[ALSA] hda-codec - Add line_out_type to auto_pin_cfg struct
[linux-2.6/kmemtrace.git] / sound / pci / hda / hda_codec.c
blob9c8ac157791f888f927b3f43140e41a6550c3a1b
1 /*
2 * Universal Interface for Intel High Definition Audio Codec
4 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
7 * This driver is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This driver is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <sound/driver.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/slab.h>
26 #include <linux/pci.h>
27 #include <linux/mutex.h>
28 #include <sound/core.h>
29 #include "hda_codec.h"
30 #include <sound/asoundef.h>
31 #include <sound/tlv.h>
32 #include <sound/initval.h>
33 #include "hda_local.h"
37 * vendor / preset table
40 struct hda_vendor_id {
41 unsigned int id;
42 const char *name;
45 /* codec vendor labels */
46 static struct hda_vendor_id hda_vendor_ids[] = {
47 { 0x10ec, "Realtek" },
48 { 0x1057, "Motorola" },
49 { 0x1106, "VIA" },
50 { 0x11d4, "Analog Devices" },
51 { 0x13f6, "C-Media" },
52 { 0x14f1, "Conexant" },
53 { 0x434d, "C-Media" },
54 { 0x8384, "SigmaTel" },
55 {} /* terminator */
58 /* codec presets */
59 #include "hda_patch.h"
62 /**
63 * snd_hda_codec_read - send a command and get the response
64 * @codec: the HDA codec
65 * @nid: NID to send the command
66 * @direct: direct flag
67 * @verb: the verb to send
68 * @parm: the parameter for the verb
70 * Send a single command and read the corresponding response.
72 * Returns the obtained response value, or -1 for an error.
74 unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid,
75 int direct,
76 unsigned int verb, unsigned int parm)
78 unsigned int res;
79 mutex_lock(&codec->bus->cmd_mutex);
80 if (!codec->bus->ops.command(codec, nid, direct, verb, parm))
81 res = codec->bus->ops.get_response(codec);
82 else
83 res = (unsigned int)-1;
84 mutex_unlock(&codec->bus->cmd_mutex);
85 return res;
88 /**
89 * snd_hda_codec_write - send a single command without waiting for response
90 * @codec: the HDA codec
91 * @nid: NID to send the command
92 * @direct: direct flag
93 * @verb: the verb to send
94 * @parm: the parameter for the verb
96 * Send a single command without waiting for response.
98 * Returns 0 if successful, or a negative error code.
100 int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
101 unsigned int verb, unsigned int parm)
103 int err;
104 mutex_lock(&codec->bus->cmd_mutex);
105 err = codec->bus->ops.command(codec, nid, direct, verb, parm);
106 mutex_unlock(&codec->bus->cmd_mutex);
107 return err;
111 * snd_hda_sequence_write - sequence writes
112 * @codec: the HDA codec
113 * @seq: VERB array to send
115 * Send the commands sequentially from the given array.
116 * The array must be terminated with NID=0.
118 void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
120 for (; seq->nid; seq++)
121 snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
125 * snd_hda_get_sub_nodes - get the range of sub nodes
126 * @codec: the HDA codec
127 * @nid: NID to parse
128 * @start_id: the pointer to store the start NID
130 * Parse the NID and store the start NID of its sub-nodes.
131 * Returns the number of sub-nodes.
133 int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid,
134 hda_nid_t *start_id)
136 unsigned int parm;
138 parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
139 *start_id = (parm >> 16) & 0x7fff;
140 return (int)(parm & 0x7fff);
144 * snd_hda_get_connections - get connection list
145 * @codec: the HDA codec
146 * @nid: NID to parse
147 * @conn_list: connection list array
148 * @max_conns: max. number of connections to store
150 * Parses the connection list of the given widget and stores the list
151 * of NIDs.
153 * Returns the number of connections, or a negative error code.
155 int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
156 hda_nid_t *conn_list, int max_conns)
158 unsigned int parm;
159 int i, conn_len, conns;
160 unsigned int shift, num_elems, mask;
161 hda_nid_t prev_nid;
163 snd_assert(conn_list && max_conns > 0, return -EINVAL);
165 parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
166 if (parm & AC_CLIST_LONG) {
167 /* long form */
168 shift = 16;
169 num_elems = 2;
170 } else {
171 /* short form */
172 shift = 8;
173 num_elems = 4;
175 conn_len = parm & AC_CLIST_LENGTH;
176 mask = (1 << (shift-1)) - 1;
178 if (!conn_len)
179 return 0; /* no connection */
181 if (conn_len == 1) {
182 /* single connection */
183 parm = snd_hda_codec_read(codec, nid, 0,
184 AC_VERB_GET_CONNECT_LIST, 0);
185 conn_list[0] = parm & mask;
186 return 1;
189 /* multi connection */
190 conns = 0;
191 prev_nid = 0;
192 for (i = 0; i < conn_len; i++) {
193 int range_val;
194 hda_nid_t val, n;
196 if (i % num_elems == 0)
197 parm = snd_hda_codec_read(codec, nid, 0,
198 AC_VERB_GET_CONNECT_LIST, i);
199 range_val = !!(parm & (1 << (shift-1))); /* ranges */
200 val = parm & mask;
201 parm >>= shift;
202 if (range_val) {
203 /* ranges between the previous and this one */
204 if (!prev_nid || prev_nid >= val) {
205 snd_printk(KERN_WARNING "hda_codec: "
206 "invalid dep_range_val %x:%x\n",
207 prev_nid, val);
208 continue;
210 for (n = prev_nid + 1; n <= val; n++) {
211 if (conns >= max_conns) {
212 snd_printk(KERN_ERR
213 "Too many connections\n");
214 return -EINVAL;
216 conn_list[conns++] = n;
218 } else {
219 if (conns >= max_conns) {
220 snd_printk(KERN_ERR "Too many connections\n");
221 return -EINVAL;
223 conn_list[conns++] = val;
225 prev_nid = val;
227 return conns;
232 * snd_hda_queue_unsol_event - add an unsolicited event to queue
233 * @bus: the BUS
234 * @res: unsolicited event (lower 32bit of RIRB entry)
235 * @res_ex: codec addr and flags (upper 32bit or RIRB entry)
237 * Adds the given event to the queue. The events are processed in
238 * the workqueue asynchronously. Call this function in the interrupt
239 * hanlder when RIRB receives an unsolicited event.
241 * Returns 0 if successful, or a negative error code.
243 int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
245 struct hda_bus_unsolicited *unsol;
246 unsigned int wp;
248 unsol = bus->unsol;
249 if (!unsol)
250 return 0;
252 wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
253 unsol->wp = wp;
255 wp <<= 1;
256 unsol->queue[wp] = res;
257 unsol->queue[wp + 1] = res_ex;
259 schedule_work(&unsol->work);
261 return 0;
265 * process queueud unsolicited events
267 static void process_unsol_events(struct work_struct *work)
269 struct hda_bus_unsolicited *unsol =
270 container_of(work, struct hda_bus_unsolicited, work);
271 struct hda_bus *bus = unsol->bus;
272 struct hda_codec *codec;
273 unsigned int rp, caddr, res;
275 while (unsol->rp != unsol->wp) {
276 rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
277 unsol->rp = rp;
278 rp <<= 1;
279 res = unsol->queue[rp];
280 caddr = unsol->queue[rp + 1];
281 if (!(caddr & (1 << 4))) /* no unsolicited event? */
282 continue;
283 codec = bus->caddr_tbl[caddr & 0x0f];
284 if (codec && codec->patch_ops.unsol_event)
285 codec->patch_ops.unsol_event(codec, res);
290 * initialize unsolicited queue
292 static int __devinit init_unsol_queue(struct hda_bus *bus)
294 struct hda_bus_unsolicited *unsol;
296 if (bus->unsol) /* already initialized */
297 return 0;
299 unsol = kzalloc(sizeof(*unsol), GFP_KERNEL);
300 if (!unsol) {
301 snd_printk(KERN_ERR "hda_codec: "
302 "can't allocate unsolicited queue\n");
303 return -ENOMEM;
305 INIT_WORK(&unsol->work, process_unsol_events);
306 unsol->bus = bus;
307 bus->unsol = unsol;
308 return 0;
312 * destructor
314 static void snd_hda_codec_free(struct hda_codec *codec);
316 static int snd_hda_bus_free(struct hda_bus *bus)
318 struct hda_codec *codec, *n;
320 if (!bus)
321 return 0;
322 if (bus->unsol) {
323 flush_scheduled_work();
324 kfree(bus->unsol);
326 list_for_each_entry_safe(codec, n, &bus->codec_list, list) {
327 snd_hda_codec_free(codec);
329 if (bus->ops.private_free)
330 bus->ops.private_free(bus);
331 kfree(bus);
332 return 0;
335 static int snd_hda_bus_dev_free(struct snd_device *device)
337 struct hda_bus *bus = device->device_data;
338 return snd_hda_bus_free(bus);
342 * snd_hda_bus_new - create a HDA bus
343 * @card: the card entry
344 * @temp: the template for hda_bus information
345 * @busp: the pointer to store the created bus instance
347 * Returns 0 if successful, or a negative error code.
349 int __devinit snd_hda_bus_new(struct snd_card *card,
350 const struct hda_bus_template *temp,
351 struct hda_bus **busp)
353 struct hda_bus *bus;
354 int err;
355 static struct snd_device_ops dev_ops = {
356 .dev_free = snd_hda_bus_dev_free,
359 snd_assert(temp, return -EINVAL);
360 snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);
362 if (busp)
363 *busp = NULL;
365 bus = kzalloc(sizeof(*bus), GFP_KERNEL);
366 if (bus == NULL) {
367 snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
368 return -ENOMEM;
371 bus->card = card;
372 bus->private_data = temp->private_data;
373 bus->pci = temp->pci;
374 bus->modelname = temp->modelname;
375 bus->ops = temp->ops;
377 mutex_init(&bus->cmd_mutex);
378 INIT_LIST_HEAD(&bus->codec_list);
380 err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops);
381 if (err < 0) {
382 snd_hda_bus_free(bus);
383 return err;
385 if (busp)
386 *busp = bus;
387 return 0;
391 * find a matching codec preset
393 static const struct hda_codec_preset __devinit *
394 find_codec_preset(struct hda_codec *codec)
396 const struct hda_codec_preset **tbl, *preset;
398 if (codec->bus->modelname && !strcmp(codec->bus->modelname, "generic"))
399 return NULL; /* use the generic parser */
401 for (tbl = hda_preset_tables; *tbl; tbl++) {
402 for (preset = *tbl; preset->id; preset++) {
403 u32 mask = preset->mask;
404 if (!mask)
405 mask = ~0;
406 if (preset->id == (codec->vendor_id & mask) &&
407 (!preset->rev ||
408 preset->rev == codec->revision_id))
409 return preset;
412 return NULL;
416 * snd_hda_get_codec_name - store the codec name
418 void snd_hda_get_codec_name(struct hda_codec *codec,
419 char *name, int namelen)
421 const struct hda_vendor_id *c;
422 const char *vendor = NULL;
423 u16 vendor_id = codec->vendor_id >> 16;
424 char tmp[16];
426 for (c = hda_vendor_ids; c->id; c++) {
427 if (c->id == vendor_id) {
428 vendor = c->name;
429 break;
432 if (!vendor) {
433 sprintf(tmp, "Generic %04x", vendor_id);
434 vendor = tmp;
436 if (codec->preset && codec->preset->name)
437 snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
438 else
439 snprintf(name, namelen, "%s ID %x", vendor,
440 codec->vendor_id & 0xffff);
444 * look for an AFG and MFG nodes
446 static void __devinit setup_fg_nodes(struct hda_codec *codec)
448 int i, total_nodes;
449 hda_nid_t nid;
451 total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
452 for (i = 0; i < total_nodes; i++, nid++) {
453 unsigned int func;
454 func = snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE);
455 switch (func & 0xff) {
456 case AC_GRP_AUDIO_FUNCTION:
457 codec->afg = nid;
458 break;
459 case AC_GRP_MODEM_FUNCTION:
460 codec->mfg = nid;
461 break;
462 default:
463 break;
469 * read widget caps for each widget and store in cache
471 static int read_widget_caps(struct hda_codec *codec, hda_nid_t fg_node)
473 int i;
474 hda_nid_t nid;
476 codec->num_nodes = snd_hda_get_sub_nodes(codec, fg_node,
477 &codec->start_nid);
478 codec->wcaps = kmalloc(codec->num_nodes * 4, GFP_KERNEL);
479 if (!codec->wcaps)
480 return -ENOMEM;
481 nid = codec->start_nid;
482 for (i = 0; i < codec->num_nodes; i++, nid++)
483 codec->wcaps[i] = snd_hda_param_read(codec, nid,
484 AC_PAR_AUDIO_WIDGET_CAP);
485 return 0;
490 * codec destructor
492 static void snd_hda_codec_free(struct hda_codec *codec)
494 if (!codec)
495 return;
496 list_del(&codec->list);
497 codec->bus->caddr_tbl[codec->addr] = NULL;
498 if (codec->patch_ops.free)
499 codec->patch_ops.free(codec);
500 kfree(codec->amp_info);
501 kfree(codec->wcaps);
502 kfree(codec);
505 static void init_amp_hash(struct hda_codec *codec);
508 * snd_hda_codec_new - create a HDA codec
509 * @bus: the bus to assign
510 * @codec_addr: the codec address
511 * @codecp: the pointer to store the generated codec
513 * Returns 0 if successful, or a negative error code.
515 int __devinit snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
516 struct hda_codec **codecp)
518 struct hda_codec *codec;
519 char component[13];
520 int err;
522 snd_assert(bus, return -EINVAL);
523 snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);
525 if (bus->caddr_tbl[codec_addr]) {
526 snd_printk(KERN_ERR "hda_codec: "
527 "address 0x%x is already occupied\n", codec_addr);
528 return -EBUSY;
531 codec = kzalloc(sizeof(*codec), GFP_KERNEL);
532 if (codec == NULL) {
533 snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
534 return -ENOMEM;
537 codec->bus = bus;
538 codec->addr = codec_addr;
539 mutex_init(&codec->spdif_mutex);
540 init_amp_hash(codec);
542 list_add_tail(&codec->list, &bus->codec_list);
543 bus->caddr_tbl[codec_addr] = codec;
545 codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
546 AC_PAR_VENDOR_ID);
547 if (codec->vendor_id == -1)
548 /* read again, hopefully the access method was corrected
549 * in the last read...
551 codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
552 AC_PAR_VENDOR_ID);
553 codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT,
554 AC_PAR_SUBSYSTEM_ID);
555 codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT,
556 AC_PAR_REV_ID);
558 setup_fg_nodes(codec);
559 if (!codec->afg && !codec->mfg) {
560 snd_printdd("hda_codec: no AFG or MFG node found\n");
561 snd_hda_codec_free(codec);
562 return -ENODEV;
565 if (read_widget_caps(codec, codec->afg ? codec->afg : codec->mfg) < 0) {
566 snd_printk(KERN_ERR "hda_codec: cannot malloc\n");
567 snd_hda_codec_free(codec);
568 return -ENOMEM;
571 if (!codec->subsystem_id) {
572 hda_nid_t nid = codec->afg ? codec->afg : codec->mfg;
573 codec->subsystem_id =
574 snd_hda_codec_read(codec, nid, 0,
575 AC_VERB_GET_SUBSYSTEM_ID, 0);
578 codec->preset = find_codec_preset(codec);
579 if (!*bus->card->mixername)
580 snd_hda_get_codec_name(codec, bus->card->mixername,
581 sizeof(bus->card->mixername));
583 if (codec->preset && codec->preset->patch)
584 err = codec->preset->patch(codec);
585 else
586 err = snd_hda_parse_generic_codec(codec);
587 if (err < 0) {
588 snd_hda_codec_free(codec);
589 return err;
592 if (codec->patch_ops.unsol_event)
593 init_unsol_queue(bus);
595 snd_hda_codec_proc_new(codec);
597 sprintf(component, "HDA:%08x", codec->vendor_id);
598 snd_component_add(codec->bus->card, component);
600 if (codecp)
601 *codecp = codec;
602 return 0;
606 * snd_hda_codec_setup_stream - set up the codec for streaming
607 * @codec: the CODEC to set up
608 * @nid: the NID to set up
609 * @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
610 * @channel_id: channel id to pass, zero based.
611 * @format: stream format.
613 void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid,
614 u32 stream_tag,
615 int channel_id, int format)
617 if (!nid)
618 return;
620 snd_printdd("hda_codec_setup_stream: "
621 "NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
622 nid, stream_tag, channel_id, format);
623 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
624 (stream_tag << 4) | channel_id);
625 msleep(1);
626 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
630 * amp access functions
633 /* FIXME: more better hash key? */
634 #define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24))
635 #define INFO_AMP_CAPS (1<<0)
636 #define INFO_AMP_VOL(ch) (1 << (1 + (ch)))
638 /* initialize the hash table */
639 static void __devinit init_amp_hash(struct hda_codec *codec)
641 memset(codec->amp_hash, 0xff, sizeof(codec->amp_hash));
642 codec->num_amp_entries = 0;
643 codec->amp_info_size = 0;
644 codec->amp_info = NULL;
647 /* query the hash. allocate an entry if not found. */
648 static struct hda_amp_info *get_alloc_amp_hash(struct hda_codec *codec, u32 key)
650 u16 idx = key % (u16)ARRAY_SIZE(codec->amp_hash);
651 u16 cur = codec->amp_hash[idx];
652 struct hda_amp_info *info;
654 while (cur != 0xffff) {
655 info = &codec->amp_info[cur];
656 if (info->key == key)
657 return info;
658 cur = info->next;
661 /* add a new hash entry */
662 if (codec->num_amp_entries >= codec->amp_info_size) {
663 /* reallocate the array */
664 int new_size = codec->amp_info_size + 64;
665 struct hda_amp_info *new_info;
666 new_info = kcalloc(new_size, sizeof(struct hda_amp_info),
667 GFP_KERNEL);
668 if (!new_info) {
669 snd_printk(KERN_ERR "hda_codec: "
670 "can't malloc amp_info\n");
671 return NULL;
673 if (codec->amp_info) {
674 memcpy(new_info, codec->amp_info,
675 codec->amp_info_size *
676 sizeof(struct hda_amp_info));
677 kfree(codec->amp_info);
679 codec->amp_info_size = new_size;
680 codec->amp_info = new_info;
682 cur = codec->num_amp_entries++;
683 info = &codec->amp_info[cur];
684 info->key = key;
685 info->status = 0; /* not initialized yet */
686 info->next = codec->amp_hash[idx];
687 codec->amp_hash[idx] = cur;
689 return info;
693 * query AMP capabilities for the given widget and direction
695 static u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
697 struct hda_amp_info *info;
699 info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
700 if (!info)
701 return 0;
702 if (!(info->status & INFO_AMP_CAPS)) {
703 if (!(get_wcaps(codec, nid) & AC_WCAP_AMP_OVRD))
704 nid = codec->afg;
705 info->amp_caps = snd_hda_param_read(codec, nid,
706 direction == HDA_OUTPUT ?
707 AC_PAR_AMP_OUT_CAP :
708 AC_PAR_AMP_IN_CAP);
709 info->status |= INFO_AMP_CAPS;
711 return info->amp_caps;
715 * read the current volume to info
716 * if the cache exists, read the cache value.
718 static unsigned int get_vol_mute(struct hda_codec *codec,
719 struct hda_amp_info *info, hda_nid_t nid,
720 int ch, int direction, int index)
722 u32 val, parm;
724 if (info->status & INFO_AMP_VOL(ch))
725 return info->vol[ch];
727 parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
728 parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
729 parm |= index;
730 val = snd_hda_codec_read(codec, nid, 0,
731 AC_VERB_GET_AMP_GAIN_MUTE, parm);
732 info->vol[ch] = val & 0xff;
733 info->status |= INFO_AMP_VOL(ch);
734 return info->vol[ch];
738 * write the current volume in info to the h/w and update the cache
740 static void put_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
741 hda_nid_t nid, int ch, int direction, int index,
742 int val)
744 u32 parm;
746 parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
747 parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
748 parm |= index << AC_AMP_SET_INDEX_SHIFT;
749 parm |= val;
750 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
751 info->vol[ch] = val;
755 * read AMP value. The volume is between 0 to 0x7f, 0x80 = mute bit.
757 int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch,
758 int direction, int index)
760 struct hda_amp_info *info;
761 info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
762 if (!info)
763 return 0;
764 return get_vol_mute(codec, info, nid, ch, direction, index);
768 * update the AMP value, mask = bit mask to set, val = the value
770 int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch,
771 int direction, int idx, int mask, int val)
773 struct hda_amp_info *info;
775 info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
776 if (!info)
777 return 0;
778 val &= mask;
779 val |= get_vol_mute(codec, info, nid, ch, direction, idx) & ~mask;
780 if (info->vol[ch] == val && !codec->in_resume)
781 return 0;
782 put_vol_mute(codec, info, nid, ch, direction, idx, val);
783 return 1;
788 * AMP control callbacks
790 /* retrieve parameters from private_value */
791 #define get_amp_nid(kc) ((kc)->private_value & 0xffff)
792 #define get_amp_channels(kc) (((kc)->private_value >> 16) & 0x3)
793 #define get_amp_direction(kc) (((kc)->private_value >> 18) & 0x1)
794 #define get_amp_index(kc) (((kc)->private_value >> 19) & 0xf)
796 /* volume */
797 int snd_hda_mixer_amp_volume_info(struct snd_kcontrol *kcontrol,
798 struct snd_ctl_elem_info *uinfo)
800 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
801 u16 nid = get_amp_nid(kcontrol);
802 u8 chs = get_amp_channels(kcontrol);
803 int dir = get_amp_direction(kcontrol);
804 u32 caps;
806 caps = query_amp_caps(codec, nid, dir);
807 /* num steps */
808 caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT;
809 if (!caps) {
810 printk(KERN_WARNING "hda_codec: "
811 "num_steps = 0 for NID=0x%x\n", nid);
812 return -EINVAL;
814 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
815 uinfo->count = chs == 3 ? 2 : 1;
816 uinfo->value.integer.min = 0;
817 uinfo->value.integer.max = caps;
818 return 0;
821 int snd_hda_mixer_amp_volume_get(struct snd_kcontrol *kcontrol,
822 struct snd_ctl_elem_value *ucontrol)
824 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
825 hda_nid_t nid = get_amp_nid(kcontrol);
826 int chs = get_amp_channels(kcontrol);
827 int dir = get_amp_direction(kcontrol);
828 int idx = get_amp_index(kcontrol);
829 long *valp = ucontrol->value.integer.value;
831 if (chs & 1)
832 *valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x7f;
833 if (chs & 2)
834 *valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x7f;
835 return 0;
838 int snd_hda_mixer_amp_volume_put(struct snd_kcontrol *kcontrol,
839 struct snd_ctl_elem_value *ucontrol)
841 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
842 hda_nid_t nid = get_amp_nid(kcontrol);
843 int chs = get_amp_channels(kcontrol);
844 int dir = get_amp_direction(kcontrol);
845 int idx = get_amp_index(kcontrol);
846 long *valp = ucontrol->value.integer.value;
847 int change = 0;
849 if (chs & 1) {
850 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
851 0x7f, *valp);
852 valp++;
854 if (chs & 2)
855 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
856 0x7f, *valp);
857 return change;
860 int snd_hda_mixer_amp_tlv(struct snd_kcontrol *kcontrol, int op_flag,
861 unsigned int size, unsigned int __user *_tlv)
863 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
864 hda_nid_t nid = get_amp_nid(kcontrol);
865 int dir = get_amp_direction(kcontrol);
866 u32 caps, val1, val2;
868 if (size < 4 * sizeof(unsigned int))
869 return -ENOMEM;
870 caps = query_amp_caps(codec, nid, dir);
871 val2 = (caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT;
872 val2 = (val2 + 1) * 25;
873 val1 = -((caps & AC_AMPCAP_OFFSET) >> AC_AMPCAP_OFFSET_SHIFT);
874 val1 = ((int)val1) * ((int)val2);
875 if (put_user(SNDRV_CTL_TLVT_DB_SCALE, _tlv))
876 return -EFAULT;
877 if (put_user(2 * sizeof(unsigned int), _tlv + 1))
878 return -EFAULT;
879 if (put_user(val1, _tlv + 2))
880 return -EFAULT;
881 if (put_user(val2, _tlv + 3))
882 return -EFAULT;
883 return 0;
886 /* switch */
887 int snd_hda_mixer_amp_switch_info(struct snd_kcontrol *kcontrol,
888 struct snd_ctl_elem_info *uinfo)
890 int chs = get_amp_channels(kcontrol);
892 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
893 uinfo->count = chs == 3 ? 2 : 1;
894 uinfo->value.integer.min = 0;
895 uinfo->value.integer.max = 1;
896 return 0;
899 int snd_hda_mixer_amp_switch_get(struct snd_kcontrol *kcontrol,
900 struct snd_ctl_elem_value *ucontrol)
902 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
903 hda_nid_t nid = get_amp_nid(kcontrol);
904 int chs = get_amp_channels(kcontrol);
905 int dir = get_amp_direction(kcontrol);
906 int idx = get_amp_index(kcontrol);
907 long *valp = ucontrol->value.integer.value;
909 if (chs & 1)
910 *valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) &
911 0x80) ? 0 : 1;
912 if (chs & 2)
913 *valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) &
914 0x80) ? 0 : 1;
915 return 0;
918 int snd_hda_mixer_amp_switch_put(struct snd_kcontrol *kcontrol,
919 struct snd_ctl_elem_value *ucontrol)
921 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
922 hda_nid_t nid = get_amp_nid(kcontrol);
923 int chs = get_amp_channels(kcontrol);
924 int dir = get_amp_direction(kcontrol);
925 int idx = get_amp_index(kcontrol);
926 long *valp = ucontrol->value.integer.value;
927 int change = 0;
929 if (chs & 1) {
930 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
931 0x80, *valp ? 0 : 0x80);
932 valp++;
934 if (chs & 2)
935 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
936 0x80, *valp ? 0 : 0x80);
938 return change;
942 * bound volume controls
944 * bind multiple volumes (# indices, from 0)
947 #define AMP_VAL_IDX_SHIFT 19
948 #define AMP_VAL_IDX_MASK (0x0f<<19)
950 int snd_hda_mixer_bind_switch_get(struct snd_kcontrol *kcontrol,
951 struct snd_ctl_elem_value *ucontrol)
953 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
954 unsigned long pval;
955 int err;
957 mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
958 pval = kcontrol->private_value;
959 kcontrol->private_value = pval & ~AMP_VAL_IDX_MASK; /* index 0 */
960 err = snd_hda_mixer_amp_switch_get(kcontrol, ucontrol);
961 kcontrol->private_value = pval;
962 mutex_unlock(&codec->spdif_mutex);
963 return err;
966 int snd_hda_mixer_bind_switch_put(struct snd_kcontrol *kcontrol,
967 struct snd_ctl_elem_value *ucontrol)
969 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
970 unsigned long pval;
971 int i, indices, err = 0, change = 0;
973 mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
974 pval = kcontrol->private_value;
975 indices = (pval & AMP_VAL_IDX_MASK) >> AMP_VAL_IDX_SHIFT;
976 for (i = 0; i < indices; i++) {
977 kcontrol->private_value = (pval & ~AMP_VAL_IDX_MASK) |
978 (i << AMP_VAL_IDX_SHIFT);
979 err = snd_hda_mixer_amp_switch_put(kcontrol, ucontrol);
980 if (err < 0)
981 break;
982 change |= err;
984 kcontrol->private_value = pval;
985 mutex_unlock(&codec->spdif_mutex);
986 return err < 0 ? err : change;
990 * SPDIF out controls
993 static int snd_hda_spdif_mask_info(struct snd_kcontrol *kcontrol,
994 struct snd_ctl_elem_info *uinfo)
996 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
997 uinfo->count = 1;
998 return 0;
1001 static int snd_hda_spdif_cmask_get(struct snd_kcontrol *kcontrol,
1002 struct snd_ctl_elem_value *ucontrol)
1004 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
1005 IEC958_AES0_NONAUDIO |
1006 IEC958_AES0_CON_EMPHASIS_5015 |
1007 IEC958_AES0_CON_NOT_COPYRIGHT;
1008 ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
1009 IEC958_AES1_CON_ORIGINAL;
1010 return 0;
1013 static int snd_hda_spdif_pmask_get(struct snd_kcontrol *kcontrol,
1014 struct snd_ctl_elem_value *ucontrol)
1016 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
1017 IEC958_AES0_NONAUDIO |
1018 IEC958_AES0_PRO_EMPHASIS_5015;
1019 return 0;
1022 static int snd_hda_spdif_default_get(struct snd_kcontrol *kcontrol,
1023 struct snd_ctl_elem_value *ucontrol)
1025 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1027 ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
1028 ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
1029 ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
1030 ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
1032 return 0;
1035 /* convert from SPDIF status bits to HDA SPDIF bits
1036 * bit 0 (DigEn) is always set zero (to be filled later)
1038 static unsigned short convert_from_spdif_status(unsigned int sbits)
1040 unsigned short val = 0;
1042 if (sbits & IEC958_AES0_PROFESSIONAL)
1043 val |= AC_DIG1_PROFESSIONAL;
1044 if (sbits & IEC958_AES0_NONAUDIO)
1045 val |= AC_DIG1_NONAUDIO;
1046 if (sbits & IEC958_AES0_PROFESSIONAL) {
1047 if ((sbits & IEC958_AES0_PRO_EMPHASIS) ==
1048 IEC958_AES0_PRO_EMPHASIS_5015)
1049 val |= AC_DIG1_EMPHASIS;
1050 } else {
1051 if ((sbits & IEC958_AES0_CON_EMPHASIS) ==
1052 IEC958_AES0_CON_EMPHASIS_5015)
1053 val |= AC_DIG1_EMPHASIS;
1054 if (!(sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
1055 val |= AC_DIG1_COPYRIGHT;
1056 if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
1057 val |= AC_DIG1_LEVEL;
1058 val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
1060 return val;
1063 /* convert to SPDIF status bits from HDA SPDIF bits
1065 static unsigned int convert_to_spdif_status(unsigned short val)
1067 unsigned int sbits = 0;
1069 if (val & AC_DIG1_NONAUDIO)
1070 sbits |= IEC958_AES0_NONAUDIO;
1071 if (val & AC_DIG1_PROFESSIONAL)
1072 sbits |= IEC958_AES0_PROFESSIONAL;
1073 if (sbits & IEC958_AES0_PROFESSIONAL) {
1074 if (sbits & AC_DIG1_EMPHASIS)
1075 sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
1076 } else {
1077 if (val & AC_DIG1_EMPHASIS)
1078 sbits |= IEC958_AES0_CON_EMPHASIS_5015;
1079 if (!(val & AC_DIG1_COPYRIGHT))
1080 sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
1081 if (val & AC_DIG1_LEVEL)
1082 sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
1083 sbits |= val & (0x7f << 8);
1085 return sbits;
1088 static int snd_hda_spdif_default_put(struct snd_kcontrol *kcontrol,
1089 struct snd_ctl_elem_value *ucontrol)
1091 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1092 hda_nid_t nid = kcontrol->private_value;
1093 unsigned short val;
1094 int change;
1096 mutex_lock(&codec->spdif_mutex);
1097 codec->spdif_status = ucontrol->value.iec958.status[0] |
1098 ((unsigned int)ucontrol->value.iec958.status[1] << 8) |
1099 ((unsigned int)ucontrol->value.iec958.status[2] << 16) |
1100 ((unsigned int)ucontrol->value.iec958.status[3] << 24);
1101 val = convert_from_spdif_status(codec->spdif_status);
1102 val |= codec->spdif_ctls & 1;
1103 change = codec->spdif_ctls != val;
1104 codec->spdif_ctls = val;
1106 if (change || codec->in_resume) {
1107 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
1108 val & 0xff);
1109 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_2,
1110 val >> 8);
1113 mutex_unlock(&codec->spdif_mutex);
1114 return change;
1117 static int snd_hda_spdif_out_switch_info(struct snd_kcontrol *kcontrol,
1118 struct snd_ctl_elem_info *uinfo)
1120 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1121 uinfo->count = 1;
1122 uinfo->value.integer.min = 0;
1123 uinfo->value.integer.max = 1;
1124 return 0;
1127 static int snd_hda_spdif_out_switch_get(struct snd_kcontrol *kcontrol,
1128 struct snd_ctl_elem_value *ucontrol)
1130 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1132 ucontrol->value.integer.value[0] = codec->spdif_ctls & AC_DIG1_ENABLE;
1133 return 0;
1136 static int snd_hda_spdif_out_switch_put(struct snd_kcontrol *kcontrol,
1137 struct snd_ctl_elem_value *ucontrol)
1139 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1140 hda_nid_t nid = kcontrol->private_value;
1141 unsigned short val;
1142 int change;
1144 mutex_lock(&codec->spdif_mutex);
1145 val = codec->spdif_ctls & ~AC_DIG1_ENABLE;
1146 if (ucontrol->value.integer.value[0])
1147 val |= AC_DIG1_ENABLE;
1148 change = codec->spdif_ctls != val;
1149 if (change || codec->in_resume) {
1150 codec->spdif_ctls = val;
1151 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
1152 val & 0xff);
1153 /* unmute amp switch (if any) */
1154 if ((get_wcaps(codec, nid) & AC_WCAP_OUT_AMP) &&
1155 (val & AC_DIG1_ENABLE))
1156 snd_hda_codec_write(codec, nid, 0,
1157 AC_VERB_SET_AMP_GAIN_MUTE,
1158 AC_AMP_SET_RIGHT | AC_AMP_SET_LEFT |
1159 AC_AMP_SET_OUTPUT);
1161 mutex_unlock(&codec->spdif_mutex);
1162 return change;
1165 static struct snd_kcontrol_new dig_mixes[] = {
1167 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1168 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1169 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1170 .info = snd_hda_spdif_mask_info,
1171 .get = snd_hda_spdif_cmask_get,
1174 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1175 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1176 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
1177 .info = snd_hda_spdif_mask_info,
1178 .get = snd_hda_spdif_pmask_get,
1181 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1182 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1183 .info = snd_hda_spdif_mask_info,
1184 .get = snd_hda_spdif_default_get,
1185 .put = snd_hda_spdif_default_put,
1188 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1189 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
1190 .info = snd_hda_spdif_out_switch_info,
1191 .get = snd_hda_spdif_out_switch_get,
1192 .put = snd_hda_spdif_out_switch_put,
1194 { } /* end */
1198 * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
1199 * @codec: the HDA codec
1200 * @nid: audio out widget NID
1202 * Creates controls related with the SPDIF output.
1203 * Called from each patch supporting the SPDIF out.
1205 * Returns 0 if successful, or a negative error code.
1207 int __devinit snd_hda_create_spdif_out_ctls(struct hda_codec *codec,
1208 hda_nid_t nid)
1210 int err;
1211 struct snd_kcontrol *kctl;
1212 struct snd_kcontrol_new *dig_mix;
1214 for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
1215 kctl = snd_ctl_new1(dig_mix, codec);
1216 kctl->private_value = nid;
1217 err = snd_ctl_add(codec->bus->card, kctl);
1218 if (err < 0)
1219 return err;
1221 codec->spdif_ctls =
1222 snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1223 codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
1224 return 0;
1228 * SPDIF input
1231 #define snd_hda_spdif_in_switch_info snd_hda_spdif_out_switch_info
1233 static int snd_hda_spdif_in_switch_get(struct snd_kcontrol *kcontrol,
1234 struct snd_ctl_elem_value *ucontrol)
1236 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1238 ucontrol->value.integer.value[0] = codec->spdif_in_enable;
1239 return 0;
1242 static int snd_hda_spdif_in_switch_put(struct snd_kcontrol *kcontrol,
1243 struct snd_ctl_elem_value *ucontrol)
1245 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1246 hda_nid_t nid = kcontrol->private_value;
1247 unsigned int val = !!ucontrol->value.integer.value[0];
1248 int change;
1250 mutex_lock(&codec->spdif_mutex);
1251 change = codec->spdif_in_enable != val;
1252 if (change || codec->in_resume) {
1253 codec->spdif_in_enable = val;
1254 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
1255 val);
1257 mutex_unlock(&codec->spdif_mutex);
1258 return change;
1261 static int snd_hda_spdif_in_status_get(struct snd_kcontrol *kcontrol,
1262 struct snd_ctl_elem_value *ucontrol)
1264 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1265 hda_nid_t nid = kcontrol->private_value;
1266 unsigned short val;
1267 unsigned int sbits;
1269 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1270 sbits = convert_to_spdif_status(val);
1271 ucontrol->value.iec958.status[0] = sbits;
1272 ucontrol->value.iec958.status[1] = sbits >> 8;
1273 ucontrol->value.iec958.status[2] = sbits >> 16;
1274 ucontrol->value.iec958.status[3] = sbits >> 24;
1275 return 0;
1278 static struct snd_kcontrol_new dig_in_ctls[] = {
1280 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1281 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
1282 .info = snd_hda_spdif_in_switch_info,
1283 .get = snd_hda_spdif_in_switch_get,
1284 .put = snd_hda_spdif_in_switch_put,
1287 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1288 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1289 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
1290 .info = snd_hda_spdif_mask_info,
1291 .get = snd_hda_spdif_in_status_get,
1293 { } /* end */
1297 * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
1298 * @codec: the HDA codec
1299 * @nid: audio in widget NID
1301 * Creates controls related with the SPDIF input.
1302 * Called from each patch supporting the SPDIF in.
1304 * Returns 0 if successful, or a negative error code.
1306 int __devinit snd_hda_create_spdif_in_ctls(struct hda_codec *codec,
1307 hda_nid_t nid)
1309 int err;
1310 struct snd_kcontrol *kctl;
1311 struct snd_kcontrol_new *dig_mix;
1313 for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
1314 kctl = snd_ctl_new1(dig_mix, codec);
1315 kctl->private_value = nid;
1316 err = snd_ctl_add(codec->bus->card, kctl);
1317 if (err < 0)
1318 return err;
1320 codec->spdif_in_enable =
1321 snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0) &
1322 AC_DIG1_ENABLE;
1323 return 0;
1328 * set power state of the codec
1330 static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
1331 unsigned int power_state)
1333 hda_nid_t nid, nid_start;
1334 int nodes;
1336 snd_hda_codec_write(codec, fg, 0, AC_VERB_SET_POWER_STATE,
1337 power_state);
1339 nodes = snd_hda_get_sub_nodes(codec, fg, &nid_start);
1340 for (nid = nid_start; nid < nodes + nid_start; nid++) {
1341 if (get_wcaps(codec, nid) & AC_WCAP_POWER)
1342 snd_hda_codec_write(codec, nid, 0,
1343 AC_VERB_SET_POWER_STATE,
1344 power_state);
1347 if (power_state == AC_PWRST_D0)
1348 msleep(10);
1353 * snd_hda_build_controls - build mixer controls
1354 * @bus: the BUS
1356 * Creates mixer controls for each codec included in the bus.
1358 * Returns 0 if successful, otherwise a negative error code.
1360 int __devinit snd_hda_build_controls(struct hda_bus *bus)
1362 struct hda_codec *codec;
1364 /* build controls */
1365 list_for_each_entry(codec, &bus->codec_list, list) {
1366 int err;
1367 if (!codec->patch_ops.build_controls)
1368 continue;
1369 err = codec->patch_ops.build_controls(codec);
1370 if (err < 0)
1371 return err;
1374 /* initialize */
1375 list_for_each_entry(codec, &bus->codec_list, list) {
1376 int err;
1377 hda_set_power_state(codec,
1378 codec->afg ? codec->afg : codec->mfg,
1379 AC_PWRST_D0);
1380 if (!codec->patch_ops.init)
1381 continue;
1382 err = codec->patch_ops.init(codec);
1383 if (err < 0)
1384 return err;
1386 return 0;
1390 * stream formats
1392 struct hda_rate_tbl {
1393 unsigned int hz;
1394 unsigned int alsa_bits;
1395 unsigned int hda_fmt;
1398 static struct hda_rate_tbl rate_bits[] = {
1399 /* rate in Hz, ALSA rate bitmask, HDA format value */
1401 /* autodetected value used in snd_hda_query_supported_pcm */
1402 { 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
1403 { 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
1404 { 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
1405 { 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
1406 { 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
1407 { 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
1408 { 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
1409 { 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
1410 { 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
1411 { 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
1412 { 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
1413 #define AC_PAR_PCM_RATE_BITS 11
1414 /* up to bits 10, 384kHZ isn't supported properly */
1416 /* not autodetected value */
1417 { 9600, SNDRV_PCM_RATE_KNOT, 0x0400 }, /* 1/5 x 48 */
1419 { 0 } /* terminator */
1423 * snd_hda_calc_stream_format - calculate format bitset
1424 * @rate: the sample rate
1425 * @channels: the number of channels
1426 * @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
1427 * @maxbps: the max. bps
1429 * Calculate the format bitset from the given rate, channels and th PCM format.
1431 * Return zero if invalid.
1433 unsigned int snd_hda_calc_stream_format(unsigned int rate,
1434 unsigned int channels,
1435 unsigned int format,
1436 unsigned int maxbps)
1438 int i;
1439 unsigned int val = 0;
1441 for (i = 0; rate_bits[i].hz; i++)
1442 if (rate_bits[i].hz == rate) {
1443 val = rate_bits[i].hda_fmt;
1444 break;
1446 if (!rate_bits[i].hz) {
1447 snd_printdd("invalid rate %d\n", rate);
1448 return 0;
1451 if (channels == 0 || channels > 8) {
1452 snd_printdd("invalid channels %d\n", channels);
1453 return 0;
1455 val |= channels - 1;
1457 switch (snd_pcm_format_width(format)) {
1458 case 8: val |= 0x00; break;
1459 case 16: val |= 0x10; break;
1460 case 20:
1461 case 24:
1462 case 32:
1463 if (maxbps >= 32)
1464 val |= 0x40;
1465 else if (maxbps >= 24)
1466 val |= 0x30;
1467 else
1468 val |= 0x20;
1469 break;
1470 default:
1471 snd_printdd("invalid format width %d\n",
1472 snd_pcm_format_width(format));
1473 return 0;
1476 return val;
1480 * snd_hda_query_supported_pcm - query the supported PCM rates and formats
1481 * @codec: the HDA codec
1482 * @nid: NID to query
1483 * @ratesp: the pointer to store the detected rate bitflags
1484 * @formatsp: the pointer to store the detected formats
1485 * @bpsp: the pointer to store the detected format widths
1487 * Queries the supported PCM rates and formats. The NULL @ratesp, @formatsp
1488 * or @bsps argument is ignored.
1490 * Returns 0 if successful, otherwise a negative error code.
1492 int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
1493 u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
1495 int i;
1496 unsigned int val, streams;
1498 val = 0;
1499 if (nid != codec->afg &&
1500 (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
1501 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1502 if (val == -1)
1503 return -EIO;
1505 if (!val)
1506 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1508 if (ratesp) {
1509 u32 rates = 0;
1510 for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++) {
1511 if (val & (1 << i))
1512 rates |= rate_bits[i].alsa_bits;
1514 *ratesp = rates;
1517 if (formatsp || bpsp) {
1518 u64 formats = 0;
1519 unsigned int bps;
1520 unsigned int wcaps;
1522 wcaps = get_wcaps(codec, nid);
1523 streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1524 if (streams == -1)
1525 return -EIO;
1526 if (!streams) {
1527 streams = snd_hda_param_read(codec, codec->afg,
1528 AC_PAR_STREAM);
1529 if (streams == -1)
1530 return -EIO;
1533 bps = 0;
1534 if (streams & AC_SUPFMT_PCM) {
1535 if (val & AC_SUPPCM_BITS_8) {
1536 formats |= SNDRV_PCM_FMTBIT_U8;
1537 bps = 8;
1539 if (val & AC_SUPPCM_BITS_16) {
1540 formats |= SNDRV_PCM_FMTBIT_S16_LE;
1541 bps = 16;
1543 if (wcaps & AC_WCAP_DIGITAL) {
1544 if (val & AC_SUPPCM_BITS_32)
1545 formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
1546 if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
1547 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1548 if (val & AC_SUPPCM_BITS_24)
1549 bps = 24;
1550 else if (val & AC_SUPPCM_BITS_20)
1551 bps = 20;
1552 } else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|
1553 AC_SUPPCM_BITS_32)) {
1554 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1555 if (val & AC_SUPPCM_BITS_32)
1556 bps = 32;
1557 else if (val & AC_SUPPCM_BITS_24)
1558 bps = 24;
1559 else if (val & AC_SUPPCM_BITS_20)
1560 bps = 20;
1563 else if (streams == AC_SUPFMT_FLOAT32) {
1564 /* should be exclusive */
1565 formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
1566 bps = 32;
1567 } else if (streams == AC_SUPFMT_AC3) {
1568 /* should be exclusive */
1569 /* temporary hack: we have still no proper support
1570 * for the direct AC3 stream...
1572 formats |= SNDRV_PCM_FMTBIT_U8;
1573 bps = 8;
1575 if (formatsp)
1576 *formatsp = formats;
1577 if (bpsp)
1578 *bpsp = bps;
1581 return 0;
1585 * snd_hda_is_supported_format - check whether the given node supports
1586 * the format val
1588 * Returns 1 if supported, 0 if not.
1590 int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
1591 unsigned int format)
1593 int i;
1594 unsigned int val = 0, rate, stream;
1596 if (nid != codec->afg &&
1597 (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
1598 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1599 if (val == -1)
1600 return 0;
1602 if (!val) {
1603 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1604 if (val == -1)
1605 return 0;
1608 rate = format & 0xff00;
1609 for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++)
1610 if (rate_bits[i].hda_fmt == rate) {
1611 if (val & (1 << i))
1612 break;
1613 return 0;
1615 if (i >= AC_PAR_PCM_RATE_BITS)
1616 return 0;
1618 stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1619 if (stream == -1)
1620 return 0;
1621 if (!stream && nid != codec->afg)
1622 stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1623 if (!stream || stream == -1)
1624 return 0;
1626 if (stream & AC_SUPFMT_PCM) {
1627 switch (format & 0xf0) {
1628 case 0x00:
1629 if (!(val & AC_SUPPCM_BITS_8))
1630 return 0;
1631 break;
1632 case 0x10:
1633 if (!(val & AC_SUPPCM_BITS_16))
1634 return 0;
1635 break;
1636 case 0x20:
1637 if (!(val & AC_SUPPCM_BITS_20))
1638 return 0;
1639 break;
1640 case 0x30:
1641 if (!(val & AC_SUPPCM_BITS_24))
1642 return 0;
1643 break;
1644 case 0x40:
1645 if (!(val & AC_SUPPCM_BITS_32))
1646 return 0;
1647 break;
1648 default:
1649 return 0;
1651 } else {
1652 /* FIXME: check for float32 and AC3? */
1655 return 1;
1659 * PCM stuff
1661 static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
1662 struct hda_codec *codec,
1663 struct snd_pcm_substream *substream)
1665 return 0;
1668 static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
1669 struct hda_codec *codec,
1670 unsigned int stream_tag,
1671 unsigned int format,
1672 struct snd_pcm_substream *substream)
1674 snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
1675 return 0;
1678 static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
1679 struct hda_codec *codec,
1680 struct snd_pcm_substream *substream)
1682 snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0);
1683 return 0;
1686 static int __devinit set_pcm_default_values(struct hda_codec *codec,
1687 struct hda_pcm_stream *info)
1689 /* query support PCM information from the given NID */
1690 if (info->nid && (!info->rates || !info->formats)) {
1691 snd_hda_query_supported_pcm(codec, info->nid,
1692 info->rates ? NULL : &info->rates,
1693 info->formats ? NULL : &info->formats,
1694 info->maxbps ? NULL : &info->maxbps);
1696 if (info->ops.open == NULL)
1697 info->ops.open = hda_pcm_default_open_close;
1698 if (info->ops.close == NULL)
1699 info->ops.close = hda_pcm_default_open_close;
1700 if (info->ops.prepare == NULL) {
1701 snd_assert(info->nid, return -EINVAL);
1702 info->ops.prepare = hda_pcm_default_prepare;
1704 if (info->ops.cleanup == NULL) {
1705 snd_assert(info->nid, return -EINVAL);
1706 info->ops.cleanup = hda_pcm_default_cleanup;
1708 return 0;
1712 * snd_hda_build_pcms - build PCM information
1713 * @bus: the BUS
1715 * Create PCM information for each codec included in the bus.
1717 * The build_pcms codec patch is requested to set up codec->num_pcms and
1718 * codec->pcm_info properly. The array is referred by the top-level driver
1719 * to create its PCM instances.
1720 * The allocated codec->pcm_info should be released in codec->patch_ops.free
1721 * callback.
1723 * At least, substreams, channels_min and channels_max must be filled for
1724 * each stream. substreams = 0 indicates that the stream doesn't exist.
1725 * When rates and/or formats are zero, the supported values are queried
1726 * from the given nid. The nid is used also by the default ops.prepare
1727 * and ops.cleanup callbacks.
1729 * The driver needs to call ops.open in its open callback. Similarly,
1730 * ops.close is supposed to be called in the close callback.
1731 * ops.prepare should be called in the prepare or hw_params callback
1732 * with the proper parameters for set up.
1733 * ops.cleanup should be called in hw_free for clean up of streams.
1735 * This function returns 0 if successfull, or a negative error code.
1737 int __devinit snd_hda_build_pcms(struct hda_bus *bus)
1739 struct hda_codec *codec;
1741 list_for_each_entry(codec, &bus->codec_list, list) {
1742 unsigned int pcm, s;
1743 int err;
1744 if (!codec->patch_ops.build_pcms)
1745 continue;
1746 err = codec->patch_ops.build_pcms(codec);
1747 if (err < 0)
1748 return err;
1749 for (pcm = 0; pcm < codec->num_pcms; pcm++) {
1750 for (s = 0; s < 2; s++) {
1751 struct hda_pcm_stream *info;
1752 info = &codec->pcm_info[pcm].stream[s];
1753 if (!info->substreams)
1754 continue;
1755 err = set_pcm_default_values(codec, info);
1756 if (err < 0)
1757 return err;
1761 return 0;
1765 * snd_hda_check_board_config - compare the current codec with the config table
1766 * @codec: the HDA codec
1767 * @num_configs: number of config enums
1768 * @models: array of model name strings
1769 * @tbl: configuration table, terminated by null entries
1771 * Compares the modelname or PCI subsystem id of the current codec with the
1772 * given configuration table. If a matching entry is found, returns its
1773 * config value (supposed to be 0 or positive).
1775 * If no entries are matching, the function returns a negative value.
1777 int __devinit snd_hda_check_board_config(struct hda_codec *codec,
1778 int num_configs, const char **models,
1779 const struct snd_pci_quirk *tbl)
1781 if (codec->bus->modelname && models) {
1782 int i;
1783 for (i = 0; i < num_configs; i++) {
1784 if (models[i] &&
1785 !strcmp(codec->bus->modelname, models[i])) {
1786 snd_printd(KERN_INFO "hda_codec: model '%s' is "
1787 "selected\n", models[i]);
1788 return i;
1793 if (!codec->bus->pci || !tbl)
1794 return -1;
1796 tbl = snd_pci_quirk_lookup(codec->bus->pci, tbl);
1797 if (!tbl)
1798 return -1;
1799 if (tbl->value >= 0 && tbl->value < num_configs) {
1800 #ifdef CONFIG_SND_DEBUG_DETECT
1801 char tmp[10];
1802 const char *model = NULL;
1803 if (models)
1804 model = models[tbl->value];
1805 if (!model) {
1806 sprintf(tmp, "#%d", tbl->value);
1807 model = tmp;
1809 snd_printdd(KERN_INFO "hda_codec: model '%s' is selected "
1810 "for config %x:%x (%s)\n",
1811 model, tbl->subvendor, tbl->subdevice,
1812 (tbl->name ? tbl->name : "Unknown device"));
1813 #endif
1814 return tbl->value;
1816 return -1;
1820 * snd_hda_add_new_ctls - create controls from the array
1821 * @codec: the HDA codec
1822 * @knew: the array of struct snd_kcontrol_new
1824 * This helper function creates and add new controls in the given array.
1825 * The array must be terminated with an empty entry as terminator.
1827 * Returns 0 if successful, or a negative error code.
1829 int __devinit snd_hda_add_new_ctls(struct hda_codec *codec,
1830 struct snd_kcontrol_new *knew)
1832 int err;
1834 for (; knew->name; knew++) {
1835 struct snd_kcontrol *kctl;
1836 kctl = snd_ctl_new1(knew, codec);
1837 if (!kctl)
1838 return -ENOMEM;
1839 err = snd_ctl_add(codec->bus->card, kctl);
1840 if (err < 0) {
1841 if (!codec->addr)
1842 return err;
1843 kctl = snd_ctl_new1(knew, codec);
1844 if (!kctl)
1845 return -ENOMEM;
1846 kctl->id.device = codec->addr;
1847 err = snd_ctl_add(codec->bus->card, kctl);
1848 if (err < 0)
1849 return err;
1852 return 0;
1857 * Channel mode helper
1859 int snd_hda_ch_mode_info(struct hda_codec *codec,
1860 struct snd_ctl_elem_info *uinfo,
1861 const struct hda_channel_mode *chmode,
1862 int num_chmodes)
1864 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1865 uinfo->count = 1;
1866 uinfo->value.enumerated.items = num_chmodes;
1867 if (uinfo->value.enumerated.item >= num_chmodes)
1868 uinfo->value.enumerated.item = num_chmodes - 1;
1869 sprintf(uinfo->value.enumerated.name, "%dch",
1870 chmode[uinfo->value.enumerated.item].channels);
1871 return 0;
1874 int snd_hda_ch_mode_get(struct hda_codec *codec,
1875 struct snd_ctl_elem_value *ucontrol,
1876 const struct hda_channel_mode *chmode,
1877 int num_chmodes,
1878 int max_channels)
1880 int i;
1882 for (i = 0; i < num_chmodes; i++) {
1883 if (max_channels == chmode[i].channels) {
1884 ucontrol->value.enumerated.item[0] = i;
1885 break;
1888 return 0;
1891 int snd_hda_ch_mode_put(struct hda_codec *codec,
1892 struct snd_ctl_elem_value *ucontrol,
1893 const struct hda_channel_mode *chmode,
1894 int num_chmodes,
1895 int *max_channelsp)
1897 unsigned int mode;
1899 mode = ucontrol->value.enumerated.item[0];
1900 snd_assert(mode < num_chmodes, return -EINVAL);
1901 if (*max_channelsp == chmode[mode].channels && !codec->in_resume)
1902 return 0;
1903 /* change the current channel setting */
1904 *max_channelsp = chmode[mode].channels;
1905 if (chmode[mode].sequence)
1906 snd_hda_sequence_write(codec, chmode[mode].sequence);
1907 return 1;
1911 * input MUX helper
1913 int snd_hda_input_mux_info(const struct hda_input_mux *imux,
1914 struct snd_ctl_elem_info *uinfo)
1916 unsigned int index;
1918 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1919 uinfo->count = 1;
1920 uinfo->value.enumerated.items = imux->num_items;
1921 index = uinfo->value.enumerated.item;
1922 if (index >= imux->num_items)
1923 index = imux->num_items - 1;
1924 strcpy(uinfo->value.enumerated.name, imux->items[index].label);
1925 return 0;
1928 int snd_hda_input_mux_put(struct hda_codec *codec,
1929 const struct hda_input_mux *imux,
1930 struct snd_ctl_elem_value *ucontrol,
1931 hda_nid_t nid,
1932 unsigned int *cur_val)
1934 unsigned int idx;
1936 idx = ucontrol->value.enumerated.item[0];
1937 if (idx >= imux->num_items)
1938 idx = imux->num_items - 1;
1939 if (*cur_val == idx && !codec->in_resume)
1940 return 0;
1941 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
1942 imux->items[idx].index);
1943 *cur_val = idx;
1944 return 1;
1949 * Multi-channel / digital-out PCM helper functions
1952 /* setup SPDIF output stream */
1953 static void setup_dig_out_stream(struct hda_codec *codec, hda_nid_t nid,
1954 unsigned int stream_tag, unsigned int format)
1956 /* turn off SPDIF once; otherwise the IEC958 bits won't be updated */
1957 if (codec->spdif_ctls & AC_DIG1_ENABLE)
1958 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
1959 codec->spdif_ctls & ~AC_DIG1_ENABLE & 0xff);
1960 snd_hda_codec_setup_stream(codec, nid, stream_tag, 0, format);
1961 /* turn on again (if needed) */
1962 if (codec->spdif_ctls & AC_DIG1_ENABLE)
1963 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
1964 codec->spdif_ctls & 0xff);
1968 * open the digital out in the exclusive mode
1970 int snd_hda_multi_out_dig_open(struct hda_codec *codec,
1971 struct hda_multi_out *mout)
1973 mutex_lock(&codec->spdif_mutex);
1974 if (mout->dig_out_used == HDA_DIG_ANALOG_DUP)
1975 /* already opened as analog dup; reset it once */
1976 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1977 mout->dig_out_used = HDA_DIG_EXCLUSIVE;
1978 mutex_unlock(&codec->spdif_mutex);
1979 return 0;
1982 int snd_hda_multi_out_dig_prepare(struct hda_codec *codec,
1983 struct hda_multi_out *mout,
1984 unsigned int stream_tag,
1985 unsigned int format,
1986 struct snd_pcm_substream *substream)
1988 mutex_lock(&codec->spdif_mutex);
1989 setup_dig_out_stream(codec, mout->dig_out_nid, stream_tag, format);
1990 mutex_unlock(&codec->spdif_mutex);
1991 return 0;
1995 * release the digital out
1997 int snd_hda_multi_out_dig_close(struct hda_codec *codec,
1998 struct hda_multi_out *mout)
2000 mutex_lock(&codec->spdif_mutex);
2001 mout->dig_out_used = 0;
2002 mutex_unlock(&codec->spdif_mutex);
2003 return 0;
2007 * set up more restrictions for analog out
2009 int snd_hda_multi_out_analog_open(struct hda_codec *codec,
2010 struct hda_multi_out *mout,
2011 struct snd_pcm_substream *substream)
2013 substream->runtime->hw.channels_max = mout->max_channels;
2014 return snd_pcm_hw_constraint_step(substream->runtime, 0,
2015 SNDRV_PCM_HW_PARAM_CHANNELS, 2);
2019 * set up the i/o for analog out
2020 * when the digital out is available, copy the front out to digital out, too.
2022 int snd_hda_multi_out_analog_prepare(struct hda_codec *codec,
2023 struct hda_multi_out *mout,
2024 unsigned int stream_tag,
2025 unsigned int format,
2026 struct snd_pcm_substream *substream)
2028 hda_nid_t *nids = mout->dac_nids;
2029 int chs = substream->runtime->channels;
2030 int i;
2032 mutex_lock(&codec->spdif_mutex);
2033 if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
2034 if (chs == 2 &&
2035 snd_hda_is_supported_format(codec, mout->dig_out_nid,
2036 format) &&
2037 !(codec->spdif_status & IEC958_AES0_NONAUDIO)) {
2038 mout->dig_out_used = HDA_DIG_ANALOG_DUP;
2039 setup_dig_out_stream(codec, mout->dig_out_nid,
2040 stream_tag, format);
2041 } else {
2042 mout->dig_out_used = 0;
2043 snd_hda_codec_setup_stream(codec, mout->dig_out_nid,
2044 0, 0, 0);
2047 mutex_unlock(&codec->spdif_mutex);
2049 /* front */
2050 snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag,
2051 0, format);
2052 if (mout->hp_nid && mout->hp_nid != nids[HDA_FRONT])
2053 /* headphone out will just decode front left/right (stereo) */
2054 snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag,
2055 0, format);
2056 /* extra outputs copied from front */
2057 for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
2058 if (mout->extra_out_nid[i])
2059 snd_hda_codec_setup_stream(codec,
2060 mout->extra_out_nid[i],
2061 stream_tag, 0, format);
2063 /* surrounds */
2064 for (i = 1; i < mout->num_dacs; i++) {
2065 if (chs >= (i + 1) * 2) /* independent out */
2066 snd_hda_codec_setup_stream(codec, nids[i], stream_tag,
2067 i * 2, format);
2068 else /* copy front */
2069 snd_hda_codec_setup_stream(codec, nids[i], stream_tag,
2070 0, format);
2072 return 0;
2076 * clean up the setting for analog out
2078 int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec,
2079 struct hda_multi_out *mout)
2081 hda_nid_t *nids = mout->dac_nids;
2082 int i;
2084 for (i = 0; i < mout->num_dacs; i++)
2085 snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0);
2086 if (mout->hp_nid)
2087 snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0);
2088 for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
2089 if (mout->extra_out_nid[i])
2090 snd_hda_codec_setup_stream(codec,
2091 mout->extra_out_nid[i],
2092 0, 0, 0);
2093 mutex_lock(&codec->spdif_mutex);
2094 if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
2095 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
2096 mout->dig_out_used = 0;
2098 mutex_unlock(&codec->spdif_mutex);
2099 return 0;
2103 * Helper for automatic ping configuration
2106 static int __devinit is_in_nid_list(hda_nid_t nid, hda_nid_t *list)
2108 for (; *list; list++)
2109 if (*list == nid)
2110 return 1;
2111 return 0;
2115 * Parse all pin widgets and store the useful pin nids to cfg
2117 * The number of line-outs or any primary output is stored in line_outs,
2118 * and the corresponding output pins are assigned to line_out_pins[],
2119 * in the order of front, rear, CLFE, side, ...
2121 * If more extra outputs (speaker and headphone) are found, the pins are
2122 * assisnged to hp_pins[] and speaker_pins[], respectively. If no line-out jack
2123 * is detected, one of speaker of HP pins is assigned as the primary
2124 * output, i.e. to line_out_pins[0]. So, line_outs is always positive
2125 * if any analog output exists.
2127 * The analog input pins are assigned to input_pins array.
2128 * The digital input/output pins are assigned to dig_in_pin and dig_out_pin,
2129 * respectively.
2131 int __devinit snd_hda_parse_pin_def_config(struct hda_codec *codec,
2132 struct auto_pin_cfg *cfg,
2133 hda_nid_t *ignore_nids)
2135 hda_nid_t nid, nid_start;
2136 int i, j, nodes;
2137 short seq, assoc_line_out, sequences[ARRAY_SIZE(cfg->line_out_pins)];
2139 memset(cfg, 0, sizeof(*cfg));
2141 memset(sequences, 0, sizeof(sequences));
2142 assoc_line_out = 0;
2144 nodes = snd_hda_get_sub_nodes(codec, codec->afg, &nid_start);
2145 for (nid = nid_start; nid < nodes + nid_start; nid++) {
2146 unsigned int wid_caps = get_wcaps(codec, nid);
2147 unsigned int wid_type =
2148 (wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
2149 unsigned int def_conf;
2150 short assoc, loc;
2152 /* read all default configuration for pin complex */
2153 if (wid_type != AC_WID_PIN)
2154 continue;
2155 /* ignore the given nids (e.g. pc-beep returns error) */
2156 if (ignore_nids && is_in_nid_list(nid, ignore_nids))
2157 continue;
2159 def_conf = snd_hda_codec_read(codec, nid, 0,
2160 AC_VERB_GET_CONFIG_DEFAULT, 0);
2161 if (get_defcfg_connect(def_conf) == AC_JACK_PORT_NONE)
2162 continue;
2163 loc = get_defcfg_location(def_conf);
2164 switch (get_defcfg_device(def_conf)) {
2165 case AC_JACK_LINE_OUT:
2166 seq = get_defcfg_sequence(def_conf);
2167 assoc = get_defcfg_association(def_conf);
2168 if (!assoc)
2169 continue;
2170 if (!assoc_line_out)
2171 assoc_line_out = assoc;
2172 else if (assoc_line_out != assoc)
2173 continue;
2174 if (cfg->line_outs >= ARRAY_SIZE(cfg->line_out_pins))
2175 continue;
2176 cfg->line_out_pins[cfg->line_outs] = nid;
2177 sequences[cfg->line_outs] = seq;
2178 cfg->line_outs++;
2179 break;
2180 case AC_JACK_SPEAKER:
2181 if (cfg->speaker_outs >= ARRAY_SIZE(cfg->speaker_pins))
2182 continue;
2183 cfg->speaker_pins[cfg->speaker_outs] = nid;
2184 cfg->speaker_outs++;
2185 break;
2186 case AC_JACK_HP_OUT:
2187 if (cfg->hp_outs >= ARRAY_SIZE(cfg->hp_pins))
2188 continue;
2189 cfg->hp_pins[cfg->hp_outs] = nid;
2190 cfg->hp_outs++;
2191 break;
2192 case AC_JACK_MIC_IN: {
2193 int preferred, alt;
2194 if (loc == AC_JACK_LOC_FRONT) {
2195 preferred = AUTO_PIN_FRONT_MIC;
2196 alt = AUTO_PIN_MIC;
2197 } else {
2198 preferred = AUTO_PIN_MIC;
2199 alt = AUTO_PIN_FRONT_MIC;
2201 if (!cfg->input_pins[preferred])
2202 cfg->input_pins[preferred] = nid;
2203 else if (!cfg->input_pins[alt])
2204 cfg->input_pins[alt] = nid;
2205 break;
2207 case AC_JACK_LINE_IN:
2208 if (loc == AC_JACK_LOC_FRONT)
2209 cfg->input_pins[AUTO_PIN_FRONT_LINE] = nid;
2210 else
2211 cfg->input_pins[AUTO_PIN_LINE] = nid;
2212 break;
2213 case AC_JACK_CD:
2214 cfg->input_pins[AUTO_PIN_CD] = nid;
2215 break;
2216 case AC_JACK_AUX:
2217 cfg->input_pins[AUTO_PIN_AUX] = nid;
2218 break;
2219 case AC_JACK_SPDIF_OUT:
2220 cfg->dig_out_pin = nid;
2221 break;
2222 case AC_JACK_SPDIF_IN:
2223 cfg->dig_in_pin = nid;
2224 break;
2228 /* sort by sequence */
2229 for (i = 0; i < cfg->line_outs; i++)
2230 for (j = i + 1; j < cfg->line_outs; j++)
2231 if (sequences[i] > sequences[j]) {
2232 seq = sequences[i];
2233 sequences[i] = sequences[j];
2234 sequences[j] = seq;
2235 nid = cfg->line_out_pins[i];
2236 cfg->line_out_pins[i] = cfg->line_out_pins[j];
2237 cfg->line_out_pins[j] = nid;
2240 /* Reorder the surround channels
2241 * ALSA sequence is front/surr/clfe/side
2242 * HDA sequence is:
2243 * 4-ch: front/surr => OK as it is
2244 * 6-ch: front/clfe/surr
2245 * 8-ch: front/clfe/rear/side|fc
2247 switch (cfg->line_outs) {
2248 case 3:
2249 case 4:
2250 nid = cfg->line_out_pins[1];
2251 cfg->line_out_pins[1] = cfg->line_out_pins[2];
2252 cfg->line_out_pins[2] = nid;
2253 break;
2257 * debug prints of the parsed results
2259 snd_printd("autoconfig: line_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2260 cfg->line_outs, cfg->line_out_pins[0], cfg->line_out_pins[1],
2261 cfg->line_out_pins[2], cfg->line_out_pins[3],
2262 cfg->line_out_pins[4]);
2263 snd_printd(" speaker_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2264 cfg->speaker_outs, cfg->speaker_pins[0],
2265 cfg->speaker_pins[1], cfg->speaker_pins[2],
2266 cfg->speaker_pins[3], cfg->speaker_pins[4]);
2267 snd_printd(" hp_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2268 cfg->hp_outs, cfg->hp_pins[0],
2269 cfg->hp_pins[1], cfg->hp_pins[2],
2270 cfg->hp_pins[3], cfg->hp_pins[4]);
2271 snd_printd(" inputs: mic=0x%x, fmic=0x%x, line=0x%x, fline=0x%x,"
2272 " cd=0x%x, aux=0x%x\n",
2273 cfg->input_pins[AUTO_PIN_MIC],
2274 cfg->input_pins[AUTO_PIN_FRONT_MIC],
2275 cfg->input_pins[AUTO_PIN_LINE],
2276 cfg->input_pins[AUTO_PIN_FRONT_LINE],
2277 cfg->input_pins[AUTO_PIN_CD],
2278 cfg->input_pins[AUTO_PIN_AUX]);
2281 * FIX-UP: if no line-outs are detected, try to use speaker or HP pin
2282 * as a primary output
2284 if (!cfg->line_outs) {
2285 if (cfg->speaker_outs) {
2286 cfg->line_outs = cfg->speaker_outs;
2287 memcpy(cfg->line_out_pins, cfg->speaker_pins,
2288 sizeof(cfg->speaker_pins));
2289 cfg->speaker_outs = 0;
2290 memset(cfg->speaker_pins, 0, sizeof(cfg->speaker_pins));
2291 cfg->line_out_type = AUTO_PIN_SPEAKER_OUT;
2292 } else if (cfg->hp_outs) {
2293 cfg->line_outs = cfg->hp_outs;
2294 memcpy(cfg->line_out_pins, cfg->hp_pins,
2295 sizeof(cfg->hp_pins));
2296 cfg->hp_outs = 0;
2297 memset(cfg->hp_pins, 0, sizeof(cfg->hp_pins));
2298 cfg->line_out_type = AUTO_PIN_HP_OUT;
2302 return 0;
2305 /* labels for input pins */
2306 const char *auto_pin_cfg_labels[AUTO_PIN_LAST] = {
2307 "Mic", "Front Mic", "Line", "Front Line", "CD", "Aux"
2311 #ifdef CONFIG_PM
2313 * power management
2317 * snd_hda_suspend - suspend the codecs
2318 * @bus: the HDA bus
2319 * @state: suspsend state
2321 * Returns 0 if successful.
2323 int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
2325 struct hda_codec *codec;
2327 /* FIXME: should handle power widget capabilities */
2328 list_for_each_entry(codec, &bus->codec_list, list) {
2329 if (codec->patch_ops.suspend)
2330 codec->patch_ops.suspend(codec, state);
2331 hda_set_power_state(codec,
2332 codec->afg ? codec->afg : codec->mfg,
2333 AC_PWRST_D3);
2335 return 0;
2339 * snd_hda_resume - resume the codecs
2340 * @bus: the HDA bus
2341 * @state: resume state
2343 * Returns 0 if successful.
2345 int snd_hda_resume(struct hda_bus *bus)
2347 struct hda_codec *codec;
2349 list_for_each_entry(codec, &bus->codec_list, list) {
2350 hda_set_power_state(codec,
2351 codec->afg ? codec->afg : codec->mfg,
2352 AC_PWRST_D0);
2353 if (codec->patch_ops.resume)
2354 codec->patch_ops.resume(codec);
2356 return 0;
2360 * snd_hda_resume_ctls - resume controls in the new control list
2361 * @codec: the HDA codec
2362 * @knew: the array of struct snd_kcontrol_new
2364 * This function resumes the mixer controls in the struct snd_kcontrol_new array,
2365 * originally for snd_hda_add_new_ctls().
2366 * The array must be terminated with an empty entry as terminator.
2368 int snd_hda_resume_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
2370 struct snd_ctl_elem_value *val;
2372 val = kmalloc(sizeof(*val), GFP_KERNEL);
2373 if (!val)
2374 return -ENOMEM;
2375 codec->in_resume = 1;
2376 for (; knew->name; knew++) {
2377 int i, count;
2378 count = knew->count ? knew->count : 1;
2379 for (i = 0; i < count; i++) {
2380 memset(val, 0, sizeof(*val));
2381 val->id.iface = knew->iface;
2382 val->id.device = knew->device;
2383 val->id.subdevice = knew->subdevice;
2384 strcpy(val->id.name, knew->name);
2385 val->id.index = knew->index ? knew->index : i;
2386 /* Assume that get callback reads only from cache,
2387 * not accessing to the real hardware
2389 if (snd_ctl_elem_read(codec->bus->card, val) < 0)
2390 continue;
2391 snd_ctl_elem_write(codec->bus->card, NULL, val);
2394 codec->in_resume = 0;
2395 kfree(val);
2396 return 0;
2400 * snd_hda_resume_spdif_out - resume the digital out
2401 * @codec: the HDA codec
2403 int snd_hda_resume_spdif_out(struct hda_codec *codec)
2405 return snd_hda_resume_ctls(codec, dig_mixes);
2409 * snd_hda_resume_spdif_in - resume the digital in
2410 * @codec: the HDA codec
2412 int snd_hda_resume_spdif_in(struct hda_codec *codec)
2414 return snd_hda_resume_ctls(codec, dig_in_ctls);
2416 #endif