2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/memcontrol.h>
49 #include <asm/tlbflush.h>
50 #include <asm/div64.h>
54 * Array of node states.
56 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
57 [N_POSSIBLE
] = NODE_MASK_ALL
,
58 [N_ONLINE
] = { { [0] = 1UL } },
60 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
62 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
64 [N_CPU
] = { { [0] = 1UL } },
67 EXPORT_SYMBOL(node_states
);
69 unsigned long totalram_pages __read_mostly
;
70 unsigned long totalreserve_pages __read_mostly
;
72 int percpu_pagelist_fraction
;
74 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
75 int pageblock_order __read_mostly
;
78 static void __free_pages_ok(struct page
*page
, unsigned int order
);
81 * results with 256, 32 in the lowmem_reserve sysctl:
82 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
83 * 1G machine -> (16M dma, 784M normal, 224M high)
84 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
85 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
86 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
88 * TBD: should special case ZONE_DMA32 machines here - in those we normally
89 * don't need any ZONE_NORMAL reservation
91 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
92 #ifdef CONFIG_ZONE_DMA
95 #ifdef CONFIG_ZONE_DMA32
104 EXPORT_SYMBOL(totalram_pages
);
106 static char * const zone_names
[MAX_NR_ZONES
] = {
107 #ifdef CONFIG_ZONE_DMA
110 #ifdef CONFIG_ZONE_DMA32
114 #ifdef CONFIG_HIGHMEM
120 int min_free_kbytes
= 1024;
122 unsigned long __meminitdata nr_kernel_pages
;
123 unsigned long __meminitdata nr_all_pages
;
124 static unsigned long __meminitdata dma_reserve
;
126 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
129 * ranges of memory (RAM) that may be registered with add_active_range().
130 * Ranges passed to add_active_range() will be merged if possible
131 * so the number of times add_active_range() can be called is
132 * related to the number of nodes and the number of holes
134 #ifdef CONFIG_MAX_ACTIVE_REGIONS
135 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
136 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138 #if MAX_NUMNODES >= 32
139 /* If there can be many nodes, allow up to 50 holes per node */
140 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142 /* By default, allow up to 256 distinct regions */
143 #define MAX_ACTIVE_REGIONS 256
147 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
148 static int __meminitdata nr_nodemap_entries
;
149 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
150 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
151 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
152 static unsigned long __meminitdata node_boundary_start_pfn
[MAX_NUMNODES
];
153 static unsigned long __meminitdata node_boundary_end_pfn
[MAX_NUMNODES
];
154 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
155 unsigned long __initdata required_kernelcore
;
156 static unsigned long __initdata required_movablecore
;
157 unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 EXPORT_SYMBOL(movable_zone
);
162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
165 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
166 EXPORT_SYMBOL(nr_node_ids
);
169 int page_group_by_mobility_disabled __read_mostly
;
171 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
173 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
174 PB_migrate
, PB_migrate_end
);
177 #ifdef CONFIG_DEBUG_VM
178 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
182 unsigned long pfn
= page_to_pfn(page
);
185 seq
= zone_span_seqbegin(zone
);
186 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
188 else if (pfn
< zone
->zone_start_pfn
)
190 } while (zone_span_seqretry(zone
, seq
));
195 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
197 if (!pfn_valid_within(page_to_pfn(page
)))
199 if (zone
!= page_zone(page
))
205 * Temporary debugging check for pages not lying within a given zone.
207 static int bad_range(struct zone
*zone
, struct page
*page
)
209 if (page_outside_zone_boundaries(zone
, page
))
211 if (!page_is_consistent(zone
, page
))
217 static inline int bad_range(struct zone
*zone
, struct page
*page
)
223 static void bad_page(struct page
*page
)
225 void *pc
= page_get_page_cgroup(page
);
227 printk(KERN_EMERG
"Bad page state in process '%s'\n" KERN_EMERG
228 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
229 current
->comm
, page
, (int)(2*sizeof(unsigned long)),
230 (unsigned long)page
->flags
, page
->mapping
,
231 page_mapcount(page
), page_count(page
));
233 printk(KERN_EMERG
"cgroup:%p\n", pc
);
234 page_reset_bad_cgroup(page
);
236 printk(KERN_EMERG
"Trying to fix it up, but a reboot is needed\n"
237 KERN_EMERG
"Backtrace:\n");
239 page
->flags
&= ~(1 << PG_lru
|
249 set_page_count(page
, 0);
250 reset_page_mapcount(page
);
251 page
->mapping
= NULL
;
252 add_taint(TAINT_BAD_PAGE
);
256 * Higher-order pages are called "compound pages". They are structured thusly:
258 * The first PAGE_SIZE page is called the "head page".
260 * The remaining PAGE_SIZE pages are called "tail pages".
262 * All pages have PG_compound set. All pages have their ->private pointing at
263 * the head page (even the head page has this).
265 * The first tail page's ->lru.next holds the address of the compound page's
266 * put_page() function. Its ->lru.prev holds the order of allocation.
267 * This usage means that zero-order pages may not be compound.
270 static void free_compound_page(struct page
*page
)
272 __free_pages_ok(page
, compound_order(page
));
275 static void prep_compound_page(struct page
*page
, unsigned long order
)
278 int nr_pages
= 1 << order
;
280 set_compound_page_dtor(page
, free_compound_page
);
281 set_compound_order(page
, order
);
283 for (i
= 1; i
< nr_pages
; i
++) {
284 struct page
*p
= page
+ i
;
287 p
->first_page
= page
;
291 static void destroy_compound_page(struct page
*page
, unsigned long order
)
294 int nr_pages
= 1 << order
;
296 if (unlikely(compound_order(page
) != order
))
299 if (unlikely(!PageHead(page
)))
301 __ClearPageHead(page
);
302 for (i
= 1; i
< nr_pages
; i
++) {
303 struct page
*p
= page
+ i
;
305 if (unlikely(!PageTail(p
) |
306 (p
->first_page
!= page
)))
312 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
317 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
318 * and __GFP_HIGHMEM from hard or soft interrupt context.
320 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
321 for (i
= 0; i
< (1 << order
); i
++)
322 clear_highpage(page
+ i
);
325 static inline void set_page_order(struct page
*page
, int order
)
327 set_page_private(page
, order
);
328 __SetPageBuddy(page
);
331 static inline void rmv_page_order(struct page
*page
)
333 __ClearPageBuddy(page
);
334 set_page_private(page
, 0);
338 * Locate the struct page for both the matching buddy in our
339 * pair (buddy1) and the combined O(n+1) page they form (page).
341 * 1) Any buddy B1 will have an order O twin B2 which satisfies
342 * the following equation:
344 * For example, if the starting buddy (buddy2) is #8 its order
346 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
348 * 2) Any buddy B will have an order O+1 parent P which
349 * satisfies the following equation:
352 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
354 static inline struct page
*
355 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
357 unsigned long buddy_idx
= page_idx
^ (1 << order
);
359 return page
+ (buddy_idx
- page_idx
);
362 static inline unsigned long
363 __find_combined_index(unsigned long page_idx
, unsigned int order
)
365 return (page_idx
& ~(1 << order
));
369 * This function checks whether a page is free && is the buddy
370 * we can do coalesce a page and its buddy if
371 * (a) the buddy is not in a hole &&
372 * (b) the buddy is in the buddy system &&
373 * (c) a page and its buddy have the same order &&
374 * (d) a page and its buddy are in the same zone.
376 * For recording whether a page is in the buddy system, we use PG_buddy.
377 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
379 * For recording page's order, we use page_private(page).
381 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
384 if (!pfn_valid_within(page_to_pfn(buddy
)))
387 if (page_zone_id(page
) != page_zone_id(buddy
))
390 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
391 BUG_ON(page_count(buddy
) != 0);
398 * Freeing function for a buddy system allocator.
400 * The concept of a buddy system is to maintain direct-mapped table
401 * (containing bit values) for memory blocks of various "orders".
402 * The bottom level table contains the map for the smallest allocatable
403 * units of memory (here, pages), and each level above it describes
404 * pairs of units from the levels below, hence, "buddies".
405 * At a high level, all that happens here is marking the table entry
406 * at the bottom level available, and propagating the changes upward
407 * as necessary, plus some accounting needed to play nicely with other
408 * parts of the VM system.
409 * At each level, we keep a list of pages, which are heads of continuous
410 * free pages of length of (1 << order) and marked with PG_buddy. Page's
411 * order is recorded in page_private(page) field.
412 * So when we are allocating or freeing one, we can derive the state of the
413 * other. That is, if we allocate a small block, and both were
414 * free, the remainder of the region must be split into blocks.
415 * If a block is freed, and its buddy is also free, then this
416 * triggers coalescing into a block of larger size.
421 static inline void __free_one_page(struct page
*page
,
422 struct zone
*zone
, unsigned int order
)
424 unsigned long page_idx
;
425 int order_size
= 1 << order
;
426 int migratetype
= get_pageblock_migratetype(page
);
428 if (unlikely(PageCompound(page
)))
429 destroy_compound_page(page
, order
);
431 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
433 VM_BUG_ON(page_idx
& (order_size
- 1));
434 VM_BUG_ON(bad_range(zone
, page
));
436 __mod_zone_page_state(zone
, NR_FREE_PAGES
, order_size
);
437 while (order
< MAX_ORDER
-1) {
438 unsigned long combined_idx
;
441 buddy
= __page_find_buddy(page
, page_idx
, order
);
442 if (!page_is_buddy(page
, buddy
, order
))
443 break; /* Move the buddy up one level. */
445 list_del(&buddy
->lru
);
446 zone
->free_area
[order
].nr_free
--;
447 rmv_page_order(buddy
);
448 combined_idx
= __find_combined_index(page_idx
, order
);
449 page
= page
+ (combined_idx
- page_idx
);
450 page_idx
= combined_idx
;
453 set_page_order(page
, order
);
455 &zone
->free_area
[order
].free_list
[migratetype
]);
456 zone
->free_area
[order
].nr_free
++;
459 static inline int free_pages_check(struct page
*page
)
461 if (unlikely(page_mapcount(page
) |
462 (page
->mapping
!= NULL
) |
463 (page_get_page_cgroup(page
) != NULL
) |
464 (page_count(page
) != 0) |
477 __ClearPageDirty(page
);
479 * For now, we report if PG_reserved was found set, but do not
480 * clear it, and do not free the page. But we shall soon need
481 * to do more, for when the ZERO_PAGE count wraps negative.
483 return PageReserved(page
);
487 * Frees a list of pages.
488 * Assumes all pages on list are in same zone, and of same order.
489 * count is the number of pages to free.
491 * If the zone was previously in an "all pages pinned" state then look to
492 * see if this freeing clears that state.
494 * And clear the zone's pages_scanned counter, to hold off the "all pages are
495 * pinned" detection logic.
497 static void free_pages_bulk(struct zone
*zone
, int count
,
498 struct list_head
*list
, int order
)
500 spin_lock(&zone
->lock
);
501 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
502 zone
->pages_scanned
= 0;
506 VM_BUG_ON(list_empty(list
));
507 page
= list_entry(list
->prev
, struct page
, lru
);
508 /* have to delete it as __free_one_page list manipulates */
509 list_del(&page
->lru
);
510 __free_one_page(page
, zone
, order
);
512 spin_unlock(&zone
->lock
);
515 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
)
517 spin_lock(&zone
->lock
);
518 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
519 zone
->pages_scanned
= 0;
520 __free_one_page(page
, zone
, order
);
521 spin_unlock(&zone
->lock
);
524 static void __free_pages_ok(struct page
*page
, unsigned int order
)
530 for (i
= 0 ; i
< (1 << order
) ; ++i
)
531 reserved
+= free_pages_check(page
+ i
);
535 if (!PageHighMem(page
))
536 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
537 arch_free_page(page
, order
);
538 kernel_map_pages(page
, 1 << order
, 0);
540 local_irq_save(flags
);
541 __count_vm_events(PGFREE
, 1 << order
);
542 free_one_page(page_zone(page
), page
, order
);
543 local_irq_restore(flags
);
547 * permit the bootmem allocator to evade page validation on high-order frees
549 void __free_pages_bootmem(struct page
*page
, unsigned int order
)
552 __ClearPageReserved(page
);
553 set_page_count(page
, 0);
554 set_page_refcounted(page
);
560 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
561 struct page
*p
= &page
[loop
];
563 if (loop
+ 1 < BITS_PER_LONG
)
565 __ClearPageReserved(p
);
566 set_page_count(p
, 0);
569 set_page_refcounted(page
);
570 __free_pages(page
, order
);
576 * The order of subdivision here is critical for the IO subsystem.
577 * Please do not alter this order without good reasons and regression
578 * testing. Specifically, as large blocks of memory are subdivided,
579 * the order in which smaller blocks are delivered depends on the order
580 * they're subdivided in this function. This is the primary factor
581 * influencing the order in which pages are delivered to the IO
582 * subsystem according to empirical testing, and this is also justified
583 * by considering the behavior of a buddy system containing a single
584 * large block of memory acted on by a series of small allocations.
585 * This behavior is a critical factor in sglist merging's success.
589 static inline void expand(struct zone
*zone
, struct page
*page
,
590 int low
, int high
, struct free_area
*area
,
593 unsigned long size
= 1 << high
;
599 VM_BUG_ON(bad_range(zone
, &page
[size
]));
600 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
602 set_page_order(&page
[size
], high
);
607 * This page is about to be returned from the page allocator
609 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
611 if (unlikely(page_mapcount(page
) |
612 (page
->mapping
!= NULL
) |
613 (page_get_page_cgroup(page
) != NULL
) |
614 (page_count(page
) != 0) |
629 * For now, we report if PG_reserved was found set, but do not
630 * clear it, and do not allocate the page: as a safety net.
632 if (PageReserved(page
))
635 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
| 1 << PG_reclaim
|
636 1 << PG_referenced
| 1 << PG_arch_1
|
637 1 << PG_owner_priv_1
| 1 << PG_mappedtodisk
);
638 set_page_private(page
, 0);
639 set_page_refcounted(page
);
641 arch_alloc_page(page
, order
);
642 kernel_map_pages(page
, 1 << order
, 1);
644 if (gfp_flags
& __GFP_ZERO
)
645 prep_zero_page(page
, order
, gfp_flags
);
647 if (order
&& (gfp_flags
& __GFP_COMP
))
648 prep_compound_page(page
, order
);
654 * Go through the free lists for the given migratetype and remove
655 * the smallest available page from the freelists
657 static struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
660 unsigned int current_order
;
661 struct free_area
* area
;
664 /* Find a page of the appropriate size in the preferred list */
665 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
666 area
= &(zone
->free_area
[current_order
]);
667 if (list_empty(&area
->free_list
[migratetype
]))
670 page
= list_entry(area
->free_list
[migratetype
].next
,
672 list_del(&page
->lru
);
673 rmv_page_order(page
);
675 __mod_zone_page_state(zone
, NR_FREE_PAGES
, - (1UL << order
));
676 expand(zone
, page
, order
, current_order
, area
, migratetype
);
685 * This array describes the order lists are fallen back to when
686 * the free lists for the desirable migrate type are depleted
688 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
689 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
690 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
691 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
692 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
696 * Move the free pages in a range to the free lists of the requested type.
697 * Note that start_page and end_pages are not aligned on a pageblock
698 * boundary. If alignment is required, use move_freepages_block()
700 int move_freepages(struct zone
*zone
,
701 struct page
*start_page
, struct page
*end_page
,
708 #ifndef CONFIG_HOLES_IN_ZONE
710 * page_zone is not safe to call in this context when
711 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
712 * anyway as we check zone boundaries in move_freepages_block().
713 * Remove at a later date when no bug reports exist related to
714 * grouping pages by mobility
716 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
719 for (page
= start_page
; page
<= end_page
;) {
720 if (!pfn_valid_within(page_to_pfn(page
))) {
725 if (!PageBuddy(page
)) {
730 order
= page_order(page
);
731 list_del(&page
->lru
);
733 &zone
->free_area
[order
].free_list
[migratetype
]);
735 pages_moved
+= 1 << order
;
741 int move_freepages_block(struct zone
*zone
, struct page
*page
, int migratetype
)
743 unsigned long start_pfn
, end_pfn
;
744 struct page
*start_page
, *end_page
;
746 start_pfn
= page_to_pfn(page
);
747 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
748 start_page
= pfn_to_page(start_pfn
);
749 end_page
= start_page
+ pageblock_nr_pages
- 1;
750 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
752 /* Do not cross zone boundaries */
753 if (start_pfn
< zone
->zone_start_pfn
)
755 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
758 return move_freepages(zone
, start_page
, end_page
, migratetype
);
761 /* Remove an element from the buddy allocator from the fallback list */
762 static struct page
*__rmqueue_fallback(struct zone
*zone
, int order
,
763 int start_migratetype
)
765 struct free_area
* area
;
770 /* Find the largest possible block of pages in the other list */
771 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
773 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
774 migratetype
= fallbacks
[start_migratetype
][i
];
776 /* MIGRATE_RESERVE handled later if necessary */
777 if (migratetype
== MIGRATE_RESERVE
)
780 area
= &(zone
->free_area
[current_order
]);
781 if (list_empty(&area
->free_list
[migratetype
]))
784 page
= list_entry(area
->free_list
[migratetype
].next
,
789 * If breaking a large block of pages, move all free
790 * pages to the preferred allocation list. If falling
791 * back for a reclaimable kernel allocation, be more
792 * agressive about taking ownership of free pages
794 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
795 start_migratetype
== MIGRATE_RECLAIMABLE
) {
797 pages
= move_freepages_block(zone
, page
,
800 /* Claim the whole block if over half of it is free */
801 if (pages
>= (1 << (pageblock_order
-1)))
802 set_pageblock_migratetype(page
,
805 migratetype
= start_migratetype
;
808 /* Remove the page from the freelists */
809 list_del(&page
->lru
);
810 rmv_page_order(page
);
811 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
814 if (current_order
== pageblock_order
)
815 set_pageblock_migratetype(page
,
818 expand(zone
, page
, order
, current_order
, area
, migratetype
);
823 /* Use MIGRATE_RESERVE rather than fail an allocation */
824 return __rmqueue_smallest(zone
, order
, MIGRATE_RESERVE
);
828 * Do the hard work of removing an element from the buddy allocator.
829 * Call me with the zone->lock already held.
831 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
836 page
= __rmqueue_smallest(zone
, order
, migratetype
);
839 page
= __rmqueue_fallback(zone
, order
, migratetype
);
845 * Obtain a specified number of elements from the buddy allocator, all under
846 * a single hold of the lock, for efficiency. Add them to the supplied list.
847 * Returns the number of new pages which were placed at *list.
849 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
850 unsigned long count
, struct list_head
*list
,
855 spin_lock(&zone
->lock
);
856 for (i
= 0; i
< count
; ++i
) {
857 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
858 if (unlikely(page
== NULL
))
862 * Split buddy pages returned by expand() are received here
863 * in physical page order. The page is added to the callers and
864 * list and the list head then moves forward. From the callers
865 * perspective, the linked list is ordered by page number in
866 * some conditions. This is useful for IO devices that can
867 * merge IO requests if the physical pages are ordered
870 list_add(&page
->lru
, list
);
871 set_page_private(page
, migratetype
);
874 spin_unlock(&zone
->lock
);
880 * Called from the vmstat counter updater to drain pagesets of this
881 * currently executing processor on remote nodes after they have
884 * Note that this function must be called with the thread pinned to
885 * a single processor.
887 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
892 local_irq_save(flags
);
893 if (pcp
->count
>= pcp
->batch
)
894 to_drain
= pcp
->batch
;
896 to_drain
= pcp
->count
;
897 free_pages_bulk(zone
, to_drain
, &pcp
->list
, 0);
898 pcp
->count
-= to_drain
;
899 local_irq_restore(flags
);
904 * Drain pages of the indicated processor.
906 * The processor must either be the current processor and the
907 * thread pinned to the current processor or a processor that
910 static void drain_pages(unsigned int cpu
)
915 for_each_zone(zone
) {
916 struct per_cpu_pageset
*pset
;
917 struct per_cpu_pages
*pcp
;
919 if (!populated_zone(zone
))
922 pset
= zone_pcp(zone
, cpu
);
925 local_irq_save(flags
);
926 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
928 local_irq_restore(flags
);
933 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
935 void drain_local_pages(void *arg
)
937 drain_pages(smp_processor_id());
941 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
943 void drain_all_pages(void)
945 on_each_cpu(drain_local_pages
, NULL
, 0, 1);
948 #ifdef CONFIG_HIBERNATION
950 void mark_free_pages(struct zone
*zone
)
952 unsigned long pfn
, max_zone_pfn
;
955 struct list_head
*curr
;
957 if (!zone
->spanned_pages
)
960 spin_lock_irqsave(&zone
->lock
, flags
);
962 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
963 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
964 if (pfn_valid(pfn
)) {
965 struct page
*page
= pfn_to_page(pfn
);
967 if (!swsusp_page_is_forbidden(page
))
968 swsusp_unset_page_free(page
);
971 for_each_migratetype_order(order
, t
) {
972 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
975 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
976 for (i
= 0; i
< (1UL << order
); i
++)
977 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
980 spin_unlock_irqrestore(&zone
->lock
, flags
);
982 #endif /* CONFIG_PM */
985 * Free a 0-order page
987 static void free_hot_cold_page(struct page
*page
, int cold
)
989 struct zone
*zone
= page_zone(page
);
990 struct per_cpu_pages
*pcp
;
994 page
->mapping
= NULL
;
995 if (free_pages_check(page
))
998 if (!PageHighMem(page
))
999 debug_check_no_locks_freed(page_address(page
), PAGE_SIZE
);
1000 arch_free_page(page
, 0);
1001 kernel_map_pages(page
, 1, 0);
1003 pcp
= &zone_pcp(zone
, get_cpu())->pcp
;
1004 local_irq_save(flags
);
1005 __count_vm_event(PGFREE
);
1007 list_add_tail(&page
->lru
, &pcp
->list
);
1009 list_add(&page
->lru
, &pcp
->list
);
1010 set_page_private(page
, get_pageblock_migratetype(page
));
1012 if (pcp
->count
>= pcp
->high
) {
1013 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
1014 pcp
->count
-= pcp
->batch
;
1016 local_irq_restore(flags
);
1020 void free_hot_page(struct page
*page
)
1022 free_hot_cold_page(page
, 0);
1025 void free_cold_page(struct page
*page
)
1027 free_hot_cold_page(page
, 1);
1031 * split_page takes a non-compound higher-order page, and splits it into
1032 * n (1<<order) sub-pages: page[0..n]
1033 * Each sub-page must be freed individually.
1035 * Note: this is probably too low level an operation for use in drivers.
1036 * Please consult with lkml before using this in your driver.
1038 void split_page(struct page
*page
, unsigned int order
)
1042 VM_BUG_ON(PageCompound(page
));
1043 VM_BUG_ON(!page_count(page
));
1044 for (i
= 1; i
< (1 << order
); i
++)
1045 set_page_refcounted(page
+ i
);
1049 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1050 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1053 static struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1054 struct zone
*zone
, int order
, gfp_t gfp_flags
)
1056 unsigned long flags
;
1058 int cold
= !!(gfp_flags
& __GFP_COLD
);
1060 int migratetype
= allocflags_to_migratetype(gfp_flags
);
1064 if (likely(order
== 0)) {
1065 struct per_cpu_pages
*pcp
;
1067 pcp
= &zone_pcp(zone
, cpu
)->pcp
;
1068 local_irq_save(flags
);
1070 pcp
->count
= rmqueue_bulk(zone
, 0,
1071 pcp
->batch
, &pcp
->list
, migratetype
);
1072 if (unlikely(!pcp
->count
))
1076 /* Find a page of the appropriate migrate type */
1078 list_for_each_entry_reverse(page
, &pcp
->list
, lru
)
1079 if (page_private(page
) == migratetype
)
1082 list_for_each_entry(page
, &pcp
->list
, lru
)
1083 if (page_private(page
) == migratetype
)
1087 /* Allocate more to the pcp list if necessary */
1088 if (unlikely(&page
->lru
== &pcp
->list
)) {
1089 pcp
->count
+= rmqueue_bulk(zone
, 0,
1090 pcp
->batch
, &pcp
->list
, migratetype
);
1091 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
1094 list_del(&page
->lru
);
1097 spin_lock_irqsave(&zone
->lock
, flags
);
1098 page
= __rmqueue(zone
, order
, migratetype
);
1099 spin_unlock(&zone
->lock
);
1104 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1105 zone_statistics(preferred_zone
, zone
);
1106 local_irq_restore(flags
);
1109 VM_BUG_ON(bad_range(zone
, page
));
1110 if (prep_new_page(page
, order
, gfp_flags
))
1115 local_irq_restore(flags
);
1120 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1121 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1122 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1123 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1124 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1125 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1126 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1128 #ifdef CONFIG_FAIL_PAGE_ALLOC
1130 static struct fail_page_alloc_attr
{
1131 struct fault_attr attr
;
1133 u32 ignore_gfp_highmem
;
1134 u32 ignore_gfp_wait
;
1137 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1139 struct dentry
*ignore_gfp_highmem_file
;
1140 struct dentry
*ignore_gfp_wait_file
;
1141 struct dentry
*min_order_file
;
1143 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1145 } fail_page_alloc
= {
1146 .attr
= FAULT_ATTR_INITIALIZER
,
1147 .ignore_gfp_wait
= 1,
1148 .ignore_gfp_highmem
= 1,
1152 static int __init
setup_fail_page_alloc(char *str
)
1154 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1156 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1158 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1160 if (order
< fail_page_alloc
.min_order
)
1162 if (gfp_mask
& __GFP_NOFAIL
)
1164 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1166 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1169 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1172 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1174 static int __init
fail_page_alloc_debugfs(void)
1176 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1180 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1184 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1186 fail_page_alloc
.ignore_gfp_wait_file
=
1187 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1188 &fail_page_alloc
.ignore_gfp_wait
);
1190 fail_page_alloc
.ignore_gfp_highmem_file
=
1191 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1192 &fail_page_alloc
.ignore_gfp_highmem
);
1193 fail_page_alloc
.min_order_file
=
1194 debugfs_create_u32("min-order", mode
, dir
,
1195 &fail_page_alloc
.min_order
);
1197 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1198 !fail_page_alloc
.ignore_gfp_highmem_file
||
1199 !fail_page_alloc
.min_order_file
) {
1201 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1202 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1203 debugfs_remove(fail_page_alloc
.min_order_file
);
1204 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1210 late_initcall(fail_page_alloc_debugfs
);
1212 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1214 #else /* CONFIG_FAIL_PAGE_ALLOC */
1216 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1221 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1224 * Return 1 if free pages are above 'mark'. This takes into account the order
1225 * of the allocation.
1227 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1228 int classzone_idx
, int alloc_flags
)
1230 /* free_pages my go negative - that's OK */
1232 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
) - (1 << order
) + 1;
1235 if (alloc_flags
& ALLOC_HIGH
)
1237 if (alloc_flags
& ALLOC_HARDER
)
1240 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1242 for (o
= 0; o
< order
; o
++) {
1243 /* At the next order, this order's pages become unavailable */
1244 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1246 /* Require fewer higher order pages to be free */
1249 if (free_pages
<= min
)
1257 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1258 * skip over zones that are not allowed by the cpuset, or that have
1259 * been recently (in last second) found to be nearly full. See further
1260 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1261 * that have to skip over a lot of full or unallowed zones.
1263 * If the zonelist cache is present in the passed in zonelist, then
1264 * returns a pointer to the allowed node mask (either the current
1265 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1267 * If the zonelist cache is not available for this zonelist, does
1268 * nothing and returns NULL.
1270 * If the fullzones BITMAP in the zonelist cache is stale (more than
1271 * a second since last zap'd) then we zap it out (clear its bits.)
1273 * We hold off even calling zlc_setup, until after we've checked the
1274 * first zone in the zonelist, on the theory that most allocations will
1275 * be satisfied from that first zone, so best to examine that zone as
1276 * quickly as we can.
1278 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1280 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1281 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1283 zlc
= zonelist
->zlcache_ptr
;
1287 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1288 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1289 zlc
->last_full_zap
= jiffies
;
1292 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1293 &cpuset_current_mems_allowed
:
1294 &node_states
[N_HIGH_MEMORY
];
1295 return allowednodes
;
1299 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1300 * if it is worth looking at further for free memory:
1301 * 1) Check that the zone isn't thought to be full (doesn't have its
1302 * bit set in the zonelist_cache fullzones BITMAP).
1303 * 2) Check that the zones node (obtained from the zonelist_cache
1304 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1305 * Return true (non-zero) if zone is worth looking at further, or
1306 * else return false (zero) if it is not.
1308 * This check -ignores- the distinction between various watermarks,
1309 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1310 * found to be full for any variation of these watermarks, it will
1311 * be considered full for up to one second by all requests, unless
1312 * we are so low on memory on all allowed nodes that we are forced
1313 * into the second scan of the zonelist.
1315 * In the second scan we ignore this zonelist cache and exactly
1316 * apply the watermarks to all zones, even it is slower to do so.
1317 * We are low on memory in the second scan, and should leave no stone
1318 * unturned looking for a free page.
1320 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1321 nodemask_t
*allowednodes
)
1323 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1324 int i
; /* index of *z in zonelist zones */
1325 int n
; /* node that zone *z is on */
1327 zlc
= zonelist
->zlcache_ptr
;
1331 i
= z
- zonelist
->_zonerefs
;
1334 /* This zone is worth trying if it is allowed but not full */
1335 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1339 * Given 'z' scanning a zonelist, set the corresponding bit in
1340 * zlc->fullzones, so that subsequent attempts to allocate a page
1341 * from that zone don't waste time re-examining it.
1343 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1345 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1346 int i
; /* index of *z in zonelist zones */
1348 zlc
= zonelist
->zlcache_ptr
;
1352 i
= z
- zonelist
->_zonerefs
;
1354 set_bit(i
, zlc
->fullzones
);
1357 #else /* CONFIG_NUMA */
1359 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1364 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1365 nodemask_t
*allowednodes
)
1370 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1373 #endif /* CONFIG_NUMA */
1376 * get_page_from_freelist goes through the zonelist trying to allocate
1379 static struct page
*
1380 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1381 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
)
1384 struct page
*page
= NULL
;
1386 struct zone
*zone
, *preferred_zone
;
1387 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1388 int zlc_active
= 0; /* set if using zonelist_cache */
1389 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1391 (void)first_zones_zonelist(zonelist
, high_zoneidx
, nodemask
,
1393 classzone_idx
= zone_idx(preferred_zone
);
1397 * Scan zonelist, looking for a zone with enough free.
1398 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1400 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1401 high_zoneidx
, nodemask
) {
1402 if (NUMA_BUILD
&& zlc_active
&&
1403 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1405 if ((alloc_flags
& ALLOC_CPUSET
) &&
1406 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1409 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1411 if (alloc_flags
& ALLOC_WMARK_MIN
)
1412 mark
= zone
->pages_min
;
1413 else if (alloc_flags
& ALLOC_WMARK_LOW
)
1414 mark
= zone
->pages_low
;
1416 mark
= zone
->pages_high
;
1417 if (!zone_watermark_ok(zone
, order
, mark
,
1418 classzone_idx
, alloc_flags
)) {
1419 if (!zone_reclaim_mode
||
1420 !zone_reclaim(zone
, gfp_mask
, order
))
1421 goto this_zone_full
;
1425 page
= buffered_rmqueue(preferred_zone
, zone
, order
, gfp_mask
);
1430 zlc_mark_zone_full(zonelist
, z
);
1432 if (NUMA_BUILD
&& !did_zlc_setup
) {
1433 /* we do zlc_setup after the first zone is tried */
1434 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1440 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1441 /* Disable zlc cache for second zonelist scan */
1449 * This is the 'heart' of the zoned buddy allocator.
1451 static struct page
*
1452 __alloc_pages_internal(gfp_t gfp_mask
, unsigned int order
,
1453 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
1455 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1456 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
1460 struct reclaim_state reclaim_state
;
1461 struct task_struct
*p
= current
;
1464 unsigned long did_some_progress
;
1465 unsigned long pages_reclaimed
= 0;
1467 might_sleep_if(wait
);
1469 if (should_fail_alloc_page(gfp_mask
, order
))
1473 z
= zonelist
->_zonerefs
; /* the list of zones suitable for gfp_mask */
1475 if (unlikely(!z
->zone
)) {
1477 * Happens if we have an empty zonelist as a result of
1478 * GFP_THISNODE being used on a memoryless node
1483 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
1484 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
);
1489 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1490 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1491 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1492 * using a larger set of nodes after it has established that the
1493 * allowed per node queues are empty and that nodes are
1496 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
1499 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
1500 wakeup_kswapd(zone
, order
);
1503 * OK, we're below the kswapd watermark and have kicked background
1504 * reclaim. Now things get more complex, so set up alloc_flags according
1505 * to how we want to proceed.
1507 * The caller may dip into page reserves a bit more if the caller
1508 * cannot run direct reclaim, or if the caller has realtime scheduling
1509 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1510 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1512 alloc_flags
= ALLOC_WMARK_MIN
;
1513 if ((unlikely(rt_task(p
)) && !in_interrupt()) || !wait
)
1514 alloc_flags
|= ALLOC_HARDER
;
1515 if (gfp_mask
& __GFP_HIGH
)
1516 alloc_flags
|= ALLOC_HIGH
;
1518 alloc_flags
|= ALLOC_CPUSET
;
1521 * Go through the zonelist again. Let __GFP_HIGH and allocations
1522 * coming from realtime tasks go deeper into reserves.
1524 * This is the last chance, in general, before the goto nopage.
1525 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1526 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1528 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
1529 high_zoneidx
, alloc_flags
);
1533 /* This allocation should allow future memory freeing. */
1536 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
1537 && !in_interrupt()) {
1538 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
1540 /* go through the zonelist yet again, ignoring mins */
1541 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1542 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
);
1545 if (gfp_mask
& __GFP_NOFAIL
) {
1546 congestion_wait(WRITE
, HZ
/50);
1553 /* Atomic allocations - we can't balance anything */
1559 /* We now go into synchronous reclaim */
1560 cpuset_memory_pressure_bump();
1561 p
->flags
|= PF_MEMALLOC
;
1562 reclaim_state
.reclaimed_slab
= 0;
1563 p
->reclaim_state
= &reclaim_state
;
1565 did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
);
1567 p
->reclaim_state
= NULL
;
1568 p
->flags
&= ~PF_MEMALLOC
;
1575 if (likely(did_some_progress
)) {
1576 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1577 zonelist
, high_zoneidx
, alloc_flags
);
1580 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1581 if (!try_set_zone_oom(zonelist
, gfp_mask
)) {
1582 schedule_timeout_uninterruptible(1);
1587 * Go through the zonelist yet one more time, keep
1588 * very high watermark here, this is only to catch
1589 * a parallel oom killing, we must fail if we're still
1590 * under heavy pressure.
1592 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1593 order
, zonelist
, high_zoneidx
,
1594 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
);
1596 clear_zonelist_oom(zonelist
, gfp_mask
);
1600 /* The OOM killer will not help higher order allocs so fail */
1601 if (order
> PAGE_ALLOC_COSTLY_ORDER
) {
1602 clear_zonelist_oom(zonelist
, gfp_mask
);
1606 out_of_memory(zonelist
, gfp_mask
, order
);
1607 clear_zonelist_oom(zonelist
, gfp_mask
);
1612 * Don't let big-order allocations loop unless the caller explicitly
1613 * requests that. Wait for some write requests to complete then retry.
1615 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1616 * means __GFP_NOFAIL, but that may not be true in other
1619 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1620 * specified, then we retry until we no longer reclaim any pages
1621 * (above), or we've reclaimed an order of pages at least as
1622 * large as the allocation's order. In both cases, if the
1623 * allocation still fails, we stop retrying.
1625 pages_reclaimed
+= did_some_progress
;
1627 if (!(gfp_mask
& __GFP_NORETRY
)) {
1628 if (order
<= PAGE_ALLOC_COSTLY_ORDER
) {
1631 if (gfp_mask
& __GFP_REPEAT
&&
1632 pages_reclaimed
< (1 << order
))
1635 if (gfp_mask
& __GFP_NOFAIL
)
1639 congestion_wait(WRITE
, HZ
/50);
1644 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1645 printk(KERN_WARNING
"%s: page allocation failure."
1646 " order:%d, mode:0x%x\n",
1647 p
->comm
, order
, gfp_mask
);
1656 __alloc_pages(gfp_t gfp_mask
, unsigned int order
,
1657 struct zonelist
*zonelist
)
1659 return __alloc_pages_internal(gfp_mask
, order
, zonelist
, NULL
);
1663 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
1664 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
1666 return __alloc_pages_internal(gfp_mask
, order
, zonelist
, nodemask
);
1669 EXPORT_SYMBOL(__alloc_pages
);
1672 * Common helper functions.
1674 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1677 page
= alloc_pages(gfp_mask
, order
);
1680 return (unsigned long) page_address(page
);
1683 EXPORT_SYMBOL(__get_free_pages
);
1685 unsigned long get_zeroed_page(gfp_t gfp_mask
)
1690 * get_zeroed_page() returns a 32-bit address, which cannot represent
1693 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1695 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1697 return (unsigned long) page_address(page
);
1701 EXPORT_SYMBOL(get_zeroed_page
);
1703 void __pagevec_free(struct pagevec
*pvec
)
1705 int i
= pagevec_count(pvec
);
1708 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1711 void __free_pages(struct page
*page
, unsigned int order
)
1713 if (put_page_testzero(page
)) {
1715 free_hot_page(page
);
1717 __free_pages_ok(page
, order
);
1721 EXPORT_SYMBOL(__free_pages
);
1723 void free_pages(unsigned long addr
, unsigned int order
)
1726 VM_BUG_ON(!virt_addr_valid((void *)addr
));
1727 __free_pages(virt_to_page((void *)addr
), order
);
1731 EXPORT_SYMBOL(free_pages
);
1733 static unsigned int nr_free_zone_pages(int offset
)
1738 /* Just pick one node, since fallback list is circular */
1739 unsigned int sum
= 0;
1741 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
1743 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
1744 unsigned long size
= zone
->present_pages
;
1745 unsigned long high
= zone
->pages_high
;
1754 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1756 unsigned int nr_free_buffer_pages(void)
1758 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1760 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
1763 * Amount of free RAM allocatable within all zones
1765 unsigned int nr_free_pagecache_pages(void)
1767 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
1770 static inline void show_node(struct zone
*zone
)
1773 printk("Node %d ", zone_to_nid(zone
));
1776 void si_meminfo(struct sysinfo
*val
)
1778 val
->totalram
= totalram_pages
;
1780 val
->freeram
= global_page_state(NR_FREE_PAGES
);
1781 val
->bufferram
= nr_blockdev_pages();
1782 val
->totalhigh
= totalhigh_pages
;
1783 val
->freehigh
= nr_free_highpages();
1784 val
->mem_unit
= PAGE_SIZE
;
1787 EXPORT_SYMBOL(si_meminfo
);
1790 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1792 pg_data_t
*pgdat
= NODE_DATA(nid
);
1794 val
->totalram
= pgdat
->node_present_pages
;
1795 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
1796 #ifdef CONFIG_HIGHMEM
1797 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1798 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
1804 val
->mem_unit
= PAGE_SIZE
;
1808 #define K(x) ((x) << (PAGE_SHIFT-10))
1811 * Show free area list (used inside shift_scroll-lock stuff)
1812 * We also calculate the percentage fragmentation. We do this by counting the
1813 * memory on each free list with the exception of the first item on the list.
1815 void show_free_areas(void)
1820 for_each_zone(zone
) {
1821 if (!populated_zone(zone
))
1825 printk("%s per-cpu:\n", zone
->name
);
1827 for_each_online_cpu(cpu
) {
1828 struct per_cpu_pageset
*pageset
;
1830 pageset
= zone_pcp(zone
, cpu
);
1832 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1833 cpu
, pageset
->pcp
.high
,
1834 pageset
->pcp
.batch
, pageset
->pcp
.count
);
1838 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1839 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1840 global_page_state(NR_ACTIVE
),
1841 global_page_state(NR_INACTIVE
),
1842 global_page_state(NR_FILE_DIRTY
),
1843 global_page_state(NR_WRITEBACK
),
1844 global_page_state(NR_UNSTABLE_NFS
),
1845 global_page_state(NR_FREE_PAGES
),
1846 global_page_state(NR_SLAB_RECLAIMABLE
) +
1847 global_page_state(NR_SLAB_UNRECLAIMABLE
),
1848 global_page_state(NR_FILE_MAPPED
),
1849 global_page_state(NR_PAGETABLE
),
1850 global_page_state(NR_BOUNCE
));
1852 for_each_zone(zone
) {
1855 if (!populated_zone(zone
))
1867 " pages_scanned:%lu"
1868 " all_unreclaimable? %s"
1871 K(zone_page_state(zone
, NR_FREE_PAGES
)),
1874 K(zone
->pages_high
),
1875 K(zone_page_state(zone
, NR_ACTIVE
)),
1876 K(zone_page_state(zone
, NR_INACTIVE
)),
1877 K(zone
->present_pages
),
1878 zone
->pages_scanned
,
1879 (zone_is_all_unreclaimable(zone
) ? "yes" : "no")
1881 printk("lowmem_reserve[]:");
1882 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1883 printk(" %lu", zone
->lowmem_reserve
[i
]);
1887 for_each_zone(zone
) {
1888 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
1890 if (!populated_zone(zone
))
1894 printk("%s: ", zone
->name
);
1896 spin_lock_irqsave(&zone
->lock
, flags
);
1897 for (order
= 0; order
< MAX_ORDER
; order
++) {
1898 nr
[order
] = zone
->free_area
[order
].nr_free
;
1899 total
+= nr
[order
] << order
;
1901 spin_unlock_irqrestore(&zone
->lock
, flags
);
1902 for (order
= 0; order
< MAX_ORDER
; order
++)
1903 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
1904 printk("= %lukB\n", K(total
));
1907 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
1909 show_swap_cache_info();
1912 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
1914 zoneref
->zone
= zone
;
1915 zoneref
->zone_idx
= zone_idx(zone
);
1919 * Builds allocation fallback zone lists.
1921 * Add all populated zones of a node to the zonelist.
1923 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
1924 int nr_zones
, enum zone_type zone_type
)
1928 BUG_ON(zone_type
>= MAX_NR_ZONES
);
1933 zone
= pgdat
->node_zones
+ zone_type
;
1934 if (populated_zone(zone
)) {
1935 zoneref_set_zone(zone
,
1936 &zonelist
->_zonerefs
[nr_zones
++]);
1937 check_highest_zone(zone_type
);
1940 } while (zone_type
);
1947 * 0 = automatic detection of better ordering.
1948 * 1 = order by ([node] distance, -zonetype)
1949 * 2 = order by (-zonetype, [node] distance)
1951 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1952 * the same zonelist. So only NUMA can configure this param.
1954 #define ZONELIST_ORDER_DEFAULT 0
1955 #define ZONELIST_ORDER_NODE 1
1956 #define ZONELIST_ORDER_ZONE 2
1958 /* zonelist order in the kernel.
1959 * set_zonelist_order() will set this to NODE or ZONE.
1961 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1962 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
1966 /* The value user specified ....changed by config */
1967 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1968 /* string for sysctl */
1969 #define NUMA_ZONELIST_ORDER_LEN 16
1970 char numa_zonelist_order
[16] = "default";
1973 * interface for configure zonelist ordering.
1974 * command line option "numa_zonelist_order"
1975 * = "[dD]efault - default, automatic configuration.
1976 * = "[nN]ode - order by node locality, then by zone within node
1977 * = "[zZ]one - order by zone, then by locality within zone
1980 static int __parse_numa_zonelist_order(char *s
)
1982 if (*s
== 'd' || *s
== 'D') {
1983 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1984 } else if (*s
== 'n' || *s
== 'N') {
1985 user_zonelist_order
= ZONELIST_ORDER_NODE
;
1986 } else if (*s
== 'z' || *s
== 'Z') {
1987 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
1990 "Ignoring invalid numa_zonelist_order value: "
1997 static __init
int setup_numa_zonelist_order(char *s
)
2000 return __parse_numa_zonelist_order(s
);
2003 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2006 * sysctl handler for numa_zonelist_order
2008 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2009 struct file
*file
, void __user
*buffer
, size_t *length
,
2012 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2016 strncpy(saved_string
, (char*)table
->data
,
2017 NUMA_ZONELIST_ORDER_LEN
);
2018 ret
= proc_dostring(table
, write
, file
, buffer
, length
, ppos
);
2022 int oldval
= user_zonelist_order
;
2023 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2025 * bogus value. restore saved string
2027 strncpy((char*)table
->data
, saved_string
,
2028 NUMA_ZONELIST_ORDER_LEN
);
2029 user_zonelist_order
= oldval
;
2030 } else if (oldval
!= user_zonelist_order
)
2031 build_all_zonelists();
2037 #define MAX_NODE_LOAD (num_online_nodes())
2038 static int node_load
[MAX_NUMNODES
];
2041 * find_next_best_node - find the next node that should appear in a given node's fallback list
2042 * @node: node whose fallback list we're appending
2043 * @used_node_mask: nodemask_t of already used nodes
2045 * We use a number of factors to determine which is the next node that should
2046 * appear on a given node's fallback list. The node should not have appeared
2047 * already in @node's fallback list, and it should be the next closest node
2048 * according to the distance array (which contains arbitrary distance values
2049 * from each node to each node in the system), and should also prefer nodes
2050 * with no CPUs, since presumably they'll have very little allocation pressure
2051 * on them otherwise.
2052 * It returns -1 if no node is found.
2054 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2057 int min_val
= INT_MAX
;
2059 node_to_cpumask_ptr(tmp
, 0);
2061 /* Use the local node if we haven't already */
2062 if (!node_isset(node
, *used_node_mask
)) {
2063 node_set(node
, *used_node_mask
);
2067 for_each_node_state(n
, N_HIGH_MEMORY
) {
2069 /* Don't want a node to appear more than once */
2070 if (node_isset(n
, *used_node_mask
))
2073 /* Use the distance array to find the distance */
2074 val
= node_distance(node
, n
);
2076 /* Penalize nodes under us ("prefer the next node") */
2079 /* Give preference to headless and unused nodes */
2080 node_to_cpumask_ptr_next(tmp
, n
);
2081 if (!cpus_empty(*tmp
))
2082 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2084 /* Slight preference for less loaded node */
2085 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2086 val
+= node_load
[n
];
2088 if (val
< min_val
) {
2095 node_set(best_node
, *used_node_mask
);
2102 * Build zonelists ordered by node and zones within node.
2103 * This results in maximum locality--normal zone overflows into local
2104 * DMA zone, if any--but risks exhausting DMA zone.
2106 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2109 struct zonelist
*zonelist
;
2111 zonelist
= &pgdat
->node_zonelists
[0];
2112 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2114 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2116 zonelist
->_zonerefs
[j
].zone
= NULL
;
2117 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2121 * Build gfp_thisnode zonelists
2123 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2126 struct zonelist
*zonelist
;
2128 zonelist
= &pgdat
->node_zonelists
[1];
2129 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2130 zonelist
->_zonerefs
[j
].zone
= NULL
;
2131 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2135 * Build zonelists ordered by zone and nodes within zones.
2136 * This results in conserving DMA zone[s] until all Normal memory is
2137 * exhausted, but results in overflowing to remote node while memory
2138 * may still exist in local DMA zone.
2140 static int node_order
[MAX_NUMNODES
];
2142 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2145 int zone_type
; /* needs to be signed */
2147 struct zonelist
*zonelist
;
2149 zonelist
= &pgdat
->node_zonelists
[0];
2151 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2152 for (j
= 0; j
< nr_nodes
; j
++) {
2153 node
= node_order
[j
];
2154 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2155 if (populated_zone(z
)) {
2157 &zonelist
->_zonerefs
[pos
++]);
2158 check_highest_zone(zone_type
);
2162 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2163 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2166 static int default_zonelist_order(void)
2169 unsigned long low_kmem_size
,total_size
;
2173 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2174 * If they are really small and used heavily, the system can fall
2175 * into OOM very easily.
2176 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2178 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2181 for_each_online_node(nid
) {
2182 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2183 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2184 if (populated_zone(z
)) {
2185 if (zone_type
< ZONE_NORMAL
)
2186 low_kmem_size
+= z
->present_pages
;
2187 total_size
+= z
->present_pages
;
2191 if (!low_kmem_size
|| /* there are no DMA area. */
2192 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2193 return ZONELIST_ORDER_NODE
;
2195 * look into each node's config.
2196 * If there is a node whose DMA/DMA32 memory is very big area on
2197 * local memory, NODE_ORDER may be suitable.
2199 average_size
= total_size
/
2200 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2201 for_each_online_node(nid
) {
2204 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2205 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2206 if (populated_zone(z
)) {
2207 if (zone_type
< ZONE_NORMAL
)
2208 low_kmem_size
+= z
->present_pages
;
2209 total_size
+= z
->present_pages
;
2212 if (low_kmem_size
&&
2213 total_size
> average_size
&& /* ignore small node */
2214 low_kmem_size
> total_size
* 70/100)
2215 return ZONELIST_ORDER_NODE
;
2217 return ZONELIST_ORDER_ZONE
;
2220 static void set_zonelist_order(void)
2222 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2223 current_zonelist_order
= default_zonelist_order();
2225 current_zonelist_order
= user_zonelist_order
;
2228 static void build_zonelists(pg_data_t
*pgdat
)
2232 nodemask_t used_mask
;
2233 int local_node
, prev_node
;
2234 struct zonelist
*zonelist
;
2235 int order
= current_zonelist_order
;
2237 /* initialize zonelists */
2238 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2239 zonelist
= pgdat
->node_zonelists
+ i
;
2240 zonelist
->_zonerefs
[0].zone
= NULL
;
2241 zonelist
->_zonerefs
[0].zone_idx
= 0;
2244 /* NUMA-aware ordering of nodes */
2245 local_node
= pgdat
->node_id
;
2246 load
= num_online_nodes();
2247 prev_node
= local_node
;
2248 nodes_clear(used_mask
);
2250 memset(node_load
, 0, sizeof(node_load
));
2251 memset(node_order
, 0, sizeof(node_order
));
2254 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2255 int distance
= node_distance(local_node
, node
);
2258 * If another node is sufficiently far away then it is better
2259 * to reclaim pages in a zone before going off node.
2261 if (distance
> RECLAIM_DISTANCE
)
2262 zone_reclaim_mode
= 1;
2265 * We don't want to pressure a particular node.
2266 * So adding penalty to the first node in same
2267 * distance group to make it round-robin.
2269 if (distance
!= node_distance(local_node
, prev_node
))
2270 node_load
[node
] = load
;
2274 if (order
== ZONELIST_ORDER_NODE
)
2275 build_zonelists_in_node_order(pgdat
, node
);
2277 node_order
[j
++] = node
; /* remember order */
2280 if (order
== ZONELIST_ORDER_ZONE
) {
2281 /* calculate node order -- i.e., DMA last! */
2282 build_zonelists_in_zone_order(pgdat
, j
);
2285 build_thisnode_zonelists(pgdat
);
2288 /* Construct the zonelist performance cache - see further mmzone.h */
2289 static void build_zonelist_cache(pg_data_t
*pgdat
)
2291 struct zonelist
*zonelist
;
2292 struct zonelist_cache
*zlc
;
2295 zonelist
= &pgdat
->node_zonelists
[0];
2296 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2297 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2298 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
2299 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
2303 #else /* CONFIG_NUMA */
2305 static void set_zonelist_order(void)
2307 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2310 static void build_zonelists(pg_data_t
*pgdat
)
2312 int node
, local_node
;
2314 struct zonelist
*zonelist
;
2316 local_node
= pgdat
->node_id
;
2318 zonelist
= &pgdat
->node_zonelists
[0];
2319 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2322 * Now we build the zonelist so that it contains the zones
2323 * of all the other nodes.
2324 * We don't want to pressure a particular node, so when
2325 * building the zones for node N, we make sure that the
2326 * zones coming right after the local ones are those from
2327 * node N+1 (modulo N)
2329 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
2330 if (!node_online(node
))
2332 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2335 for (node
= 0; node
< local_node
; node
++) {
2336 if (!node_online(node
))
2338 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2342 zonelist
->_zonerefs
[j
].zone
= NULL
;
2343 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2346 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2347 static void build_zonelist_cache(pg_data_t
*pgdat
)
2349 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
2350 pgdat
->node_zonelists
[1].zlcache_ptr
= NULL
;
2353 #endif /* CONFIG_NUMA */
2355 /* return values int ....just for stop_machine_run() */
2356 static int __build_all_zonelists(void *dummy
)
2360 for_each_online_node(nid
) {
2361 pg_data_t
*pgdat
= NODE_DATA(nid
);
2363 build_zonelists(pgdat
);
2364 build_zonelist_cache(pgdat
);
2369 void build_all_zonelists(void)
2371 set_zonelist_order();
2373 if (system_state
== SYSTEM_BOOTING
) {
2374 __build_all_zonelists(NULL
);
2375 cpuset_init_current_mems_allowed();
2377 /* we have to stop all cpus to guarantee there is no user
2379 stop_machine_run(__build_all_zonelists
, NULL
, NR_CPUS
);
2380 /* cpuset refresh routine should be here */
2382 vm_total_pages
= nr_free_pagecache_pages();
2384 * Disable grouping by mobility if the number of pages in the
2385 * system is too low to allow the mechanism to work. It would be
2386 * more accurate, but expensive to check per-zone. This check is
2387 * made on memory-hotadd so a system can start with mobility
2388 * disabled and enable it later
2390 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
2391 page_group_by_mobility_disabled
= 1;
2393 page_group_by_mobility_disabled
= 0;
2395 printk("Built %i zonelists in %s order, mobility grouping %s. "
2396 "Total pages: %ld\n",
2398 zonelist_order_name
[current_zonelist_order
],
2399 page_group_by_mobility_disabled
? "off" : "on",
2402 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
2407 * Helper functions to size the waitqueue hash table.
2408 * Essentially these want to choose hash table sizes sufficiently
2409 * large so that collisions trying to wait on pages are rare.
2410 * But in fact, the number of active page waitqueues on typical
2411 * systems is ridiculously low, less than 200. So this is even
2412 * conservative, even though it seems large.
2414 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2415 * waitqueues, i.e. the size of the waitq table given the number of pages.
2417 #define PAGES_PER_WAITQUEUE 256
2419 #ifndef CONFIG_MEMORY_HOTPLUG
2420 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2422 unsigned long size
= 1;
2424 pages
/= PAGES_PER_WAITQUEUE
;
2426 while (size
< pages
)
2430 * Once we have dozens or even hundreds of threads sleeping
2431 * on IO we've got bigger problems than wait queue collision.
2432 * Limit the size of the wait table to a reasonable size.
2434 size
= min(size
, 4096UL);
2436 return max(size
, 4UL);
2440 * A zone's size might be changed by hot-add, so it is not possible to determine
2441 * a suitable size for its wait_table. So we use the maximum size now.
2443 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2445 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2446 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2447 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2449 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2450 * or more by the traditional way. (See above). It equals:
2452 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2453 * ia64(16K page size) : = ( 8G + 4M)byte.
2454 * powerpc (64K page size) : = (32G +16M)byte.
2456 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2463 * This is an integer logarithm so that shifts can be used later
2464 * to extract the more random high bits from the multiplicative
2465 * hash function before the remainder is taken.
2467 static inline unsigned long wait_table_bits(unsigned long size
)
2472 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2475 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2476 * of blocks reserved is based on zone->pages_min. The memory within the
2477 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2478 * higher will lead to a bigger reserve which will get freed as contiguous
2479 * blocks as reclaim kicks in
2481 static void setup_zone_migrate_reserve(struct zone
*zone
)
2483 unsigned long start_pfn
, pfn
, end_pfn
;
2485 unsigned long reserve
, block_migratetype
;
2487 /* Get the start pfn, end pfn and the number of blocks to reserve */
2488 start_pfn
= zone
->zone_start_pfn
;
2489 end_pfn
= start_pfn
+ zone
->spanned_pages
;
2490 reserve
= roundup(zone
->pages_min
, pageblock_nr_pages
) >>
2493 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
2494 if (!pfn_valid(pfn
))
2496 page
= pfn_to_page(pfn
);
2498 /* Blocks with reserved pages will never free, skip them. */
2499 if (PageReserved(page
))
2502 block_migratetype
= get_pageblock_migratetype(page
);
2504 /* If this block is reserved, account for it */
2505 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
2510 /* Suitable for reserving if this block is movable */
2511 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
2512 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
2513 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
2519 * If the reserve is met and this is a previous reserved block,
2522 if (block_migratetype
== MIGRATE_RESERVE
) {
2523 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2524 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
2530 * Initially all pages are reserved - free ones are freed
2531 * up by free_all_bootmem() once the early boot process is
2532 * done. Non-atomic initialization, single-pass.
2534 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
2535 unsigned long start_pfn
, enum memmap_context context
)
2538 unsigned long end_pfn
= start_pfn
+ size
;
2542 z
= &NODE_DATA(nid
)->node_zones
[zone
];
2543 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
2545 * There can be holes in boot-time mem_map[]s
2546 * handed to this function. They do not
2547 * exist on hotplugged memory.
2549 if (context
== MEMMAP_EARLY
) {
2550 if (!early_pfn_valid(pfn
))
2552 if (!early_pfn_in_nid(pfn
, nid
))
2555 page
= pfn_to_page(pfn
);
2556 set_page_links(page
, zone
, nid
, pfn
);
2557 init_page_count(page
);
2558 reset_page_mapcount(page
);
2559 SetPageReserved(page
);
2561 * Mark the block movable so that blocks are reserved for
2562 * movable at startup. This will force kernel allocations
2563 * to reserve their blocks rather than leaking throughout
2564 * the address space during boot when many long-lived
2565 * kernel allocations are made. Later some blocks near
2566 * the start are marked MIGRATE_RESERVE by
2567 * setup_zone_migrate_reserve()
2569 * bitmap is created for zone's valid pfn range. but memmap
2570 * can be created for invalid pages (for alignment)
2571 * check here not to call set_pageblock_migratetype() against
2574 if ((z
->zone_start_pfn
<= pfn
)
2575 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
2576 && !(pfn
& (pageblock_nr_pages
- 1)))
2577 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2579 INIT_LIST_HEAD(&page
->lru
);
2580 #ifdef WANT_PAGE_VIRTUAL
2581 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2582 if (!is_highmem_idx(zone
))
2583 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
2588 static void __meminit
zone_init_free_lists(struct zone
*zone
)
2591 for_each_migratetype_order(order
, t
) {
2592 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
2593 zone
->free_area
[order
].nr_free
= 0;
2597 #ifndef __HAVE_ARCH_MEMMAP_INIT
2598 #define memmap_init(size, nid, zone, start_pfn) \
2599 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2602 static int zone_batchsize(struct zone
*zone
)
2607 * The per-cpu-pages pools are set to around 1000th of the
2608 * size of the zone. But no more than 1/2 of a meg.
2610 * OK, so we don't know how big the cache is. So guess.
2612 batch
= zone
->present_pages
/ 1024;
2613 if (batch
* PAGE_SIZE
> 512 * 1024)
2614 batch
= (512 * 1024) / PAGE_SIZE
;
2615 batch
/= 4; /* We effectively *= 4 below */
2620 * Clamp the batch to a 2^n - 1 value. Having a power
2621 * of 2 value was found to be more likely to have
2622 * suboptimal cache aliasing properties in some cases.
2624 * For example if 2 tasks are alternately allocating
2625 * batches of pages, one task can end up with a lot
2626 * of pages of one half of the possible page colors
2627 * and the other with pages of the other colors.
2629 batch
= (1 << (fls(batch
+ batch
/2)-1)) - 1;
2634 inline void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
2636 struct per_cpu_pages
*pcp
;
2638 memset(p
, 0, sizeof(*p
));
2642 pcp
->high
= 6 * batch
;
2643 pcp
->batch
= max(1UL, 1 * batch
);
2644 INIT_LIST_HEAD(&pcp
->list
);
2648 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2649 * to the value high for the pageset p.
2652 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
2655 struct per_cpu_pages
*pcp
;
2659 pcp
->batch
= max(1UL, high
/4);
2660 if ((high
/4) > (PAGE_SHIFT
* 8))
2661 pcp
->batch
= PAGE_SHIFT
* 8;
2667 * Boot pageset table. One per cpu which is going to be used for all
2668 * zones and all nodes. The parameters will be set in such a way
2669 * that an item put on a list will immediately be handed over to
2670 * the buddy list. This is safe since pageset manipulation is done
2671 * with interrupts disabled.
2673 * Some NUMA counter updates may also be caught by the boot pagesets.
2675 * The boot_pagesets must be kept even after bootup is complete for
2676 * unused processors and/or zones. They do play a role for bootstrapping
2677 * hotplugged processors.
2679 * zoneinfo_show() and maybe other functions do
2680 * not check if the processor is online before following the pageset pointer.
2681 * Other parts of the kernel may not check if the zone is available.
2683 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
2686 * Dynamically allocate memory for the
2687 * per cpu pageset array in struct zone.
2689 static int __cpuinit
process_zones(int cpu
)
2691 struct zone
*zone
, *dzone
;
2692 int node
= cpu_to_node(cpu
);
2694 node_set_state(node
, N_CPU
); /* this node has a cpu */
2696 for_each_zone(zone
) {
2698 if (!populated_zone(zone
))
2701 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
2703 if (!zone_pcp(zone
, cpu
))
2706 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
2708 if (percpu_pagelist_fraction
)
2709 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
2710 (zone
->present_pages
/ percpu_pagelist_fraction
));
2715 for_each_zone(dzone
) {
2716 if (!populated_zone(dzone
))
2720 kfree(zone_pcp(dzone
, cpu
));
2721 zone_pcp(dzone
, cpu
) = NULL
;
2726 static inline void free_zone_pagesets(int cpu
)
2730 for_each_zone(zone
) {
2731 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
2733 /* Free per_cpu_pageset if it is slab allocated */
2734 if (pset
!= &boot_pageset
[cpu
])
2736 zone_pcp(zone
, cpu
) = NULL
;
2740 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
2741 unsigned long action
,
2744 int cpu
= (long)hcpu
;
2745 int ret
= NOTIFY_OK
;
2748 case CPU_UP_PREPARE
:
2749 case CPU_UP_PREPARE_FROZEN
:
2750 if (process_zones(cpu
))
2753 case CPU_UP_CANCELED
:
2754 case CPU_UP_CANCELED_FROZEN
:
2756 case CPU_DEAD_FROZEN
:
2757 free_zone_pagesets(cpu
);
2765 static struct notifier_block __cpuinitdata pageset_notifier
=
2766 { &pageset_cpuup_callback
, NULL
, 0 };
2768 void __init
setup_per_cpu_pageset(void)
2772 /* Initialize per_cpu_pageset for cpu 0.
2773 * A cpuup callback will do this for every cpu
2774 * as it comes online
2776 err
= process_zones(smp_processor_id());
2778 register_cpu_notifier(&pageset_notifier
);
2783 static noinline __init_refok
2784 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
2787 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2791 * The per-page waitqueue mechanism uses hashed waitqueues
2794 zone
->wait_table_hash_nr_entries
=
2795 wait_table_hash_nr_entries(zone_size_pages
);
2796 zone
->wait_table_bits
=
2797 wait_table_bits(zone
->wait_table_hash_nr_entries
);
2798 alloc_size
= zone
->wait_table_hash_nr_entries
2799 * sizeof(wait_queue_head_t
);
2801 if (system_state
== SYSTEM_BOOTING
) {
2802 zone
->wait_table
= (wait_queue_head_t
*)
2803 alloc_bootmem_node(pgdat
, alloc_size
);
2806 * This case means that a zone whose size was 0 gets new memory
2807 * via memory hot-add.
2808 * But it may be the case that a new node was hot-added. In
2809 * this case vmalloc() will not be able to use this new node's
2810 * memory - this wait_table must be initialized to use this new
2811 * node itself as well.
2812 * To use this new node's memory, further consideration will be
2815 zone
->wait_table
= vmalloc(alloc_size
);
2817 if (!zone
->wait_table
)
2820 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
2821 init_waitqueue_head(zone
->wait_table
+ i
);
2826 static __meminit
void zone_pcp_init(struct zone
*zone
)
2829 unsigned long batch
= zone_batchsize(zone
);
2831 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
2833 /* Early boot. Slab allocator not functional yet */
2834 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
2835 setup_pageset(&boot_pageset
[cpu
],0);
2837 setup_pageset(zone_pcp(zone
,cpu
), batch
);
2840 if (zone
->present_pages
)
2841 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
2842 zone
->name
, zone
->present_pages
, batch
);
2845 __meminit
int init_currently_empty_zone(struct zone
*zone
,
2846 unsigned long zone_start_pfn
,
2848 enum memmap_context context
)
2850 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2852 ret
= zone_wait_table_init(zone
, size
);
2855 pgdat
->nr_zones
= zone_idx(zone
) + 1;
2857 zone
->zone_start_pfn
= zone_start_pfn
;
2859 memmap_init(size
, pgdat
->node_id
, zone_idx(zone
), zone_start_pfn
);
2861 zone_init_free_lists(zone
);
2866 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2868 * Basic iterator support. Return the first range of PFNs for a node
2869 * Note: nid == MAX_NUMNODES returns first region regardless of node
2871 static int __meminit
first_active_region_index_in_nid(int nid
)
2875 for (i
= 0; i
< nr_nodemap_entries
; i
++)
2876 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
2883 * Basic iterator support. Return the next active range of PFNs for a node
2884 * Note: nid == MAX_NUMNODES returns next region regardless of node
2886 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
2888 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
2889 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
2895 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2897 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2898 * Architectures may implement their own version but if add_active_range()
2899 * was used and there are no special requirements, this is a convenient
2902 int __meminit
early_pfn_to_nid(unsigned long pfn
)
2906 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
2907 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
2908 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2910 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
2911 return early_node_map
[i
].nid
;
2916 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2918 /* Basic iterator support to walk early_node_map[] */
2919 #define for_each_active_range_index_in_nid(i, nid) \
2920 for (i = first_active_region_index_in_nid(nid); i != -1; \
2921 i = next_active_region_index_in_nid(i, nid))
2924 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2925 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2926 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2928 * If an architecture guarantees that all ranges registered with
2929 * add_active_ranges() contain no holes and may be freed, this
2930 * this function may be used instead of calling free_bootmem() manually.
2932 void __init
free_bootmem_with_active_regions(int nid
,
2933 unsigned long max_low_pfn
)
2937 for_each_active_range_index_in_nid(i
, nid
) {
2938 unsigned long size_pages
= 0;
2939 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2941 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
2944 if (end_pfn
> max_low_pfn
)
2945 end_pfn
= max_low_pfn
;
2947 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
2948 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
2949 PFN_PHYS(early_node_map
[i
].start_pfn
),
2950 size_pages
<< PAGE_SHIFT
);
2955 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2956 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2958 * If an architecture guarantees that all ranges registered with
2959 * add_active_ranges() contain no holes and may be freed, this
2960 * function may be used instead of calling memory_present() manually.
2962 void __init
sparse_memory_present_with_active_regions(int nid
)
2966 for_each_active_range_index_in_nid(i
, nid
)
2967 memory_present(early_node_map
[i
].nid
,
2968 early_node_map
[i
].start_pfn
,
2969 early_node_map
[i
].end_pfn
);
2973 * push_node_boundaries - Push node boundaries to at least the requested boundary
2974 * @nid: The nid of the node to push the boundary for
2975 * @start_pfn: The start pfn of the node
2976 * @end_pfn: The end pfn of the node
2978 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2979 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2980 * be hotplugged even though no physical memory exists. This function allows
2981 * an arch to push out the node boundaries so mem_map is allocated that can
2984 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2985 void __init
push_node_boundaries(unsigned int nid
,
2986 unsigned long start_pfn
, unsigned long end_pfn
)
2988 printk(KERN_DEBUG
"Entering push_node_boundaries(%u, %lu, %lu)\n",
2989 nid
, start_pfn
, end_pfn
);
2991 /* Initialise the boundary for this node if necessary */
2992 if (node_boundary_end_pfn
[nid
] == 0)
2993 node_boundary_start_pfn
[nid
] = -1UL;
2995 /* Update the boundaries */
2996 if (node_boundary_start_pfn
[nid
] > start_pfn
)
2997 node_boundary_start_pfn
[nid
] = start_pfn
;
2998 if (node_boundary_end_pfn
[nid
] < end_pfn
)
2999 node_boundary_end_pfn
[nid
] = end_pfn
;
3002 /* If necessary, push the node boundary out for reserve hotadd */
3003 static void __meminit
account_node_boundary(unsigned int nid
,
3004 unsigned long *start_pfn
, unsigned long *end_pfn
)
3006 printk(KERN_DEBUG
"Entering account_node_boundary(%u, %lu, %lu)\n",
3007 nid
, *start_pfn
, *end_pfn
);
3009 /* Return if boundary information has not been provided */
3010 if (node_boundary_end_pfn
[nid
] == 0)
3013 /* Check the boundaries and update if necessary */
3014 if (node_boundary_start_pfn
[nid
] < *start_pfn
)
3015 *start_pfn
= node_boundary_start_pfn
[nid
];
3016 if (node_boundary_end_pfn
[nid
] > *end_pfn
)
3017 *end_pfn
= node_boundary_end_pfn
[nid
];
3020 void __init
push_node_boundaries(unsigned int nid
,
3021 unsigned long start_pfn
, unsigned long end_pfn
) {}
3023 static void __meminit
account_node_boundary(unsigned int nid
,
3024 unsigned long *start_pfn
, unsigned long *end_pfn
) {}
3029 * get_pfn_range_for_nid - Return the start and end page frames for a node
3030 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3031 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3032 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3034 * It returns the start and end page frame of a node based on information
3035 * provided by an arch calling add_active_range(). If called for a node
3036 * with no available memory, a warning is printed and the start and end
3039 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3040 unsigned long *start_pfn
, unsigned long *end_pfn
)
3046 for_each_active_range_index_in_nid(i
, nid
) {
3047 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3048 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3051 if (*start_pfn
== -1UL)
3054 /* Push the node boundaries out if requested */
3055 account_node_boundary(nid
, start_pfn
, end_pfn
);
3059 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3060 * assumption is made that zones within a node are ordered in monotonic
3061 * increasing memory addresses so that the "highest" populated zone is used
3063 void __init
find_usable_zone_for_movable(void)
3066 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3067 if (zone_index
== ZONE_MOVABLE
)
3070 if (arch_zone_highest_possible_pfn
[zone_index
] >
3071 arch_zone_lowest_possible_pfn
[zone_index
])
3075 VM_BUG_ON(zone_index
== -1);
3076 movable_zone
= zone_index
;
3080 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3081 * because it is sized independant of architecture. Unlike the other zones,
3082 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3083 * in each node depending on the size of each node and how evenly kernelcore
3084 * is distributed. This helper function adjusts the zone ranges
3085 * provided by the architecture for a given node by using the end of the
3086 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3087 * zones within a node are in order of monotonic increases memory addresses
3089 void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3090 unsigned long zone_type
,
3091 unsigned long node_start_pfn
,
3092 unsigned long node_end_pfn
,
3093 unsigned long *zone_start_pfn
,
3094 unsigned long *zone_end_pfn
)
3096 /* Only adjust if ZONE_MOVABLE is on this node */
3097 if (zone_movable_pfn
[nid
]) {
3098 /* Size ZONE_MOVABLE */
3099 if (zone_type
== ZONE_MOVABLE
) {
3100 *zone_start_pfn
= zone_movable_pfn
[nid
];
3101 *zone_end_pfn
= min(node_end_pfn
,
3102 arch_zone_highest_possible_pfn
[movable_zone
]);
3104 /* Adjust for ZONE_MOVABLE starting within this range */
3105 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3106 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3107 *zone_end_pfn
= zone_movable_pfn
[nid
];
3109 /* Check if this whole range is within ZONE_MOVABLE */
3110 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3111 *zone_start_pfn
= *zone_end_pfn
;
3116 * Return the number of pages a zone spans in a node, including holes
3117 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3119 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3120 unsigned long zone_type
,
3121 unsigned long *ignored
)
3123 unsigned long node_start_pfn
, node_end_pfn
;
3124 unsigned long zone_start_pfn
, zone_end_pfn
;
3126 /* Get the start and end of the node and zone */
3127 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3128 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3129 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3130 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3131 node_start_pfn
, node_end_pfn
,
3132 &zone_start_pfn
, &zone_end_pfn
);
3134 /* Check that this node has pages within the zone's required range */
3135 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3138 /* Move the zone boundaries inside the node if necessary */
3139 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3140 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3142 /* Return the spanned pages */
3143 return zone_end_pfn
- zone_start_pfn
;
3147 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3148 * then all holes in the requested range will be accounted for.
3150 unsigned long __meminit
__absent_pages_in_range(int nid
,
3151 unsigned long range_start_pfn
,
3152 unsigned long range_end_pfn
)
3155 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
3156 unsigned long start_pfn
;
3158 /* Find the end_pfn of the first active range of pfns in the node */
3159 i
= first_active_region_index_in_nid(nid
);
3163 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3165 /* Account for ranges before physical memory on this node */
3166 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
3167 hole_pages
= prev_end_pfn
- range_start_pfn
;
3169 /* Find all holes for the zone within the node */
3170 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
3172 /* No need to continue if prev_end_pfn is outside the zone */
3173 if (prev_end_pfn
>= range_end_pfn
)
3176 /* Make sure the end of the zone is not within the hole */
3177 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3178 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
3180 /* Update the hole size cound and move on */
3181 if (start_pfn
> range_start_pfn
) {
3182 BUG_ON(prev_end_pfn
> start_pfn
);
3183 hole_pages
+= start_pfn
- prev_end_pfn
;
3185 prev_end_pfn
= early_node_map
[i
].end_pfn
;
3188 /* Account for ranges past physical memory on this node */
3189 if (range_end_pfn
> prev_end_pfn
)
3190 hole_pages
+= range_end_pfn
-
3191 max(range_start_pfn
, prev_end_pfn
);
3197 * absent_pages_in_range - Return number of page frames in holes within a range
3198 * @start_pfn: The start PFN to start searching for holes
3199 * @end_pfn: The end PFN to stop searching for holes
3201 * It returns the number of pages frames in memory holes within a range.
3203 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
3204 unsigned long end_pfn
)
3206 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
3209 /* Return the number of page frames in holes in a zone on a node */
3210 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3211 unsigned long zone_type
,
3212 unsigned long *ignored
)
3214 unsigned long node_start_pfn
, node_end_pfn
;
3215 unsigned long zone_start_pfn
, zone_end_pfn
;
3217 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3218 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
3220 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
3223 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3224 node_start_pfn
, node_end_pfn
,
3225 &zone_start_pfn
, &zone_end_pfn
);
3226 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
3230 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3231 unsigned long zone_type
,
3232 unsigned long *zones_size
)
3234 return zones_size
[zone_type
];
3237 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3238 unsigned long zone_type
,
3239 unsigned long *zholes_size
)
3244 return zholes_size
[zone_type
];
3249 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
3250 unsigned long *zones_size
, unsigned long *zholes_size
)
3252 unsigned long realtotalpages
, totalpages
= 0;
3255 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3256 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
3258 pgdat
->node_spanned_pages
= totalpages
;
3260 realtotalpages
= totalpages
;
3261 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3263 zone_absent_pages_in_node(pgdat
->node_id
, i
,
3265 pgdat
->node_present_pages
= realtotalpages
;
3266 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
3270 #ifndef CONFIG_SPARSEMEM
3272 * Calculate the size of the zone->blockflags rounded to an unsigned long
3273 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3274 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3275 * round what is now in bits to nearest long in bits, then return it in
3278 static unsigned long __init
usemap_size(unsigned long zonesize
)
3280 unsigned long usemapsize
;
3282 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
3283 usemapsize
= usemapsize
>> pageblock_order
;
3284 usemapsize
*= NR_PAGEBLOCK_BITS
;
3285 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
3287 return usemapsize
/ 8;
3290 static void __init
setup_usemap(struct pglist_data
*pgdat
,
3291 struct zone
*zone
, unsigned long zonesize
)
3293 unsigned long usemapsize
= usemap_size(zonesize
);
3294 zone
->pageblock_flags
= NULL
;
3296 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
3297 memset(zone
->pageblock_flags
, 0, usemapsize
);
3301 static void inline setup_usemap(struct pglist_data
*pgdat
,
3302 struct zone
*zone
, unsigned long zonesize
) {}
3303 #endif /* CONFIG_SPARSEMEM */
3305 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3307 /* Return a sensible default order for the pageblock size. */
3308 static inline int pageblock_default_order(void)
3310 if (HPAGE_SHIFT
> PAGE_SHIFT
)
3311 return HUGETLB_PAGE_ORDER
;
3316 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3317 static inline void __init
set_pageblock_order(unsigned int order
)
3319 /* Check that pageblock_nr_pages has not already been setup */
3320 if (pageblock_order
)
3324 * Assume the largest contiguous order of interest is a huge page.
3325 * This value may be variable depending on boot parameters on IA64
3327 pageblock_order
= order
;
3329 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3332 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3333 * and pageblock_default_order() are unused as pageblock_order is set
3334 * at compile-time. See include/linux/pageblock-flags.h for the values of
3335 * pageblock_order based on the kernel config
3337 static inline int pageblock_default_order(unsigned int order
)
3341 #define set_pageblock_order(x) do {} while (0)
3343 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3346 * Set up the zone data structures:
3347 * - mark all pages reserved
3348 * - mark all memory queues empty
3349 * - clear the memory bitmaps
3351 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
3352 unsigned long *zones_size
, unsigned long *zholes_size
)
3355 int nid
= pgdat
->node_id
;
3356 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
3359 pgdat_resize_init(pgdat
);
3360 pgdat
->nr_zones
= 0;
3361 init_waitqueue_head(&pgdat
->kswapd_wait
);
3362 pgdat
->kswapd_max_order
= 0;
3364 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
3365 struct zone
*zone
= pgdat
->node_zones
+ j
;
3366 unsigned long size
, realsize
, memmap_pages
;
3368 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
3369 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
3373 * Adjust realsize so that it accounts for how much memory
3374 * is used by this zone for memmap. This affects the watermark
3375 * and per-cpu initialisations
3377 memmap_pages
= (size
* sizeof(struct page
)) >> PAGE_SHIFT
;
3378 if (realsize
>= memmap_pages
) {
3379 realsize
-= memmap_pages
;
3381 " %s zone: %lu pages used for memmap\n",
3382 zone_names
[j
], memmap_pages
);
3385 " %s zone: %lu pages exceeds realsize %lu\n",
3386 zone_names
[j
], memmap_pages
, realsize
);
3388 /* Account for reserved pages */
3389 if (j
== 0 && realsize
> dma_reserve
) {
3390 realsize
-= dma_reserve
;
3391 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
3392 zone_names
[0], dma_reserve
);
3395 if (!is_highmem_idx(j
))
3396 nr_kernel_pages
+= realsize
;
3397 nr_all_pages
+= realsize
;
3399 zone
->spanned_pages
= size
;
3400 zone
->present_pages
= realsize
;
3403 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
3405 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
3407 zone
->name
= zone_names
[j
];
3408 spin_lock_init(&zone
->lock
);
3409 spin_lock_init(&zone
->lru_lock
);
3410 zone_seqlock_init(zone
);
3411 zone
->zone_pgdat
= pgdat
;
3413 zone
->prev_priority
= DEF_PRIORITY
;
3415 zone_pcp_init(zone
);
3416 INIT_LIST_HEAD(&zone
->active_list
);
3417 INIT_LIST_HEAD(&zone
->inactive_list
);
3418 zone
->nr_scan_active
= 0;
3419 zone
->nr_scan_inactive
= 0;
3420 zap_zone_vm_stats(zone
);
3425 set_pageblock_order(pageblock_default_order());
3426 setup_usemap(pgdat
, zone
, size
);
3427 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
3428 size
, MEMMAP_EARLY
);
3430 zone_start_pfn
+= size
;
3434 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
3436 /* Skip empty nodes */
3437 if (!pgdat
->node_spanned_pages
)
3440 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3441 /* ia64 gets its own node_mem_map, before this, without bootmem */
3442 if (!pgdat
->node_mem_map
) {
3443 unsigned long size
, start
, end
;
3447 * The zone's endpoints aren't required to be MAX_ORDER
3448 * aligned but the node_mem_map endpoints must be in order
3449 * for the buddy allocator to function correctly.
3451 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
3452 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
3453 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
3454 size
= (end
- start
) * sizeof(struct page
);
3455 map
= alloc_remap(pgdat
->node_id
, size
);
3457 map
= alloc_bootmem_node(pgdat
, size
);
3458 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
3460 #ifndef CONFIG_NEED_MULTIPLE_NODES
3462 * With no DISCONTIG, the global mem_map is just set as node 0's
3464 if (pgdat
== NODE_DATA(0)) {
3465 mem_map
= NODE_DATA(0)->node_mem_map
;
3466 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3467 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
3468 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
3469 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3472 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3475 void __paginginit
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
3476 unsigned long *zones_size
, unsigned long node_start_pfn
,
3477 unsigned long *zholes_size
)
3479 pgdat
->node_id
= nid
;
3480 pgdat
->node_start_pfn
= node_start_pfn
;
3481 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
3483 alloc_node_mem_map(pgdat
);
3485 free_area_init_core(pgdat
, zones_size
, zholes_size
);
3488 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3490 #if MAX_NUMNODES > 1
3492 * Figure out the number of possible node ids.
3494 static void __init
setup_nr_node_ids(void)
3497 unsigned int highest
= 0;
3499 for_each_node_mask(node
, node_possible_map
)
3501 nr_node_ids
= highest
+ 1;
3504 static inline void setup_nr_node_ids(void)
3510 * add_active_range - Register a range of PFNs backed by physical memory
3511 * @nid: The node ID the range resides on
3512 * @start_pfn: The start PFN of the available physical memory
3513 * @end_pfn: The end PFN of the available physical memory
3515 * These ranges are stored in an early_node_map[] and later used by
3516 * free_area_init_nodes() to calculate zone sizes and holes. If the
3517 * range spans a memory hole, it is up to the architecture to ensure
3518 * the memory is not freed by the bootmem allocator. If possible
3519 * the range being registered will be merged with existing ranges.
3521 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
3522 unsigned long end_pfn
)
3526 printk(KERN_DEBUG
"Entering add_active_range(%d, %lu, %lu) "
3527 "%d entries of %d used\n",
3528 nid
, start_pfn
, end_pfn
,
3529 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
3531 /* Merge with existing active regions if possible */
3532 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3533 if (early_node_map
[i
].nid
!= nid
)
3536 /* Skip if an existing region covers this new one */
3537 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
3538 end_pfn
<= early_node_map
[i
].end_pfn
)
3541 /* Merge forward if suitable */
3542 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
3543 end_pfn
> early_node_map
[i
].end_pfn
) {
3544 early_node_map
[i
].end_pfn
= end_pfn
;
3548 /* Merge backward if suitable */
3549 if (start_pfn
< early_node_map
[i
].end_pfn
&&
3550 end_pfn
>= early_node_map
[i
].start_pfn
) {
3551 early_node_map
[i
].start_pfn
= start_pfn
;
3556 /* Check that early_node_map is large enough */
3557 if (i
>= MAX_ACTIVE_REGIONS
) {
3558 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
3559 MAX_ACTIVE_REGIONS
);
3563 early_node_map
[i
].nid
= nid
;
3564 early_node_map
[i
].start_pfn
= start_pfn
;
3565 early_node_map
[i
].end_pfn
= end_pfn
;
3566 nr_nodemap_entries
= i
+ 1;
3570 * shrink_active_range - Shrink an existing registered range of PFNs
3571 * @nid: The node id the range is on that should be shrunk
3572 * @old_end_pfn: The old end PFN of the range
3573 * @new_end_pfn: The new PFN of the range
3575 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3576 * The map is kept at the end physical page range that has already been
3577 * registered with add_active_range(). This function allows an arch to shrink
3578 * an existing registered range.
3580 void __init
shrink_active_range(unsigned int nid
, unsigned long old_end_pfn
,
3581 unsigned long new_end_pfn
)
3585 /* Find the old active region end and shrink */
3586 for_each_active_range_index_in_nid(i
, nid
)
3587 if (early_node_map
[i
].end_pfn
== old_end_pfn
) {
3588 early_node_map
[i
].end_pfn
= new_end_pfn
;
3594 * remove_all_active_ranges - Remove all currently registered regions
3596 * During discovery, it may be found that a table like SRAT is invalid
3597 * and an alternative discovery method must be used. This function removes
3598 * all currently registered regions.
3600 void __init
remove_all_active_ranges(void)
3602 memset(early_node_map
, 0, sizeof(early_node_map
));
3603 nr_nodemap_entries
= 0;
3604 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3605 memset(node_boundary_start_pfn
, 0, sizeof(node_boundary_start_pfn
));
3606 memset(node_boundary_end_pfn
, 0, sizeof(node_boundary_end_pfn
));
3607 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3610 /* Compare two active node_active_regions */
3611 static int __init
cmp_node_active_region(const void *a
, const void *b
)
3613 struct node_active_region
*arange
= (struct node_active_region
*)a
;
3614 struct node_active_region
*brange
= (struct node_active_region
*)b
;
3616 /* Done this way to avoid overflows */
3617 if (arange
->start_pfn
> brange
->start_pfn
)
3619 if (arange
->start_pfn
< brange
->start_pfn
)
3625 /* sort the node_map by start_pfn */
3626 static void __init
sort_node_map(void)
3628 sort(early_node_map
, (size_t)nr_nodemap_entries
,
3629 sizeof(struct node_active_region
),
3630 cmp_node_active_region
, NULL
);
3633 /* Find the lowest pfn for a node */
3634 unsigned long __init
find_min_pfn_for_node(unsigned long nid
)
3637 unsigned long min_pfn
= ULONG_MAX
;
3639 /* Assuming a sorted map, the first range found has the starting pfn */
3640 for_each_active_range_index_in_nid(i
, nid
)
3641 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
3643 if (min_pfn
== ULONG_MAX
) {
3645 "Could not find start_pfn for node %lu\n", nid
);
3653 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3655 * It returns the minimum PFN based on information provided via
3656 * add_active_range().
3658 unsigned long __init
find_min_pfn_with_active_regions(void)
3660 return find_min_pfn_for_node(MAX_NUMNODES
);
3664 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3666 * It returns the maximum PFN based on information provided via
3667 * add_active_range().
3669 unsigned long __init
find_max_pfn_with_active_regions(void)
3672 unsigned long max_pfn
= 0;
3674 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3675 max_pfn
= max(max_pfn
, early_node_map
[i
].end_pfn
);
3681 * early_calculate_totalpages()
3682 * Sum pages in active regions for movable zone.
3683 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3685 static unsigned long __init
early_calculate_totalpages(void)
3688 unsigned long totalpages
= 0;
3690 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3691 unsigned long pages
= early_node_map
[i
].end_pfn
-
3692 early_node_map
[i
].start_pfn
;
3693 totalpages
+= pages
;
3695 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
3701 * Find the PFN the Movable zone begins in each node. Kernel memory
3702 * is spread evenly between nodes as long as the nodes have enough
3703 * memory. When they don't, some nodes will have more kernelcore than
3706 void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
3709 unsigned long usable_startpfn
;
3710 unsigned long kernelcore_node
, kernelcore_remaining
;
3711 unsigned long totalpages
= early_calculate_totalpages();
3712 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
3715 * If movablecore was specified, calculate what size of
3716 * kernelcore that corresponds so that memory usable for
3717 * any allocation type is evenly spread. If both kernelcore
3718 * and movablecore are specified, then the value of kernelcore
3719 * will be used for required_kernelcore if it's greater than
3720 * what movablecore would have allowed.
3722 if (required_movablecore
) {
3723 unsigned long corepages
;
3726 * Round-up so that ZONE_MOVABLE is at least as large as what
3727 * was requested by the user
3729 required_movablecore
=
3730 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
3731 corepages
= totalpages
- required_movablecore
;
3733 required_kernelcore
= max(required_kernelcore
, corepages
);
3736 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3737 if (!required_kernelcore
)
3740 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3741 find_usable_zone_for_movable();
3742 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
3745 /* Spread kernelcore memory as evenly as possible throughout nodes */
3746 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3747 for_each_node_state(nid
, N_HIGH_MEMORY
) {
3749 * Recalculate kernelcore_node if the division per node
3750 * now exceeds what is necessary to satisfy the requested
3751 * amount of memory for the kernel
3753 if (required_kernelcore
< kernelcore_node
)
3754 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3757 * As the map is walked, we track how much memory is usable
3758 * by the kernel using kernelcore_remaining. When it is
3759 * 0, the rest of the node is usable by ZONE_MOVABLE
3761 kernelcore_remaining
= kernelcore_node
;
3763 /* Go through each range of PFNs within this node */
3764 for_each_active_range_index_in_nid(i
, nid
) {
3765 unsigned long start_pfn
, end_pfn
;
3766 unsigned long size_pages
;
3768 start_pfn
= max(early_node_map
[i
].start_pfn
,
3769 zone_movable_pfn
[nid
]);
3770 end_pfn
= early_node_map
[i
].end_pfn
;
3771 if (start_pfn
>= end_pfn
)
3774 /* Account for what is only usable for kernelcore */
3775 if (start_pfn
< usable_startpfn
) {
3776 unsigned long kernel_pages
;
3777 kernel_pages
= min(end_pfn
, usable_startpfn
)
3780 kernelcore_remaining
-= min(kernel_pages
,
3781 kernelcore_remaining
);
3782 required_kernelcore
-= min(kernel_pages
,
3783 required_kernelcore
);
3785 /* Continue if range is now fully accounted */
3786 if (end_pfn
<= usable_startpfn
) {
3789 * Push zone_movable_pfn to the end so
3790 * that if we have to rebalance
3791 * kernelcore across nodes, we will
3792 * not double account here
3794 zone_movable_pfn
[nid
] = end_pfn
;
3797 start_pfn
= usable_startpfn
;
3801 * The usable PFN range for ZONE_MOVABLE is from
3802 * start_pfn->end_pfn. Calculate size_pages as the
3803 * number of pages used as kernelcore
3805 size_pages
= end_pfn
- start_pfn
;
3806 if (size_pages
> kernelcore_remaining
)
3807 size_pages
= kernelcore_remaining
;
3808 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
3811 * Some kernelcore has been met, update counts and
3812 * break if the kernelcore for this node has been
3815 required_kernelcore
-= min(required_kernelcore
,
3817 kernelcore_remaining
-= size_pages
;
3818 if (!kernelcore_remaining
)
3824 * If there is still required_kernelcore, we do another pass with one
3825 * less node in the count. This will push zone_movable_pfn[nid] further
3826 * along on the nodes that still have memory until kernelcore is
3830 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
3833 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3834 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
3835 zone_movable_pfn
[nid
] =
3836 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
3839 /* Any regular memory on that node ? */
3840 static void check_for_regular_memory(pg_data_t
*pgdat
)
3842 #ifdef CONFIG_HIGHMEM
3843 enum zone_type zone_type
;
3845 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
3846 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
3847 if (zone
->present_pages
)
3848 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
3854 * free_area_init_nodes - Initialise all pg_data_t and zone data
3855 * @max_zone_pfn: an array of max PFNs for each zone
3857 * This will call free_area_init_node() for each active node in the system.
3858 * Using the page ranges provided by add_active_range(), the size of each
3859 * zone in each node and their holes is calculated. If the maximum PFN
3860 * between two adjacent zones match, it is assumed that the zone is empty.
3861 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3862 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3863 * starts where the previous one ended. For example, ZONE_DMA32 starts
3864 * at arch_max_dma_pfn.
3866 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
3871 /* Sort early_node_map as initialisation assumes it is sorted */
3874 /* Record where the zone boundaries are */
3875 memset(arch_zone_lowest_possible_pfn
, 0,
3876 sizeof(arch_zone_lowest_possible_pfn
));
3877 memset(arch_zone_highest_possible_pfn
, 0,
3878 sizeof(arch_zone_highest_possible_pfn
));
3879 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
3880 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
3881 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
3882 if (i
== ZONE_MOVABLE
)
3884 arch_zone_lowest_possible_pfn
[i
] =
3885 arch_zone_highest_possible_pfn
[i
-1];
3886 arch_zone_highest_possible_pfn
[i
] =
3887 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
3889 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
3890 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
3892 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3893 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
3894 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
3896 /* Print out the zone ranges */
3897 printk("Zone PFN ranges:\n");
3898 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
3899 if (i
== ZONE_MOVABLE
)
3901 printk(" %-8s %8lu -> %8lu\n",
3903 arch_zone_lowest_possible_pfn
[i
],
3904 arch_zone_highest_possible_pfn
[i
]);
3907 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3908 printk("Movable zone start PFN for each node\n");
3909 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
3910 if (zone_movable_pfn
[i
])
3911 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
3914 /* Print out the early_node_map[] */
3915 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
3916 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3917 printk(" %3d: %8lu -> %8lu\n", early_node_map
[i
].nid
,
3918 early_node_map
[i
].start_pfn
,
3919 early_node_map
[i
].end_pfn
);
3921 /* Initialise every node */
3922 setup_nr_node_ids();
3923 for_each_online_node(nid
) {
3924 pg_data_t
*pgdat
= NODE_DATA(nid
);
3925 free_area_init_node(nid
, pgdat
, NULL
,
3926 find_min_pfn_for_node(nid
), NULL
);
3928 /* Any memory on that node */
3929 if (pgdat
->node_present_pages
)
3930 node_set_state(nid
, N_HIGH_MEMORY
);
3931 check_for_regular_memory(pgdat
);
3935 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
3937 unsigned long long coremem
;
3941 coremem
= memparse(p
, &p
);
3942 *core
= coremem
>> PAGE_SHIFT
;
3944 /* Paranoid check that UL is enough for the coremem value */
3945 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
3951 * kernelcore=size sets the amount of memory for use for allocations that
3952 * cannot be reclaimed or migrated.
3954 static int __init
cmdline_parse_kernelcore(char *p
)
3956 return cmdline_parse_core(p
, &required_kernelcore
);
3960 * movablecore=size sets the amount of memory for use for allocations that
3961 * can be reclaimed or migrated.
3963 static int __init
cmdline_parse_movablecore(char *p
)
3965 return cmdline_parse_core(p
, &required_movablecore
);
3968 early_param("kernelcore", cmdline_parse_kernelcore
);
3969 early_param("movablecore", cmdline_parse_movablecore
);
3971 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3974 * set_dma_reserve - set the specified number of pages reserved in the first zone
3975 * @new_dma_reserve: The number of pages to mark reserved
3977 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3978 * In the DMA zone, a significant percentage may be consumed by kernel image
3979 * and other unfreeable allocations which can skew the watermarks badly. This
3980 * function may optionally be used to account for unfreeable pages in the
3981 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3982 * smaller per-cpu batchsize.
3984 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
3986 dma_reserve
= new_dma_reserve
;
3989 #ifndef CONFIG_NEED_MULTIPLE_NODES
3990 static bootmem_data_t contig_bootmem_data
;
3991 struct pglist_data contig_page_data
= { .bdata
= &contig_bootmem_data
};
3993 EXPORT_SYMBOL(contig_page_data
);
3996 void __init
free_area_init(unsigned long *zones_size
)
3998 free_area_init_node(0, NODE_DATA(0), zones_size
,
3999 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4002 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4003 unsigned long action
, void *hcpu
)
4005 int cpu
= (unsigned long)hcpu
;
4007 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4011 * Spill the event counters of the dead processor
4012 * into the current processors event counters.
4013 * This artificially elevates the count of the current
4016 vm_events_fold_cpu(cpu
);
4019 * Zero the differential counters of the dead processor
4020 * so that the vm statistics are consistent.
4022 * This is only okay since the processor is dead and cannot
4023 * race with what we are doing.
4025 refresh_cpu_vm_stats(cpu
);
4030 void __init
page_alloc_init(void)
4032 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4036 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4037 * or min_free_kbytes changes.
4039 static void calculate_totalreserve_pages(void)
4041 struct pglist_data
*pgdat
;
4042 unsigned long reserve_pages
= 0;
4043 enum zone_type i
, j
;
4045 for_each_online_pgdat(pgdat
) {
4046 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4047 struct zone
*zone
= pgdat
->node_zones
+ i
;
4048 unsigned long max
= 0;
4050 /* Find valid and maximum lowmem_reserve in the zone */
4051 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4052 if (zone
->lowmem_reserve
[j
] > max
)
4053 max
= zone
->lowmem_reserve
[j
];
4056 /* we treat pages_high as reserved pages. */
4057 max
+= zone
->pages_high
;
4059 if (max
> zone
->present_pages
)
4060 max
= zone
->present_pages
;
4061 reserve_pages
+= max
;
4064 totalreserve_pages
= reserve_pages
;
4068 * setup_per_zone_lowmem_reserve - called whenever
4069 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4070 * has a correct pages reserved value, so an adequate number of
4071 * pages are left in the zone after a successful __alloc_pages().
4073 static void setup_per_zone_lowmem_reserve(void)
4075 struct pglist_data
*pgdat
;
4076 enum zone_type j
, idx
;
4078 for_each_online_pgdat(pgdat
) {
4079 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4080 struct zone
*zone
= pgdat
->node_zones
+ j
;
4081 unsigned long present_pages
= zone
->present_pages
;
4083 zone
->lowmem_reserve
[j
] = 0;
4087 struct zone
*lower_zone
;
4091 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4092 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4094 lower_zone
= pgdat
->node_zones
+ idx
;
4095 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4096 sysctl_lowmem_reserve_ratio
[idx
];
4097 present_pages
+= lower_zone
->present_pages
;
4102 /* update totalreserve_pages */
4103 calculate_totalreserve_pages();
4107 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4109 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4110 * with respect to min_free_kbytes.
4112 void setup_per_zone_pages_min(void)
4114 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4115 unsigned long lowmem_pages
= 0;
4117 unsigned long flags
;
4119 /* Calculate total number of !ZONE_HIGHMEM pages */
4120 for_each_zone(zone
) {
4121 if (!is_highmem(zone
))
4122 lowmem_pages
+= zone
->present_pages
;
4125 for_each_zone(zone
) {
4128 spin_lock_irqsave(&zone
->lru_lock
, flags
);
4129 tmp
= (u64
)pages_min
* zone
->present_pages
;
4130 do_div(tmp
, lowmem_pages
);
4131 if (is_highmem(zone
)) {
4133 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4134 * need highmem pages, so cap pages_min to a small
4137 * The (pages_high-pages_low) and (pages_low-pages_min)
4138 * deltas controls asynch page reclaim, and so should
4139 * not be capped for highmem.
4143 min_pages
= zone
->present_pages
/ 1024;
4144 if (min_pages
< SWAP_CLUSTER_MAX
)
4145 min_pages
= SWAP_CLUSTER_MAX
;
4146 if (min_pages
> 128)
4148 zone
->pages_min
= min_pages
;
4151 * If it's a lowmem zone, reserve a number of pages
4152 * proportionate to the zone's size.
4154 zone
->pages_min
= tmp
;
4157 zone
->pages_low
= zone
->pages_min
+ (tmp
>> 2);
4158 zone
->pages_high
= zone
->pages_min
+ (tmp
>> 1);
4159 setup_zone_migrate_reserve(zone
);
4160 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4163 /* update totalreserve_pages */
4164 calculate_totalreserve_pages();
4168 * Initialise min_free_kbytes.
4170 * For small machines we want it small (128k min). For large machines
4171 * we want it large (64MB max). But it is not linear, because network
4172 * bandwidth does not increase linearly with machine size. We use
4174 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4175 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4191 static int __init
init_per_zone_pages_min(void)
4193 unsigned long lowmem_kbytes
;
4195 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
4197 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
4198 if (min_free_kbytes
< 128)
4199 min_free_kbytes
= 128;
4200 if (min_free_kbytes
> 65536)
4201 min_free_kbytes
= 65536;
4202 setup_per_zone_pages_min();
4203 setup_per_zone_lowmem_reserve();
4206 module_init(init_per_zone_pages_min
)
4209 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4210 * that we can call two helper functions whenever min_free_kbytes
4213 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
4214 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4216 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
4218 setup_per_zone_pages_min();
4223 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
4224 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4229 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4234 zone
->min_unmapped_pages
= (zone
->present_pages
*
4235 sysctl_min_unmapped_ratio
) / 100;
4239 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
4240 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4245 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4250 zone
->min_slab_pages
= (zone
->present_pages
*
4251 sysctl_min_slab_ratio
) / 100;
4257 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4258 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4259 * whenever sysctl_lowmem_reserve_ratio changes.
4261 * The reserve ratio obviously has absolutely no relation with the
4262 * pages_min watermarks. The lowmem reserve ratio can only make sense
4263 * if in function of the boot time zone sizes.
4265 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
4266 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4268 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4269 setup_per_zone_lowmem_reserve();
4274 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4275 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4276 * can have before it gets flushed back to buddy allocator.
4279 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
4280 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4286 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4287 if (!write
|| (ret
== -EINVAL
))
4289 for_each_zone(zone
) {
4290 for_each_online_cpu(cpu
) {
4292 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
4293 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
4299 int hashdist
= HASHDIST_DEFAULT
;
4302 static int __init
set_hashdist(char *str
)
4306 hashdist
= simple_strtoul(str
, &str
, 0);
4309 __setup("hashdist=", set_hashdist
);
4313 * allocate a large system hash table from bootmem
4314 * - it is assumed that the hash table must contain an exact power-of-2
4315 * quantity of entries
4316 * - limit is the number of hash buckets, not the total allocation size
4318 void *__init
alloc_large_system_hash(const char *tablename
,
4319 unsigned long bucketsize
,
4320 unsigned long numentries
,
4323 unsigned int *_hash_shift
,
4324 unsigned int *_hash_mask
,
4325 unsigned long limit
)
4327 unsigned long long max
= limit
;
4328 unsigned long log2qty
, size
;
4331 /* allow the kernel cmdline to have a say */
4333 /* round applicable memory size up to nearest megabyte */
4334 numentries
= nr_kernel_pages
;
4335 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
4336 numentries
>>= 20 - PAGE_SHIFT
;
4337 numentries
<<= 20 - PAGE_SHIFT
;
4339 /* limit to 1 bucket per 2^scale bytes of low memory */
4340 if (scale
> PAGE_SHIFT
)
4341 numentries
>>= (scale
- PAGE_SHIFT
);
4343 numentries
<<= (PAGE_SHIFT
- scale
);
4345 /* Make sure we've got at least a 0-order allocation.. */
4346 if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
4347 numentries
= PAGE_SIZE
/ bucketsize
;
4349 numentries
= roundup_pow_of_two(numentries
);
4351 /* limit allocation size to 1/16 total memory by default */
4353 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
4354 do_div(max
, bucketsize
);
4357 if (numentries
> max
)
4360 log2qty
= ilog2(numentries
);
4363 size
= bucketsize
<< log2qty
;
4364 if (flags
& HASH_EARLY
)
4365 table
= alloc_bootmem(size
);
4367 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
4369 unsigned long order
= get_order(size
);
4370 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
4372 * If bucketsize is not a power-of-two, we may free
4373 * some pages at the end of hash table.
4376 unsigned long alloc_end
= (unsigned long)table
+
4377 (PAGE_SIZE
<< order
);
4378 unsigned long used
= (unsigned long)table
+
4380 split_page(virt_to_page(table
), order
);
4381 while (used
< alloc_end
) {
4387 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
4390 panic("Failed to allocate %s hash table\n", tablename
);
4392 printk(KERN_INFO
"%s hash table entries: %d (order: %d, %lu bytes)\n",
4395 ilog2(size
) - PAGE_SHIFT
,
4399 *_hash_shift
= log2qty
;
4401 *_hash_mask
= (1 << log2qty
) - 1;
4406 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4407 struct page
*pfn_to_page(unsigned long pfn
)
4409 return __pfn_to_page(pfn
);
4411 unsigned long page_to_pfn(struct page
*page
)
4413 return __page_to_pfn(page
);
4415 EXPORT_SYMBOL(pfn_to_page
);
4416 EXPORT_SYMBOL(page_to_pfn
);
4417 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4419 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4420 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
4423 #ifdef CONFIG_SPARSEMEM
4424 return __pfn_to_section(pfn
)->pageblock_flags
;
4426 return zone
->pageblock_flags
;
4427 #endif /* CONFIG_SPARSEMEM */
4430 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
4432 #ifdef CONFIG_SPARSEMEM
4433 pfn
&= (PAGES_PER_SECTION
-1);
4434 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4436 pfn
= pfn
- zone
->zone_start_pfn
;
4437 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4438 #endif /* CONFIG_SPARSEMEM */
4442 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4443 * @page: The page within the block of interest
4444 * @start_bitidx: The first bit of interest to retrieve
4445 * @end_bitidx: The last bit of interest
4446 * returns pageblock_bits flags
4448 unsigned long get_pageblock_flags_group(struct page
*page
,
4449 int start_bitidx
, int end_bitidx
)
4452 unsigned long *bitmap
;
4453 unsigned long pfn
, bitidx
;
4454 unsigned long flags
= 0;
4455 unsigned long value
= 1;
4457 zone
= page_zone(page
);
4458 pfn
= page_to_pfn(page
);
4459 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4460 bitidx
= pfn_to_bitidx(zone
, pfn
);
4462 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4463 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
4470 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4471 * @page: The page within the block of interest
4472 * @start_bitidx: The first bit of interest
4473 * @end_bitidx: The last bit of interest
4474 * @flags: The flags to set
4476 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
4477 int start_bitidx
, int end_bitidx
)
4480 unsigned long *bitmap
;
4481 unsigned long pfn
, bitidx
;
4482 unsigned long value
= 1;
4484 zone
= page_zone(page
);
4485 pfn
= page_to_pfn(page
);
4486 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4487 bitidx
= pfn_to_bitidx(zone
, pfn
);
4488 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
4489 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
4491 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4493 __set_bit(bitidx
+ start_bitidx
, bitmap
);
4495 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
4499 * This is designed as sub function...plz see page_isolation.c also.
4500 * set/clear page block's type to be ISOLATE.
4501 * page allocater never alloc memory from ISOLATE block.
4504 int set_migratetype_isolate(struct page
*page
)
4507 unsigned long flags
;
4510 zone
= page_zone(page
);
4511 spin_lock_irqsave(&zone
->lock
, flags
);
4513 * In future, more migrate types will be able to be isolation target.
4515 if (get_pageblock_migratetype(page
) != MIGRATE_MOVABLE
)
4517 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
4518 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
4521 spin_unlock_irqrestore(&zone
->lock
, flags
);
4527 void unset_migratetype_isolate(struct page
*page
)
4530 unsigned long flags
;
4531 zone
= page_zone(page
);
4532 spin_lock_irqsave(&zone
->lock
, flags
);
4533 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
4535 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4536 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
4538 spin_unlock_irqrestore(&zone
->lock
, flags
);
4541 #ifdef CONFIG_MEMORY_HOTREMOVE
4543 * All pages in the range must be isolated before calling this.
4546 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
4552 unsigned long flags
;
4553 /* find the first valid pfn */
4554 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
4559 zone
= page_zone(pfn_to_page(pfn
));
4560 spin_lock_irqsave(&zone
->lock
, flags
);
4562 while (pfn
< end_pfn
) {
4563 if (!pfn_valid(pfn
)) {
4567 page
= pfn_to_page(pfn
);
4568 BUG_ON(page_count(page
));
4569 BUG_ON(!PageBuddy(page
));
4570 order
= page_order(page
);
4571 #ifdef CONFIG_DEBUG_VM
4572 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
4573 pfn
, 1 << order
, end_pfn
);
4575 list_del(&page
->lru
);
4576 rmv_page_order(page
);
4577 zone
->free_area
[order
].nr_free
--;
4578 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
4580 for (i
= 0; i
< (1 << order
); i
++)
4581 SetPageReserved((page
+i
));
4582 pfn
+= (1 << order
);
4584 spin_unlock_irqrestore(&zone
->lock
, flags
);