346 balance_cpu
!= this_cpu
&& balance
) {
2351 total_load
+= avg_load
;
2352 total_pwr
+= group
->__cpu_power
;
2354 /* Adjust by relative CPU power of the group */
2355 avg_load
= sg_div_cpu_power(group
,
2356 avg_load
* SCHED_LOAD_SCALE
);
2358 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
2361 this_load
= avg_load
;
2363 this_nr_running
= sum_nr_running
;
2364 this_load_per_task
= sum_weighted_load
;
2365 } else if (avg_load
> max_load
&&
2366 sum_nr_running
> group_capacity
) {
2367 max_load
= avg_load
;
2369 busiest_nr_running
= sum_nr_running
;
2370 busiest_load_per_task
= sum_weighted_load
;
2373 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2375 * Busy processors will not participate in power savings
2378 if (idle
== CPU_NOT_IDLE
||
2379 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2383 * If the local group is idle or completely loaded
2384 * no need to do power savings balance at this domain
2386 if (local_group
&& (this_nr_running
>= group_capacity
||
2388 power_savings_balance
= 0;
2391 * If a group is already running at full capacity or idle,
2392 * don't include that group in power savings calculations
2394 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
2399 * Calculate the group which has the least non-idle load.
2400 * This is the group from where we need to pick up the load
2403 if ((sum_nr_running
< min_nr_running
) ||
2404 (sum_nr_running
== min_nr_running
&&
2405 first_cpu(group
->cpumask
) <
2406 first_cpu(group_min
->cpumask
))) {
2408 min_nr_running
= sum_nr_running
;
2409 min_load_per_task
= sum_weighted_load
/
2414 * Calculate the group which is almost near its
2415 * capacity but still has some space to pick up some load
2416 * from other group and save more power
2418 if (sum_nr_running
<= group_capacity
- 1) {
2419 if (sum_nr_running
> leader_nr_running
||
2420 (sum_nr_running
== leader_nr_running
&&
2421 first_cpu(group
->cpumask
) >
2422 first_cpu(group_leader
->cpumask
))) {
2423 group_leader
= group
;
2424 leader_nr_running
= sum_nr_running
;
2429 group
= group
->next
;
2430 } while (group
!= sd
->groups
);
2432 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
2435 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2437 if (this_load
>= avg_load
||
2438 100*max_load
<= sd
->imbalance_pct
*this_load
)
2441 busiest_load_per_task
/= busiest_nr_running
;
2443 * We're trying to get all the cpus to the average_load, so we don't
2444 * want to push ourselves above the average load, nor do we wish to
2445 * reduce the max loaded cpu below the average load, as either of these
2446 * actions would just result in more rebalancing later, and ping-pong
2447 * tasks around. Thus we look for the minimum possible imbalance.
2448 * Negative imbalances (*we* are more loaded than anyone else) will
2449 * be counted as no imbalance for these purposes -- we can't fix that
2450 * by pulling tasks to us. Be careful of negative numbers as they'll
2451 * appear as very large values with unsigned longs.
2453 if (max_load
<= busiest_load_per_task
)
2457 * In the presence of smp nice balancing, certain scenarios can have
2458 * max load less than avg load(as we skip the groups at or below
2459 * its cpu_power, while calculating max_load..)
2461 if (max_load
< avg_load
) {
2463 goto small_imbalance
;
2466 /* Don't want to pull so many tasks that a group would go idle */
2467 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
2469 /* How much load to actually move to equalise the imbalance */
2470 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
2471 (avg_load
- this_load
) * this->__cpu_power
)
2475 * if *imbalance is less than the average load per runnable task
2476 * there is no gaurantee that any tasks will be moved so we'll have
2477 * a think about bumping its value to force at least one task to be
2480 if (*imbalance
+ SCHED_LOAD_SCALE_FUZZ
< busiest_load_per_task
/2) {
2481 unsigned long tmp
, pwr_now
, pwr_move
;
2485 pwr_move
= pwr_now
= 0;
2487 if (this_nr_running
) {
2488 this_load_per_task
/= this_nr_running
;
2489 if (busiest_load_per_task
> this_load_per_task
)
2492 this_load_per_task
= SCHED_LOAD_SCALE
;
2494 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
2495 busiest_load_per_task
* imbn
) {
2496 *imbalance
= busiest_load_per_task
;
2501 * OK, we don't have enough imbalance to justify moving tasks,
2502 * however we may be able to increase total CPU power used by
2506 pwr_now
+= busiest
->__cpu_power
*
2507 min(busiest_load_per_task
, max_load
);
2508 pwr_now
+= this->__cpu_power
*
2509 min(this_load_per_task
, this_load
);
2510 pwr_now
/= SCHED_LOAD_SCALE
;
2512 /* Amount of load we'd subtract */
2513 tmp
= sg_div_cpu_power(busiest
,
2514 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2516 pwr_move
+= busiest
->__cpu_power
*
2517 min(busiest_load_per_task
, max_load
- tmp
);
2519 /* Amount of load we'd add */
2520 if (max_load
* busiest
->__cpu_power
<
2521 busiest_load_per_task
* SCHED_LOAD_SCALE
)
2522 tmp
= sg_div_cpu_power(this,
2523 max_load
* busiest
->__cpu_power
);
2525 tmp
= sg_div_cpu_power(this,
2526 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2527 pwr_move
+= this->__cpu_power
*
2528 min(this_load_per_task
, this_load
+ tmp
);
2529 pwr_move
/= SCHED_LOAD_SCALE
;
2531 /* Move if we gain throughput */
2532 if (pwr_move
<= pwr_now
)
2535 *imbalance
= busiest_load_per_task
;
2541 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2542 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2545 if (this == group_leader
&& group_leader
!= group_min
) {
2546 *imbalance
= min_load_per_task
;
2556 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2559 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
2560 unsigned long imbalance
, cpumask_t
*cpus
)
2562 struct rq
*busiest
= NULL
, *rq
;
2563 unsigned long max_load
= 0;
2566 for_each_cpu_mask(i
, group
->cpumask
) {
2569 if (!cpu_isset(i
, *cpus
))
2573 wl
= weighted_cpuload(i
);
2575 if (rq
->nr_running
== 1 && wl
> imbalance
)
2578 if (wl
> max_load
) {
2588 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2589 * so long as it is large enough.
2591 #define MAX_PINNED_INTERVAL 512
2593 static inline unsigned long minus_1_or_zero(unsigned long n
)
2595 return n
> 0 ? n
- 1 : 0;
2599 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2600 * tasks if there is an imbalance.
2602 static int load_balance(int this_cpu
, struct rq
*this_rq
,
2603 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2606 int nr_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
2607 struct sched_group
*group
;
2608 unsigned long imbalance
;
2610 cpumask_t cpus
= CPU_MASK_ALL
;
2611 unsigned long flags
;
2614 * When power savings policy is enabled for the parent domain, idle
2615 * sibling can pick up load irrespective of busy siblings. In this case,
2616 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2617 * portraying it as CPU_NOT_IDLE.
2619 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2620 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2623 schedstat_inc(sd
, lb_cnt
[idle
]);
2626 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
2633 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2637 busiest
= find_busiest_queue(group
, idle
, imbalance
, &cpus
);
2639 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2643 BUG_ON(busiest
== this_rq
);
2645 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2648 if (busiest
->nr_running
> 1) {
2650 * Attempt to move tasks. If find_busiest_group has found
2651 * an imbalance but busiest->nr_running <= 1, the group is
2652 * still unbalanced. nr_moved simply stays zero, so it is
2653 * correctly treated as an imbalance.
2655 local_irq_save(flags
);
2656 double_rq_lock(this_rq
, busiest
);
2657 nr_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2658 minus_1_or_zero(busiest
->nr_running
),
2659 imbalance
, sd
, idle
, &all_pinned
);
2660 double_rq_unlock(this_rq
, busiest
);
2661 local_irq_restore(flags
);
2664 * some other cpu did the load balance for us.
2666 if (nr_moved
&& this_cpu
!= smp_processor_id())
2667 resched_cpu(this_cpu
);
2669 /* All tasks on this runqueue were pinned by CPU affinity */
2670 if (unlikely(all_pinned
)) {
2671 cpu_clear(cpu_of(busiest
), cpus
);
2672 if (!cpus_empty(cpus
))
2679 schedstat_inc(sd
, lb_failed
[idle
]);
2680 sd
->nr_balance_failed
++;
2682 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
2684 spin_lock_irqsave(&busiest
->lock
, flags
);
2686 /* don't kick the migration_thread, if the curr
2687 * task on busiest cpu can't be moved to this_cpu
2689 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
2690 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2692 goto out_one_pinned
;
2695 if (!busiest
->active_balance
) {
2696 busiest
->active_balance
= 1;
2697 busiest
->push_cpu
= this_cpu
;
2700 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2702 wake_up_process(busiest
->migration_thread
);
2705 * We've kicked active balancing, reset the failure
2708 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2711 sd
->nr_balance_failed
= 0;
2713 if (likely(!active_balance
)) {
2714 /* We were unbalanced, so reset the balancing interval */
2715 sd
->balance_interval
= sd
->min_interval
;
2718 * If we've begun active balancing, start to back off. This
2719 * case may not be covered by the all_pinned logic if there
2720 * is only 1 task on the busy runqueue (because we don't call
2723 if (sd
->balance_interval
< sd
->max_interval
)
2724 sd
->balance_interval
*= 2;
2727 if (!nr_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2728 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2733 schedstat_inc(sd
, lb_balanced
[idle
]);
2735 sd
->nr_balance_failed
= 0;
2738 /* tune up the balancing interval */
2739 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2740 (sd
->balance_interval
< sd
->max_interval
))
2741 sd
->balance_interval
*= 2;
2743 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2744 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2750 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2751 * tasks if there is an imbalance.
2753 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2754 * this_rq is locked.
2757 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
2759 struct sched_group
*group
;
2760 struct rq
*busiest
= NULL
;
2761 unsigned long imbalance
;
2765 cpumask_t cpus
= CPU_MASK_ALL
;
2768 * When power savings policy is enabled for the parent domain, idle
2769 * sibling can pick up load irrespective of busy siblings. In this case,
2770 * let the state of idle sibling percolate up as IDLE, instead of
2771 * portraying it as CPU_NOT_IDLE.
2773 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
2774 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2777 schedstat_inc(sd
, lb_cnt
[CPU_NEWLY_IDLE
]);
2779 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
2780 &sd_idle
, &cpus
, NULL
);
2782 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
2786 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
,
2789 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
2793 BUG_ON(busiest
== this_rq
);
2795 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
2798 if (busiest
->nr_running
> 1) {
2799 /* Attempt to move tasks */
2800 double_lock_balance(this_rq
, busiest
);
2801 nr_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2802 minus_1_or_zero(busiest
->nr_running
),
2803 imbalance
, sd
, CPU_NEWLY_IDLE
,
2805 spin_unlock(&busiest
->lock
);
2807 if (unlikely(all_pinned
)) {
2808 cpu_clear(cpu_of(busiest
), cpus
);
2809 if (!cpus_empty(cpus
))
2815 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
2816 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2817 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2820 sd
->nr_balance_failed
= 0;
2825 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
2826 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2827 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2829 sd
->nr_balance_failed
= 0;
2835 * idle_balance is called by schedule() if this_cpu is about to become
2836 * idle. Attempts to pull tasks from other CPUs.
2838 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
2840 struct sched_domain
*sd
;
2841 int pulled_task
= -1;
2842 unsigned long next_balance
= jiffies
+ HZ
;
2844 for_each_domain(this_cpu
, sd
) {
2845 unsigned long interval
;
2847 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2850 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
2851 /* If we've pulled tasks over stop searching: */
2852 pulled_task
= load_balance_newidle(this_cpu
,
2855 interval
= msecs_to_jiffies(sd
->balance_interval
);
2856 if (time_after(next_balance
, sd
->last_balance
+ interval
))
2857 next_balance
= sd
->last_balance
+ interval
;
2861 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
2863 * We are going idle. next_balance may be set based on
2864 * a busy processor. So reset next_balance.
2866 this_rq
->next_balance
= next_balance
;
2871 * active_load_balance is run by migration threads. It pushes running tasks
2872 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2873 * running on each physical CPU where possible, and avoids physical /
2874 * logical imbalances.
2876 * Called with busiest_rq locked.
2878 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
2880 int target_cpu
= busiest_rq
->push_cpu
;
2881 struct sched_domain
*sd
;
2882 struct rq
*target_rq
;
2884 /* Is there any task to move? */
2885 if (busiest_rq
->nr_running
<= 1)
2888 target_rq
= cpu_rq(target_cpu
);
2891 * This condition is "impossible", if it occurs
2892 * we need to fix it. Originally reported by
2893 * Bjorn Helgaas on a 128-cpu setup.
2895 BUG_ON(busiest_rq
== target_rq
);
2897 /* move a task from busiest_rq to target_rq */
2898 double_lock_balance(busiest_rq
, target_rq
);
2900 /* Search for an sd spanning us and the target CPU. */
2901 for_each_domain(target_cpu
, sd
) {
2902 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
2903 cpu_isset(busiest_cpu
, sd
->span
))
2908 schedstat_inc(sd
, alb_cnt
);
2910 if (move_tasks(target_rq
, target_cpu
, busiest_rq
, 1,
2911 RTPRIO_TO_LOAD_WEIGHT(100), sd
, CPU_IDLE
,
2913 schedstat_inc(sd
, alb_pushed
);
2915 schedstat_inc(sd
, alb_failed
);
2917 spin_unlock(&target_rq
->lock
);
2922 atomic_t load_balancer
;
2924 } nohz ____cacheline_aligned
= {
2925 .load_balancer
= ATOMIC_INIT(-1),
2926 .cpu_mask
= CPU_MASK_NONE
,
2930 * This routine will try to nominate the ilb (idle load balancing)
2931 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2932 * load balancing on behalf of all those cpus. If all the cpus in the system
2933 * go into this tickless mode, then there will be no ilb owner (as there is
2934 * no need for one) and all the cpus will sleep till the next wakeup event
2937 * For the ilb owner, tick is not stopped. And this tick will be used
2938 * for idle load balancing. ilb owner will still be part of
2941 * While stopping the tick, this cpu will become the ilb owner if there
2942 * is no other owner. And will be the owner till that cpu becomes busy
2943 * or if all cpus in the system stop their ticks at which point
2944 * there is no need for ilb owner.
2946 * When the ilb owner becomes busy, it nominates another owner, during the
2947 * next busy scheduler_tick()
2949 int select_nohz_load_balancer(int stop_tick
)
2951 int cpu
= smp_processor_id();
2954 cpu_set(cpu
, nohz
.cpu_mask
);
2955 cpu_rq(cpu
)->in_nohz_recently
= 1;
2958 * If we are going offline and still the leader, give up!
2960 if (cpu_is_offline(cpu
) &&
2961 atomic_read(&nohz
.load_balancer
) == cpu
) {
2962 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
2967 /* time for ilb owner also to sleep */
2968 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
2969 if (atomic_read(&nohz
.load_balancer
) == cpu
)
2970 atomic_set(&nohz
.load_balancer
, -1);
2974 if (atomic_read(&nohz
.load_balancer
) == -1) {
2975 /* make me the ilb owner */
2976 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
2978 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
2981 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
2984 cpu_clear(cpu
, nohz
.cpu_mask
);
2986 if (atomic_read(&nohz
.load_balancer
) == cpu
)
2987 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
2994 static DEFINE_SPINLOCK(balancing
);
2997 * It checks each scheduling domain to see if it is due to be balanced,
2998 * and initiates a balancing operation if so.
3000 * Balancing parameters are set up in arch_init_sched_domains.
3002 static inline void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3005 struct rq
*rq
= cpu_rq(cpu
);
3006 unsigned long interval
;
3007 struct sched_domain
*sd
;
3008 /* Earliest time when we have to do rebalance again */
3009 unsigned long next_balance
= jiffies
+ 60*HZ
;
3011 for_each_domain(cpu
, sd
) {
3012 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3015 interval
= sd
->balance_interval
;
3016 if (idle
!= CPU_IDLE
)
3017 interval
*= sd
->busy_factor
;
3019 /* scale ms to jiffies */
3020 interval
= msecs_to_jiffies(interval
);
3021 if (unlikely(!interval
))
3023 if (interval
> HZ
*NR_CPUS
/10)
3024 interval
= HZ
*NR_CPUS
/10;
3027 if (sd
->flags
& SD_SERIALIZE
) {
3028 if (!spin_trylock(&balancing
))
3032 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3033 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3035 * We've pulled tasks over so either we're no
3036 * longer idle, or one of our SMT siblings is
3039 idle
= CPU_NOT_IDLE
;
3041 sd
->last_balance
= jiffies
;
3043 if (sd
->flags
& SD_SERIALIZE
)
3044 spin_unlock(&balancing
);
3046 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3047 next_balance
= sd
->last_balance
+ interval
;
3050 * Stop the load balance at this level. There is another
3051 * CPU in our sched group which is doing load balancing more
3057 rq
->next_balance
= next_balance
;
3061 * run_rebalance_domains is triggered when needed from the scheduler tick.
3062 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3063 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3065 static void run_rebalance_domains(struct softirq_action
*h
)
3067 int this_cpu
= smp_processor_id();
3068 struct rq
*this_rq
= cpu_rq(this_cpu
);
3069 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3070 CPU_IDLE
: CPU_NOT_IDLE
;
3072 rebalance_domains(this_cpu
, idle
);
3076 * If this cpu is the owner for idle load balancing, then do the
3077 * balancing on behalf of the other idle cpus whose ticks are
3080 if (this_rq
->idle_at_tick
&&
3081 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3082 cpumask_t cpus
= nohz
.cpu_mask
;
3086 cpu_clear(this_cpu
, cpus
);
3087 for_each_cpu_mask(balance_cpu
, cpus
) {
3089 * If this cpu gets work to do, stop the load balancing
3090 * work being done for other cpus. Next load
3091 * balancing owner will pick it up.
3096 rebalance_domains(balance_cpu
, SCHED_IDLE
);
3098 rq
= cpu_rq(balance_cpu
);
3099 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3100 this_rq
->next_balance
= rq
->next_balance
;
3107 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3109 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3110 * idle load balancing owner or decide to stop the periodic load balancing,
3111 * if the whole system is idle.
3113 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3117 * If we were in the nohz mode recently and busy at the current
3118 * scheduler tick, then check if we need to nominate new idle
3121 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3122 rq
->in_nohz_recently
= 0;
3124 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3125 cpu_clear(cpu
, nohz
.cpu_mask
);
3126 atomic_set(&nohz
.load_balancer
, -1);
3129 if (atomic_read(&nohz
.load_balancer
) == -1) {
3131 * simple selection for now: Nominate the
3132 * first cpu in the nohz list to be the next
3135 * TBD: Traverse the sched domains and nominate
3136 * the nearest cpu in the nohz.cpu_mask.
3138 int ilb
= first_cpu(nohz
.cpu_mask
);
3146 * If this cpu is idle and doing idle load balancing for all the
3147 * cpus with ticks stopped, is it time for that to stop?
3149 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3150 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3156 * If this cpu is idle and the idle load balancing is done by
3157 * someone else, then no need raise the SCHED_SOFTIRQ
3159 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3160 cpu_isset(cpu
, nohz
.cpu_mask
))
3163 if (time_after_eq(jiffies
, rq
->next_balance
))
3164 raise_softirq(SCHED_SOFTIRQ
);
3167 #else /* CONFIG_SMP */
3170 * on UP we do not need to balance between CPUs:
3172 static inline void idle_balance(int cpu
, struct rq
*rq
)
3176 /* Avoid "used but not defined" warning on UP */
3177 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3178 unsigned long max_nr_move
, unsigned long max_load_move
,
3179 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3180 int *all_pinned
, unsigned long *load_moved
,
3181 int this_best_prio
, int best_prio
, int best_prio_seen
,
3182 struct rq_iterator
*iterator
)
3191 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3193 EXPORT_PER_CPU_SYMBOL(kstat
);
3196 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3197 * that have not yet been banked in case the task is currently running.
3199 unsigned long long task_sched_runtime(struct task_struct
*p
)
3201 unsigned long flags
;
3205 rq
= task_rq_lock(p
, &flags
);
3206 ns
= p
->se
.sum_exec_runtime
;
3207 if (rq
->curr
== p
) {
3208 delta_exec
= rq_clock(rq
) - p
->se
.exec_start
;
3209 if ((s64
)delta_exec
> 0)
3212 task_rq_unlock(rq
, &flags
);
3218 * Account user cpu time to a process.
3219 * @p: the process that the cpu time gets accounted to
3220 * @hardirq_offset: the offset to subtract from hardirq_count()
3221 * @cputime: the cpu time spent in user space since the last update
3223 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
3225 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3228 p
->utime
= cputime_add(p
->utime
, cputime
);
3230 /* Add user time to cpustat. */
3231 tmp
= cputime_to_cputime64(cputime
);
3232 if (TASK_NICE(p
) > 0)
3233 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3235 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3239 * Account system cpu time to a process.
3240 * @p: the process that the cpu time gets accounted to
3241 * @hardirq_offset: the offset to subtract from hardirq_count()
3242 * @cputime: the cpu time spent in kernel space since the last update
3244 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3247 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3248 struct rq
*rq
= this_rq();
3251 p
->stime
= cputime_add(p
->stime
, cputime
);
3253 /* Add system time to cpustat. */
3254 tmp
= cputime_to_cputime64(cputime
);
3255 if (hardirq_count() - hardirq_offset
)
3256 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3257 else if (softirq_count())
3258 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3259 else if (p
!= rq
->idle
)
3260 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3261 else if (atomic_read(&rq
->nr_iowait
) > 0)
3262 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3264 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3265 /* Account for system time used */
3266 acct_update_integrals(p
);
3270 * Account for involuntary wait time.
3271 * @p: the process from which the cpu time has been stolen
3272 * @steal: the cpu time spent in involuntary wait
3274 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
3276 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3277 cputime64_t tmp
= cputime_to_cputime64(steal
);
3278 struct rq
*rq
= this_rq();
3280 if (p
== rq
->idle
) {
3281 p
->stime
= cputime_add(p
->stime
, steal
);
3282 if (atomic_read(&rq
->nr_iowait
) > 0)
3283 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3285 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3287 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
3291 * This function gets called by the timer code, with HZ frequency.
3292 * We call it with interrupts disabled.
3294 * It also gets called by the fork code, when changing the parent's
3297 void scheduler_tick(void)
3299 int cpu
= smp_processor_id();
3300 struct rq
*rq
= cpu_rq(cpu
);
3301 struct task_struct
*curr
= rq
->curr
;
3303 spin_lock(&rq
->lock
);
3304 if (curr
!= rq
->idle
) /* FIXME: needed? */
3305 curr
->sched_class
->task_tick(rq
, curr
);
3306 update_cpu_load(rq
);
3307 spin_unlock(&rq
->lock
);
3310 rq
->idle_at_tick
= idle_cpu(cpu
);
3311 trigger_load_balance(rq
, cpu
);
3315 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3317 void fastcall
add_preempt_count(int val
)
3322 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3324 preempt_count() += val
;
3326 * Spinlock count overflowing soon?
3328 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3331 EXPORT_SYMBOL(add_preempt_count
);
3333 void fastcall
sub_preempt_count(int val
)
3338 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3341 * Is the spinlock portion underflowing?
3343 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3344 !(preempt_count() & PREEMPT_MASK
)))
3347 preempt_count() -= val
;
3349 EXPORT_SYMBOL(sub_preempt_count
);
3354 * Print scheduling while atomic bug:
3356 static noinline
void __schedule_bug(struct task_struct
*prev
)
3358 printk(KERN_ERR
"BUG: scheduling while atomic: %s/0x%08x/%d\n",
3359 prev
->comm
, preempt_count(), prev
->pid
);
3360 debug_show_held_locks(prev
);
3361 if (irqs_disabled())
3362 print_irqtrace_events(prev
);
3367 * Various schedule()-time debugging checks and statistics:
3369 static inline void schedule_debug(struct task_struct
*prev
)
3372 * Test if we are atomic. Since do_exit() needs to call into
3373 * schedule() atomically, we ignore that path for now.
3374 * Otherwise, whine if we are scheduling when we should not be.
3376 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
3377 __schedule_bug(prev
);
3379 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3381 schedstat_inc(this_rq(), sched_cnt
);
3385 * Pick up the highest-prio task:
3387 static inline struct task_struct
*
3388 pick_next_task(struct rq
*rq
, struct task_struct
*prev
, u64 now
)
3390 struct sched_class
*class;
3391 struct task_struct
*p
;
3394 * Optimization: we know that if all tasks are in
3395 * the fair class we can call that function directly:
3397 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3398 p
= fair_sched_class
.pick_next_task(rq
, now
);
3403 class = sched_class_highest
;
3405 p
= class->pick_next_task(rq
, now
);
3409 * Will never be NULL as the idle class always
3410 * returns a non-NULL p:
3412 class = class->next
;
3417 * schedule() is the main scheduler function.
3419 asmlinkage
void __sched
schedule(void)
3421 struct task_struct
*prev
, *next
;
3429 cpu
= smp_processor_id();
3433 switch_count
= &prev
->nivcsw
;
3435 release_kernel_lock(prev
);
3436 need_resched_nonpreemptible
:
3438 schedule_debug(prev
);
3440 spin_lock_irq(&rq
->lock
);
3441 clear_tsk_need_resched(prev
);
3443 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3444 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
3445 unlikely(signal_pending(prev
)))) {
3446 prev
->state
= TASK_RUNNING
;
3448 deactivate_task(rq
, prev
, 1);
3450 switch_count
= &prev
->nvcsw
;
3453 if (unlikely(!rq
->nr_running
))
3454 idle_balance(cpu
, rq
);
3456 now
= __rq_clock(rq
);
3457 prev
->sched_class
->put_prev_task(rq
, prev
, now
);
3458 next
= pick_next_task(rq
, prev
, now
);
3460 sched_info_switch(prev
, next
);
3462 if (likely(prev
!= next
)) {
3467 context_switch(rq
, prev
, next
); /* unlocks the rq */
3469 spin_unlock_irq(&rq
->lock
);
3471 if (unlikely(reacquire_kernel_lock(current
) < 0)) {
3472 cpu
= smp_processor_id();
3474 goto need_resched_nonpreemptible
;
3476 preempt_enable_no_resched();
3477 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3480 EXPORT_SYMBOL(schedule
);
3482 #ifdef CONFIG_PREEMPT
3484 * this is the entry point to schedule() from in-kernel preemption
3485 * off of preempt_enable. Kernel preemptions off return from interrupt
3486 * occur there and call schedule directly.
3488 asmlinkage
void __sched
preempt_schedule(void)
3490 struct thread_info
*ti
= current_thread_info();
3491 #ifdef CONFIG_PREEMPT_BKL
3492 struct task_struct
*task
= current
;
3493 int saved_lock_depth
;
3496 * If there is a non-zero preempt_count or interrupts are disabled,
3497 * we do not want to preempt the current task. Just return..
3499 if (likely(ti
->preempt_count
|| irqs_disabled()))
3503 add_preempt_count(PREEMPT_ACTIVE
);
3505 * We keep the big kernel semaphore locked, but we
3506 * clear ->lock_depth so that schedule() doesnt
3507 * auto-release the semaphore:
3509 #ifdef CONFIG_PREEMPT_BKL
3510 saved_lock_depth
= task
->lock_depth
;
3511 task
->lock_depth
= -1;
3514 #ifdef CONFIG_PREEMPT_BKL
3515 task
->lock_depth
= saved_lock_depth
;
3517 sub_preempt_count(PREEMPT_ACTIVE
);
3519 /* we could miss a preemption opportunity between schedule and now */
3521 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3524 EXPORT_SYMBOL(preempt_schedule
);
3527 * this is the entry point to schedule() from kernel preemption
3528 * off of irq context.
3529 * Note, that this is called and return with irqs disabled. This will
3530 * protect us against recursive calling from irq.
3532 asmlinkage
void __sched
preempt_schedule_irq(void)
3534 struct thread_info
*ti
= current_thread_info();
3535 #ifdef CONFIG_PREEMPT_BKL
3536 struct task_struct
*task
= current
;
3537 int saved_lock_depth
;
3539 /* Catch callers which need to be fixed */
3540 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3543 add_preempt_count(PREEMPT_ACTIVE
);
3545 * We keep the big kernel semaphore locked, but we
3546 * clear ->lock_depth so that schedule() doesnt
3547 * auto-release the semaphore:
3549 #ifdef CONFIG_PREEMPT_BKL
3550 saved_lock_depth
= task
->lock_depth
;
3551 task
->lock_depth
= -1;
3555 local_irq_disable();
3556 #ifdef CONFIG_PREEMPT_BKL
3557 task
->lock_depth
= saved_lock_depth
;
3559 sub_preempt_count(PREEMPT_ACTIVE
);
3561 /* we could miss a preemption opportunity between schedule and now */
3563 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3567 #endif /* CONFIG_PREEMPT */
3569 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
3572 return try_to_wake_up(curr
->private, mode
, sync
);
3574 EXPORT_SYMBOL(default_wake_function
);
3577 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3578 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3579 * number) then we wake all the non-exclusive tasks and one exclusive task.
3581 * There are circumstances in which we can try to wake a task which has already
3582 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3583 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3585 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3586 int nr_exclusive
, int sync
, void *key
)
3588 struct list_head
*tmp
, *next
;
3590 list_for_each_safe(tmp
, next
, &q
->task_list
) {
3591 wait_queue_t
*curr
= list_entry(tmp
, wait_queue_t
, task_list
);
3592 unsigned flags
= curr
->flags
;
3594 if (curr
->func(curr
, mode
, sync
, key
) &&
3595 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3601 * __wake_up - wake up threads blocked on a waitqueue.
3603 * @mode: which threads
3604 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3605 * @key: is directly passed to the wakeup function
3607 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3608 int nr_exclusive
, void *key
)
3610 unsigned long flags
;
3612 spin_lock_irqsave(&q
->lock
, flags
);
3613 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3614 spin_unlock_irqrestore(&q
->lock
, flags
);
3616 EXPORT_SYMBOL(__wake_up
);
3619 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3621 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3623 __wake_up_common(q
, mode
, 1, 0, NULL
);
3627 * __wake_up_sync - wake up threads blocked on a waitqueue.
3629 * @mode: which threads
3630 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3632 * The sync wakeup differs that the waker knows that it will schedule
3633 * away soon, so while the target thread will be woken up, it will not
3634 * be migrated to another CPU - ie. the two threads are 'synchronized'
3635 * with each other. This can prevent needless bouncing between CPUs.
3637 * On UP it can prevent extra preemption.
3640 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3642 unsigned long flags
;
3648 if (unlikely(!nr_exclusive
))
3651 spin_lock_irqsave(&q
->lock
, flags
);
3652 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
3653 spin_unlock_irqrestore(&q
->lock
, flags
);
3655 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3657 void fastcall
complete(struct completion
*x
)
3659 unsigned long flags
;
3661 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3663 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3665 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3667 EXPORT_SYMBOL(complete
);
3669 void fastcall
complete_all(struct completion
*x
)
3671 unsigned long flags
;
3673 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3674 x
->done
+= UINT_MAX
/2;
3675 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3677 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3679 EXPORT_SYMBOL(complete_all
);
3681 void fastcall __sched
wait_for_completion(struct completion
*x
)
3685 spin_lock_irq(&x
->wait
.lock
);
3687 DECLARE_WAITQUEUE(wait
, current
);
3689 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3690 __add_wait_queue_tail(&x
->wait
, &wait
);
3692 __set_current_state(TASK_UNINTERRUPTIBLE
);
3693 spin_unlock_irq(&x
->wait
.lock
);
3695 spin_lock_irq(&x
->wait
.lock
);
3697 __remove_wait_queue(&x
->wait
, &wait
);
3700 spin_unlock_irq(&x
->wait
.lock
);
3702 EXPORT_SYMBOL(wait_for_completion
);
3704 unsigned long fastcall __sched
3705 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3709 spin_lock_irq(&x
->wait
.lock
);
3711 DECLARE_WAITQUEUE(wait
, current
);
3713 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3714 __add_wait_queue_tail(&x
->wait
, &wait
);
3716 __set_current_state(TASK_UNINTERRUPTIBLE
);
3717 spin_unlock_irq(&x
->wait
.lock
);
3718 timeout
= schedule_timeout(timeout
);
3719 spin_lock_irq(&x
->wait
.lock
);
3721 __remove_wait_queue(&x
->wait
, &wait
);
3725 __remove_wait_queue(&x
->wait
, &wait
);
3729 spin_unlock_irq(&x
->wait
.lock
);
3732 EXPORT_SYMBOL(wait_for_completion_timeout
);
3734 int fastcall __sched
wait_for_completion_interruptible(struct completion
*x
)
3740 spin_lock_irq(&x
->wait
.lock
);
3742 DECLARE_WAITQUEUE(wait
, current
);
3744 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3745 __add_wait_queue_tail(&x
->wait
, &wait
);
3747 if (signal_pending(current
)) {
3749 __remove_wait_queue(&x
->wait
, &wait
);
3752 __set_current_state(TASK_INTERRUPTIBLE
);
3753 spin_unlock_irq(&x
->wait
.lock
);
3755 spin_lock_irq(&x
->wait
.lock
);
3757 __remove_wait_queue(&x
->wait
, &wait
);
3761 spin_unlock_irq(&x
->wait
.lock
);
3765 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3767 unsigned long fastcall __sched
3768 wait_for_completion_interruptible_timeout(struct completion
*x
,
3769 unsigned long timeout
)
3773 spin_lock_irq(&x
->wait
.lock
);
3775 DECLARE_WAITQUEUE(wait
, current
);
3777 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3778 __add_wait_queue_tail(&x
->wait
, &wait
);
3780 if (signal_pending(current
)) {
3781 timeout
= -ERESTARTSYS
;
3782 __remove_wait_queue(&x
->wait
, &wait
);
3785 __set_current_state(TASK_INTERRUPTIBLE
);
3786 spin_unlock_irq(&x
->wait
.lock
);
3787 timeout
= schedule_timeout(timeout
);
3788 spin_lock_irq(&x
->wait
.lock
);
3790 __remove_wait_queue(&x
->wait
, &wait
);
3794 __remove_wait_queue(&x
->wait
, &wait
);
3798 spin_unlock_irq(&x
->wait
.lock
);
3801 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3804 sleep_on_head(wait_queue_head_t
*q
, wait_queue_t
*wait
, unsigned long *flags
)
3806 spin_lock_irqsave(&q
->lock
, *flags
);
3807 __add_wait_queue(q
, wait
);
3808 spin_unlock(&q
->lock
);
3812 sleep_on_tail(wait_queue_head_t
*q
, wait_queue_t
*wait
, unsigned long *flags
)
3814 spin_lock_irq(&q
->lock
);
3815 __remove_wait_queue(q
, wait
);
3816 spin_unlock_irqrestore(&q
->lock
, *flags
);
3819 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3821 unsigned long flags
;
3824 init_waitqueue_entry(&wait
, current
);
3826 current
->state
= TASK_INTERRUPTIBLE
;
3828 sleep_on_head(q
, &wait
, &flags
);
3830 sleep_on_tail(q
, &wait
, &flags
);
3832 EXPORT_SYMBOL(interruptible_sleep_on
);
3835 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3837 unsigned long flags
;
3840 init_waitqueue_entry(&wait
, current
);
3842 current
->state
= TASK_INTERRUPTIBLE
;
3844 sleep_on_head(q
, &wait
, &flags
);
3845 timeout
= schedule_timeout(timeout
);
3846 sleep_on_tail(q
, &wait
, &flags
);
3850 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3852 void __sched
sleep_on(wait_queue_head_t
*q
)
3854 unsigned long flags
;
3857 init_waitqueue_entry(&wait
, current
);
3859 current
->state
= TASK_UNINTERRUPTIBLE
;
3861 sleep_on_head(q
, &wait
, &flags
);
3863 sleep_on_tail(q
, &wait
, &flags
);
3865 EXPORT_SYMBOL(sleep_on
);
3867 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3869 unsigned long flags
;
3872 init_waitqueue_entry(&wait
, current
);
3874 current
->state
= TASK_UNINTERRUPTIBLE
;
3876 sleep_on_head(q
, &wait
, &flags
);
3877 timeout
= schedule_timeout(timeout
);
3878 sleep_on_tail(q
, &wait
, &flags
);
3882 EXPORT_SYMBOL(sleep_on_timeout
);
3884 #ifdef CONFIG_RT_MUTEXES
3887 * rt_mutex_setprio - set the current priority of a task
3889 * @prio: prio value (kernel-internal form)
3891 * This function changes the 'effective' priority of a task. It does
3892 * not touch ->normal_prio like __setscheduler().
3894 * Used by the rt_mutex code to implement priority inheritance logic.
3896 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
3898 unsigned long flags
;
3903 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
3905 rq
= task_rq_lock(p
, &flags
);
3909 on_rq
= p
->se
.on_rq
;
3911 dequeue_task(rq
, p
, 0, now
);
3914 p
->sched_class
= &rt_sched_class
;
3916 p
->sched_class
= &fair_sched_class
;
3921 enqueue_task(rq
, p
, 0, now
);
3923 * Reschedule if we are currently running on this runqueue and
3924 * our priority decreased, or if we are not currently running on
3925 * this runqueue and our priority is higher than the current's
3927 if (task_running(rq
, p
)) {
3928 if (p
->prio
> oldprio
)
3929 resched_task(rq
->curr
);
3931 check_preempt_curr(rq
, p
);
3934 task_rq_unlock(rq
, &flags
);
3939 void set_user_nice(struct task_struct
*p
, long nice
)
3941 int old_prio
, delta
, on_rq
;
3942 unsigned long flags
;
3946 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
3949 * We have to be careful, if called from sys_setpriority(),
3950 * the task might be in the middle of scheduling on another CPU.
3952 rq
= task_rq_lock(p
, &flags
);
3955 * The RT priorities are set via sched_setscheduler(), but we still
3956 * allow the 'normal' nice value to be set - but as expected
3957 * it wont have any effect on scheduling until the task is
3958 * SCHED_FIFO/SCHED_RR:
3960 if (task_has_rt_policy(p
)) {
3961 p
->static_prio
= NICE_TO_PRIO(nice
);
3964 on_rq
= p
->se
.on_rq
;
3966 dequeue_task(rq
, p
, 0, now
);
3967 dec_load(rq
, p
, now
);
3970 p
->static_prio
= NICE_TO_PRIO(nice
);
3973 p
->prio
= effective_prio(p
);
3974 delta
= p
->prio
- old_prio
;
3977 enqueue_task(rq
, p
, 0, now
);
3978 inc_load(rq
, p
, now
);
3980 * If the task increased its priority or is running and
3981 * lowered its priority, then reschedule its CPU:
3983 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
3984 resched_task(rq
->curr
);
3987 task_rq_unlock(rq
, &flags
);
3989 EXPORT_SYMBOL(set_user_nice
);
3992 * can_nice - check if a task can reduce its nice value
3996 int can_nice(const struct task_struct
*p
, const int nice
)
3998 /* convert nice value [19,-20] to rlimit style value [1,40] */
3999 int nice_rlim
= 20 - nice
;
4001 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4002 capable(CAP_SYS_NICE
));
4005 #ifdef __ARCH_WANT_SYS_NICE
4008 * sys_nice - change the priority of the current process.
4009 * @increment: priority increment
4011 * sys_setpriority is a more generic, but much slower function that
4012 * does similar things.
4014 asmlinkage
long sys_nice(int increment
)
4019 * Setpriority might change our priority at the same moment.
4020 * We don't have to worry. Conceptually one call occurs first
4021 * and we have a single winner.
4023 if (increment
< -40)
4028 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
4034 if (increment
< 0 && !can_nice(current
, nice
))
4037 retval
= security_task_setnice(current
, nice
);
4041 set_user_nice(current
, nice
);
4048 * task_prio - return the priority value of a given task.
4049 * @p: the task in question.
4051 * This is the priority value as seen by users in /proc.
4052 * RT tasks are offset by -200. Normal tasks are centered
4053 * around 0, value goes from -16 to +15.
4055 int task_prio(const struct task_struct
*p
)
4057 return p
->prio
- MAX_RT_PRIO
;
4061 * task_nice - return the nice value of a given task.
4062 * @p: the task in question.
4064 int task_nice(const struct task_struct
*p
)
4066 return TASK_NICE(p
);
4068 EXPORT_SYMBOL_GPL(task_nice
);
4071 * idle_cpu - is a given cpu idle currently?
4072 * @cpu: the processor in question.
4074 int idle_cpu(int cpu
)
4076 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4080 * idle_task - return the idle task for a given cpu.
4081 * @cpu: the processor in question.
4083 struct task_struct
*idle_task(int cpu
)
4085 return cpu_rq(cpu
)->idle
;
4089 * find_process_by_pid - find a process with a matching PID value.
4090 * @pid: the pid in question.
4092 static inline struct task_struct
*find_process_by_pid(pid_t pid
)
4094 return pid
? find_task_by_pid(pid
) : current
;
4097 /* Actually do priority change: must hold rq lock. */
4099 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4101 BUG_ON(p
->se
.on_rq
);
4104 switch (p
->policy
) {
4108 p
->sched_class
= &fair_sched_class
;
4112 p
->sched_class
= &rt_sched_class
;
4116 p
->rt_priority
= prio
;
4117 p
->normal_prio
= normal_prio(p
);
4118 /* we are holding p->pi_lock already */
4119 p
->prio
= rt_mutex_getprio(p
);
4124 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4125 * @p: the task in question.
4126 * @policy: new policy.
4127 * @param: structure containing the new RT priority.
4129 * NOTE that the task may be already dead.
4131 int sched_setscheduler(struct task_struct
*p
, int policy
,
4132 struct sched_param
*param
)
4134 int retval
, oldprio
, oldpolicy
= -1, on_rq
;
4135 unsigned long flags
;
4138 /* may grab non-irq protected spin_locks */
4139 BUG_ON(in_interrupt());
4141 /* double check policy once rq lock held */
4143 policy
= oldpolicy
= p
->policy
;
4144 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4145 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4146 policy
!= SCHED_IDLE
)
4149 * Valid priorities for SCHED_FIFO and SCHED_RR are
4150 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4151 * SCHED_BATCH and SCHED_IDLE is 0.
4153 if (param
->sched_priority
< 0 ||
4154 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4155 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4157 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4161 * Allow unprivileged RT tasks to decrease priority:
4163 if (!capable(CAP_SYS_NICE
)) {
4164 if (rt_policy(policy
)) {
4165 unsigned long rlim_rtprio
;
4167 if (!lock_task_sighand(p
, &flags
))
4169 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4170 unlock_task_sighand(p
, &flags
);
4172 /* can't set/change the rt policy */
4173 if (policy
!= p
->policy
&& !rlim_rtprio
)
4176 /* can't increase priority */
4177 if (param
->sched_priority
> p
->rt_priority
&&
4178 param
->sched_priority
> rlim_rtprio
)
4182 * Like positive nice levels, dont allow tasks to
4183 * move out of SCHED_IDLE either:
4185 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4188 /* can't change other user's priorities */
4189 if ((current
->euid
!= p
->euid
) &&
4190 (current
->euid
!= p
->uid
))
4194 retval
= security_task_setscheduler(p
, policy
, param
);
4198 * make sure no PI-waiters arrive (or leave) while we are
4199 * changing the priority of the task:
4201 spin_lock_irqsave(&p
->pi_lock
, flags
);
4203 * To be able to change p->policy safely, the apropriate
4204 * runqueue lock must be held.
4206 rq
= __task_rq_lock(p
);
4207 /* recheck policy now with rq lock held */
4208 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4209 policy
= oldpolicy
= -1;
4210 __task_rq_unlock(rq
);
4211 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4214 on_rq
= p
->se
.on_rq
;
4216 deactivate_task(rq
, p
, 0);
4218 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4220 activate_task(rq
, p
, 0);
4222 * Reschedule if we are currently running on this runqueue and
4223 * our priority decreased, or if we are not currently running on
4224 * this runqueue and our priority is higher than the current's
4226 if (task_running(rq
, p
)) {
4227 if (p
->prio
> oldprio
)
4228 resched_task(rq
->curr
);
4230 check_preempt_curr(rq
, p
);
4233 __task_rq_unlock(rq
);
4234 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4236 rt_mutex_adjust_pi(p
);
4240 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4243 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4245 struct sched_param lparam
;
4246 struct task_struct
*p
;
4249 if (!param
|| pid
< 0)
4251 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4256 p
= find_process_by_pid(pid
);
4258 retval
= sched_setscheduler(p
, policy
, &lparam
);
4265 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4266 * @pid: the pid in question.
4267 * @policy: new policy.
4268 * @param: structure containing the new RT priority.
4270 asmlinkage
long sys_sched_setscheduler(pid_t pid
, int policy
,
4271 struct sched_param __user
*param
)
4273 /* negative values for policy are not valid */
4277 return do_sched_setscheduler(pid
, policy
, param
);
4281 * sys_sched_setparam - set/change the RT priority of a thread
4282 * @pid: the pid in question.
4283 * @param: structure containing the new RT priority.
4285 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
4287 return do_sched_setscheduler(pid
, -1, param
);
4291 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4292 * @pid: the pid in question.
4294 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
4296 struct task_struct
*p
;
4297 int retval
= -EINVAL
;
4303 read_lock(&tasklist_lock
);
4304 p
= find_process_by_pid(pid
);
4306 retval
= security_task_getscheduler(p
);
4310 read_unlock(&tasklist_lock
);
4317 * sys_sched_getscheduler - get the RT priority of a thread
4318 * @pid: the pid in question.
4319 * @param: structure containing the RT priority.
4321 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
4323 struct sched_param lp
;
4324 struct task_struct
*p
;
4325 int retval
= -EINVAL
;
4327 if (!param
|| pid
< 0)
4330 read_lock(&tasklist_lock
);
4331 p
= find_process_by_pid(pid
);
4336 retval
= security_task_getscheduler(p
);
4340 lp
.sched_priority
= p
->rt_priority
;
4341 read_unlock(&tasklist_lock
);
4344 * This one might sleep, we cannot do it with a spinlock held ...
4346 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4352 read_unlock(&tasklist_lock
);
4356 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
4358 cpumask_t cpus_allowed
;
4359 struct task_struct
*p
;
4362 mutex_lock(&sched_hotcpu_mutex
);
4363 read_lock(&tasklist_lock
);
4365 p
= find_process_by_pid(pid
);
4367 read_unlock(&tasklist_lock
);
4368 mutex_unlock(&sched_hotcpu_mutex
);
4373 * It is not safe to call set_cpus_allowed with the
4374 * tasklist_lock held. We will bump the task_struct's
4375 * usage count and then drop tasklist_lock.
4378 read_unlock(&tasklist_lock
);
4381 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
4382 !capable(CAP_SYS_NICE
))
4385 retval
= security_task_setscheduler(p
, 0, NULL
);
4389 cpus_allowed
= cpuset_cpus_allowed(p
);
4390 cpus_and(new_mask
, new_mask
, cpus_allowed
);
4391 retval
= set_cpus_allowed(p
, new_mask
);
4395 mutex_unlock(&sched_hotcpu_mutex
);
4399 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4400 cpumask_t
*new_mask
)
4402 if (len
< sizeof(cpumask_t
)) {
4403 memset(new_mask
, 0, sizeof(cpumask_t
));
4404 } else if (len
> sizeof(cpumask_t
)) {
4405 len
= sizeof(cpumask_t
);
4407 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4411 * sys_sched_setaffinity - set the cpu affinity of a process
4412 * @pid: pid of the process
4413 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4414 * @user_mask_ptr: user-space pointer to the new cpu mask
4416 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
4417 unsigned long __user
*user_mask_ptr
)
4422 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
4426 return sched_setaffinity(pid
, new_mask
);
4430 * Represents all cpu's present in the system
4431 * In systems capable of hotplug, this map could dynamically grow
4432 * as new cpu's are detected in the system via any platform specific
4433 * method, such as ACPI for e.g.
4436 cpumask_t cpu_present_map __read_mostly
;
4437 EXPORT_SYMBOL(cpu_present_map
);
4440 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
4441 EXPORT_SYMBOL(cpu_online_map
);
4443 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
4444 EXPORT_SYMBOL(cpu_possible_map
);
4447 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
4449 struct task_struct
*p
;
4452 mutex_lock(&sched_hotcpu_mutex
);
4453 read_lock(&tasklist_lock
);
4456 p
= find_process_by_pid(pid
);
4460 retval
= security_task_getscheduler(p
);
4464 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
4467 read_unlock(&tasklist_lock
);
4468 mutex_unlock(&sched_hotcpu_mutex
);
4476 * sys_sched_getaffinity - get the cpu affinity of a process
4477 * @pid: pid of the process
4478 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4479 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4481 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
4482 unsigned long __user
*user_mask_ptr
)
4487 if (len
< sizeof(cpumask_t
))
4490 ret
= sched_getaffinity(pid
, &mask
);
4494 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
4497 return sizeof(cpumask_t
);
4501 * sys_sched_yield - yield the current processor to other threads.
4503 * This function yields the current CPU to other tasks. If there are no
4504 * other threads running on this CPU then this function will return.
4506 asmlinkage
long sys_sched_yield(void)
4508 struct rq
*rq
= this_rq_lock();
4510 schedstat_inc(rq
, yld_cnt
);
4511 if (unlikely(rq
->nr_running
== 1))
4512 schedstat_inc(rq
, yld_act_empty
);
4514 current
->sched_class
->yield_task(rq
, current
);
4517 * Since we are going to call schedule() anyway, there's
4518 * no need to preempt or enable interrupts:
4520 __release(rq
->lock
);
4521 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4522 _raw_spin_unlock(&rq
->lock
);
4523 preempt_enable_no_resched();
4530 static void __cond_resched(void)
4532 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4533 __might_sleep(__FILE__
, __LINE__
);
4536 * The BKS might be reacquired before we have dropped
4537 * PREEMPT_ACTIVE, which could trigger a second
4538 * cond_resched() call.
4541 add_preempt_count(PREEMPT_ACTIVE
);
4543 sub_preempt_count(PREEMPT_ACTIVE
);
4544 } while (need_resched());
4547 int __sched
cond_resched(void)
4549 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
4550 system_state
== SYSTEM_RUNNING
) {
4556 EXPORT_SYMBOL(cond_resched
);
4559 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4560 * call schedule, and on return reacquire the lock.
4562 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4563 * operations here to prevent schedule() from being called twice (once via
4564 * spin_unlock(), once by hand).
4566 int cond_resched_lock(spinlock_t
*lock
)
4570 if (need_lockbreak(lock
)) {
4576 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4577 spin_release(&lock
->dep_map
, 1, _THIS_IP_
);
4578 _raw_spin_unlock(lock
);
4579 preempt_enable_no_resched();
4586 EXPORT_SYMBOL(cond_resched_lock
);
4588 int __sched
cond_resched_softirq(void)
4590 BUG_ON(!in_softirq());
4592 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4600 EXPORT_SYMBOL(cond_resched_softirq
);
4603 * yield - yield the current processor to other threads.
4605 * This is a shortcut for kernel-space yielding - it marks the
4606 * thread runnable and calls sys_sched_yield().
4608 void __sched
yield(void)
4610 set_current_state(TASK_RUNNING
);
4613 EXPORT_SYMBOL(yield
);
4616 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4617 * that process accounting knows that this is a task in IO wait state.
4619 * But don't do that if it is a deliberate, throttling IO wait (this task
4620 * has set its backing_dev_info: the queue against which it should throttle)
4622 void __sched
io_schedule(void)
4624 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4626 delayacct_blkio_start();
4627 atomic_inc(&rq
->nr_iowait
);
4629 atomic_dec(&rq
->nr_iowait
);
4630 delayacct_blkio_end();
4632 EXPORT_SYMBOL(io_schedule
);
4634 long __sched
io_schedule_timeout(long timeout
)
4636 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4639 delayacct_blkio_start();
4640 atomic_inc(&rq
->nr_iowait
);
4641 ret
= schedule_timeout(timeout
);
4642 atomic_dec(&rq
->nr_iowait
);
4643 delayacct_blkio_end();
4648 * sys_sched_get_priority_max - return maximum RT priority.
4649 * @policy: scheduling class.
4651 * this syscall returns the maximum rt_priority that can be used
4652 * by a given scheduling class.
4654 asmlinkage
long sys_sched_get_priority_max(int policy
)
4661 ret
= MAX_USER_RT_PRIO
-1;
4673 * sys_sched_get_priority_min - return minimum RT priority.
4674 * @policy: scheduling class.
4676 * this syscall returns the minimum rt_priority that can be used
4677 * by a given scheduling class.
4679 asmlinkage
long sys_sched_get_priority_min(int policy
)
4697 * sys_sched_rr_get_interval - return the default timeslice of a process.
4698 * @pid: pid of the process.
4699 * @interval: userspace pointer to the timeslice value.
4701 * this syscall writes the default timeslice value of a given process
4702 * into the user-space timespec buffer. A value of '0' means infinity.
4705 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
4707 struct task_struct
*p
;
4708 int retval
= -EINVAL
;
4715 read_lock(&tasklist_lock
);
4716 p
= find_process_by_pid(pid
);
4720 retval
= security_task_getscheduler(p
);
4724 jiffies_to_timespec(p
->policy
== SCHED_FIFO
?
4725 0 : static_prio_timeslice(p
->static_prio
), &t
);
4726 read_unlock(&tasklist_lock
);
4727 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4731 read_unlock(&tasklist_lock
);
4735 static const char stat_nam
[] = "RSDTtZX";
4737 static void show_task(struct task_struct
*p
)
4739 unsigned long free
= 0;
4742 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4743 printk("%-13.13s %c", p
->comm
,
4744 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4745 #if BITS_PER_LONG == 32
4746 if (state
== TASK_RUNNING
)
4747 printk(" running ");
4749 printk(" %08lx ", thread_saved_pc(p
));
4751 if (state
== TASK_RUNNING
)
4752 printk(" running task ");
4754 printk(" %016lx ", thread_saved_pc(p
));
4756 #ifdef CONFIG_DEBUG_STACK_USAGE
4758 unsigned long *n
= end_of_stack(p
);
4761 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
4764 printk("%5lu %5d %6d\n", free
, p
->pid
, p
->parent
->pid
);
4766 if (state
!= TASK_RUNNING
)
4767 show_stack(p
, NULL
);
4770 void show_state_filter(unsigned long state_filter
)
4772 struct task_struct
*g
, *p
;
4774 #if BITS_PER_LONG == 32
4776 " task PC stack pid father\n");
4779 " task PC stack pid father\n");
4781 read_lock(&tasklist_lock
);
4782 do_each_thread(g
, p
) {
4784 * reset the NMI-timeout, listing all files on a slow
4785 * console might take alot of time:
4787 touch_nmi_watchdog();
4788 if (!state_filter
|| (p
->state
& state_filter
))
4790 } while_each_thread(g
, p
);
4792 touch_all_softlockup_watchdogs();
4794 #ifdef CONFIG_SCHED_DEBUG
4795 sysrq_sched_debug_show();
4797 read_unlock(&tasklist_lock
);
4799 * Only show locks if all tasks are dumped:
4801 if (state_filter
== -1)
4802 debug_show_all_locks();
4805 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
4807 idle
->sched_class
= &idle_sched_class
;
4811 * init_idle - set up an idle thread for a given CPU
4812 * @idle: task in question
4813 * @cpu: cpu the idle task belongs to
4815 * NOTE: this function does not set the idle thread's NEED_RESCHED
4816 * flag, to make booting more robust.
4818 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
4820 struct rq
*rq
= cpu_rq(cpu
);
4821 unsigned long flags
;
4824 idle
->se
.exec_start
= sched_clock();
4826 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
4827 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
4828 __set_task_cpu(idle
, cpu
);
4830 spin_lock_irqsave(&rq
->lock
, flags
);
4831 rq
->curr
= rq
->idle
= idle
;
4832 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4835 spin_unlock_irqrestore(&rq
->lock
, flags
);
4837 /* Set the preempt count _outside_ the spinlocks! */
4838 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4839 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
4841 task_thread_info(idle
)->preempt_count
= 0;
4844 * The idle tasks have their own, simple scheduling class:
4846 idle
->sched_class
= &idle_sched_class
;
4850 * In a system that switches off the HZ timer nohz_cpu_mask
4851 * indicates which cpus entered this state. This is used
4852 * in the rcu update to wait only for active cpus. For system
4853 * which do not switch off the HZ timer nohz_cpu_mask should
4854 * always be CPU_MASK_NONE.
4856 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
4859 * Increase the granularity value when there are more CPUs,
4860 * because with more CPUs the 'effective latency' as visible
4861 * to users decreases. But the relationship is not linear,
4862 * so pick a second-best guess by going with the log2 of the
4865 * This idea comes from the SD scheduler of Con Kolivas:
4867 static inline void sched_init_granularity(void)
4869 unsigned int factor
= 1 + ilog2(num_online_cpus());
4870 const unsigned long gran_limit
= 100000000;
4872 sysctl_sched_granularity
*= factor
;
4873 if (sysctl_sched_granularity
> gran_limit
)
4874 sysctl_sched_granularity
= gran_limit
;
4876 sysctl_sched_runtime_limit
= sysctl_sched_granularity
* 4;
4877 sysctl_sched_wakeup_granularity
= sysctl_sched_granularity
/ 2;
4882 * This is how migration works:
4884 * 1) we queue a struct migration_req structure in the source CPU's
4885 * runqueue and wake up that CPU's migration thread.
4886 * 2) we down() the locked semaphore => thread blocks.
4887 * 3) migration thread wakes up (implicitly it forces the migrated
4888 * thread off the CPU)
4889 * 4) it gets the migration request and checks whether the migrated
4890 * task is still in the wrong runqueue.
4891 * 5) if it's in the wrong runqueue then the migration thread removes
4892 * it and puts it into the right queue.
4893 * 6) migration thread up()s the semaphore.
4894 * 7) we wake up and the migration is done.
4898 * Change a given task's CPU affinity. Migrate the thread to a
4899 * proper CPU and schedule it away if the CPU it's executing on
4900 * is removed from the allowed bitmask.
4902 * NOTE: the caller must have a valid reference to the task, the
4903 * task must not exit() & deallocate itself prematurely. The
4904 * call is not atomic; no spinlocks may be held.
4906 int set_cpus_allowed(struct task_struct
*p
, cpumask_t new_mask
)
4908 struct migration_req req
;
4909 unsigned long flags
;
4913 rq
= task_rq_lock(p
, &flags
);
4914 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
4919 p
->cpus_allowed
= new_mask
;
4920 /* Can the task run on the task's current CPU? If so, we're done */
4921 if (cpu_isset(task_cpu(p
), new_mask
))
4924 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
4925 /* Need help from migration thread: drop lock and wait. */
4926 task_rq_unlock(rq
, &flags
);
4927 wake_up_process(rq
->migration_thread
);
4928 wait_for_completion(&req
.done
);
4929 tlb_migrate_finish(p
->mm
);
4933 task_rq_unlock(rq
, &flags
);
4937 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
4940 * Move (not current) task off this cpu, onto dest cpu. We're doing
4941 * this because either it can't run here any more (set_cpus_allowed()
4942 * away from this CPU, or CPU going down), or because we're
4943 * attempting to rebalance this task on exec (sched_exec).
4945 * So we race with normal scheduler movements, but that's OK, as long
4946 * as the task is no longer on this CPU.
4948 * Returns non-zero if task was successfully migrated.
4950 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
4952 struct rq
*rq_dest
, *rq_src
;
4955 if (unlikely(cpu_is_offline(dest_cpu
)))
4958 rq_src
= cpu_rq(src_cpu
);
4959 rq_dest
= cpu_rq(dest_cpu
);
4961 double_rq_lock(rq_src
, rq_dest
);
4962 /* Already moved. */
4963 if (task_cpu(p
) != src_cpu
)
4965 /* Affinity changed (again). */
4966 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
4969 on_rq
= p
->se
.on_rq
;
4971 deactivate_task(rq_src
, p
, 0);
4972 set_task_cpu(p
, dest_cpu
);
4974 activate_task(rq_dest
, p
, 0);
4975 check_preempt_curr(rq_dest
, p
);
4979 double_rq_unlock(rq_src
, rq_dest
);
4984 * migration_thread - this is a highprio system thread that performs
4985 * thread migration by bumping thread off CPU then 'pushing' onto
4988 static int migration_thread(void *data
)
4990 int cpu
= (long)data
;
4994 BUG_ON(rq
->migration_thread
!= current
);
4996 set_current_state(TASK_INTERRUPTIBLE
);
4997 while (!kthread_should_stop()) {
4998 struct migration_req
*req
;
4999 struct list_head
*head
;
5001 spin_lock_irq(&rq
->lock
);
5003 if (cpu_is_offline(cpu
)) {
5004 spin_unlock_irq(&rq
->lock
);
5008 if (rq
->active_balance
) {
5009 active_load_balance(rq
, cpu
);
5010 rq
->active_balance
= 0;
5013 head
= &rq
->migration_queue
;
5015 if (list_empty(head
)) {
5016 spin_unlock_irq(&rq
->lock
);
5018 set_current_state(TASK_INTERRUPTIBLE
);
5021 req
= list_entry(head
->next
, struct migration_req
, list
);
5022 list_del_init(head
->next
);
5024 spin_unlock(&rq
->lock
);
5025 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5028 complete(&req
->done
);
5030 __set_current_state(TASK_RUNNING
);
5034 /* Wait for kthread_stop */
5035 set_current_state(TASK_INTERRUPTIBLE
);
5036 while (!kthread_should_stop()) {
5038 set_current_state(TASK_INTERRUPTIBLE
);
5040 __set_current_state(TASK_RUNNING
);
5044 #ifdef CONFIG_HOTPLUG_CPU
5046 * Figure out where task on dead CPU should go, use force if neccessary.
5047 * NOTE: interrupts should be disabled by the caller
5049 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5051 unsigned long flags
;
5058 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5059 cpus_and(mask
, mask
, p
->cpus_allowed
);
5060 dest_cpu
= any_online_cpu(mask
);
5062 /* On any allowed CPU? */
5063 if (dest_cpu
== NR_CPUS
)
5064 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5066 /* No more Mr. Nice Guy. */
5067 if (dest_cpu
== NR_CPUS
) {
5068 rq
= task_rq_lock(p
, &flags
);
5069 cpus_setall(p
->cpus_allowed
);
5070 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5071 task_rq_unlock(rq
, &flags
);
5074 * Don't tell them about moving exiting tasks or
5075 * kernel threads (both mm NULL), since they never
5078 if (p
->mm
&& printk_ratelimit())
5079 printk(KERN_INFO
"process %d (%s) no "
5080 "longer affine to cpu%d\n",
5081 p
->pid
, p
->comm
, dead_cpu
);
5083 if (!__migrate_task(p
, dead_cpu
, dest_cpu
))
5088 * While a dead CPU has no uninterruptible tasks queued at this point,
5089 * it might still have a nonzero ->nr_uninterruptible counter, because
5090 * for performance reasons the counter is not stricly tracking tasks to
5091 * their home CPUs. So we just add the counter to another CPU's counter,
5092 * to keep the global sum constant after CPU-down:
5094 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5096 struct rq
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
5097 unsigned long flags
;
5099 local_irq_save(flags
);
5100 double_rq_lock(rq_src
, rq_dest
);
5101 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5102 rq_src
->nr_uninterruptible
= 0;
5103 double_rq_unlock(rq_src
, rq_dest
);
5104 local_irq_restore(flags
);
5107 /* Run through task list and migrate tasks from the dead cpu. */
5108 static void migrate_live_tasks(int src_cpu
)
5110 struct task_struct
*p
, *t
;
5112 write_lock_irq(&tasklist_lock
);
5114 do_each_thread(t
, p
) {
5118 if (task_cpu(p
) == src_cpu
)
5119 move_task_off_dead_cpu(src_cpu
, p
);
5120 } while_each_thread(t
, p
);
5122 write_unlock_irq(&tasklist_lock
);
5126 * Schedules idle task to be the next runnable task on current CPU.
5127 * It does so by boosting its priority to highest possible and adding it to
5128 * the _front_ of the runqueue. Used by CPU offline code.
5130 void sched_idle_next(void)
5132 int this_cpu
= smp_processor_id();
5133 struct rq
*rq
= cpu_rq(this_cpu
);
5134 struct task_struct
*p
= rq
->idle
;
5135 unsigned long flags
;
5137 /* cpu has to be offline */
5138 BUG_ON(cpu_online(this_cpu
));
5141 * Strictly not necessary since rest of the CPUs are stopped by now
5142 * and interrupts disabled on the current cpu.
5144 spin_lock_irqsave(&rq
->lock
, flags
);
5146 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5148 /* Add idle task to the _front_ of its priority queue: */
5149 activate_idle_task(p
, rq
);
5151 spin_unlock_irqrestore(&rq
->lock
, flags
);
5155 * Ensures that the idle task is using init_mm right before its cpu goes
5158 void idle_task_exit(void)
5160 struct mm_struct
*mm
= current
->active_mm
;
5162 BUG_ON(cpu_online(smp_processor_id()));
5165 switch_mm(mm
, &init_mm
, current
);
5169 /* called under rq->lock with disabled interrupts */
5170 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5172 struct rq
*rq
= cpu_rq(dead_cpu
);
5174 /* Must be exiting, otherwise would be on tasklist. */
5175 BUG_ON(p
->exit_state
!= EXIT_ZOMBIE
&& p
->exit_state
!= EXIT_DEAD
);
5177 /* Cannot have done final schedule yet: would have vanished. */
5178 BUG_ON(p
->state
== TASK_DEAD
);
5183 * Drop lock around migration; if someone else moves it,
5184 * that's OK. No task can be added to this CPU, so iteration is
5186 * NOTE: interrupts should be left disabled --dev@
5188 spin_unlock(&rq
->lock
);
5189 move_task_off_dead_cpu(dead_cpu
, p
);
5190 spin_lock(&rq
->lock
);
5195 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5196 static void migrate_dead_tasks(unsigned int dead_cpu
)
5198 struct rq
*rq
= cpu_rq(dead_cpu
);
5199 struct task_struct
*next
;
5202 if (!rq
->nr_running
)
5204 next
= pick_next_task(rq
, rq
->curr
, rq_clock(rq
));
5207 migrate_dead(dead_cpu
, next
);
5211 #endif /* CONFIG_HOTPLUG_CPU */
5213 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5215 static struct ctl_table sd_ctl_dir
[] = {
5216 {CTL_UNNUMBERED
, "sched_domain", NULL
, 0, 0755, NULL
, },
5220 static struct ctl_table sd_ctl_root
[] = {
5221 {CTL_UNNUMBERED
, "kernel", NULL
, 0, 0755, sd_ctl_dir
, },
5225 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5227 struct ctl_table
*entry
=
5228 kmalloc(n
* sizeof(struct ctl_table
), GFP_KERNEL
);
5231 memset(entry
, 0, n
* sizeof(struct ctl_table
));
5237 set_table_entry(struct ctl_table
*entry
, int ctl_name
,
5238 const char *procname
, void *data
, int maxlen
,
5239 mode_t mode
, proc_handler
*proc_handler
)
5241 entry
->ctl_name
= ctl_name
;
5242 entry
->procname
= procname
;
5244 entry
->maxlen
= maxlen
;
5246 entry
->proc_handler
= proc_handler
;
5249 static struct ctl_table
*
5250 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5252 struct ctl_table
*table
= sd_alloc_ctl_entry(14);
5254 set_table_entry(&table
[0], 1, "min_interval", &sd
->min_interval
,
5255 sizeof(long), 0644, proc_doulongvec_minmax
);
5256 set_table_entry(&table
[1], 2, "max_interval", &sd
->max_interval
,
5257 sizeof(long), 0644, proc_doulongvec_minmax
);
5258 set_table_entry(&table
[2], 3, "busy_idx", &sd
->busy_idx
,
5259 sizeof(int), 0644, proc_dointvec_minmax
);
5260 set_table_entry(&table
[3], 4, "idle_idx", &sd
->idle_idx
,
5261 sizeof(int), 0644, proc_dointvec_minmax
);
5262 set_table_entry(&table
[4], 5, "newidle_idx", &sd
->newidle_idx
,
5263 sizeof(int), 0644, proc_dointvec_minmax
);
5264 set_table_entry(&table
[5], 6, "wake_idx", &sd
->wake_idx
,
5265 sizeof(int), 0644, proc_dointvec_minmax
);
5266 set_table_entry(&table
[6], 7, "forkexec_idx", &sd
->forkexec_idx
,
5267 sizeof(int), 0644, proc_dointvec_minmax
);
5268 set_table_entry(&table
[7], 8, "busy_factor", &sd
->busy_factor
,
5269 sizeof(int), 0644, proc_dointvec_minmax
);
5270 set_table_entry(&table
[8], 9, "imbalance_pct", &sd
->imbalance_pct
,
5271 sizeof(int), 0644, proc_dointvec_minmax
);
5272 set_table_entry(&table
[9], 10, "cache_hot_time", &sd
->cache_hot_time
,
5273 sizeof(long long), 0644, proc_doulongvec_minmax
);
5274 set_table_entry(&table
[10], 11, "cache_nice_tries",
5275 &sd
->cache_nice_tries
,
5276 sizeof(int), 0644, proc_dointvec_minmax
);
5277 set_table_entry(&table
[12], 13, "flags", &sd
->flags
,
5278 sizeof(int), 0644, proc_dointvec_minmax
);
5283 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5285 struct ctl_table
*entry
, *table
;
5286 struct sched_domain
*sd
;
5287 int domain_num
= 0, i
;
5290 for_each_domain(cpu
, sd
)
5292 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5295 for_each_domain(cpu
, sd
) {
5296 snprintf(buf
, 32, "domain%d", i
);
5297 entry
->ctl_name
= i
+ 1;
5298 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5300 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5307 static struct ctl_table_header
*sd_sysctl_header
;
5308 static void init_sched_domain_sysctl(void)
5310 int i
, cpu_num
= num_online_cpus();
5311 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5314 sd_ctl_dir
[0].child
= entry
;
5316 for (i
= 0; i
< cpu_num
; i
++, entry
++) {
5317 snprintf(buf
, 32, "cpu%d", i
);
5318 entry
->ctl_name
= i
+ 1;
5319 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5321 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5323 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5326 static void init_sched_domain_sysctl(void)
5332 * migration_call - callback that gets triggered when a CPU is added.
5333 * Here we can start up the necessary migration thread for the new CPU.
5335 static int __cpuinit
5336 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5338 struct task_struct
*p
;
5339 int cpu
= (long)hcpu
;
5340 unsigned long flags
;
5344 case CPU_LOCK_ACQUIRE
:
5345 mutex_lock(&sched_hotcpu_mutex
);
5348 case CPU_UP_PREPARE
:
5349 case CPU_UP_PREPARE_FROZEN
:
5350 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
5353 kthread_bind(p
, cpu
);
5354 /* Must be high prio: stop_machine expects to yield to it. */
5355 rq
= task_rq_lock(p
, &flags
);
5356 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5357 task_rq_unlock(rq
, &flags
);
5358 cpu_rq(cpu
)->migration_thread
= p
;
5362 case CPU_ONLINE_FROZEN
:
5363 /* Strictly unneccessary, as first user will wake it. */
5364 wake_up_process(cpu_rq(cpu
)->migration_thread
);
5367 #ifdef CONFIG_HOTPLUG_CPU
5368 case CPU_UP_CANCELED
:
5369 case CPU_UP_CANCELED_FROZEN
:
5370 if (!cpu_rq(cpu
)->migration_thread
)
5372 /* Unbind it from offline cpu so it can run. Fall thru. */
5373 kthread_bind(cpu_rq(cpu
)->migration_thread
,
5374 any_online_cpu(cpu_online_map
));
5375 kthread_stop(cpu_rq(cpu
)->migration_thread
);
5376 cpu_rq(cpu
)->migration_thread
= NULL
;
5380 case CPU_DEAD_FROZEN
:
5381 migrate_live_tasks(cpu
);
5383 kthread_stop(rq
->migration_thread
);
5384 rq
->migration_thread
= NULL
;
5385 /* Idle task back to normal (off runqueue, low prio) */
5386 rq
= task_rq_lock(rq
->idle
, &flags
);
5387 deactivate_task(rq
, rq
->idle
, 0);
5388 rq
->idle
->static_prio
= MAX_PRIO
;
5389 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5390 rq
->idle
->sched_class
= &idle_sched_class
;
5391 migrate_dead_tasks(cpu
);
5392 task_rq_unlock(rq
, &flags
);
5393 migrate_nr_uninterruptible(rq
);
5394 BUG_ON(rq
->nr_running
!= 0);
5396 /* No need to migrate the tasks: it was best-effort if
5397 * they didn't take sched_hotcpu_mutex. Just wake up
5398 * the requestors. */
5399 spin_lock_irq(&rq
->lock
);
5400 while (!list_empty(&rq
->migration_queue
)) {
5401 struct migration_req
*req
;
5403 req
= list_entry(rq
->migration_queue
.next
,
5404 struct migration_req
, list
);
5405 list_del_init(&req
->list
);
5406 complete(&req
->done
);
5408 spin_unlock_irq(&rq
->lock
);
5411 case CPU_LOCK_RELEASE
:
5412 mutex_unlock(&sched_hotcpu_mutex
);
5418 /* Register at highest priority so that task migration (migrate_all_tasks)
5419 * happens before everything else.
5421 static struct notifier_block __cpuinitdata migration_notifier
= {
5422 .notifier_call
= migration_call
,
5426 int __init
migration_init(void)
5428 void *cpu
= (void *)(long)smp_processor_id();
5431 /* Start one for the boot CPU: */
5432 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5433 BUG_ON(err
== NOTIFY_BAD
);
5434 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5435 register_cpu_notifier(&migration_notifier
);
5443 /* Number of possible processor ids */
5444 int nr_cpu_ids __read_mostly
= NR_CPUS
;
5445 EXPORT_SYMBOL(nr_cpu_ids
);
5447 #undef SCHED_DOMAIN_DEBUG
5448 #ifdef SCHED_DOMAIN_DEBUG
5449 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5454 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5458 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5463 struct sched_group
*group
= sd
->groups
;
5464 cpumask_t groupmask
;
5466 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
5467 cpus_clear(groupmask
);
5470 for (i
= 0; i
< level
+ 1; i
++)
5472 printk("domain %d: ", level
);
5474 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5475 printk("does not load-balance\n");
5477 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5482 printk("span %s\n", str
);
5484 if (!cpu_isset(cpu
, sd
->span
))
5485 printk(KERN_ERR
"ERROR: domain->span does not contain "
5487 if (!cpu_isset(cpu
, group
->cpumask
))
5488 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5492 for (i
= 0; i
< level
+ 2; i
++)
5498 printk(KERN_ERR
"ERROR: group is NULL\n");
5502 if (!group
->__cpu_power
) {
5504 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5508 if (!cpus_weight(group
->cpumask
)) {
5510 printk(KERN_ERR
"ERROR: empty group\n");
5513 if (cpus_intersects(groupmask
, group
->cpumask
)) {
5515 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5518 cpus_or(groupmask
, groupmask
, group
->cpumask
);
5520 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
5523 group
= group
->next
;
5524 } while (group
!= sd
->groups
);
5527 if (!cpus_equal(sd
->span
, groupmask
))
5528 printk(KERN_ERR
"ERROR: groups don't span "
5536 if (!cpus_subset(groupmask
, sd
->span
))
5537 printk(KERN_ERR
"ERROR: parent span is not a superset "
5538 "of domain->span\n");
5543 # define sched_domain_debug(sd, cpu) do { } while (0)
5546 static int sd_degenerate(struct sched_domain
*sd
)
5548 if (cpus_weight(sd
->span
) == 1)
5551 /* Following flags need at least 2 groups */
5552 if (sd
->flags
& (SD_LOAD_BALANCE
|
5553 SD_BALANCE_NEWIDLE
|
5557 SD_SHARE_PKG_RESOURCES
)) {
5558 if (sd
->groups
!= sd
->groups
->next
)
5562 /* Following flags don't use groups */
5563 if (sd
->flags
& (SD_WAKE_IDLE
|
5572 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5574 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5576 if (sd_degenerate(parent
))
5579 if (!cpus_equal(sd
->span
, parent
->span
))
5582 /* Does parent contain flags not in child? */
5583 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5584 if (cflags
& SD_WAKE_AFFINE
)
5585 pflags
&= ~SD_WAKE_BALANCE
;
5586 /* Flags needing groups don't count if only 1 group in parent */
5587 if (parent
->groups
== parent
->groups
->next
) {
5588 pflags
&= ~(SD_LOAD_BALANCE
|
5589 SD_BALANCE_NEWIDLE
|
5593 SD_SHARE_PKG_RESOURCES
);
5595 if (~cflags
& pflags
)
5602 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5603 * hold the hotplug lock.
5605 static void cpu_attach_domain(struct sched_domain
*sd
, int cpu
)
5607 struct rq
*rq
= cpu_rq(cpu
);
5608 struct sched_domain
*tmp
;
5610 /* Remove the sched domains which do not contribute to scheduling. */
5611 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
5612 struct sched_domain
*parent
= tmp
->parent
;
5615 if (sd_parent_degenerate(tmp
, parent
)) {
5616 tmp
->parent
= parent
->parent
;
5618 parent
->parent
->child
= tmp
;
5622 if (sd
&& sd_degenerate(sd
)) {
5628 sched_domain_debug(sd
, cpu
);
5630 rcu_assign_pointer(rq
->sd
, sd
);
5633 /* cpus with isolated domains */
5634 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
5636 /* Setup the mask of cpus configured for isolated domains */
5637 static int __init
isolated_cpu_setup(char *str
)
5639 int ints
[NR_CPUS
], i
;
5641 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5642 cpus_clear(cpu_isolated_map
);
5643 for (i
= 1; i
<= ints
[0]; i
++)
5644 if (ints
[i
] < NR_CPUS
)
5645 cpu_set(ints
[i
], cpu_isolated_map
);
5649 __setup ("isolcpus=", isolated_cpu_setup
);
5652 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5653 * to a function which identifies what group(along with sched group) a CPU
5654 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5655 * (due to the fact that we keep track of groups covered with a cpumask_t).
5657 * init_sched_build_groups will build a circular linked list of the groups
5658 * covered by the given span, and will set each group's ->cpumask correctly,
5659 * and ->cpu_power to 0.
5662 init_sched_build_groups(cpumask_t span
, const cpumask_t
*cpu_map
,
5663 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
5664 struct sched_group
**sg
))
5666 struct sched_group
*first
= NULL
, *last
= NULL
;
5667 cpumask_t covered
= CPU_MASK_NONE
;
5670 for_each_cpu_mask(i
, span
) {
5671 struct sched_group
*sg
;
5672 int group
= group_fn(i
, cpu_map
, &sg
);
5675 if (cpu_isset(i
, covered
))
5678 sg
->cpumask
= CPU_MASK_NONE
;
5679 sg
->__cpu_power
= 0;
5681 for_each_cpu_mask(j
, span
) {
5682 if (group_fn(j
, cpu_map
, NULL
) != group
)
5685 cpu_set(j
, covered
);
5686 cpu_set(j
, sg
->cpumask
);
5697 #define SD_NODES_PER_DOMAIN 16
5702 * find_next_best_node - find the next node to include in a sched_domain
5703 * @node: node whose sched_domain we're building
5704 * @used_nodes: nodes already in the sched_domain
5706 * Find the next node to include in a given scheduling domain. Simply
5707 * finds the closest node not already in the @used_nodes map.
5709 * Should use nodemask_t.
5711 static int find_next_best_node(int node
, unsigned long *used_nodes
)
5713 int i
, n
, val
, min_val
, best_node
= 0;
5717 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5718 /* Start at @node */
5719 n
= (node
+ i
) % MAX_NUMNODES
;
5721 if (!nr_cpus_node(n
))
5724 /* Skip already used nodes */
5725 if (test_bit(n
, used_nodes
))
5728 /* Simple min distance search */
5729 val
= node_distance(node
, n
);
5731 if (val
< min_val
) {
5737 set_bit(best_node
, used_nodes
);
5742 * sched_domain_node_span - get a cpumask for a node's sched_domain
5743 * @node: node whose cpumask we're constructing
5744 * @size: number of nodes to include in this span
5746 * Given a node, construct a good cpumask for its sched_domain to span. It
5747 * should be one that prevents unnecessary balancing, but also spreads tasks
5750 static cpumask_t
sched_domain_node_span(int node
)
5752 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
5753 cpumask_t span
, nodemask
;
5757 bitmap_zero(used_nodes
, MAX_NUMNODES
);
5759 nodemask
= node_to_cpumask(node
);
5760 cpus_or(span
, span
, nodemask
);
5761 set_bit(node
, used_nodes
);
5763 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
5764 int next_node
= find_next_best_node(node
, used_nodes
);
5766 nodemask
= node_to_cpumask(next_node
);
5767 cpus_or(span
, span
, nodemask
);
5774 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
5777 * SMT sched-domains:
5779 #ifdef CONFIG_SCHED_SMT
5780 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
5781 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
5783 static int cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
,
5784 struct sched_group
**sg
)
5787 *sg
= &per_cpu(sched_group_cpus
, cpu
);
5793 * multi-core sched-domains:
5795 #ifdef CONFIG_SCHED_MC
5796 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
5797 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
5800 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5801 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
5802 struct sched_group
**sg
)
5805 cpumask_t mask
= cpu_sibling_map
[cpu
];
5806 cpus_and(mask
, mask
, *cpu_map
);
5807 group
= first_cpu(mask
);
5809 *sg
= &per_cpu(sched_group_core
, group
);
5812 #elif defined(CONFIG_SCHED_MC)
5813 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
5814 struct sched_group
**sg
)
5817 *sg
= &per_cpu(sched_group_core
, cpu
);
5822 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
5823 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
5825 static int cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
,
5826 struct sched_group
**sg
)
5829 #ifdef CONFIG_SCHED_MC
5830 cpumask_t mask
= cpu_coregroup_map(cpu
);
5831 cpus_and(mask
, mask
, *cpu_map
);
5832 group
= first_cpu(mask
);
5833 #elif defined(CONFIG_SCHED_SMT)
5834 cpumask_t mask
= cpu_sibling_map
[cpu
];
5835 cpus_and(mask
, mask
, *cpu_map
);
5836 group
= first_cpu(mask
);
5841 *sg
= &per_cpu(sched_group_phys
, group
);
5847 * The init_sched_build_groups can't handle what we want to do with node
5848 * groups, so roll our own. Now each node has its own list of groups which
5849 * gets dynamically allocated.
5851 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
5852 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
5854 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
5855 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
5857 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
5858 struct sched_group
**sg
)
5860 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(cpu
));
5863 cpus_and(nodemask
, nodemask
, *cpu_map
);
5864 group
= first_cpu(nodemask
);
5867 *sg
= &per_cpu(sched_group_allnodes
, group
);
5871 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
5873 struct sched_group
*sg
= group_head
;
5879 for_each_cpu_mask(j
, sg
->cpumask
) {
5880 struct sched_domain
*sd
;
5882 sd
= &per_cpu(phys_domains
, j
);
5883 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
5885 * Only add "power" once for each
5891 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
5894 if (sg
!= group_head
)
5900 /* Free memory allocated for various sched_group structures */
5901 static void free_sched_groups(const cpumask_t
*cpu_map
)
5905 for_each_cpu_mask(cpu
, *cpu_map
) {
5906 struct sched_group
**sched_group_nodes
5907 = sched_group_nodes_bycpu
[cpu
];
5909 if (!sched_group_nodes
)
5912 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5913 cpumask_t nodemask
= node_to_cpumask(i
);
5914 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
5916 cpus_and(nodemask
, nodemask
, *cpu_map
);
5917 if (cpus_empty(nodemask
))
5927 if (oldsg
!= sched_group_nodes
[i
])
5930 kfree(sched_group_nodes
);
5931 sched_group_nodes_bycpu
[cpu
] = NULL
;
5935 static void free_sched_groups(const cpumask_t
*cpu_map
)
5941 * Initialize sched groups cpu_power.
5943 * cpu_power indicates the capacity of sched group, which is used while
5944 * distributing the load between different sched groups in a sched domain.
5945 * Typically cpu_power for all the groups in a sched domain will be same unless
5946 * there are asymmetries in the topology. If there are asymmetries, group
5947 * having more cpu_power will pickup more load compared to the group having
5950 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5951 * the maximum number of tasks a group can handle in the presence of other idle
5952 * or lightly loaded groups in the same sched domain.
5954 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
5956 struct sched_domain
*child
;
5957 struct sched_group
*group
;
5959 WARN_ON(!sd
|| !sd
->groups
);
5961 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
5966 sd
->groups
->__cpu_power
= 0;
5969 * For perf policy, if the groups in child domain share resources
5970 * (for example cores sharing some portions of the cache hierarchy
5971 * or SMT), then set this domain groups cpu_power such that each group
5972 * can handle only one task, when there are other idle groups in the
5973 * same sched domain.
5975 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
5977 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
5978 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
5983 * add cpu_power of each child group to this groups cpu_power
5985 group
= child
->groups
;
5987 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
5988 group
= group
->next
;
5989 } while (group
!= child
->groups
);
5993 * Build sched domains for a given set of cpus and attach the sched domains
5994 * to the individual cpus
5996 static int build_sched_domains(const cpumask_t
*cpu_map
)
6000 struct sched_group
**sched_group_nodes
= NULL
;
6001 int sd_allnodes
= 0;
6004 * Allocate the per-node list of sched groups
6006 sched_group_nodes
= kzalloc(sizeof(struct sched_group
*)*MAX_NUMNODES
,
6008 if (!sched_group_nodes
) {
6009 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6012 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
6016 * Set up domains for cpus specified by the cpu_map.
6018 for_each_cpu_mask(i
, *cpu_map
) {
6019 struct sched_domain
*sd
= NULL
, *p
;
6020 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
6022 cpus_and(nodemask
, nodemask
, *cpu_map
);
6025 if (cpus_weight(*cpu_map
) >
6026 SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
6027 sd
= &per_cpu(allnodes_domains
, i
);
6028 *sd
= SD_ALLNODES_INIT
;
6029 sd
->span
= *cpu_map
;
6030 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
);
6036 sd
= &per_cpu(node_domains
, i
);
6038 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
6042 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6046 sd
= &per_cpu(phys_domains
, i
);
6048 sd
->span
= nodemask
;
6052 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
);
6054 #ifdef CONFIG_SCHED_MC
6056 sd
= &per_cpu(core_domains
, i
);
6058 sd
->span
= cpu_coregroup_map(i
);
6059 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6062 cpu_to_core_group(i
, cpu_map
, &sd
->groups
);
6065 #ifdef CONFIG_SCHED_SMT
6067 sd
= &per_cpu(cpu_domains
, i
);
6068 *sd
= SD_SIBLING_INIT
;
6069 sd
->span
= cpu_sibling_map
[i
];
6070 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6073 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
);
6077 #ifdef CONFIG_SCHED_SMT
6078 /* Set up CPU (sibling) groups */
6079 for_each_cpu_mask(i
, *cpu_map
) {
6080 cpumask_t this_sibling_map
= cpu_sibling_map
[i
];
6081 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
6082 if (i
!= first_cpu(this_sibling_map
))
6085 init_sched_build_groups(this_sibling_map
, cpu_map
,
6090 #ifdef CONFIG_SCHED_MC
6091 /* Set up multi-core groups */
6092 for_each_cpu_mask(i
, *cpu_map
) {
6093 cpumask_t this_core_map
= cpu_coregroup_map(i
);
6094 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
6095 if (i
!= first_cpu(this_core_map
))
6097 init_sched_build_groups(this_core_map
, cpu_map
,
6098 &cpu_to_core_group
);
6102 /* Set up physical groups */
6103 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6104 cpumask_t nodemask
= node_to_cpumask(i
);
6106 cpus_and(nodemask
, nodemask
, *cpu_map
);
6107 if (cpus_empty(nodemask
))
6110 init_sched_build_groups(nodemask
, cpu_map
, &cpu_to_phys_group
);
6114 /* Set up node groups */
6116 init_sched_build_groups(*cpu_map
, cpu_map
,
6117 &cpu_to_allnodes_group
);
6119 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6120 /* Set up node groups */
6121 struct sched_group
*sg
, *prev
;
6122 cpumask_t nodemask
= node_to_cpumask(i
);
6123 cpumask_t domainspan
;
6124 cpumask_t covered
= CPU_MASK_NONE
;
6127 cpus_and(nodemask
, nodemask
, *cpu_map
);
6128 if (cpus_empty(nodemask
)) {
6129 sched_group_nodes
[i
] = NULL
;
6133 domainspan
= sched_domain_node_span(i
);
6134 cpus_and(domainspan
, domainspan
, *cpu_map
);
6136 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
6138 printk(KERN_WARNING
"Can not alloc domain group for "
6142 sched_group_nodes
[i
] = sg
;
6143 for_each_cpu_mask(j
, nodemask
) {
6144 struct sched_domain
*sd
;
6146 sd
= &per_cpu(node_domains
, j
);
6149 sg
->__cpu_power
= 0;
6150 sg
->cpumask
= nodemask
;
6152 cpus_or(covered
, covered
, nodemask
);
6155 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
6156 cpumask_t tmp
, notcovered
;
6157 int n
= (i
+ j
) % MAX_NUMNODES
;
6159 cpus_complement(notcovered
, covered
);
6160 cpus_and(tmp
, notcovered
, *cpu_map
);
6161 cpus_and(tmp
, tmp
, domainspan
);
6162 if (cpus_empty(tmp
))
6165 nodemask
= node_to_cpumask(n
);
6166 cpus_and(tmp
, tmp
, nodemask
);
6167 if (cpus_empty(tmp
))
6170 sg
= kmalloc_node(sizeof(struct sched_group
),
6174 "Can not alloc domain group for node %d\n", j
);
6177 sg
->__cpu_power
= 0;
6179 sg
->next
= prev
->next
;
6180 cpus_or(covered
, covered
, tmp
);
6187 /* Calculate CPU power for physical packages and nodes */
6188 #ifdef CONFIG_SCHED_SMT
6189 for_each_cpu_mask(i
, *cpu_map
) {
6190 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
6192 init_sched_groups_power(i
, sd
);
6195 #ifdef CONFIG_SCHED_MC
6196 for_each_cpu_mask(i
, *cpu_map
) {
6197 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
6199 init_sched_groups_power(i
, sd
);
6203 for_each_cpu_mask(i
, *cpu_map
) {
6204 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
6206 init_sched_groups_power(i
, sd
);
6210 for (i
= 0; i
< MAX_NUMNODES
; i
++)
6211 init_numa_sched_groups_power(sched_group_nodes
[i
]);
6214 struct sched_group
*sg
;
6216 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
);
6217 init_numa_sched_groups_power(sg
);
6221 /* Attach the domains */
6222 for_each_cpu_mask(i
, *cpu_map
) {
6223 struct sched_domain
*sd
;
6224 #ifdef CONFIG_SCHED_SMT
6225 sd
= &per_cpu(cpu_domains
, i
);
6226 #elif defined(CONFIG_SCHED_MC)
6227 sd
= &per_cpu(core_domains
, i
);
6229 sd
= &per_cpu(phys_domains
, i
);
6231 cpu_attach_domain(sd
, i
);
6238 free_sched_groups(cpu_map
);
6243 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6245 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
6247 cpumask_t cpu_default_map
;
6251 * Setup mask for cpus without special case scheduling requirements.
6252 * For now this just excludes isolated cpus, but could be used to
6253 * exclude other special cases in the future.
6255 cpus_andnot(cpu_default_map
, *cpu_map
, cpu_isolated_map
);
6257 err
= build_sched_domains(&cpu_default_map
);
6262 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
6264 free_sched_groups(cpu_map
);
6268 * Detach sched domains from a group of cpus specified in cpu_map
6269 * These cpus will now be attached to the NULL domain
6271 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
6275 for_each_cpu_mask(i
, *cpu_map
)
6276 cpu_attach_domain(NULL
, i
);
6277 synchronize_sched();
6278 arch_destroy_sched_domains(cpu_map
);
6282 * Partition sched domains as specified by the cpumasks below.
6283 * This attaches all cpus from the cpumasks to the NULL domain,
6284 * waits for a RCU quiescent period, recalculates sched
6285 * domain information and then attaches them back to the
6286 * correct sched domains
6287 * Call with hotplug lock held
6289 int partition_sched_domains(cpumask_t
*partition1
, cpumask_t
*partition2
)
6291 cpumask_t change_map
;
6294 cpus_and(*partition1
, *partition1
, cpu_online_map
);
6295 cpus_and(*partition2
, *partition2
, cpu_online_map
);
6296 cpus_or(change_map
, *partition1
, *partition2
);
6298 /* Detach sched domains from all of the affected cpus */
6299 detach_destroy_domains(&change_map
);
6300 if (!cpus_empty(*partition1
))
6301 err
= build_sched_domains(partition1
);
6302 if (!err
&& !cpus_empty(*partition2
))
6303 err
= build_sched_domains(partition2
);
6308 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6309 int arch_reinit_sched_domains(void)
6313 mutex_lock(&sched_hotcpu_mutex
);
6314 detach_destroy_domains(&cpu_online_map
);
6315 err
= arch_init_sched_domains(&cpu_online_map
);
6316 mutex_unlock(&sched_hotcpu_mutex
);
6321 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
6325 if (buf
[0] != '0' && buf
[0] != '1')
6329 sched_smt_power_savings
= (buf
[0] == '1');
6331 sched_mc_power_savings
= (buf
[0] == '1');
6333 ret
= arch_reinit_sched_domains();
6335 return ret
? ret
: count
;
6338 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
6342 #ifdef CONFIG_SCHED_SMT
6344 err
= sysfs_create_file(&cls
->kset
.kobj
,
6345 &attr_sched_smt_power_savings
.attr
);
6347 #ifdef CONFIG_SCHED_MC
6348 if (!err
&& mc_capable())
6349 err
= sysfs_create_file(&cls
->kset
.kobj
,
6350 &attr_sched_mc_power_savings
.attr
);
6356 #ifdef CONFIG_SCHED_MC
6357 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
6359 return sprintf(page
, "%u\n", sched_mc_power_savings
);
6361 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
6362 const char *buf
, size_t count
)
6364 return sched_power_savings_store(buf
, count
, 0);
6366 SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
6367 sched_mc_power_savings_store
);
6370 #ifdef CONFIG_SCHED_SMT
6371 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
6373 return sprintf(page
, "%u\n", sched_smt_power_savings
);
6375 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
6376 const char *buf
, size_t count
)
6378 return sched_power_savings_store(buf
, count
, 1);
6380 SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
6381 sched_smt_power_savings_store
);
6385 * Force a reinitialization of the sched domains hierarchy. The domains
6386 * and groups cannot be updated in place without racing with the balancing
6387 * code, so we temporarily attach all running cpus to the NULL domain
6388 * which will prevent rebalancing while the sched domains are recalculated.
6390 static int update_sched_domains(struct notifier_block
*nfb
,
6391 unsigned long action
, void *hcpu
)
6394 case CPU_UP_PREPARE
:
6395 case CPU_UP_PREPARE_FROZEN
:
6396 case CPU_DOWN_PREPARE
:
6397 case CPU_DOWN_PREPARE_FROZEN
:
6398 detach_destroy_domains(&cpu_online_map
);
6401 case CPU_UP_CANCELED
:
6402 case CPU_UP_CANCELED_FROZEN
:
6403 case CPU_DOWN_FAILED
:
6404 case CPU_DOWN_FAILED_FROZEN
:
6406 case CPU_ONLINE_FROZEN
:
6408 case CPU_DEAD_FROZEN
:
6410 * Fall through and re-initialise the domains.
6417 /* The hotplug lock is already held by cpu_up/cpu_down */
6418 arch_init_sched_domains(&cpu_online_map
);
6423 void __init
sched_init_smp(void)
6425 cpumask_t non_isolated_cpus
;
6427 mutex_lock(&sched_hotcpu_mutex
);
6428 arch_init_sched_domains(&cpu_online_map
);
6429 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
6430 if (cpus_empty(non_isolated_cpus
))
6431 cpu_set(smp_processor_id(), non_isolated_cpus
);
6432 mutex_unlock(&sched_hotcpu_mutex
);
6433 /* XXX: Theoretical race here - CPU may be hotplugged now */
6434 hotcpu_notifier(update_sched_domains
, 0);
6436 init_sched_domain_sysctl();
6438 /* Move init over to a non-isolated CPU */
6439 if (set_cpus_allowed(current
, non_isolated_cpus
) < 0)
6441 sched_init_granularity();
6444 void __init
sched_init_smp(void)
6446 sched_init_granularity();
6448 #endif /* CONFIG_SMP */
6450 int in_sched_functions(unsigned long addr
)
6452 /* Linker adds these: start and end of __sched functions */
6453 extern char __sched_text_start
[], __sched_text_end
[];
6455 return in_lock_functions(addr
) ||
6456 (addr
>= (unsigned long)__sched_text_start
6457 && addr
< (unsigned long)__sched_text_end
);
6460 static inline void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
6462 cfs_rq
->tasks_timeline
= RB_ROOT
;
6463 cfs_rq
->fair_clock
= 1;
6464 #ifdef CONFIG_FAIR_GROUP_SCHED
6469 void __init
sched_init(void)
6471 u64 now
= sched_clock();
6472 int highest_cpu
= 0;
6476 * Link up the scheduling class hierarchy:
6478 rt_sched_class
.next
= &fair_sched_class
;
6479 fair_sched_class
.next
= &idle_sched_class
;
6480 idle_sched_class
.next
= NULL
;
6482 for_each_possible_cpu(i
) {
6483 struct rt_prio_array
*array
;
6487 spin_lock_init(&rq
->lock
);
6488 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
6491 init_cfs_rq(&rq
->cfs
, rq
);
6492 #ifdef CONFIG_FAIR_GROUP_SCHED
6493 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
6494 list_add(&rq
->cfs
.leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
6496 rq
->ls
.load_update_last
= now
;
6497 rq
->ls
.load_update_start
= now
;
6499 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
6500 rq
->cpu_load
[j
] = 0;
6503 rq
->active_balance
= 0;
6504 rq
->next_balance
= jiffies
;
6507 rq
->migration_thread
= NULL
;
6508 INIT_LIST_HEAD(&rq
->migration_queue
);
6510 atomic_set(&rq
->nr_iowait
, 0);
6512 array
= &rq
->rt
.active
;
6513 for (j
= 0; j
< MAX_RT_PRIO
; j
++) {
6514 INIT_LIST_HEAD(array
->queue
+ j
);
6515 __clear_bit(j
, array
->bitmap
);
6518 /* delimiter for bitsearch: */
6519 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
6522 set_load_weight(&init_task
);
6524 #ifdef CONFIG_PREEMPT_NOTIFIERS
6525 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
6529 nr_cpu_ids
= highest_cpu
+ 1;
6530 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
6533 #ifdef CONFIG_RT_MUTEXES
6534 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
6538 * The boot idle thread does lazy MMU switching as well:
6540 atomic_inc(&init_mm
.mm_count
);
6541 enter_lazy_tlb(&init_mm
, current
);
6544 * Make us the idle thread. Technically, schedule() should not be
6545 * called from this thread, however somewhere below it might be,
6546 * but because we are the idle thread, we just pick up running again
6547 * when this runqueue becomes "idle".
6549 init_idle(current
, smp_processor_id());
6551 * During early bootup we pretend to be a normal task:
6553 current
->sched_class
= &fair_sched_class
;
6556 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6557 void __might_sleep(char *file
, int line
)
6560 static unsigned long prev_jiffy
; /* ratelimiting */
6562 if ((in_atomic() || irqs_disabled()) &&
6563 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
6564 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6566 prev_jiffy
= jiffies
;
6567 printk(KERN_ERR
"BUG: sleeping function called from invalid"
6568 " context at %s:%d\n", file
, line
);
6569 printk("in_atomic():%d, irqs_disabled():%d\n",
6570 in_atomic(), irqs_disabled());
6571 debug_show_held_locks(current
);
6572 if (irqs_disabled())
6573 print_irqtrace_events(current
);
6578 EXPORT_SYMBOL(__might_sleep
);
6581 #ifdef CONFIG_MAGIC_SYSRQ
6582 void normalize_rt_tasks(void)
6584 struct task_struct
*g
, *p
;
6585 unsigned long flags
;
6589 read_lock_irq(&tasklist_lock
);
6590 do_each_thread(g
, p
) {
6592 p
->se
.wait_runtime
= 0;
6593 p
->se
.wait_start_fair
= 0;
6594 p
->se
.wait_start
= 0;
6595 p
->se
.exec_start
= 0;
6596 p
->se
.sleep_start
= 0;
6597 p
->se
.sleep_start_fair
= 0;
6598 p
->se
.block_start
= 0;
6599 task_rq(p
)->cfs
.fair_clock
= 0;
6600 task_rq(p
)->clock
= 0;
6604 * Renice negative nice level userspace
6607 if (TASK_NICE(p
) < 0 && p
->mm
)
6608 set_user_nice(p
, 0);
6612 spin_lock_irqsave(&p
->pi_lock
, flags
);
6613 rq
= __task_rq_lock(p
);
6616 * Do not touch the migration thread:
6618 if (p
== rq
->migration_thread
)
6622 on_rq
= p
->se
.on_rq
;
6624 deactivate_task(task_rq(p
), p
, 0);
6625 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
6627 activate_task(task_rq(p
), p
, 0);
6628 resched_task(rq
->curr
);
6633 __task_rq_unlock(rq
);
6634 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6635 } while_each_thread(g
, p
);
6637 read_unlock_irq(&tasklist_lock
);
6640 #endif /* CONFIG_MAGIC_SYSRQ */
6644 * These functions are only useful for the IA64 MCA handling.
6646 * They can only be called when the whole system has been
6647 * stopped - every CPU needs to be quiescent, and no scheduling
6648 * activity can take place. Using them for anything else would
6649 * be a serious bug, and as a result, they aren't even visible
6650 * under any other configuration.
6654 * curr_task - return the current task for a given cpu.
6655 * @cpu: the processor in question.
6657 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6659 struct task_struct
*curr_task(int cpu
)
6661 return cpu_curr(cpu
);
6665 * set_curr_task - set the current task for a given cpu.
6666 * @cpu: the processor in question.
6667 * @p: the task pointer to set.
6669 * Description: This function must only be used when non-maskable interrupts
6670 * are serviced on a separate stack. It allows the architecture to switch the
6671 * notion of the current task on a cpu in a non-blocking manner. This function
6672 * must be called with all CPU's synchronized, and interrupts disabled, the
6673 * and caller must save the original value of the current task (see
6674 * curr_task() above) and restore that value before reenabling interrupts and
6675 * re-starting the system.
6677 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6679 void set_curr_task(int cpu
, struct task_struct
*p
)