2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 * This file is released under the GPL.
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
26 #include <linux/module.h>
27 #include <linux/init.h>
29 #include <linux/xattr.h>
30 #include <linux/exportfs.h>
31 #include <linux/generic_acl.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/swap.h>
36 #include <linux/pagemap.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/backing-dev.h>
40 #include <linux/shmem_fs.h>
41 #include <linux/mount.h>
42 #include <linux/writeback.h>
43 #include <linux/vfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/security.h>
46 #include <linux/swapops.h>
47 #include <linux/mempolicy.h>
48 #include <linux/namei.h>
49 #include <linux/ctype.h>
50 #include <linux/migrate.h>
51 #include <linux/highmem.h>
53 #include <asm/uaccess.h>
54 #include <asm/div64.h>
55 #include <asm/pgtable.h>
57 /* This magic number is used in glibc for posix shared memory */
58 #define TMPFS_MAGIC 0x01021994
60 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
62 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
64 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
65 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
67 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
69 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
70 #define SHMEM_PAGEIN VM_READ
71 #define SHMEM_TRUNCATE VM_WRITE
73 /* Definition to limit shmem_truncate's steps between cond_rescheds */
74 #define LATENCY_LIMIT 64
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
79 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
81 SGP_QUICK
, /* don't try more than file page cache lookup */
82 SGP_READ
, /* don't exceed i_size, don't allocate page */
83 SGP_CACHE
, /* don't exceed i_size, may allocate page */
84 SGP_WRITE
, /* may exceed i_size, may allocate page */
85 SGP_FAULT
, /* same as SGP_CACHE, return with page locked */
88 static int shmem_getpage(struct inode
*inode
, unsigned long idx
,
89 struct page
**pagep
, enum sgp_type sgp
, int *type
);
91 static inline struct page
*shmem_dir_alloc(gfp_t gfp_mask
)
94 * The above definition of ENTRIES_PER_PAGE, and the use of
95 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
96 * might be reconsidered if it ever diverges from PAGE_SIZE.
98 * Mobility flags are masked out as swap vectors cannot move
100 return alloc_pages((gfp_mask
& ~GFP_MOVABLE_MASK
) | __GFP_ZERO
,
101 PAGE_CACHE_SHIFT
-PAGE_SHIFT
);
104 static inline void shmem_dir_free(struct page
*page
)
106 __free_pages(page
, PAGE_CACHE_SHIFT
-PAGE_SHIFT
);
109 static struct page
**shmem_dir_map(struct page
*page
)
111 return (struct page
**)kmap_atomic(page
, KM_USER0
);
114 static inline void shmem_dir_unmap(struct page
**dir
)
116 kunmap_atomic(dir
, KM_USER0
);
119 static swp_entry_t
*shmem_swp_map(struct page
*page
)
121 return (swp_entry_t
*)kmap_atomic(page
, KM_USER1
);
124 static inline void shmem_swp_balance_unmap(void)
127 * When passing a pointer to an i_direct entry, to code which
128 * also handles indirect entries and so will shmem_swp_unmap,
129 * we must arrange for the preempt count to remain in balance.
130 * What kmap_atomic of a lowmem page does depends on config
131 * and architecture, so pretend to kmap_atomic some lowmem page.
133 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1
);
136 static inline void shmem_swp_unmap(swp_entry_t
*entry
)
138 kunmap_atomic(entry
, KM_USER1
);
141 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
143 return sb
->s_fs_info
;
147 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
148 * for shared memory and for shared anonymous (/dev/zero) mappings
149 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
150 * consistent with the pre-accounting of private mappings ...
152 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
154 return (flags
& VM_ACCOUNT
)?
155 security_vm_enough_memory(VM_ACCT(size
)): 0;
158 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
160 if (flags
& VM_ACCOUNT
)
161 vm_unacct_memory(VM_ACCT(size
));
165 * ... whereas tmpfs objects are accounted incrementally as
166 * pages are allocated, in order to allow huge sparse files.
167 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
168 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
170 static inline int shmem_acct_block(unsigned long flags
)
172 return (flags
& VM_ACCOUNT
)?
173 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE
));
176 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
178 if (!(flags
& VM_ACCOUNT
))
179 vm_unacct_memory(pages
* VM_ACCT(PAGE_CACHE_SIZE
));
182 static const struct super_operations shmem_ops
;
183 static const struct address_space_operations shmem_aops
;
184 static const struct file_operations shmem_file_operations
;
185 static const struct inode_operations shmem_inode_operations
;
186 static const struct inode_operations shmem_dir_inode_operations
;
187 static const struct inode_operations shmem_special_inode_operations
;
188 static struct vm_operations_struct shmem_vm_ops
;
190 static struct backing_dev_info shmem_backing_dev_info __read_mostly
= {
191 .ra_pages
= 0, /* No readahead */
192 .capabilities
= BDI_CAP_NO_ACCT_DIRTY
| BDI_CAP_NO_WRITEBACK
,
193 .unplug_io_fn
= default_unplug_io_fn
,
196 static LIST_HEAD(shmem_swaplist
);
197 static DEFINE_SPINLOCK(shmem_swaplist_lock
);
199 static void shmem_free_blocks(struct inode
*inode
, long pages
)
201 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
202 if (sbinfo
->max_blocks
) {
203 spin_lock(&sbinfo
->stat_lock
);
204 sbinfo
->free_blocks
+= pages
;
205 inode
->i_blocks
-= pages
*BLOCKS_PER_PAGE
;
206 spin_unlock(&sbinfo
->stat_lock
);
211 * shmem_recalc_inode - recalculate the size of an inode
213 * @inode: inode to recalc
215 * We have to calculate the free blocks since the mm can drop
216 * undirtied hole pages behind our back.
218 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
219 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
221 * It has to be called with the spinlock held.
223 static void shmem_recalc_inode(struct inode
*inode
)
225 struct shmem_inode_info
*info
= SHMEM_I(inode
);
228 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
230 info
->alloced
-= freed
;
231 shmem_unacct_blocks(info
->flags
, freed
);
232 shmem_free_blocks(inode
, freed
);
237 * shmem_swp_entry - find the swap vector position in the info structure
239 * @info: info structure for the inode
240 * @index: index of the page to find
241 * @page: optional page to add to the structure. Has to be preset to
244 * If there is no space allocated yet it will return NULL when
245 * page is NULL, else it will use the page for the needed block,
246 * setting it to NULL on return to indicate that it has been used.
248 * The swap vector is organized the following way:
250 * There are SHMEM_NR_DIRECT entries directly stored in the
251 * shmem_inode_info structure. So small files do not need an addional
254 * For pages with index > SHMEM_NR_DIRECT there is the pointer
255 * i_indirect which points to a page which holds in the first half
256 * doubly indirect blocks, in the second half triple indirect blocks:
258 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
259 * following layout (for SHMEM_NR_DIRECT == 16):
261 * i_indirect -> dir --> 16-19
274 static swp_entry_t
*shmem_swp_entry(struct shmem_inode_info
*info
, unsigned long index
, struct page
**page
)
276 unsigned long offset
;
280 if (index
< SHMEM_NR_DIRECT
) {
281 shmem_swp_balance_unmap();
282 return info
->i_direct
+index
;
284 if (!info
->i_indirect
) {
286 info
->i_indirect
= *page
;
289 return NULL
; /* need another page */
292 index
-= SHMEM_NR_DIRECT
;
293 offset
= index
% ENTRIES_PER_PAGE
;
294 index
/= ENTRIES_PER_PAGE
;
295 dir
= shmem_dir_map(info
->i_indirect
);
297 if (index
>= ENTRIES_PER_PAGE
/2) {
298 index
-= ENTRIES_PER_PAGE
/2;
299 dir
+= ENTRIES_PER_PAGE
/2 + index
/ENTRIES_PER_PAGE
;
300 index
%= ENTRIES_PER_PAGE
;
307 shmem_dir_unmap(dir
);
308 return NULL
; /* need another page */
310 shmem_dir_unmap(dir
);
311 dir
= shmem_dir_map(subdir
);
317 if (!page
|| !(subdir
= *page
)) {
318 shmem_dir_unmap(dir
);
319 return NULL
; /* need a page */
324 shmem_dir_unmap(dir
);
325 return shmem_swp_map(subdir
) + offset
;
328 static void shmem_swp_set(struct shmem_inode_info
*info
, swp_entry_t
*entry
, unsigned long value
)
330 long incdec
= value
? 1: -1;
333 info
->swapped
+= incdec
;
334 if ((unsigned long)(entry
- info
->i_direct
) >= SHMEM_NR_DIRECT
) {
335 struct page
*page
= kmap_atomic_to_page(entry
);
336 set_page_private(page
, page_private(page
) + incdec
);
341 * shmem_swp_alloc - get the position of the swap entry for the page.
342 * If it does not exist allocate the entry.
344 * @info: info structure for the inode
345 * @index: index of the page to find
346 * @sgp: check and recheck i_size? skip allocation?
348 static swp_entry_t
*shmem_swp_alloc(struct shmem_inode_info
*info
, unsigned long index
, enum sgp_type sgp
)
350 struct inode
*inode
= &info
->vfs_inode
;
351 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
352 struct page
*page
= NULL
;
355 if (sgp
!= SGP_WRITE
&&
356 ((loff_t
) index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
357 return ERR_PTR(-EINVAL
);
359 while (!(entry
= shmem_swp_entry(info
, index
, &page
))) {
361 return shmem_swp_map(ZERO_PAGE(0));
363 * Test free_blocks against 1 not 0, since we have 1 data
364 * page (and perhaps indirect index pages) yet to allocate:
365 * a waste to allocate index if we cannot allocate data.
367 if (sbinfo
->max_blocks
) {
368 spin_lock(&sbinfo
->stat_lock
);
369 if (sbinfo
->free_blocks
<= 1) {
370 spin_unlock(&sbinfo
->stat_lock
);
371 return ERR_PTR(-ENOSPC
);
373 sbinfo
->free_blocks
--;
374 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
375 spin_unlock(&sbinfo
->stat_lock
);
378 spin_unlock(&info
->lock
);
379 page
= shmem_dir_alloc(mapping_gfp_mask(inode
->i_mapping
));
381 set_page_private(page
, 0);
382 spin_lock(&info
->lock
);
385 shmem_free_blocks(inode
, 1);
386 return ERR_PTR(-ENOMEM
);
388 if (sgp
!= SGP_WRITE
&&
389 ((loff_t
) index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
390 entry
= ERR_PTR(-EINVAL
);
393 if (info
->next_index
<= index
)
394 info
->next_index
= index
+ 1;
397 /* another task gave its page, or truncated the file */
398 shmem_free_blocks(inode
, 1);
399 shmem_dir_free(page
);
401 if (info
->next_index
<= index
&& !IS_ERR(entry
))
402 info
->next_index
= index
+ 1;
407 * shmem_free_swp - free some swap entries in a directory
409 * @dir: pointer to the directory
410 * @edir: pointer after last entry of the directory
411 * @punch_lock: pointer to spinlock when needed for the holepunch case
413 static int shmem_free_swp(swp_entry_t
*dir
, swp_entry_t
*edir
,
414 spinlock_t
*punch_lock
)
416 spinlock_t
*punch_unlock
= NULL
;
420 for (ptr
= dir
; ptr
< edir
; ptr
++) {
422 if (unlikely(punch_lock
)) {
423 punch_unlock
= punch_lock
;
425 spin_lock(punch_unlock
);
429 free_swap_and_cache(*ptr
);
430 *ptr
= (swp_entry_t
){0};
435 spin_unlock(punch_unlock
);
439 static int shmem_map_and_free_swp(struct page
*subdir
, int offset
,
440 int limit
, struct page
***dir
, spinlock_t
*punch_lock
)
445 ptr
= shmem_swp_map(subdir
);
446 for (; offset
< limit
; offset
+= LATENCY_LIMIT
) {
447 int size
= limit
- offset
;
448 if (size
> LATENCY_LIMIT
)
449 size
= LATENCY_LIMIT
;
450 freed
+= shmem_free_swp(ptr
+offset
, ptr
+offset
+size
,
452 if (need_resched()) {
453 shmem_swp_unmap(ptr
);
455 shmem_dir_unmap(*dir
);
459 ptr
= shmem_swp_map(subdir
);
462 shmem_swp_unmap(ptr
);
466 static void shmem_free_pages(struct list_head
*next
)
472 page
= container_of(next
, struct page
, lru
);
474 shmem_dir_free(page
);
476 if (freed
>= LATENCY_LIMIT
) {
483 static void shmem_truncate_range(struct inode
*inode
, loff_t start
, loff_t end
)
485 struct shmem_inode_info
*info
= SHMEM_I(inode
);
490 unsigned long diroff
;
496 LIST_HEAD(pages_to_free
);
497 long nr_pages_to_free
= 0;
498 long nr_swaps_freed
= 0;
502 spinlock_t
*needs_lock
;
503 spinlock_t
*punch_lock
;
504 unsigned long upper_limit
;
506 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
507 idx
= (start
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
508 if (idx
>= info
->next_index
)
511 spin_lock(&info
->lock
);
512 info
->flags
|= SHMEM_TRUNCATE
;
513 if (likely(end
== (loff_t
) -1)) {
514 limit
= info
->next_index
;
515 upper_limit
= SHMEM_MAX_INDEX
;
516 info
->next_index
= idx
;
520 if (end
+ 1 >= inode
->i_size
) { /* we may free a little more */
521 limit
= (inode
->i_size
+ PAGE_CACHE_SIZE
- 1) >>
523 upper_limit
= SHMEM_MAX_INDEX
;
525 limit
= (end
+ 1) >> PAGE_CACHE_SHIFT
;
528 needs_lock
= &info
->lock
;
532 topdir
= info
->i_indirect
;
533 if (topdir
&& idx
<= SHMEM_NR_DIRECT
&& !punch_hole
) {
534 info
->i_indirect
= NULL
;
536 list_add(&topdir
->lru
, &pages_to_free
);
538 spin_unlock(&info
->lock
);
540 if (info
->swapped
&& idx
< SHMEM_NR_DIRECT
) {
541 ptr
= info
->i_direct
;
543 if (size
> SHMEM_NR_DIRECT
)
544 size
= SHMEM_NR_DIRECT
;
545 nr_swaps_freed
= shmem_free_swp(ptr
+idx
, ptr
+size
, needs_lock
);
549 * If there are no indirect blocks or we are punching a hole
550 * below indirect blocks, nothing to be done.
552 if (!topdir
|| limit
<= SHMEM_NR_DIRECT
)
556 * The truncation case has already dropped info->lock, and we're safe
557 * because i_size and next_index have already been lowered, preventing
558 * access beyond. But in the punch_hole case, we still need to take
559 * the lock when updating the swap directory, because there might be
560 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
561 * shmem_writepage. However, whenever we find we can remove a whole
562 * directory page (not at the misaligned start or end of the range),
563 * we first NULLify its pointer in the level above, and then have no
564 * need to take the lock when updating its contents: needs_lock and
565 * punch_lock (either pointing to info->lock or NULL) manage this.
568 upper_limit
-= SHMEM_NR_DIRECT
;
569 limit
-= SHMEM_NR_DIRECT
;
570 idx
= (idx
> SHMEM_NR_DIRECT
)? (idx
- SHMEM_NR_DIRECT
): 0;
571 offset
= idx
% ENTRIES_PER_PAGE
;
574 dir
= shmem_dir_map(topdir
);
575 stage
= ENTRIES_PER_PAGEPAGE
/2;
576 if (idx
< ENTRIES_PER_PAGEPAGE
/2) {
578 diroff
= idx
/ENTRIES_PER_PAGE
;
580 dir
+= ENTRIES_PER_PAGE
/2;
581 dir
+= (idx
- ENTRIES_PER_PAGEPAGE
/2)/ENTRIES_PER_PAGEPAGE
;
583 stage
+= ENTRIES_PER_PAGEPAGE
;
586 diroff
= ((idx
- ENTRIES_PER_PAGEPAGE
/2) %
587 ENTRIES_PER_PAGEPAGE
) / ENTRIES_PER_PAGE
;
588 if (!diroff
&& !offset
&& upper_limit
>= stage
) {
590 spin_lock(needs_lock
);
592 spin_unlock(needs_lock
);
597 list_add(&middir
->lru
, &pages_to_free
);
599 shmem_dir_unmap(dir
);
600 dir
= shmem_dir_map(middir
);
608 for (; idx
< limit
; idx
+= ENTRIES_PER_PAGE
, diroff
++) {
609 if (unlikely(idx
== stage
)) {
610 shmem_dir_unmap(dir
);
611 dir
= shmem_dir_map(topdir
) +
612 ENTRIES_PER_PAGE
/2 + idx
/ENTRIES_PER_PAGEPAGE
;
615 idx
+= ENTRIES_PER_PAGEPAGE
;
619 stage
= idx
+ ENTRIES_PER_PAGEPAGE
;
622 needs_lock
= &info
->lock
;
623 if (upper_limit
>= stage
) {
625 spin_lock(needs_lock
);
627 spin_unlock(needs_lock
);
632 list_add(&middir
->lru
, &pages_to_free
);
634 shmem_dir_unmap(dir
);
636 dir
= shmem_dir_map(middir
);
639 punch_lock
= needs_lock
;
640 subdir
= dir
[diroff
];
641 if (subdir
&& !offset
&& upper_limit
-idx
>= ENTRIES_PER_PAGE
) {
643 spin_lock(needs_lock
);
645 spin_unlock(needs_lock
);
650 list_add(&subdir
->lru
, &pages_to_free
);
652 if (subdir
&& page_private(subdir
) /* has swap entries */) {
654 if (size
> ENTRIES_PER_PAGE
)
655 size
= ENTRIES_PER_PAGE
;
656 freed
= shmem_map_and_free_swp(subdir
,
657 offset
, size
, &dir
, punch_lock
);
659 dir
= shmem_dir_map(middir
);
660 nr_swaps_freed
+= freed
;
661 if (offset
|| punch_lock
) {
662 spin_lock(&info
->lock
);
663 set_page_private(subdir
,
664 page_private(subdir
) - freed
);
665 spin_unlock(&info
->lock
);
667 BUG_ON(page_private(subdir
) != freed
);
672 shmem_dir_unmap(dir
);
674 if (inode
->i_mapping
->nrpages
&& (info
->flags
& SHMEM_PAGEIN
)) {
676 * Call truncate_inode_pages again: racing shmem_unuse_inode
677 * may have swizzled a page in from swap since vmtruncate or
678 * generic_delete_inode did it, before we lowered next_index.
679 * Also, though shmem_getpage checks i_size before adding to
680 * cache, no recheck after: so fix the narrow window there too.
682 * Recalling truncate_inode_pages_range and unmap_mapping_range
683 * every time for punch_hole (which never got a chance to clear
684 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
685 * yet hardly ever necessary: try to optimize them out later.
687 truncate_inode_pages_range(inode
->i_mapping
, start
, end
);
689 unmap_mapping_range(inode
->i_mapping
, start
,
693 spin_lock(&info
->lock
);
694 info
->flags
&= ~SHMEM_TRUNCATE
;
695 info
->swapped
-= nr_swaps_freed
;
696 if (nr_pages_to_free
)
697 shmem_free_blocks(inode
, nr_pages_to_free
);
698 shmem_recalc_inode(inode
);
699 spin_unlock(&info
->lock
);
702 * Empty swap vector directory pages to be freed?
704 if (!list_empty(&pages_to_free
)) {
705 pages_to_free
.prev
->next
= NULL
;
706 shmem_free_pages(pages_to_free
.next
);
710 static void shmem_truncate(struct inode
*inode
)
712 shmem_truncate_range(inode
, inode
->i_size
, (loff_t
)-1);
715 static int shmem_notify_change(struct dentry
*dentry
, struct iattr
*attr
)
717 struct inode
*inode
= dentry
->d_inode
;
718 struct page
*page
= NULL
;
721 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
722 if (attr
->ia_size
< inode
->i_size
) {
724 * If truncating down to a partial page, then
725 * if that page is already allocated, hold it
726 * in memory until the truncation is over, so
727 * truncate_partial_page cannnot miss it were
728 * it assigned to swap.
730 if (attr
->ia_size
& (PAGE_CACHE_SIZE
-1)) {
731 (void) shmem_getpage(inode
,
732 attr
->ia_size
>>PAGE_CACHE_SHIFT
,
733 &page
, SGP_READ
, NULL
);
736 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
737 * detect if any pages might have been added to cache
738 * after truncate_inode_pages. But we needn't bother
739 * if it's being fully truncated to zero-length: the
740 * nrpages check is efficient enough in that case.
743 struct shmem_inode_info
*info
= SHMEM_I(inode
);
744 spin_lock(&info
->lock
);
745 info
->flags
&= ~SHMEM_PAGEIN
;
746 spin_unlock(&info
->lock
);
751 error
= inode_change_ok(inode
, attr
);
753 error
= inode_setattr(inode
, attr
);
754 #ifdef CONFIG_TMPFS_POSIX_ACL
755 if (!error
&& (attr
->ia_valid
& ATTR_MODE
))
756 error
= generic_acl_chmod(inode
, &shmem_acl_ops
);
759 page_cache_release(page
);
763 static void shmem_delete_inode(struct inode
*inode
)
765 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
766 struct shmem_inode_info
*info
= SHMEM_I(inode
);
768 if (inode
->i_op
->truncate
== shmem_truncate
) {
769 truncate_inode_pages(inode
->i_mapping
, 0);
770 shmem_unacct_size(info
->flags
, inode
->i_size
);
772 shmem_truncate(inode
);
773 if (!list_empty(&info
->swaplist
)) {
774 spin_lock(&shmem_swaplist_lock
);
775 list_del_init(&info
->swaplist
);
776 spin_unlock(&shmem_swaplist_lock
);
779 BUG_ON(inode
->i_blocks
);
780 if (sbinfo
->max_inodes
) {
781 spin_lock(&sbinfo
->stat_lock
);
782 sbinfo
->free_inodes
++;
783 spin_unlock(&sbinfo
->stat_lock
);
788 static inline int shmem_find_swp(swp_entry_t entry
, swp_entry_t
*dir
, swp_entry_t
*edir
)
792 for (ptr
= dir
; ptr
< edir
; ptr
++) {
793 if (ptr
->val
== entry
.val
)
799 static int shmem_unuse_inode(struct shmem_inode_info
*info
, swp_entry_t entry
, struct page
*page
)
812 ptr
= info
->i_direct
;
813 spin_lock(&info
->lock
);
814 limit
= info
->next_index
;
816 if (size
> SHMEM_NR_DIRECT
)
817 size
= SHMEM_NR_DIRECT
;
818 offset
= shmem_find_swp(entry
, ptr
, ptr
+size
);
820 shmem_swp_balance_unmap();
823 if (!info
->i_indirect
)
826 dir
= shmem_dir_map(info
->i_indirect
);
827 stage
= SHMEM_NR_DIRECT
+ ENTRIES_PER_PAGEPAGE
/2;
829 for (idx
= SHMEM_NR_DIRECT
; idx
< limit
; idx
+= ENTRIES_PER_PAGE
, dir
++) {
830 if (unlikely(idx
== stage
)) {
831 shmem_dir_unmap(dir
-1);
832 dir
= shmem_dir_map(info
->i_indirect
) +
833 ENTRIES_PER_PAGE
/2 + idx
/ENTRIES_PER_PAGEPAGE
;
836 idx
+= ENTRIES_PER_PAGEPAGE
;
840 stage
= idx
+ ENTRIES_PER_PAGEPAGE
;
842 shmem_dir_unmap(dir
);
843 dir
= shmem_dir_map(subdir
);
846 if (subdir
&& page_private(subdir
)) {
847 ptr
= shmem_swp_map(subdir
);
849 if (size
> ENTRIES_PER_PAGE
)
850 size
= ENTRIES_PER_PAGE
;
851 offset
= shmem_find_swp(entry
, ptr
, ptr
+size
);
853 shmem_dir_unmap(dir
);
856 shmem_swp_unmap(ptr
);
860 shmem_dir_unmap(dir
-1);
862 spin_unlock(&info
->lock
);
866 inode
= &info
->vfs_inode
;
867 if (move_from_swap_cache(page
, idx
, inode
->i_mapping
) == 0) {
868 info
->flags
|= SHMEM_PAGEIN
;
869 shmem_swp_set(info
, ptr
+ offset
, 0);
871 shmem_swp_unmap(ptr
);
872 spin_unlock(&info
->lock
);
874 * Decrement swap count even when the entry is left behind:
875 * try_to_unuse will skip over mms, then reincrement count.
882 * shmem_unuse() search for an eventually swapped out shmem page.
884 int shmem_unuse(swp_entry_t entry
, struct page
*page
)
886 struct list_head
*p
, *next
;
887 struct shmem_inode_info
*info
;
890 spin_lock(&shmem_swaplist_lock
);
891 list_for_each_safe(p
, next
, &shmem_swaplist
) {
892 info
= list_entry(p
, struct shmem_inode_info
, swaplist
);
894 list_del_init(&info
->swaplist
);
895 else if (shmem_unuse_inode(info
, entry
, page
)) {
896 /* move head to start search for next from here */
897 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
902 spin_unlock(&shmem_swaplist_lock
);
907 * Move the page from the page cache to the swap cache.
909 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
911 struct shmem_inode_info
*info
;
912 swp_entry_t
*entry
, swap
;
913 struct address_space
*mapping
;
917 BUG_ON(!PageLocked(page
));
919 * shmem_backing_dev_info's capabilities prevent regular writeback or
920 * sync from ever calling shmem_writepage; but a stacking filesystem
921 * may use the ->writepage of its underlying filesystem, in which case
922 * we want to do nothing when that underlying filesystem is tmpfs
923 * (writing out to swap is useful as a response to memory pressure, but
924 * of no use to stabilize the data) - just redirty the page, unlock it
925 * and claim success in this case. AOP_WRITEPAGE_ACTIVATE, and the
926 * page_mapped check below, must be avoided unless we're in reclaim.
928 if (!wbc
->for_reclaim
) {
929 set_page_dirty(page
);
933 BUG_ON(page_mapped(page
));
935 mapping
= page
->mapping
;
937 inode
= mapping
->host
;
938 info
= SHMEM_I(inode
);
939 if (info
->flags
& VM_LOCKED
)
941 swap
= get_swap_page();
945 spin_lock(&info
->lock
);
946 shmem_recalc_inode(inode
);
947 if (index
>= info
->next_index
) {
948 BUG_ON(!(info
->flags
& SHMEM_TRUNCATE
));
951 entry
= shmem_swp_entry(info
, index
, NULL
);
955 if (move_to_swap_cache(page
, swap
) == 0) {
956 shmem_swp_set(info
, entry
, swap
.val
);
957 shmem_swp_unmap(entry
);
958 spin_unlock(&info
->lock
);
959 if (list_empty(&info
->swaplist
)) {
960 spin_lock(&shmem_swaplist_lock
);
961 /* move instead of add in case we're racing */
962 list_move_tail(&info
->swaplist
, &shmem_swaplist
);
963 spin_unlock(&shmem_swaplist_lock
);
969 shmem_swp_unmap(entry
);
971 spin_unlock(&info
->lock
);
974 set_page_dirty(page
);
975 return AOP_WRITEPAGE_ACTIVATE
; /* Return with the page locked */
979 static inline int shmem_parse_mpol(char *value
, int *policy
, nodemask_t
*policy_nodes
)
981 char *nodelist
= strchr(value
, ':');
985 /* NUL-terminate policy string */
987 if (nodelist_parse(nodelist
, *policy_nodes
))
989 if (!nodes_subset(*policy_nodes
, node_states
[N_HIGH_MEMORY
]))
992 if (!strcmp(value
, "default")) {
993 *policy
= MPOL_DEFAULT
;
994 /* Don't allow a nodelist */
997 } else if (!strcmp(value
, "prefer")) {
998 *policy
= MPOL_PREFERRED
;
999 /* Insist on a nodelist of one node only */
1001 char *rest
= nodelist
;
1002 while (isdigit(*rest
))
1007 } else if (!strcmp(value
, "bind")) {
1008 *policy
= MPOL_BIND
;
1009 /* Insist on a nodelist */
1012 } else if (!strcmp(value
, "interleave")) {
1013 *policy
= MPOL_INTERLEAVE
;
1015 * Default to online nodes with memory if no nodelist
1018 *policy_nodes
= node_states
[N_HIGH_MEMORY
];
1022 /* Restore string for error message */
1028 static struct page
*shmem_swapin_async(struct shared_policy
*p
,
1029 swp_entry_t entry
, unsigned long idx
)
1032 struct vm_area_struct pvma
;
1034 /* Create a pseudo vma that just contains the policy */
1035 memset(&pvma
, 0, sizeof(struct vm_area_struct
));
1036 pvma
.vm_end
= PAGE_SIZE
;
1037 pvma
.vm_pgoff
= idx
;
1038 pvma
.vm_policy
= mpol_shared_policy_lookup(p
, idx
);
1039 page
= read_swap_cache_async(entry
, &pvma
, 0);
1040 mpol_free(pvma
.vm_policy
);
1044 static struct page
*shmem_swapin(struct shmem_inode_info
*info
,
1045 swp_entry_t entry
, unsigned long idx
)
1047 struct shared_policy
*p
= &info
->policy
;
1050 unsigned long offset
;
1052 num
= valid_swaphandles(entry
, &offset
);
1053 for (i
= 0; i
< num
; offset
++, i
++) {
1054 page
= shmem_swapin_async(p
,
1055 swp_entry(swp_type(entry
), offset
), idx
);
1058 page_cache_release(page
);
1060 lru_add_drain(); /* Push any new pages onto the LRU now */
1061 return shmem_swapin_async(p
, entry
, idx
);
1064 static struct page
*
1065 shmem_alloc_page(gfp_t gfp
, struct shmem_inode_info
*info
,
1068 struct vm_area_struct pvma
;
1071 memset(&pvma
, 0, sizeof(struct vm_area_struct
));
1072 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, idx
);
1073 pvma
.vm_pgoff
= idx
;
1074 pvma
.vm_end
= PAGE_SIZE
;
1075 page
= alloc_page_vma(gfp
, &pvma
, 0);
1076 mpol_free(pvma
.vm_policy
);
1080 static inline int shmem_parse_mpol(char *value
, int *policy
,
1081 nodemask_t
*policy_nodes
)
1086 static inline struct page
*
1087 shmem_swapin(struct shmem_inode_info
*info
,swp_entry_t entry
,unsigned long idx
)
1089 swapin_readahead(entry
, 0, NULL
);
1090 return read_swap_cache_async(entry
, NULL
, 0);
1093 static inline struct page
*
1094 shmem_alloc_page(gfp_t gfp
,struct shmem_inode_info
*info
, unsigned long idx
)
1096 return alloc_page(gfp
);
1101 * shmem_getpage - either get the page from swap or allocate a new one
1103 * If we allocate a new one we do not mark it dirty. That's up to the
1104 * vm. If we swap it in we mark it dirty since we also free the swap
1105 * entry since a page cannot live in both the swap and page cache
1107 static int shmem_getpage(struct inode
*inode
, unsigned long idx
,
1108 struct page
**pagep
, enum sgp_type sgp
, int *type
)
1110 struct address_space
*mapping
= inode
->i_mapping
;
1111 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1112 struct shmem_sb_info
*sbinfo
;
1113 struct page
*filepage
= *pagep
;
1114 struct page
*swappage
;
1119 if (idx
>= SHMEM_MAX_INDEX
)
1126 * Normally, filepage is NULL on entry, and either found
1127 * uptodate immediately, or allocated and zeroed, or read
1128 * in under swappage, which is then assigned to filepage.
1129 * But shmem_readpage and shmem_write_begin pass in a locked
1130 * filepage, which may be found not uptodate by other callers
1131 * too, and may need to be copied from the swappage read in.
1135 filepage
= find_lock_page(mapping
, idx
);
1136 if (filepage
&& PageUptodate(filepage
))
1139 if (sgp
== SGP_QUICK
)
1142 spin_lock(&info
->lock
);
1143 shmem_recalc_inode(inode
);
1144 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1145 if (IS_ERR(entry
)) {
1146 spin_unlock(&info
->lock
);
1147 error
= PTR_ERR(entry
);
1153 /* Look it up and read it in.. */
1154 swappage
= lookup_swap_cache(swap
);
1156 shmem_swp_unmap(entry
);
1157 /* here we actually do the io */
1158 if (type
&& !(*type
& VM_FAULT_MAJOR
)) {
1159 __count_vm_event(PGMAJFAULT
);
1160 *type
|= VM_FAULT_MAJOR
;
1162 spin_unlock(&info
->lock
);
1163 swappage
= shmem_swapin(info
, swap
, idx
);
1165 spin_lock(&info
->lock
);
1166 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1168 error
= PTR_ERR(entry
);
1170 if (entry
->val
== swap
.val
)
1172 shmem_swp_unmap(entry
);
1174 spin_unlock(&info
->lock
);
1179 wait_on_page_locked(swappage
);
1180 page_cache_release(swappage
);
1184 /* We have to do this with page locked to prevent races */
1185 if (TestSetPageLocked(swappage
)) {
1186 shmem_swp_unmap(entry
);
1187 spin_unlock(&info
->lock
);
1188 wait_on_page_locked(swappage
);
1189 page_cache_release(swappage
);
1192 if (PageWriteback(swappage
)) {
1193 shmem_swp_unmap(entry
);
1194 spin_unlock(&info
->lock
);
1195 wait_on_page_writeback(swappage
);
1196 unlock_page(swappage
);
1197 page_cache_release(swappage
);
1200 if (!PageUptodate(swappage
)) {
1201 shmem_swp_unmap(entry
);
1202 spin_unlock(&info
->lock
);
1203 unlock_page(swappage
);
1204 page_cache_release(swappage
);
1210 shmem_swp_set(info
, entry
, 0);
1211 shmem_swp_unmap(entry
);
1212 delete_from_swap_cache(swappage
);
1213 spin_unlock(&info
->lock
);
1214 copy_highpage(filepage
, swappage
);
1215 unlock_page(swappage
);
1216 page_cache_release(swappage
);
1217 flush_dcache_page(filepage
);
1218 SetPageUptodate(filepage
);
1219 set_page_dirty(filepage
);
1221 } else if (!(error
= move_from_swap_cache(
1222 swappage
, idx
, mapping
))) {
1223 info
->flags
|= SHMEM_PAGEIN
;
1224 shmem_swp_set(info
, entry
, 0);
1225 shmem_swp_unmap(entry
);
1226 spin_unlock(&info
->lock
);
1227 filepage
= swappage
;
1230 shmem_swp_unmap(entry
);
1231 spin_unlock(&info
->lock
);
1232 unlock_page(swappage
);
1233 page_cache_release(swappage
);
1234 if (error
== -ENOMEM
) {
1235 /* let kswapd refresh zone for GFP_ATOMICs */
1236 congestion_wait(WRITE
, HZ
/50);
1240 } else if (sgp
== SGP_READ
&& !filepage
) {
1241 shmem_swp_unmap(entry
);
1242 filepage
= find_get_page(mapping
, idx
);
1244 (!PageUptodate(filepage
) || TestSetPageLocked(filepage
))) {
1245 spin_unlock(&info
->lock
);
1246 wait_on_page_locked(filepage
);
1247 page_cache_release(filepage
);
1251 spin_unlock(&info
->lock
);
1253 shmem_swp_unmap(entry
);
1254 sbinfo
= SHMEM_SB(inode
->i_sb
);
1255 if (sbinfo
->max_blocks
) {
1256 spin_lock(&sbinfo
->stat_lock
);
1257 if (sbinfo
->free_blocks
== 0 ||
1258 shmem_acct_block(info
->flags
)) {
1259 spin_unlock(&sbinfo
->stat_lock
);
1260 spin_unlock(&info
->lock
);
1264 sbinfo
->free_blocks
--;
1265 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
1266 spin_unlock(&sbinfo
->stat_lock
);
1267 } else if (shmem_acct_block(info
->flags
)) {
1268 spin_unlock(&info
->lock
);
1274 spin_unlock(&info
->lock
);
1275 filepage
= shmem_alloc_page(mapping_gfp_mask(mapping
),
1279 shmem_unacct_blocks(info
->flags
, 1);
1280 shmem_free_blocks(inode
, 1);
1285 spin_lock(&info
->lock
);
1286 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1288 error
= PTR_ERR(entry
);
1291 shmem_swp_unmap(entry
);
1293 if (error
|| swap
.val
|| 0 != add_to_page_cache_lru(
1294 filepage
, mapping
, idx
, GFP_ATOMIC
)) {
1295 spin_unlock(&info
->lock
);
1296 page_cache_release(filepage
);
1297 shmem_unacct_blocks(info
->flags
, 1);
1298 shmem_free_blocks(inode
, 1);
1304 info
->flags
|= SHMEM_PAGEIN
;
1308 spin_unlock(&info
->lock
);
1309 clear_highpage(filepage
);
1310 flush_dcache_page(filepage
);
1311 SetPageUptodate(filepage
);
1314 if (*pagep
!= filepage
) {
1316 if (sgp
!= SGP_FAULT
)
1317 unlock_page(filepage
);
1323 if (*pagep
!= filepage
) {
1324 unlock_page(filepage
);
1325 page_cache_release(filepage
);
1330 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1332 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1336 if (((loff_t
)vmf
->pgoff
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
1337 return VM_FAULT_SIGBUS
;
1339 error
= shmem_getpage(inode
, vmf
->pgoff
, &vmf
->page
, SGP_FAULT
, &ret
);
1341 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1343 mark_page_accessed(vmf
->page
);
1344 return ret
| VM_FAULT_LOCKED
;
1348 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*new)
1350 struct inode
*i
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1351 return mpol_set_shared_policy(&SHMEM_I(i
)->policy
, vma
, new);
1354 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
1357 struct inode
*i
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1360 idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
1361 return mpol_shared_policy_lookup(&SHMEM_I(i
)->policy
, idx
);
1365 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
1367 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1368 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1369 int retval
= -ENOMEM
;
1371 spin_lock(&info
->lock
);
1372 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
1373 if (!user_shm_lock(inode
->i_size
, user
))
1375 info
->flags
|= VM_LOCKED
;
1377 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
1378 user_shm_unlock(inode
->i_size
, user
);
1379 info
->flags
&= ~VM_LOCKED
;
1383 spin_unlock(&info
->lock
);
1387 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1389 file_accessed(file
);
1390 vma
->vm_ops
= &shmem_vm_ops
;
1391 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1395 static struct inode
*
1396 shmem_get_inode(struct super_block
*sb
, int mode
, dev_t dev
)
1398 struct inode
*inode
;
1399 struct shmem_inode_info
*info
;
1400 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
1402 if (sbinfo
->max_inodes
) {
1403 spin_lock(&sbinfo
->stat_lock
);
1404 if (!sbinfo
->free_inodes
) {
1405 spin_unlock(&sbinfo
->stat_lock
);
1408 sbinfo
->free_inodes
--;
1409 spin_unlock(&sbinfo
->stat_lock
);
1412 inode
= new_inode(sb
);
1414 inode
->i_mode
= mode
;
1415 inode
->i_uid
= current
->fsuid
;
1416 inode
->i_gid
= current
->fsgid
;
1417 inode
->i_blocks
= 0;
1418 inode
->i_mapping
->a_ops
= &shmem_aops
;
1419 inode
->i_mapping
->backing_dev_info
= &shmem_backing_dev_info
;
1420 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1421 inode
->i_generation
= get_seconds();
1422 info
= SHMEM_I(inode
);
1423 memset(info
, 0, (char *)inode
- (char *)info
);
1424 spin_lock_init(&info
->lock
);
1425 INIT_LIST_HEAD(&info
->swaplist
);
1427 switch (mode
& S_IFMT
) {
1429 inode
->i_op
= &shmem_special_inode_operations
;
1430 init_special_inode(inode
, mode
, dev
);
1433 inode
->i_op
= &shmem_inode_operations
;
1434 inode
->i_fop
= &shmem_file_operations
;
1435 mpol_shared_policy_init(&info
->policy
, sbinfo
->policy
,
1436 &sbinfo
->policy_nodes
);
1440 /* Some things misbehave if size == 0 on a directory */
1441 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
1442 inode
->i_op
= &shmem_dir_inode_operations
;
1443 inode
->i_fop
= &simple_dir_operations
;
1447 * Must not load anything in the rbtree,
1448 * mpol_free_shared_policy will not be called.
1450 mpol_shared_policy_init(&info
->policy
, MPOL_DEFAULT
,
1454 } else if (sbinfo
->max_inodes
) {
1455 spin_lock(&sbinfo
->stat_lock
);
1456 sbinfo
->free_inodes
++;
1457 spin_unlock(&sbinfo
->stat_lock
);
1463 static const struct inode_operations shmem_symlink_inode_operations
;
1464 static const struct inode_operations shmem_symlink_inline_operations
;
1467 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1468 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1469 * below the loop driver, in the generic fashion that many filesystems support.
1471 static int shmem_readpage(struct file
*file
, struct page
*page
)
1473 struct inode
*inode
= page
->mapping
->host
;
1474 int error
= shmem_getpage(inode
, page
->index
, &page
, SGP_CACHE
, NULL
);
1480 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
1481 loff_t pos
, unsigned len
, unsigned flags
,
1482 struct page
**pagep
, void **fsdata
)
1484 struct inode
*inode
= mapping
->host
;
1485 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1487 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
, NULL
);
1491 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
1492 loff_t pos
, unsigned len
, unsigned copied
,
1493 struct page
*page
, void *fsdata
)
1495 struct inode
*inode
= mapping
->host
;
1497 set_page_dirty(page
);
1498 page_cache_release(page
);
1500 if (pos
+copied
> inode
->i_size
)
1501 i_size_write(inode
, pos
+copied
);
1507 shmem_file_write(struct file
*file
, const char __user
*buf
, size_t count
, loff_t
*ppos
)
1509 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1511 unsigned long written
;
1514 if ((ssize_t
) count
< 0)
1517 if (!access_ok(VERIFY_READ
, buf
, count
))
1520 mutex_lock(&inode
->i_mutex
);
1525 err
= generic_write_checks(file
, &pos
, &count
, 0);
1529 err
= remove_suid(file
->f_path
.dentry
);
1533 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
1536 struct page
*page
= NULL
;
1537 unsigned long bytes
, index
, offset
;
1541 offset
= (pos
& (PAGE_CACHE_SIZE
-1)); /* Within page */
1542 index
= pos
>> PAGE_CACHE_SHIFT
;
1543 bytes
= PAGE_CACHE_SIZE
- offset
;
1548 * We don't hold page lock across copy from user -
1549 * what would it guard against? - so no deadlock here.
1550 * But it still may be a good idea to prefault below.
1553 err
= shmem_getpage(inode
, index
, &page
, SGP_WRITE
, NULL
);
1558 if (PageHighMem(page
)) {
1559 volatile unsigned char dummy
;
1560 __get_user(dummy
, buf
);
1561 __get_user(dummy
, buf
+ bytes
- 1);
1563 kaddr
= kmap_atomic(page
, KM_USER0
);
1564 left
= __copy_from_user_inatomic(kaddr
+ offset
,
1566 kunmap_atomic(kaddr
, KM_USER0
);
1570 left
= __copy_from_user(kaddr
+ offset
, buf
, bytes
);
1578 if (pos
> inode
->i_size
)
1579 i_size_write(inode
, pos
);
1581 flush_dcache_page(page
);
1582 set_page_dirty(page
);
1583 mark_page_accessed(page
);
1584 page_cache_release(page
);
1594 * Our dirty pages are not counted in nr_dirty,
1595 * and we do not attempt to balance dirty pages.
1605 mutex_unlock(&inode
->i_mutex
);
1609 static void do_shmem_file_read(struct file
*filp
, loff_t
*ppos
, read_descriptor_t
*desc
, read_actor_t actor
)
1611 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
1612 struct address_space
*mapping
= inode
->i_mapping
;
1613 unsigned long index
, offset
;
1615 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1616 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1619 struct page
*page
= NULL
;
1620 unsigned long end_index
, nr
, ret
;
1621 loff_t i_size
= i_size_read(inode
);
1623 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1624 if (index
> end_index
)
1626 if (index
== end_index
) {
1627 nr
= i_size
& ~PAGE_CACHE_MASK
;
1632 desc
->error
= shmem_getpage(inode
, index
, &page
, SGP_READ
, NULL
);
1634 if (desc
->error
== -EINVAL
)
1640 * We must evaluate after, since reads (unlike writes)
1641 * are called without i_mutex protection against truncate
1643 nr
= PAGE_CACHE_SIZE
;
1644 i_size
= i_size_read(inode
);
1645 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1646 if (index
== end_index
) {
1647 nr
= i_size
& ~PAGE_CACHE_MASK
;
1650 page_cache_release(page
);
1658 * If users can be writing to this page using arbitrary
1659 * virtual addresses, take care about potential aliasing
1660 * before reading the page on the kernel side.
1662 if (mapping_writably_mapped(mapping
))
1663 flush_dcache_page(page
);
1665 * Mark the page accessed if we read the beginning.
1668 mark_page_accessed(page
);
1670 page
= ZERO_PAGE(0);
1671 page_cache_get(page
);
1675 * Ok, we have the page, and it's up-to-date, so
1676 * now we can copy it to user space...
1678 * The actor routine returns how many bytes were actually used..
1679 * NOTE! This may not be the same as how much of a user buffer
1680 * we filled up (we may be padding etc), so we can only update
1681 * "pos" here (the actor routine has to update the user buffer
1682 * pointers and the remaining count).
1684 ret
= actor(desc
, page
, offset
, nr
);
1686 index
+= offset
>> PAGE_CACHE_SHIFT
;
1687 offset
&= ~PAGE_CACHE_MASK
;
1689 page_cache_release(page
);
1690 if (ret
!= nr
|| !desc
->count
)
1696 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
1697 file_accessed(filp
);
1700 static ssize_t
shmem_file_read(struct file
*filp
, char __user
*buf
, size_t count
, loff_t
*ppos
)
1702 read_descriptor_t desc
;
1704 if ((ssize_t
) count
< 0)
1706 if (!access_ok(VERIFY_WRITE
, buf
, count
))
1716 do_shmem_file_read(filp
, ppos
, &desc
, file_read_actor
);
1718 return desc
.written
;
1722 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
1724 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
1726 buf
->f_type
= TMPFS_MAGIC
;
1727 buf
->f_bsize
= PAGE_CACHE_SIZE
;
1728 buf
->f_namelen
= NAME_MAX
;
1729 spin_lock(&sbinfo
->stat_lock
);
1730 if (sbinfo
->max_blocks
) {
1731 buf
->f_blocks
= sbinfo
->max_blocks
;
1732 buf
->f_bavail
= buf
->f_bfree
= sbinfo
->free_blocks
;
1734 if (sbinfo
->max_inodes
) {
1735 buf
->f_files
= sbinfo
->max_inodes
;
1736 buf
->f_ffree
= sbinfo
->free_inodes
;
1738 /* else leave those fields 0 like simple_statfs */
1739 spin_unlock(&sbinfo
->stat_lock
);
1744 * File creation. Allocate an inode, and we're done..
1747 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, int mode
, dev_t dev
)
1749 struct inode
*inode
= shmem_get_inode(dir
->i_sb
, mode
, dev
);
1750 int error
= -ENOSPC
;
1753 error
= security_inode_init_security(inode
, dir
, NULL
, NULL
,
1756 if (error
!= -EOPNOTSUPP
) {
1761 error
= shmem_acl_init(inode
, dir
);
1766 if (dir
->i_mode
& S_ISGID
) {
1767 inode
->i_gid
= dir
->i_gid
;
1769 inode
->i_mode
|= S_ISGID
;
1771 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1772 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1773 d_instantiate(dentry
, inode
);
1774 dget(dentry
); /* Extra count - pin the dentry in core */
1779 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
1783 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
1789 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, int mode
,
1790 struct nameidata
*nd
)
1792 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
1798 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1800 struct inode
*inode
= old_dentry
->d_inode
;
1801 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1804 * No ordinary (disk based) filesystem counts links as inodes;
1805 * but each new link needs a new dentry, pinning lowmem, and
1806 * tmpfs dentries cannot be pruned until they are unlinked.
1808 if (sbinfo
->max_inodes
) {
1809 spin_lock(&sbinfo
->stat_lock
);
1810 if (!sbinfo
->free_inodes
) {
1811 spin_unlock(&sbinfo
->stat_lock
);
1814 sbinfo
->free_inodes
--;
1815 spin_unlock(&sbinfo
->stat_lock
);
1818 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1819 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1821 atomic_inc(&inode
->i_count
); /* New dentry reference */
1822 dget(dentry
); /* Extra pinning count for the created dentry */
1823 d_instantiate(dentry
, inode
);
1827 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
1829 struct inode
*inode
= dentry
->d_inode
;
1831 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
)) {
1832 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1833 if (sbinfo
->max_inodes
) {
1834 spin_lock(&sbinfo
->stat_lock
);
1835 sbinfo
->free_inodes
++;
1836 spin_unlock(&sbinfo
->stat_lock
);
1840 dir
->i_size
-= BOGO_DIRENT_SIZE
;
1841 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1843 dput(dentry
); /* Undo the count from "create" - this does all the work */
1847 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1849 if (!simple_empty(dentry
))
1852 drop_nlink(dentry
->d_inode
);
1854 return shmem_unlink(dir
, dentry
);
1858 * The VFS layer already does all the dentry stuff for rename,
1859 * we just have to decrement the usage count for the target if
1860 * it exists so that the VFS layer correctly free's it when it
1863 static int shmem_rename(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
1865 struct inode
*inode
= old_dentry
->d_inode
;
1866 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
1868 if (!simple_empty(new_dentry
))
1871 if (new_dentry
->d_inode
) {
1872 (void) shmem_unlink(new_dir
, new_dentry
);
1874 drop_nlink(old_dir
);
1875 } else if (they_are_dirs
) {
1876 drop_nlink(old_dir
);
1880 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
1881 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
1882 old_dir
->i_ctime
= old_dir
->i_mtime
=
1883 new_dir
->i_ctime
= new_dir
->i_mtime
=
1884 inode
->i_ctime
= CURRENT_TIME
;
1888 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1892 struct inode
*inode
;
1893 struct page
*page
= NULL
;
1895 struct shmem_inode_info
*info
;
1897 len
= strlen(symname
) + 1;
1898 if (len
> PAGE_CACHE_SIZE
)
1899 return -ENAMETOOLONG
;
1901 inode
= shmem_get_inode(dir
->i_sb
, S_IFLNK
|S_IRWXUGO
, 0);
1905 error
= security_inode_init_security(inode
, dir
, NULL
, NULL
,
1908 if (error
!= -EOPNOTSUPP
) {
1915 info
= SHMEM_I(inode
);
1916 inode
->i_size
= len
-1;
1917 if (len
<= (char *)inode
- (char *)info
) {
1919 memcpy(info
, symname
, len
);
1920 inode
->i_op
= &shmem_symlink_inline_operations
;
1922 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
, NULL
);
1927 inode
->i_op
= &shmem_symlink_inode_operations
;
1928 kaddr
= kmap_atomic(page
, KM_USER0
);
1929 memcpy(kaddr
, symname
, len
);
1930 kunmap_atomic(kaddr
, KM_USER0
);
1931 set_page_dirty(page
);
1932 page_cache_release(page
);
1934 if (dir
->i_mode
& S_ISGID
)
1935 inode
->i_gid
= dir
->i_gid
;
1936 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1937 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1938 d_instantiate(dentry
, inode
);
1943 static void *shmem_follow_link_inline(struct dentry
*dentry
, struct nameidata
*nd
)
1945 nd_set_link(nd
, (char *)SHMEM_I(dentry
->d_inode
));
1949 static void *shmem_follow_link(struct dentry
*dentry
, struct nameidata
*nd
)
1951 struct page
*page
= NULL
;
1952 int res
= shmem_getpage(dentry
->d_inode
, 0, &page
, SGP_READ
, NULL
);
1953 nd_set_link(nd
, res
? ERR_PTR(res
) : kmap(page
));
1957 static void shmem_put_link(struct dentry
*dentry
, struct nameidata
*nd
, void *cookie
)
1959 if (!IS_ERR(nd_get_link(nd
))) {
1960 struct page
*page
= cookie
;
1962 mark_page_accessed(page
);
1963 page_cache_release(page
);
1967 static const struct inode_operations shmem_symlink_inline_operations
= {
1968 .readlink
= generic_readlink
,
1969 .follow_link
= shmem_follow_link_inline
,
1972 static const struct inode_operations shmem_symlink_inode_operations
= {
1973 .truncate
= shmem_truncate
,
1974 .readlink
= generic_readlink
,
1975 .follow_link
= shmem_follow_link
,
1976 .put_link
= shmem_put_link
,
1979 #ifdef CONFIG_TMPFS_POSIX_ACL
1981 * Superblocks without xattr inode operations will get security.* xattr
1982 * support from the VFS "for free". As soon as we have any other xattrs
1983 * like ACLs, we also need to implement the security.* handlers at
1984 * filesystem level, though.
1987 static size_t shmem_xattr_security_list(struct inode
*inode
, char *list
,
1988 size_t list_len
, const char *name
,
1991 return security_inode_listsecurity(inode
, list
, list_len
);
1994 static int shmem_xattr_security_get(struct inode
*inode
, const char *name
,
1995 void *buffer
, size_t size
)
1997 if (strcmp(name
, "") == 0)
1999 return security_inode_getsecurity(inode
, name
, buffer
, size
,
2003 static int shmem_xattr_security_set(struct inode
*inode
, const char *name
,
2004 const void *value
, size_t size
, int flags
)
2006 if (strcmp(name
, "") == 0)
2008 return security_inode_setsecurity(inode
, name
, value
, size
, flags
);
2011 static struct xattr_handler shmem_xattr_security_handler
= {
2012 .prefix
= XATTR_SECURITY_PREFIX
,
2013 .list
= shmem_xattr_security_list
,
2014 .get
= shmem_xattr_security_get
,
2015 .set
= shmem_xattr_security_set
,
2018 static struct xattr_handler
*shmem_xattr_handlers
[] = {
2019 &shmem_xattr_acl_access_handler
,
2020 &shmem_xattr_acl_default_handler
,
2021 &shmem_xattr_security_handler
,
2026 static struct dentry
*shmem_get_parent(struct dentry
*child
)
2028 return ERR_PTR(-ESTALE
);
2031 static int shmem_match(struct inode
*ino
, void *vfh
)
2035 inum
= (inum
<< 32) | fh
[1];
2036 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
2039 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
2040 struct fid
*fid
, int fh_len
, int fh_type
)
2042 struct inode
*inode
;
2043 struct dentry
*dentry
= NULL
;
2044 u64 inum
= fid
->raw
[2];
2045 inum
= (inum
<< 32) | fid
->raw
[1];
2050 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
2051 shmem_match
, fid
->raw
);
2053 dentry
= d_find_alias(inode
);
2060 static int shmem_encode_fh(struct dentry
*dentry
, __u32
*fh
, int *len
,
2063 struct inode
*inode
= dentry
->d_inode
;
2068 if (hlist_unhashed(&inode
->i_hash
)) {
2069 /* Unfortunately insert_inode_hash is not idempotent,
2070 * so as we hash inodes here rather than at creation
2071 * time, we need a lock to ensure we only try
2074 static DEFINE_SPINLOCK(lock
);
2076 if (hlist_unhashed(&inode
->i_hash
))
2077 __insert_inode_hash(inode
,
2078 inode
->i_ino
+ inode
->i_generation
);
2082 fh
[0] = inode
->i_generation
;
2083 fh
[1] = inode
->i_ino
;
2084 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
2090 static const struct export_operations shmem_export_ops
= {
2091 .get_parent
= shmem_get_parent
,
2092 .encode_fh
= shmem_encode_fh
,
2093 .fh_to_dentry
= shmem_fh_to_dentry
,
2096 static int shmem_parse_options(char *options
, int *mode
, uid_t
*uid
,
2097 gid_t
*gid
, unsigned long *blocks
, unsigned long *inodes
,
2098 int *policy
, nodemask_t
*policy_nodes
)
2100 char *this_char
, *value
, *rest
;
2102 while (options
!= NULL
) {
2103 this_char
= options
;
2106 * NUL-terminate this option: unfortunately,
2107 * mount options form a comma-separated list,
2108 * but mpol's nodelist may also contain commas.
2110 options
= strchr(options
, ',');
2111 if (options
== NULL
)
2114 if (!isdigit(*options
)) {
2121 if ((value
= strchr(this_char
,'=')) != NULL
) {
2125 "tmpfs: No value for mount option '%s'\n",
2130 if (!strcmp(this_char
,"size")) {
2131 unsigned long long size
;
2132 size
= memparse(value
,&rest
);
2134 size
<<= PAGE_SHIFT
;
2135 size
*= totalram_pages
;
2141 *blocks
= size
>> PAGE_CACHE_SHIFT
;
2142 } else if (!strcmp(this_char
,"nr_blocks")) {
2143 *blocks
= memparse(value
,&rest
);
2146 } else if (!strcmp(this_char
,"nr_inodes")) {
2147 *inodes
= memparse(value
,&rest
);
2150 } else if (!strcmp(this_char
,"mode")) {
2153 *mode
= simple_strtoul(value
,&rest
,8);
2156 } else if (!strcmp(this_char
,"uid")) {
2159 *uid
= simple_strtoul(value
,&rest
,0);
2162 } else if (!strcmp(this_char
,"gid")) {
2165 *gid
= simple_strtoul(value
,&rest
,0);
2168 } else if (!strcmp(this_char
,"mpol")) {
2169 if (shmem_parse_mpol(value
,policy
,policy_nodes
))
2172 printk(KERN_ERR
"tmpfs: Bad mount option %s\n",
2180 printk(KERN_ERR
"tmpfs: Bad value '%s' for mount option '%s'\n",
2186 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
2188 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2189 unsigned long max_blocks
= sbinfo
->max_blocks
;
2190 unsigned long max_inodes
= sbinfo
->max_inodes
;
2191 int policy
= sbinfo
->policy
;
2192 nodemask_t policy_nodes
= sbinfo
->policy_nodes
;
2193 unsigned long blocks
;
2194 unsigned long inodes
;
2195 int error
= -EINVAL
;
2197 if (shmem_parse_options(data
, NULL
, NULL
, NULL
, &max_blocks
,
2198 &max_inodes
, &policy
, &policy_nodes
))
2201 spin_lock(&sbinfo
->stat_lock
);
2202 blocks
= sbinfo
->max_blocks
- sbinfo
->free_blocks
;
2203 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
2204 if (max_blocks
< blocks
)
2206 if (max_inodes
< inodes
)
2209 * Those tests also disallow limited->unlimited while any are in
2210 * use, so i_blocks will always be zero when max_blocks is zero;
2211 * but we must separately disallow unlimited->limited, because
2212 * in that case we have no record of how much is already in use.
2214 if (max_blocks
&& !sbinfo
->max_blocks
)
2216 if (max_inodes
&& !sbinfo
->max_inodes
)
2220 sbinfo
->max_blocks
= max_blocks
;
2221 sbinfo
->free_blocks
= max_blocks
- blocks
;
2222 sbinfo
->max_inodes
= max_inodes
;
2223 sbinfo
->free_inodes
= max_inodes
- inodes
;
2224 sbinfo
->policy
= policy
;
2225 sbinfo
->policy_nodes
= policy_nodes
;
2227 spin_unlock(&sbinfo
->stat_lock
);
2232 static void shmem_put_super(struct super_block
*sb
)
2234 kfree(sb
->s_fs_info
);
2235 sb
->s_fs_info
= NULL
;
2238 static int shmem_fill_super(struct super_block
*sb
,
2239 void *data
, int silent
)
2241 struct inode
*inode
;
2242 struct dentry
*root
;
2243 int mode
= S_IRWXUGO
| S_ISVTX
;
2244 uid_t uid
= current
->fsuid
;
2245 gid_t gid
= current
->fsgid
;
2247 struct shmem_sb_info
*sbinfo
;
2248 unsigned long blocks
= 0;
2249 unsigned long inodes
= 0;
2250 int policy
= MPOL_DEFAULT
;
2251 nodemask_t policy_nodes
= node_states
[N_HIGH_MEMORY
];
2255 * Per default we only allow half of the physical ram per
2256 * tmpfs instance, limiting inodes to one per page of lowmem;
2257 * but the internal instance is left unlimited.
2259 if (!(sb
->s_flags
& MS_NOUSER
)) {
2260 blocks
= totalram_pages
/ 2;
2261 inodes
= totalram_pages
- totalhigh_pages
;
2262 if (inodes
> blocks
)
2264 if (shmem_parse_options(data
, &mode
, &uid
, &gid
, &blocks
,
2265 &inodes
, &policy
, &policy_nodes
))
2268 sb
->s_export_op
= &shmem_export_ops
;
2270 sb
->s_flags
|= MS_NOUSER
;
2273 /* Round up to L1_CACHE_BYTES to resist false sharing */
2274 sbinfo
= kmalloc(max((int)sizeof(struct shmem_sb_info
),
2275 L1_CACHE_BYTES
), GFP_KERNEL
);
2279 spin_lock_init(&sbinfo
->stat_lock
);
2280 sbinfo
->max_blocks
= blocks
;
2281 sbinfo
->free_blocks
= blocks
;
2282 sbinfo
->max_inodes
= inodes
;
2283 sbinfo
->free_inodes
= inodes
;
2284 sbinfo
->policy
= policy
;
2285 sbinfo
->policy_nodes
= policy_nodes
;
2287 sb
->s_fs_info
= sbinfo
;
2288 sb
->s_maxbytes
= SHMEM_MAX_BYTES
;
2289 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
2290 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
2291 sb
->s_magic
= TMPFS_MAGIC
;
2292 sb
->s_op
= &shmem_ops
;
2293 sb
->s_time_gran
= 1;
2294 #ifdef CONFIG_TMPFS_POSIX_ACL
2295 sb
->s_xattr
= shmem_xattr_handlers
;
2296 sb
->s_flags
|= MS_POSIXACL
;
2299 inode
= shmem_get_inode(sb
, S_IFDIR
| mode
, 0);
2304 root
= d_alloc_root(inode
);
2313 shmem_put_super(sb
);
2317 static struct kmem_cache
*shmem_inode_cachep
;
2319 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
2321 struct shmem_inode_info
*p
;
2322 p
= (struct shmem_inode_info
*)kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
2325 return &p
->vfs_inode
;
2328 static void shmem_destroy_inode(struct inode
*inode
)
2330 if ((inode
->i_mode
& S_IFMT
) == S_IFREG
) {
2331 /* only struct inode is valid if it's an inline symlink */
2332 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
2334 shmem_acl_destroy_inode(inode
);
2335 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
2338 static void init_once(struct kmem_cache
*cachep
, void *foo
)
2340 struct shmem_inode_info
*p
= (struct shmem_inode_info
*) foo
;
2342 inode_init_once(&p
->vfs_inode
);
2343 #ifdef CONFIG_TMPFS_POSIX_ACL
2345 p
->i_default_acl
= NULL
;
2349 static int init_inodecache(void)
2351 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
2352 sizeof(struct shmem_inode_info
),
2353 0, SLAB_PANIC
, init_once
);
2357 static void destroy_inodecache(void)
2359 kmem_cache_destroy(shmem_inode_cachep
);
2362 static const struct address_space_operations shmem_aops
= {
2363 .writepage
= shmem_writepage
,
2364 .set_page_dirty
= __set_page_dirty_no_writeback
,
2366 .readpage
= shmem_readpage
,
2367 .write_begin
= shmem_write_begin
,
2368 .write_end
= shmem_write_end
,
2370 .migratepage
= migrate_page
,
2373 static const struct file_operations shmem_file_operations
= {
2376 .llseek
= generic_file_llseek
,
2377 .read
= shmem_file_read
,
2378 .write
= shmem_file_write
,
2379 .fsync
= simple_sync_file
,
2380 .splice_read
= generic_file_splice_read
,
2381 .splice_write
= generic_file_splice_write
,
2385 static const struct inode_operations shmem_inode_operations
= {
2386 .truncate
= shmem_truncate
,
2387 .setattr
= shmem_notify_change
,
2388 .truncate_range
= shmem_truncate_range
,
2389 #ifdef CONFIG_TMPFS_POSIX_ACL
2390 .setxattr
= generic_setxattr
,
2391 .getxattr
= generic_getxattr
,
2392 .listxattr
= generic_listxattr
,
2393 .removexattr
= generic_removexattr
,
2394 .permission
= shmem_permission
,
2399 static const struct inode_operations shmem_dir_inode_operations
= {
2401 .create
= shmem_create
,
2402 .lookup
= simple_lookup
,
2404 .unlink
= shmem_unlink
,
2405 .symlink
= shmem_symlink
,
2406 .mkdir
= shmem_mkdir
,
2407 .rmdir
= shmem_rmdir
,
2408 .mknod
= shmem_mknod
,
2409 .rename
= shmem_rename
,
2411 #ifdef CONFIG_TMPFS_POSIX_ACL
2412 .setattr
= shmem_notify_change
,
2413 .setxattr
= generic_setxattr
,
2414 .getxattr
= generic_getxattr
,
2415 .listxattr
= generic_listxattr
,
2416 .removexattr
= generic_removexattr
,
2417 .permission
= shmem_permission
,
2421 static const struct inode_operations shmem_special_inode_operations
= {
2422 #ifdef CONFIG_TMPFS_POSIX_ACL
2423 .setattr
= shmem_notify_change
,
2424 .setxattr
= generic_setxattr
,
2425 .getxattr
= generic_getxattr
,
2426 .listxattr
= generic_listxattr
,
2427 .removexattr
= generic_removexattr
,
2428 .permission
= shmem_permission
,
2432 static const struct super_operations shmem_ops
= {
2433 .alloc_inode
= shmem_alloc_inode
,
2434 .destroy_inode
= shmem_destroy_inode
,
2436 .statfs
= shmem_statfs
,
2437 .remount_fs
= shmem_remount_fs
,
2439 .delete_inode
= shmem_delete_inode
,
2440 .drop_inode
= generic_delete_inode
,
2441 .put_super
= shmem_put_super
,
2444 static struct vm_operations_struct shmem_vm_ops
= {
2445 .fault
= shmem_fault
,
2447 .set_policy
= shmem_set_policy
,
2448 .get_policy
= shmem_get_policy
,
2453 static int shmem_get_sb(struct file_system_type
*fs_type
,
2454 int flags
, const char *dev_name
, void *data
, struct vfsmount
*mnt
)
2456 return get_sb_nodev(fs_type
, flags
, data
, shmem_fill_super
, mnt
);
2459 static struct file_system_type tmpfs_fs_type
= {
2460 .owner
= THIS_MODULE
,
2462 .get_sb
= shmem_get_sb
,
2463 .kill_sb
= kill_litter_super
,
2465 static struct vfsmount
*shm_mnt
;
2467 static int __init
init_tmpfs(void)
2471 error
= bdi_init(&shmem_backing_dev_info
);
2475 error
= init_inodecache();
2479 error
= register_filesystem(&tmpfs_fs_type
);
2481 printk(KERN_ERR
"Could not register tmpfs\n");
2485 shm_mnt
= vfs_kern_mount(&tmpfs_fs_type
, MS_NOUSER
,
2486 tmpfs_fs_type
.name
, NULL
);
2487 if (IS_ERR(shm_mnt
)) {
2488 error
= PTR_ERR(shm_mnt
);
2489 printk(KERN_ERR
"Could not kern_mount tmpfs\n");
2495 unregister_filesystem(&tmpfs_fs_type
);
2497 destroy_inodecache();
2499 bdi_destroy(&shmem_backing_dev_info
);
2501 shm_mnt
= ERR_PTR(error
);
2504 module_init(init_tmpfs
)
2507 * shmem_file_setup - get an unlinked file living in tmpfs
2509 * @name: name for dentry (to be seen in /proc/<pid>/maps
2510 * @size: size to be set for the file
2513 struct file
*shmem_file_setup(char *name
, loff_t size
, unsigned long flags
)
2517 struct inode
*inode
;
2518 struct dentry
*dentry
, *root
;
2521 if (IS_ERR(shm_mnt
))
2522 return (void *)shm_mnt
;
2524 if (size
< 0 || size
> SHMEM_MAX_BYTES
)
2525 return ERR_PTR(-EINVAL
);
2527 if (shmem_acct_size(flags
, size
))
2528 return ERR_PTR(-ENOMEM
);
2532 this.len
= strlen(name
);
2533 this.hash
= 0; /* will go */
2534 root
= shm_mnt
->mnt_root
;
2535 dentry
= d_alloc(root
, &this);
2540 file
= get_empty_filp();
2545 inode
= shmem_get_inode(root
->d_sb
, S_IFREG
| S_IRWXUGO
, 0);
2549 SHMEM_I(inode
)->flags
= flags
& VM_ACCOUNT
;
2550 d_instantiate(dentry
, inode
);
2551 inode
->i_size
= size
;
2552 inode
->i_nlink
= 0; /* It is unlinked */
2553 init_file(file
, shm_mnt
, dentry
, FMODE_WRITE
| FMODE_READ
,
2554 &shmem_file_operations
);
2562 shmem_unacct_size(flags
, size
);
2563 return ERR_PTR(error
);
2567 * shmem_zero_setup - setup a shared anonymous mapping
2569 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2571 int shmem_zero_setup(struct vm_area_struct
*vma
)
2574 loff_t size
= vma
->vm_end
- vma
->vm_start
;
2576 file
= shmem_file_setup("dev/zero", size
, vma
->vm_flags
);
2578 return PTR_ERR(file
);
2582 vma
->vm_file
= file
;
2583 vma
->vm_ops
= &shmem_vm_ops
;