[POWERPC] fsl_elbc_nand: factor out localbus defines
[linux-2.6/kmemtrace.git] / drivers / mtd / nand / fsl_elbc_nand.c
blob378b7aa638125cfd92929cb537fa2bbd1871cf7f
1 /* Freescale Enhanced Local Bus Controller NAND driver
3 * Copyright (c) 2006-2007 Freescale Semiconductor
5 * Authors: Nick Spence <nick.spence@freescale.com>,
6 * Scott Wood <scottwood@freescale.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/ioport.h>
29 #include <linux/of_platform.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
33 #include <linux/mtd/mtd.h>
34 #include <linux/mtd/nand.h>
35 #include <linux/mtd/nand_ecc.h>
36 #include <linux/mtd/partitions.h>
38 #include <asm/io.h>
39 #include <asm/fsl_lbc.h>
41 #define MAX_BANKS 8
42 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
43 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
45 struct fsl_elbc_ctrl;
47 /* mtd information per set */
49 struct fsl_elbc_mtd {
50 struct mtd_info mtd;
51 struct nand_chip chip;
52 struct fsl_elbc_ctrl *ctrl;
54 struct device *dev;
55 int bank; /* Chip select bank number */
56 u8 __iomem *vbase; /* Chip select base virtual address */
57 int page_size; /* NAND page size (0=512, 1=2048) */
58 unsigned int fmr; /* FCM Flash Mode Register value */
61 /* overview of the fsl elbc controller */
63 struct fsl_elbc_ctrl {
64 struct nand_hw_control controller;
65 struct fsl_elbc_mtd *chips[MAX_BANKS];
67 /* device info */
68 struct device *dev;
69 struct fsl_lbc_regs __iomem *regs;
70 int irq;
71 wait_queue_head_t irq_wait;
72 unsigned int irq_status; /* status read from LTESR by irq handler */
73 u8 __iomem *addr; /* Address of assigned FCM buffer */
74 unsigned int page; /* Last page written to / read from */
75 unsigned int read_bytes; /* Number of bytes read during command */
76 unsigned int column; /* Saved column from SEQIN */
77 unsigned int index; /* Pointer to next byte to 'read' */
78 unsigned int status; /* status read from LTESR after last op */
79 unsigned int mdr; /* UPM/FCM Data Register value */
80 unsigned int use_mdr; /* Non zero if the MDR is to be set */
81 unsigned int oob; /* Non zero if operating on OOB data */
82 char *oob_poi; /* Place to write ECC after read back */
85 /* These map to the positions used by the FCM hardware ECC generator */
87 /* Small Page FLASH with FMR[ECCM] = 0 */
88 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
89 .eccbytes = 3,
90 .eccpos = {6, 7, 8},
91 .oobfree = { {0, 5}, {9, 7} },
92 .oobavail = 12,
95 /* Small Page FLASH with FMR[ECCM] = 1 */
96 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
97 .eccbytes = 3,
98 .eccpos = {8, 9, 10},
99 .oobfree = { {0, 5}, {6, 2}, {11, 5} },
100 .oobavail = 12,
103 /* Large Page FLASH with FMR[ECCM] = 0 */
104 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
105 .eccbytes = 12,
106 .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
107 .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
108 .oobavail = 48,
111 /* Large Page FLASH with FMR[ECCM] = 1 */
112 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
113 .eccbytes = 12,
114 .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
115 .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
116 .oobavail = 48,
119 /*=================================*/
122 * Set up the FCM hardware block and page address fields, and the fcm
123 * structure addr field to point to the correct FCM buffer in memory
125 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
127 struct nand_chip *chip = mtd->priv;
128 struct fsl_elbc_mtd *priv = chip->priv;
129 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
130 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
131 int buf_num;
133 ctrl->page = page_addr;
135 out_be32(&lbc->fbar,
136 page_addr >> (chip->phys_erase_shift - chip->page_shift));
138 if (priv->page_size) {
139 out_be32(&lbc->fpar,
140 ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
141 (oob ? FPAR_LP_MS : 0) | column);
142 buf_num = (page_addr & 1) << 2;
143 } else {
144 out_be32(&lbc->fpar,
145 ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
146 (oob ? FPAR_SP_MS : 0) | column);
147 buf_num = page_addr & 7;
150 ctrl->addr = priv->vbase + buf_num * 1024;
151 ctrl->index = column;
153 /* for OOB data point to the second half of the buffer */
154 if (oob)
155 ctrl->index += priv->page_size ? 2048 : 512;
157 dev_vdbg(ctrl->dev, "set_addr: bank=%d, ctrl->addr=0x%p (0x%p), "
158 "index %x, pes %d ps %d\n",
159 buf_num, ctrl->addr, priv->vbase, ctrl->index,
160 chip->phys_erase_shift, chip->page_shift);
164 * execute FCM command and wait for it to complete
166 static int fsl_elbc_run_command(struct mtd_info *mtd)
168 struct nand_chip *chip = mtd->priv;
169 struct fsl_elbc_mtd *priv = chip->priv;
170 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
171 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
173 /* Setup the FMR[OP] to execute without write protection */
174 out_be32(&lbc->fmr, priv->fmr | 3);
175 if (ctrl->use_mdr)
176 out_be32(&lbc->mdr, ctrl->mdr);
178 dev_vdbg(ctrl->dev,
179 "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
180 in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
181 dev_vdbg(ctrl->dev,
182 "fsl_elbc_run_command: fbar=%08x fpar=%08x "
183 "fbcr=%08x bank=%d\n",
184 in_be32(&lbc->fbar), in_be32(&lbc->fpar),
185 in_be32(&lbc->fbcr), priv->bank);
187 /* execute special operation */
188 out_be32(&lbc->lsor, priv->bank);
190 /* wait for FCM complete flag or timeout */
191 ctrl->irq_status = 0;
192 wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
193 FCM_TIMEOUT_MSECS * HZ/1000);
194 ctrl->status = ctrl->irq_status;
196 /* store mdr value in case it was needed */
197 if (ctrl->use_mdr)
198 ctrl->mdr = in_be32(&lbc->mdr);
200 ctrl->use_mdr = 0;
202 dev_vdbg(ctrl->dev,
203 "fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n",
204 ctrl->status, ctrl->mdr, in_be32(&lbc->fmr));
206 /* returns 0 on success otherwise non-zero) */
207 return ctrl->status == LTESR_CC ? 0 : -EIO;
210 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
212 struct fsl_elbc_mtd *priv = chip->priv;
213 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
214 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
216 if (priv->page_size) {
217 out_be32(&lbc->fir,
218 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
219 (FIR_OP_CA << FIR_OP1_SHIFT) |
220 (FIR_OP_PA << FIR_OP2_SHIFT) |
221 (FIR_OP_CW1 << FIR_OP3_SHIFT) |
222 (FIR_OP_RBW << FIR_OP4_SHIFT));
224 out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
225 (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
226 } else {
227 out_be32(&lbc->fir,
228 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
229 (FIR_OP_CA << FIR_OP1_SHIFT) |
230 (FIR_OP_PA << FIR_OP2_SHIFT) |
231 (FIR_OP_RBW << FIR_OP3_SHIFT));
233 if (oob)
234 out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
235 else
236 out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
240 /* cmdfunc send commands to the FCM */
241 static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
242 int column, int page_addr)
244 struct nand_chip *chip = mtd->priv;
245 struct fsl_elbc_mtd *priv = chip->priv;
246 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
247 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
249 ctrl->use_mdr = 0;
251 /* clear the read buffer */
252 ctrl->read_bytes = 0;
253 if (command != NAND_CMD_PAGEPROG)
254 ctrl->index = 0;
256 switch (command) {
257 /* READ0 and READ1 read the entire buffer to use hardware ECC. */
258 case NAND_CMD_READ1:
259 column += 256;
261 /* fall-through */
262 case NAND_CMD_READ0:
263 dev_dbg(ctrl->dev,
264 "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
265 " 0x%x, column: 0x%x.\n", page_addr, column);
268 out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
269 set_addr(mtd, 0, page_addr, 0);
271 ctrl->read_bytes = mtd->writesize + mtd->oobsize;
272 ctrl->index += column;
274 fsl_elbc_do_read(chip, 0);
275 fsl_elbc_run_command(mtd);
276 return;
278 /* READOOB reads only the OOB because no ECC is performed. */
279 case NAND_CMD_READOOB:
280 dev_vdbg(ctrl->dev,
281 "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
282 " 0x%x, column: 0x%x.\n", page_addr, column);
284 out_be32(&lbc->fbcr, mtd->oobsize - column);
285 set_addr(mtd, column, page_addr, 1);
287 ctrl->read_bytes = mtd->writesize + mtd->oobsize;
289 fsl_elbc_do_read(chip, 1);
290 fsl_elbc_run_command(mtd);
291 return;
293 /* READID must read all 5 possible bytes while CEB is active */
294 case NAND_CMD_READID:
295 dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
297 out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) |
298 (FIR_OP_UA << FIR_OP1_SHIFT) |
299 (FIR_OP_RBW << FIR_OP2_SHIFT));
300 out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
301 /* 5 bytes for manuf, device and exts */
302 out_be32(&lbc->fbcr, 5);
303 ctrl->read_bytes = 5;
304 ctrl->use_mdr = 1;
305 ctrl->mdr = 0;
307 set_addr(mtd, 0, 0, 0);
308 fsl_elbc_run_command(mtd);
309 return;
311 /* ERASE1 stores the block and page address */
312 case NAND_CMD_ERASE1:
313 dev_vdbg(ctrl->dev,
314 "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
315 "page_addr: 0x%x.\n", page_addr);
316 set_addr(mtd, 0, page_addr, 0);
317 return;
319 /* ERASE2 uses the block and page address from ERASE1 */
320 case NAND_CMD_ERASE2:
321 dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
323 out_be32(&lbc->fir,
324 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
325 (FIR_OP_PA << FIR_OP1_SHIFT) |
326 (FIR_OP_CM1 << FIR_OP2_SHIFT));
328 out_be32(&lbc->fcr,
329 (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
330 (NAND_CMD_ERASE2 << FCR_CMD1_SHIFT));
332 out_be32(&lbc->fbcr, 0);
333 ctrl->read_bytes = 0;
335 fsl_elbc_run_command(mtd);
336 return;
338 /* SEQIN sets up the addr buffer and all registers except the length */
339 case NAND_CMD_SEQIN: {
340 __be32 fcr;
341 dev_vdbg(ctrl->dev,
342 "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
343 "page_addr: 0x%x, column: 0x%x.\n",
344 page_addr, column);
346 ctrl->column = column;
347 ctrl->oob = 0;
349 fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) |
350 (NAND_CMD_SEQIN << FCR_CMD2_SHIFT);
352 if (priv->page_size) {
353 out_be32(&lbc->fir,
354 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
355 (FIR_OP_CA << FIR_OP1_SHIFT) |
356 (FIR_OP_PA << FIR_OP2_SHIFT) |
357 (FIR_OP_WB << FIR_OP3_SHIFT) |
358 (FIR_OP_CW1 << FIR_OP4_SHIFT));
360 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
361 } else {
362 out_be32(&lbc->fir,
363 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
364 (FIR_OP_CM2 << FIR_OP1_SHIFT) |
365 (FIR_OP_CA << FIR_OP2_SHIFT) |
366 (FIR_OP_PA << FIR_OP3_SHIFT) |
367 (FIR_OP_WB << FIR_OP4_SHIFT) |
368 (FIR_OP_CW1 << FIR_OP5_SHIFT));
370 if (column >= mtd->writesize) {
371 /* OOB area --> READOOB */
372 column -= mtd->writesize;
373 fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
374 ctrl->oob = 1;
375 } else if (column < 256) {
376 /* First 256 bytes --> READ0 */
377 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
378 } else {
379 /* Second 256 bytes --> READ1 */
380 fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT;
384 out_be32(&lbc->fcr, fcr);
385 set_addr(mtd, column, page_addr, ctrl->oob);
386 return;
389 /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
390 case NAND_CMD_PAGEPROG: {
391 int full_page;
392 dev_vdbg(ctrl->dev,
393 "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
394 "writing %d bytes.\n", ctrl->index);
396 /* if the write did not start at 0 or is not a full page
397 * then set the exact length, otherwise use a full page
398 * write so the HW generates the ECC.
400 if (ctrl->oob || ctrl->column != 0 ||
401 ctrl->index != mtd->writesize + mtd->oobsize) {
402 out_be32(&lbc->fbcr, ctrl->index);
403 full_page = 0;
404 } else {
405 out_be32(&lbc->fbcr, 0);
406 full_page = 1;
409 fsl_elbc_run_command(mtd);
411 /* Read back the page in order to fill in the ECC for the
412 * caller. Is this really needed?
414 if (full_page && ctrl->oob_poi) {
415 out_be32(&lbc->fbcr, 3);
416 set_addr(mtd, 6, page_addr, 1);
418 ctrl->read_bytes = mtd->writesize + 9;
420 fsl_elbc_do_read(chip, 1);
421 fsl_elbc_run_command(mtd);
423 memcpy_fromio(ctrl->oob_poi + 6,
424 &ctrl->addr[ctrl->index], 3);
425 ctrl->index += 3;
428 ctrl->oob_poi = NULL;
429 return;
432 /* CMD_STATUS must read the status byte while CEB is active */
433 /* Note - it does not wait for the ready line */
434 case NAND_CMD_STATUS:
435 out_be32(&lbc->fir,
436 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
437 (FIR_OP_RBW << FIR_OP1_SHIFT));
438 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
439 out_be32(&lbc->fbcr, 1);
440 set_addr(mtd, 0, 0, 0);
441 ctrl->read_bytes = 1;
443 fsl_elbc_run_command(mtd);
445 /* The chip always seems to report that it is
446 * write-protected, even when it is not.
448 setbits8(ctrl->addr, NAND_STATUS_WP);
449 return;
451 /* RESET without waiting for the ready line */
452 case NAND_CMD_RESET:
453 dev_dbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
454 out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
455 out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
456 fsl_elbc_run_command(mtd);
457 return;
459 default:
460 dev_err(ctrl->dev,
461 "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
462 command);
466 static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
468 /* The hardware does not seem to support multiple
469 * chips per bank.
474 * Write buf to the FCM Controller Data Buffer
476 static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
478 struct nand_chip *chip = mtd->priv;
479 struct fsl_elbc_mtd *priv = chip->priv;
480 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
481 unsigned int bufsize = mtd->writesize + mtd->oobsize;
483 if (len < 0) {
484 dev_err(ctrl->dev, "write_buf of %d bytes", len);
485 ctrl->status = 0;
486 return;
489 if ((unsigned int)len > bufsize - ctrl->index) {
490 dev_err(ctrl->dev,
491 "write_buf beyond end of buffer "
492 "(%d requested, %u available)\n",
493 len, bufsize - ctrl->index);
494 len = bufsize - ctrl->index;
497 memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
498 ctrl->index += len;
502 * read a byte from either the FCM hardware buffer if it has any data left
503 * otherwise issue a command to read a single byte.
505 static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
507 struct nand_chip *chip = mtd->priv;
508 struct fsl_elbc_mtd *priv = chip->priv;
509 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
511 /* If there are still bytes in the FCM, then use the next byte. */
512 if (ctrl->index < ctrl->read_bytes)
513 return in_8(&ctrl->addr[ctrl->index++]);
515 dev_err(ctrl->dev, "read_byte beyond end of buffer\n");
516 return ERR_BYTE;
520 * Read from the FCM Controller Data Buffer
522 static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
524 struct nand_chip *chip = mtd->priv;
525 struct fsl_elbc_mtd *priv = chip->priv;
526 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
527 int avail;
529 if (len < 0)
530 return;
532 avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
533 memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
534 ctrl->index += avail;
536 if (len > avail)
537 dev_err(ctrl->dev,
538 "read_buf beyond end of buffer "
539 "(%d requested, %d available)\n",
540 len, avail);
544 * Verify buffer against the FCM Controller Data Buffer
546 static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
548 struct nand_chip *chip = mtd->priv;
549 struct fsl_elbc_mtd *priv = chip->priv;
550 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
551 int i;
553 if (len < 0) {
554 dev_err(ctrl->dev, "write_buf of %d bytes", len);
555 return -EINVAL;
558 if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
559 dev_err(ctrl->dev,
560 "verify_buf beyond end of buffer "
561 "(%d requested, %u available)\n",
562 len, ctrl->read_bytes - ctrl->index);
564 ctrl->index = ctrl->read_bytes;
565 return -EINVAL;
568 for (i = 0; i < len; i++)
569 if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
570 break;
572 ctrl->index += len;
573 return i == len && ctrl->status == LTESR_CC ? 0 : -EIO;
576 /* This function is called after Program and Erase Operations to
577 * check for success or failure.
579 static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
581 struct fsl_elbc_mtd *priv = chip->priv;
582 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
583 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
585 if (ctrl->status != LTESR_CC)
586 return NAND_STATUS_FAIL;
588 /* Use READ_STATUS command, but wait for the device to be ready */
589 ctrl->use_mdr = 0;
590 out_be32(&lbc->fir,
591 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
592 (FIR_OP_RBW << FIR_OP1_SHIFT));
593 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
594 out_be32(&lbc->fbcr, 1);
595 set_addr(mtd, 0, 0, 0);
596 ctrl->read_bytes = 1;
598 fsl_elbc_run_command(mtd);
600 if (ctrl->status != LTESR_CC)
601 return NAND_STATUS_FAIL;
603 /* The chip always seems to report that it is
604 * write-protected, even when it is not.
606 setbits8(ctrl->addr, NAND_STATUS_WP);
607 return fsl_elbc_read_byte(mtd);
610 static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
612 struct nand_chip *chip = mtd->priv;
613 struct fsl_elbc_mtd *priv = chip->priv;
614 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
615 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
616 unsigned int al;
618 /* calculate FMR Address Length field */
619 al = 0;
620 if (chip->pagemask & 0xffff0000)
621 al++;
622 if (chip->pagemask & 0xff000000)
623 al++;
625 /* add to ECCM mode set in fsl_elbc_init */
626 priv->fmr |= (12 << FMR_CWTO_SHIFT) | /* Timeout > 12 ms */
627 (al << FMR_AL_SHIFT);
629 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->numchips = %d\n",
630 chip->numchips);
631 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chipsize = %ld\n",
632 chip->chipsize);
633 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
634 chip->pagemask);
635 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
636 chip->chip_delay);
637 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
638 chip->badblockpos);
639 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
640 chip->chip_shift);
641 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->page_shift = %d\n",
642 chip->page_shift);
643 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
644 chip->phys_erase_shift);
645 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
646 chip->ecclayout);
647 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
648 chip->ecc.mode);
649 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
650 chip->ecc.steps);
651 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
652 chip->ecc.bytes);
653 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
654 chip->ecc.total);
655 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
656 chip->ecc.layout);
657 dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
658 dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->size = %d\n", mtd->size);
659 dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
660 mtd->erasesize);
661 dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->writesize = %d\n",
662 mtd->writesize);
663 dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
664 mtd->oobsize);
666 /* adjust Option Register and ECC to match Flash page size */
667 if (mtd->writesize == 512) {
668 priv->page_size = 0;
669 clrbits32(&lbc->bank[priv->bank].or, ~OR_FCM_PGS);
670 } else if (mtd->writesize == 2048) {
671 priv->page_size = 1;
672 setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
673 /* adjust ecc setup if needed */
674 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
675 BR_DECC_CHK_GEN) {
676 chip->ecc.size = 512;
677 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
678 &fsl_elbc_oob_lp_eccm1 :
679 &fsl_elbc_oob_lp_eccm0;
680 mtd->ecclayout = chip->ecc.layout;
681 mtd->oobavail = chip->ecc.layout->oobavail;
683 } else {
684 dev_err(ctrl->dev,
685 "fsl_elbc_init: page size %d is not supported\n",
686 mtd->writesize);
687 return -1;
690 /* The default u-boot configuration on MPC8313ERDB causes errors;
691 * more delay is needed. This should be safe for other boards
692 * as well.
694 setbits32(&lbc->bank[priv->bank].or, 0x70);
695 return 0;
698 static int fsl_elbc_read_page(struct mtd_info *mtd,
699 struct nand_chip *chip,
700 uint8_t *buf)
702 fsl_elbc_read_buf(mtd, buf, mtd->writesize);
703 fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
705 if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
706 mtd->ecc_stats.failed++;
708 return 0;
711 /* ECC will be calculated automatically, and errors will be detected in
712 * waitfunc.
714 static void fsl_elbc_write_page(struct mtd_info *mtd,
715 struct nand_chip *chip,
716 const uint8_t *buf)
718 struct fsl_elbc_mtd *priv = chip->priv;
719 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
721 fsl_elbc_write_buf(mtd, buf, mtd->writesize);
722 fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
724 ctrl->oob_poi = chip->oob_poi;
727 static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
729 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
730 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
731 struct nand_chip *chip = &priv->chip;
733 dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
735 /* Fill in fsl_elbc_mtd structure */
736 priv->mtd.priv = chip;
737 priv->mtd.owner = THIS_MODULE;
738 priv->fmr = 0; /* rest filled in later */
740 /* fill in nand_chip structure */
741 /* set up function call table */
742 chip->read_byte = fsl_elbc_read_byte;
743 chip->write_buf = fsl_elbc_write_buf;
744 chip->read_buf = fsl_elbc_read_buf;
745 chip->verify_buf = fsl_elbc_verify_buf;
746 chip->select_chip = fsl_elbc_select_chip;
747 chip->cmdfunc = fsl_elbc_cmdfunc;
748 chip->waitfunc = fsl_elbc_wait;
750 /* set up nand options */
751 chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR;
753 chip->controller = &ctrl->controller;
754 chip->priv = priv;
756 chip->ecc.read_page = fsl_elbc_read_page;
757 chip->ecc.write_page = fsl_elbc_write_page;
759 /* If CS Base Register selects full hardware ECC then use it */
760 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
761 BR_DECC_CHK_GEN) {
762 chip->ecc.mode = NAND_ECC_HW;
763 /* put in small page settings and adjust later if needed */
764 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
765 &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
766 chip->ecc.size = 512;
767 chip->ecc.bytes = 3;
768 } else {
769 /* otherwise fall back to default software ECC */
770 chip->ecc.mode = NAND_ECC_SOFT;
773 return 0;
776 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
778 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
780 nand_release(&priv->mtd);
782 if (priv->vbase)
783 iounmap(priv->vbase);
785 ctrl->chips[priv->bank] = NULL;
786 kfree(priv);
788 return 0;
791 static int fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl,
792 struct device_node *node)
794 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
795 struct fsl_elbc_mtd *priv;
796 struct resource res;
797 #ifdef CONFIG_MTD_PARTITIONS
798 static const char *part_probe_types[]
799 = { "cmdlinepart", "RedBoot", NULL };
800 struct mtd_partition *parts;
801 #endif
802 int ret;
803 int bank;
805 /* get, allocate and map the memory resource */
806 ret = of_address_to_resource(node, 0, &res);
807 if (ret) {
808 dev_err(ctrl->dev, "failed to get resource\n");
809 return ret;
812 /* find which chip select it is connected to */
813 for (bank = 0; bank < MAX_BANKS; bank++)
814 if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
815 (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
816 (in_be32(&lbc->bank[bank].br) &
817 in_be32(&lbc->bank[bank].or) & BR_BA)
818 == res.start)
819 break;
821 if (bank >= MAX_BANKS) {
822 dev_err(ctrl->dev, "address did not match any chip selects\n");
823 return -ENODEV;
826 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
827 if (!priv)
828 return -ENOMEM;
830 ctrl->chips[bank] = priv;
831 priv->bank = bank;
832 priv->ctrl = ctrl;
833 priv->dev = ctrl->dev;
835 priv->vbase = ioremap(res.start, res.end - res.start + 1);
836 if (!priv->vbase) {
837 dev_err(ctrl->dev, "failed to map chip region\n");
838 ret = -ENOMEM;
839 goto err;
842 ret = fsl_elbc_chip_init(priv);
843 if (ret)
844 goto err;
846 ret = nand_scan_ident(&priv->mtd, 1);
847 if (ret)
848 goto err;
850 ret = fsl_elbc_chip_init_tail(&priv->mtd);
851 if (ret)
852 goto err;
854 ret = nand_scan_tail(&priv->mtd);
855 if (ret)
856 goto err;
858 #ifdef CONFIG_MTD_PARTITIONS
859 /* First look for RedBoot table or partitions on the command
860 * line, these take precedence over device tree information */
861 ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
862 if (ret < 0)
863 goto err;
865 #ifdef CONFIG_MTD_OF_PARTS
866 if (ret == 0) {
867 ret = of_mtd_parse_partitions(priv->dev, &priv->mtd,
868 node, &parts);
869 if (ret < 0)
870 goto err;
872 #endif
874 if (ret > 0)
875 add_mtd_partitions(&priv->mtd, parts, ret);
876 else
877 #endif
878 add_mtd_device(&priv->mtd);
880 printk(KERN_INFO "eLBC NAND device at 0x%zx, bank %d\n",
881 res.start, priv->bank);
882 return 0;
884 err:
885 fsl_elbc_chip_remove(priv);
886 return ret;
889 static int __devinit fsl_elbc_ctrl_init(struct fsl_elbc_ctrl *ctrl)
891 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
893 /* clear event registers */
894 setbits32(&lbc->ltesr, LTESR_NAND_MASK);
895 out_be32(&lbc->lteatr, 0);
897 /* Enable interrupts for any detected events */
898 out_be32(&lbc->lteir, LTESR_NAND_MASK);
900 ctrl->read_bytes = 0;
901 ctrl->index = 0;
902 ctrl->addr = NULL;
904 return 0;
907 static int __devexit fsl_elbc_ctrl_remove(struct of_device *ofdev)
909 struct fsl_elbc_ctrl *ctrl = dev_get_drvdata(&ofdev->dev);
910 int i;
912 for (i = 0; i < MAX_BANKS; i++)
913 if (ctrl->chips[i])
914 fsl_elbc_chip_remove(ctrl->chips[i]);
916 if (ctrl->irq)
917 free_irq(ctrl->irq, ctrl);
919 if (ctrl->regs)
920 iounmap(ctrl->regs);
922 dev_set_drvdata(&ofdev->dev, NULL);
923 kfree(ctrl);
924 return 0;
927 /* NOTE: This interrupt is also used to report other localbus events,
928 * such as transaction errors on other chipselects. If we want to
929 * capture those, we'll need to move the IRQ code into a shared
930 * LBC driver.
933 static irqreturn_t fsl_elbc_ctrl_irq(int irqno, void *data)
935 struct fsl_elbc_ctrl *ctrl = data;
936 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
937 __be32 status = in_be32(&lbc->ltesr) & LTESR_NAND_MASK;
939 if (status) {
940 out_be32(&lbc->ltesr, status);
941 out_be32(&lbc->lteatr, 0);
943 ctrl->irq_status = status;
944 smp_wmb();
945 wake_up(&ctrl->irq_wait);
947 return IRQ_HANDLED;
950 return IRQ_NONE;
953 /* fsl_elbc_ctrl_probe
955 * called by device layer when it finds a device matching
956 * one our driver can handled. This code allocates all of
957 * the resources needed for the controller only. The
958 * resources for the NAND banks themselves are allocated
959 * in the chip probe function.
962 static int __devinit fsl_elbc_ctrl_probe(struct of_device *ofdev,
963 const struct of_device_id *match)
965 struct device_node *child;
966 struct fsl_elbc_ctrl *ctrl;
967 int ret;
969 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
970 if (!ctrl)
971 return -ENOMEM;
973 dev_set_drvdata(&ofdev->dev, ctrl);
975 spin_lock_init(&ctrl->controller.lock);
976 init_waitqueue_head(&ctrl->controller.wq);
977 init_waitqueue_head(&ctrl->irq_wait);
979 ctrl->regs = of_iomap(ofdev->node, 0);
980 if (!ctrl->regs) {
981 dev_err(&ofdev->dev, "failed to get memory region\n");
982 ret = -ENODEV;
983 goto err;
986 ctrl->irq = of_irq_to_resource(ofdev->node, 0, NULL);
987 if (ctrl->irq == NO_IRQ) {
988 dev_err(&ofdev->dev, "failed to get irq resource\n");
989 ret = -ENODEV;
990 goto err;
993 ctrl->dev = &ofdev->dev;
995 ret = fsl_elbc_ctrl_init(ctrl);
996 if (ret < 0)
997 goto err;
999 ret = request_irq(ctrl->irq, fsl_elbc_ctrl_irq, 0, "fsl-elbc", ctrl);
1000 if (ret != 0) {
1001 dev_err(&ofdev->dev, "failed to install irq (%d)\n",
1002 ctrl->irq);
1003 ret = ctrl->irq;
1004 goto err;
1007 for_each_child_of_node(ofdev->node, child)
1008 if (of_device_is_compatible(child, "fsl,elbc-fcm-nand"))
1009 fsl_elbc_chip_probe(ctrl, child);
1011 return 0;
1013 err:
1014 fsl_elbc_ctrl_remove(ofdev);
1015 return ret;
1018 static const struct of_device_id fsl_elbc_match[] = {
1020 .compatible = "fsl,elbc",
1025 static struct of_platform_driver fsl_elbc_ctrl_driver = {
1026 .driver = {
1027 .name = "fsl-elbc",
1029 .match_table = fsl_elbc_match,
1030 .probe = fsl_elbc_ctrl_probe,
1031 .remove = __devexit_p(fsl_elbc_ctrl_remove),
1034 static int __init fsl_elbc_init(void)
1036 return of_register_platform_driver(&fsl_elbc_ctrl_driver);
1039 static void __exit fsl_elbc_exit(void)
1041 of_unregister_platform_driver(&fsl_elbc_ctrl_driver);
1044 module_init(fsl_elbc_init);
1045 module_exit(fsl_elbc_exit);
1047 MODULE_LICENSE("GPL");
1048 MODULE_AUTHOR("Freescale");
1049 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");