ext4: use ext4_group_first_block_no()
[linux-2.6/kmemtrace.git] / fs / ext4 / balloc.c
bloba080d7f5face8284ee5e2affd18426a6f57b104a
1 /*
2 * linux/fs/ext4/balloc.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10 * Big-endian to little-endian byte-swapping/bitmaps by
11 * David S. Miller (davem@caip.rutgers.edu), 1995
14 #include <linux/time.h>
15 #include <linux/capability.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/ext4_fs.h>
19 #include <linux/ext4_jbd2.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
23 #include "group.h"
25 * balloc.c contains the blocks allocation and deallocation routines
29 * Calculate the block group number and offset, given a block number
31 void ext4_get_group_no_and_offset(struct super_block *sb, ext4_fsblk_t blocknr,
32 ext4_group_t *blockgrpp, ext4_grpblk_t *offsetp)
34 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
35 ext4_grpblk_t offset;
37 blocknr = blocknr - le32_to_cpu(es->s_first_data_block);
38 offset = do_div(blocknr, EXT4_BLOCKS_PER_GROUP(sb));
39 if (offsetp)
40 *offsetp = offset;
41 if (blockgrpp)
42 *blockgrpp = blocknr;
46 /* Initializes an uninitialized block bitmap if given, and returns the
47 * number of blocks free in the group. */
48 unsigned ext4_init_block_bitmap(struct super_block *sb, struct buffer_head *bh,
49 ext4_group_t block_group, struct ext4_group_desc *gdp)
51 int bit, bit_max;
52 unsigned free_blocks, group_blocks;
53 struct ext4_sb_info *sbi = EXT4_SB(sb);
55 if (bh) {
56 J_ASSERT_BH(bh, buffer_locked(bh));
58 /* If checksum is bad mark all blocks used to prevent allocation
59 * essentially implementing a per-group read-only flag. */
60 if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
61 ext4_error(sb, __FUNCTION__,
62 "Checksum bad for group %lu\n", block_group);
63 gdp->bg_free_blocks_count = 0;
64 gdp->bg_free_inodes_count = 0;
65 gdp->bg_itable_unused = 0;
66 memset(bh->b_data, 0xff, sb->s_blocksize);
67 return 0;
69 memset(bh->b_data, 0, sb->s_blocksize);
72 /* Check for superblock and gdt backups in this group */
73 bit_max = ext4_bg_has_super(sb, block_group);
75 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
76 block_group < le32_to_cpu(sbi->s_es->s_first_meta_bg) *
77 sbi->s_desc_per_block) {
78 if (bit_max) {
79 bit_max += ext4_bg_num_gdb(sb, block_group);
80 bit_max +=
81 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks);
83 } else { /* For META_BG_BLOCK_GROUPS */
84 int group_rel = (block_group -
85 le32_to_cpu(sbi->s_es->s_first_meta_bg)) %
86 EXT4_DESC_PER_BLOCK(sb);
87 if (group_rel == 0 || group_rel == 1 ||
88 (group_rel == EXT4_DESC_PER_BLOCK(sb) - 1))
89 bit_max += 1;
92 if (block_group == sbi->s_groups_count - 1) {
94 * Even though mke2fs always initialize first and last group
95 * if some other tool enabled the EXT4_BG_BLOCK_UNINIT we need
96 * to make sure we calculate the right free blocks
98 group_blocks = ext4_blocks_count(sbi->s_es) -
99 le32_to_cpu(sbi->s_es->s_first_data_block) -
100 (EXT4_BLOCKS_PER_GROUP(sb) * (sbi->s_groups_count -1));
101 } else {
102 group_blocks = EXT4_BLOCKS_PER_GROUP(sb);
105 free_blocks = group_blocks - bit_max;
107 if (bh) {
108 ext4_fsblk_t start;
110 for (bit = 0; bit < bit_max; bit++)
111 ext4_set_bit(bit, bh->b_data);
113 start = ext4_group_first_block_no(sb, block_group);
115 /* Set bits for block and inode bitmaps, and inode table */
116 ext4_set_bit(ext4_block_bitmap(sb, gdp) - start, bh->b_data);
117 ext4_set_bit(ext4_inode_bitmap(sb, gdp) - start, bh->b_data);
118 for (bit = (ext4_inode_table(sb, gdp) - start),
119 bit_max = bit + sbi->s_itb_per_group; bit < bit_max; bit++)
120 ext4_set_bit(bit, bh->b_data);
123 * Also if the number of blocks within the group is
124 * less than the blocksize * 8 ( which is the size
125 * of bitmap ), set rest of the block bitmap to 1
127 mark_bitmap_end(group_blocks, sb->s_blocksize * 8, bh->b_data);
130 return free_blocks - sbi->s_itb_per_group - 2;
135 * The free blocks are managed by bitmaps. A file system contains several
136 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
137 * block for inodes, N blocks for the inode table and data blocks.
139 * The file system contains group descriptors which are located after the
140 * super block. Each descriptor contains the number of the bitmap block and
141 * the free blocks count in the block. The descriptors are loaded in memory
142 * when a file system is mounted (see ext4_fill_super).
146 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
149 * ext4_get_group_desc() -- load group descriptor from disk
150 * @sb: super block
151 * @block_group: given block group
152 * @bh: pointer to the buffer head to store the block
153 * group descriptor
155 struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb,
156 ext4_group_t block_group,
157 struct buffer_head ** bh)
159 unsigned long group_desc;
160 unsigned long offset;
161 struct ext4_group_desc * desc;
162 struct ext4_sb_info *sbi = EXT4_SB(sb);
164 if (block_group >= sbi->s_groups_count) {
165 ext4_error (sb, "ext4_get_group_desc",
166 "block_group >= groups_count - "
167 "block_group = %lu, groups_count = %lu",
168 block_group, sbi->s_groups_count);
170 return NULL;
172 smp_rmb();
174 group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
175 offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
176 if (!sbi->s_group_desc[group_desc]) {
177 ext4_error (sb, "ext4_get_group_desc",
178 "Group descriptor not loaded - "
179 "block_group = %lu, group_desc = %lu, desc = %lu",
180 block_group, group_desc, offset);
181 return NULL;
184 desc = (struct ext4_group_desc *)(
185 (__u8 *)sbi->s_group_desc[group_desc]->b_data +
186 offset * EXT4_DESC_SIZE(sb));
187 if (bh)
188 *bh = sbi->s_group_desc[group_desc];
189 return desc;
192 static int ext4_valid_block_bitmap(struct super_block *sb,
193 struct ext4_group_desc *desc,
194 unsigned int block_group,
195 struct buffer_head *bh)
197 ext4_grpblk_t offset;
198 ext4_grpblk_t next_zero_bit;
199 ext4_fsblk_t bitmap_blk;
200 ext4_fsblk_t group_first_block;
202 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) {
203 /* with FLEX_BG, the inode/block bitmaps and itable
204 * blocks may not be in the group at all
205 * so the bitmap validation will be skipped for those groups
206 * or it has to also read the block group where the bitmaps
207 * are located to verify they are set.
209 return 1;
211 group_first_block = ext4_group_first_block_no(sb, block_group);
213 /* check whether block bitmap block number is set */
214 bitmap_blk = ext4_block_bitmap(sb, desc);
215 offset = bitmap_blk - group_first_block;
216 if (!ext4_test_bit(offset, bh->b_data))
217 /* bad block bitmap */
218 goto err_out;
220 /* check whether the inode bitmap block number is set */
221 bitmap_blk = ext4_inode_bitmap(sb, desc);
222 offset = bitmap_blk - group_first_block;
223 if (!ext4_test_bit(offset, bh->b_data))
224 /* bad block bitmap */
225 goto err_out;
227 /* check whether the inode table block number is set */
228 bitmap_blk = ext4_inode_table(sb, desc);
229 offset = bitmap_blk - group_first_block;
230 next_zero_bit = ext4_find_next_zero_bit(bh->b_data,
231 offset + EXT4_SB(sb)->s_itb_per_group,
232 offset);
233 if (next_zero_bit >= offset + EXT4_SB(sb)->s_itb_per_group)
234 /* good bitmap for inode tables */
235 return 1;
237 err_out:
238 ext4_error(sb, __FUNCTION__,
239 "Invalid block bitmap - "
240 "block_group = %d, block = %llu",
241 block_group, bitmap_blk);
242 return 0;
245 * read_block_bitmap()
246 * @sb: super block
247 * @block_group: given block group
249 * Read the bitmap for a given block_group,and validate the
250 * bits for block/inode/inode tables are set in the bitmaps
252 * Return buffer_head on success or NULL in case of failure.
254 struct buffer_head *
255 read_block_bitmap(struct super_block *sb, ext4_group_t block_group)
257 struct ext4_group_desc * desc;
258 struct buffer_head * bh = NULL;
259 ext4_fsblk_t bitmap_blk;
261 desc = ext4_get_group_desc(sb, block_group, NULL);
262 if (!desc)
263 return NULL;
264 bitmap_blk = ext4_block_bitmap(sb, desc);
265 bh = sb_getblk(sb, bitmap_blk);
266 if (unlikely(!bh)) {
267 ext4_error(sb, __FUNCTION__,
268 "Cannot read block bitmap - "
269 "block_group = %d, block_bitmap = %llu",
270 (int)block_group, (unsigned long long)bitmap_blk);
271 return NULL;
273 if (bh_uptodate_or_lock(bh))
274 return bh;
276 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
277 ext4_init_block_bitmap(sb, bh, block_group, desc);
278 set_buffer_uptodate(bh);
279 unlock_buffer(bh);
280 return bh;
282 if (bh_submit_read(bh) < 0) {
283 put_bh(bh);
284 ext4_error(sb, __FUNCTION__,
285 "Cannot read block bitmap - "
286 "block_group = %d, block_bitmap = %llu",
287 (int)block_group, (unsigned long long)bitmap_blk);
288 return NULL;
290 if (!ext4_valid_block_bitmap(sb, desc, block_group, bh)) {
291 put_bh(bh);
292 return NULL;
295 return bh;
298 * The reservation window structure operations
299 * --------------------------------------------
300 * Operations include:
301 * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
303 * We use a red-black tree to represent per-filesystem reservation
304 * windows.
309 * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
310 * @rb_root: root of per-filesystem reservation rb tree
311 * @verbose: verbose mode
312 * @fn: function which wishes to dump the reservation map
314 * If verbose is turned on, it will print the whole block reservation
315 * windows(start, end). Otherwise, it will only print out the "bad" windows,
316 * those windows that overlap with their immediate neighbors.
318 #if 1
319 static void __rsv_window_dump(struct rb_root *root, int verbose,
320 const char *fn)
322 struct rb_node *n;
323 struct ext4_reserve_window_node *rsv, *prev;
324 int bad;
326 restart:
327 n = rb_first(root);
328 bad = 0;
329 prev = NULL;
331 printk("Block Allocation Reservation Windows Map (%s):\n", fn);
332 while (n) {
333 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
334 if (verbose)
335 printk("reservation window 0x%p "
336 "start: %llu, end: %llu\n",
337 rsv, rsv->rsv_start, rsv->rsv_end);
338 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
339 printk("Bad reservation %p (start >= end)\n",
340 rsv);
341 bad = 1;
343 if (prev && prev->rsv_end >= rsv->rsv_start) {
344 printk("Bad reservation %p (prev->end >= start)\n",
345 rsv);
346 bad = 1;
348 if (bad) {
349 if (!verbose) {
350 printk("Restarting reservation walk in verbose mode\n");
351 verbose = 1;
352 goto restart;
355 n = rb_next(n);
356 prev = rsv;
358 printk("Window map complete.\n");
359 if (bad)
360 BUG();
362 #define rsv_window_dump(root, verbose) \
363 __rsv_window_dump((root), (verbose), __FUNCTION__)
364 #else
365 #define rsv_window_dump(root, verbose) do {} while (0)
366 #endif
369 * goal_in_my_reservation()
370 * @rsv: inode's reservation window
371 * @grp_goal: given goal block relative to the allocation block group
372 * @group: the current allocation block group
373 * @sb: filesystem super block
375 * Test if the given goal block (group relative) is within the file's
376 * own block reservation window range.
378 * If the reservation window is outside the goal allocation group, return 0;
379 * grp_goal (given goal block) could be -1, which means no specific
380 * goal block. In this case, always return 1.
381 * If the goal block is within the reservation window, return 1;
382 * otherwise, return 0;
384 static int
385 goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal,
386 ext4_group_t group, struct super_block *sb)
388 ext4_fsblk_t group_first_block, group_last_block;
390 group_first_block = ext4_group_first_block_no(sb, group);
391 group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
393 if ((rsv->_rsv_start > group_last_block) ||
394 (rsv->_rsv_end < group_first_block))
395 return 0;
396 if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
397 || (grp_goal + group_first_block > rsv->_rsv_end)))
398 return 0;
399 return 1;
403 * search_reserve_window()
404 * @rb_root: root of reservation tree
405 * @goal: target allocation block
407 * Find the reserved window which includes the goal, or the previous one
408 * if the goal is not in any window.
409 * Returns NULL if there are no windows or if all windows start after the goal.
411 static struct ext4_reserve_window_node *
412 search_reserve_window(struct rb_root *root, ext4_fsblk_t goal)
414 struct rb_node *n = root->rb_node;
415 struct ext4_reserve_window_node *rsv;
417 if (!n)
418 return NULL;
420 do {
421 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
423 if (goal < rsv->rsv_start)
424 n = n->rb_left;
425 else if (goal > rsv->rsv_end)
426 n = n->rb_right;
427 else
428 return rsv;
429 } while (n);
431 * We've fallen off the end of the tree: the goal wasn't inside
432 * any particular node. OK, the previous node must be to one
433 * side of the interval containing the goal. If it's the RHS,
434 * we need to back up one.
436 if (rsv->rsv_start > goal) {
437 n = rb_prev(&rsv->rsv_node);
438 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
440 return rsv;
444 * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
445 * @sb: super block
446 * @rsv: reservation window to add
448 * Must be called with rsv_lock hold.
450 void ext4_rsv_window_add(struct super_block *sb,
451 struct ext4_reserve_window_node *rsv)
453 struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root;
454 struct rb_node *node = &rsv->rsv_node;
455 ext4_fsblk_t start = rsv->rsv_start;
457 struct rb_node ** p = &root->rb_node;
458 struct rb_node * parent = NULL;
459 struct ext4_reserve_window_node *this;
461 while (*p)
463 parent = *p;
464 this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node);
466 if (start < this->rsv_start)
467 p = &(*p)->rb_left;
468 else if (start > this->rsv_end)
469 p = &(*p)->rb_right;
470 else {
471 rsv_window_dump(root, 1);
472 BUG();
476 rb_link_node(node, parent, p);
477 rb_insert_color(node, root);
481 * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
482 * @sb: super block
483 * @rsv: reservation window to remove
485 * Mark the block reservation window as not allocated, and unlink it
486 * from the filesystem reservation window rb tree. Must be called with
487 * rsv_lock hold.
489 static void rsv_window_remove(struct super_block *sb,
490 struct ext4_reserve_window_node *rsv)
492 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
493 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
494 rsv->rsv_alloc_hit = 0;
495 rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root);
499 * rsv_is_empty() -- Check if the reservation window is allocated.
500 * @rsv: given reservation window to check
502 * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
504 static inline int rsv_is_empty(struct ext4_reserve_window *rsv)
506 /* a valid reservation end block could not be 0 */
507 return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
511 * ext4_init_block_alloc_info()
512 * @inode: file inode structure
514 * Allocate and initialize the reservation window structure, and
515 * link the window to the ext4 inode structure at last
517 * The reservation window structure is only dynamically allocated
518 * and linked to ext4 inode the first time the open file
519 * needs a new block. So, before every ext4_new_block(s) call, for
520 * regular files, we should check whether the reservation window
521 * structure exists or not. In the latter case, this function is called.
522 * Fail to do so will result in block reservation being turned off for that
523 * open file.
525 * This function is called from ext4_get_blocks_handle(), also called
526 * when setting the reservation window size through ioctl before the file
527 * is open for write (needs block allocation).
529 * Needs down_write(i_data_sem) protection prior to call this function.
531 void ext4_init_block_alloc_info(struct inode *inode)
533 struct ext4_inode_info *ei = EXT4_I(inode);
534 struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
535 struct super_block *sb = inode->i_sb;
537 block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
538 if (block_i) {
539 struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node;
541 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
542 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
545 * if filesystem is mounted with NORESERVATION, the goal
546 * reservation window size is set to zero to indicate
547 * block reservation is off
549 if (!test_opt(sb, RESERVATION))
550 rsv->rsv_goal_size = 0;
551 else
552 rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS;
553 rsv->rsv_alloc_hit = 0;
554 block_i->last_alloc_logical_block = 0;
555 block_i->last_alloc_physical_block = 0;
557 ei->i_block_alloc_info = block_i;
561 * ext4_discard_reservation()
562 * @inode: inode
564 * Discard(free) block reservation window on last file close, or truncate
565 * or at last iput().
567 * It is being called in three cases:
568 * ext4_release_file(): last writer close the file
569 * ext4_clear_inode(): last iput(), when nobody link to this file.
570 * ext4_truncate(): when the block indirect map is about to change.
573 void ext4_discard_reservation(struct inode *inode)
575 struct ext4_inode_info *ei = EXT4_I(inode);
576 struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
577 struct ext4_reserve_window_node *rsv;
578 spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock;
580 ext4_mb_discard_inode_preallocations(inode);
582 if (!block_i)
583 return;
585 rsv = &block_i->rsv_window_node;
586 if (!rsv_is_empty(&rsv->rsv_window)) {
587 spin_lock(rsv_lock);
588 if (!rsv_is_empty(&rsv->rsv_window))
589 rsv_window_remove(inode->i_sb, rsv);
590 spin_unlock(rsv_lock);
595 * ext4_free_blocks_sb() -- Free given blocks and update quota
596 * @handle: handle to this transaction
597 * @sb: super block
598 * @block: start physcial block to free
599 * @count: number of blocks to free
600 * @pdquot_freed_blocks: pointer to quota
602 void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb,
603 ext4_fsblk_t block, unsigned long count,
604 unsigned long *pdquot_freed_blocks)
606 struct buffer_head *bitmap_bh = NULL;
607 struct buffer_head *gd_bh;
608 ext4_group_t block_group;
609 ext4_grpblk_t bit;
610 unsigned long i;
611 unsigned long overflow;
612 struct ext4_group_desc * desc;
613 struct ext4_super_block * es;
614 struct ext4_sb_info *sbi;
615 int err = 0, ret;
616 ext4_grpblk_t group_freed;
618 *pdquot_freed_blocks = 0;
619 sbi = EXT4_SB(sb);
620 es = sbi->s_es;
621 if (block < le32_to_cpu(es->s_first_data_block) ||
622 block + count < block ||
623 block + count > ext4_blocks_count(es)) {
624 ext4_error (sb, "ext4_free_blocks",
625 "Freeing blocks not in datazone - "
626 "block = %llu, count = %lu", block, count);
627 goto error_return;
630 ext4_debug ("freeing block(s) %llu-%llu\n", block, block + count - 1);
632 do_more:
633 overflow = 0;
634 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
636 * Check to see if we are freeing blocks across a group
637 * boundary.
639 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
640 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
641 count -= overflow;
643 brelse(bitmap_bh);
644 bitmap_bh = read_block_bitmap(sb, block_group);
645 if (!bitmap_bh)
646 goto error_return;
647 desc = ext4_get_group_desc (sb, block_group, &gd_bh);
648 if (!desc)
649 goto error_return;
651 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
652 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
653 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
654 in_range(block + count - 1, ext4_inode_table(sb, desc),
655 sbi->s_itb_per_group)) {
656 ext4_error (sb, "ext4_free_blocks",
657 "Freeing blocks in system zones - "
658 "Block = %llu, count = %lu",
659 block, count);
660 goto error_return;
664 * We are about to start releasing blocks in the bitmap,
665 * so we need undo access.
667 /* @@@ check errors */
668 BUFFER_TRACE(bitmap_bh, "getting undo access");
669 err = ext4_journal_get_undo_access(handle, bitmap_bh);
670 if (err)
671 goto error_return;
674 * We are about to modify some metadata. Call the journal APIs
675 * to unshare ->b_data if a currently-committing transaction is
676 * using it
678 BUFFER_TRACE(gd_bh, "get_write_access");
679 err = ext4_journal_get_write_access(handle, gd_bh);
680 if (err)
681 goto error_return;
683 jbd_lock_bh_state(bitmap_bh);
685 for (i = 0, group_freed = 0; i < count; i++) {
687 * An HJ special. This is expensive...
689 #ifdef CONFIG_JBD2_DEBUG
690 jbd_unlock_bh_state(bitmap_bh);
692 struct buffer_head *debug_bh;
693 debug_bh = sb_find_get_block(sb, block + i);
694 if (debug_bh) {
695 BUFFER_TRACE(debug_bh, "Deleted!");
696 if (!bh2jh(bitmap_bh)->b_committed_data)
697 BUFFER_TRACE(debug_bh,
698 "No commited data in bitmap");
699 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
700 __brelse(debug_bh);
703 jbd_lock_bh_state(bitmap_bh);
704 #endif
705 if (need_resched()) {
706 jbd_unlock_bh_state(bitmap_bh);
707 cond_resched();
708 jbd_lock_bh_state(bitmap_bh);
710 /* @@@ This prevents newly-allocated data from being
711 * freed and then reallocated within the same
712 * transaction.
714 * Ideally we would want to allow that to happen, but to
715 * do so requires making jbd2_journal_forget() capable of
716 * revoking the queued write of a data block, which
717 * implies blocking on the journal lock. *forget()
718 * cannot block due to truncate races.
720 * Eventually we can fix this by making jbd2_journal_forget()
721 * return a status indicating whether or not it was able
722 * to revoke the buffer. On successful revoke, it is
723 * safe not to set the allocation bit in the committed
724 * bitmap, because we know that there is no outstanding
725 * activity on the buffer any more and so it is safe to
726 * reallocate it.
728 BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
729 J_ASSERT_BH(bitmap_bh,
730 bh2jh(bitmap_bh)->b_committed_data != NULL);
731 ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
732 bh2jh(bitmap_bh)->b_committed_data);
735 * We clear the bit in the bitmap after setting the committed
736 * data bit, because this is the reverse order to that which
737 * the allocator uses.
739 BUFFER_TRACE(bitmap_bh, "clear bit");
740 if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
741 bit + i, bitmap_bh->b_data)) {
742 jbd_unlock_bh_state(bitmap_bh);
743 ext4_error(sb, __FUNCTION__,
744 "bit already cleared for block %llu",
745 (ext4_fsblk_t)(block + i));
746 jbd_lock_bh_state(bitmap_bh);
747 BUFFER_TRACE(bitmap_bh, "bit already cleared");
748 } else {
749 group_freed++;
752 jbd_unlock_bh_state(bitmap_bh);
754 spin_lock(sb_bgl_lock(sbi, block_group));
755 le16_add_cpu(&desc->bg_free_blocks_count, group_freed);
756 desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc);
757 spin_unlock(sb_bgl_lock(sbi, block_group));
758 percpu_counter_add(&sbi->s_freeblocks_counter, count);
760 /* We dirtied the bitmap block */
761 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
762 err = ext4_journal_dirty_metadata(handle, bitmap_bh);
764 /* And the group descriptor block */
765 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
766 ret = ext4_journal_dirty_metadata(handle, gd_bh);
767 if (!err) err = ret;
768 *pdquot_freed_blocks += group_freed;
770 if (overflow && !err) {
771 block += count;
772 count = overflow;
773 goto do_more;
775 sb->s_dirt = 1;
776 error_return:
777 brelse(bitmap_bh);
778 ext4_std_error(sb, err);
779 return;
783 * ext4_free_blocks() -- Free given blocks and update quota
784 * @handle: handle for this transaction
785 * @inode: inode
786 * @block: start physical block to free
787 * @count: number of blocks to count
788 * @metadata: Are these metadata blocks
790 void ext4_free_blocks(handle_t *handle, struct inode *inode,
791 ext4_fsblk_t block, unsigned long count,
792 int metadata)
794 struct super_block * sb;
795 unsigned long dquot_freed_blocks;
797 /* this isn't the right place to decide whether block is metadata
798 * inode.c/extents.c knows better, but for safety ... */
799 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
800 ext4_should_journal_data(inode))
801 metadata = 1;
803 sb = inode->i_sb;
805 if (!test_opt(sb, MBALLOC) || !EXT4_SB(sb)->s_group_info)
806 ext4_free_blocks_sb(handle, sb, block, count,
807 &dquot_freed_blocks);
808 else
809 ext4_mb_free_blocks(handle, inode, block, count,
810 metadata, &dquot_freed_blocks);
811 if (dquot_freed_blocks)
812 DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
813 return;
817 * ext4_test_allocatable()
818 * @nr: given allocation block group
819 * @bh: bufferhead contains the bitmap of the given block group
821 * For ext4 allocations, we must not reuse any blocks which are
822 * allocated in the bitmap buffer's "last committed data" copy. This
823 * prevents deletes from freeing up the page for reuse until we have
824 * committed the delete transaction.
826 * If we didn't do this, then deleting something and reallocating it as
827 * data would allow the old block to be overwritten before the
828 * transaction committed (because we force data to disk before commit).
829 * This would lead to corruption if we crashed between overwriting the
830 * data and committing the delete.
832 * @@@ We may want to make this allocation behaviour conditional on
833 * data-writes at some point, and disable it for metadata allocations or
834 * sync-data inodes.
836 static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh)
838 int ret;
839 struct journal_head *jh = bh2jh(bh);
841 if (ext4_test_bit(nr, bh->b_data))
842 return 0;
844 jbd_lock_bh_state(bh);
845 if (!jh->b_committed_data)
846 ret = 1;
847 else
848 ret = !ext4_test_bit(nr, jh->b_committed_data);
849 jbd_unlock_bh_state(bh);
850 return ret;
854 * bitmap_search_next_usable_block()
855 * @start: the starting block (group relative) of the search
856 * @bh: bufferhead contains the block group bitmap
857 * @maxblocks: the ending block (group relative) of the reservation
859 * The bitmap search --- search forward alternately through the actual
860 * bitmap on disk and the last-committed copy in journal, until we find a
861 * bit free in both bitmaps.
863 static ext4_grpblk_t
864 bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
865 ext4_grpblk_t maxblocks)
867 ext4_grpblk_t next;
868 struct journal_head *jh = bh2jh(bh);
870 while (start < maxblocks) {
871 next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start);
872 if (next >= maxblocks)
873 return -1;
874 if (ext4_test_allocatable(next, bh))
875 return next;
876 jbd_lock_bh_state(bh);
877 if (jh->b_committed_data)
878 start = ext4_find_next_zero_bit(jh->b_committed_data,
879 maxblocks, next);
880 jbd_unlock_bh_state(bh);
882 return -1;
886 * find_next_usable_block()
887 * @start: the starting block (group relative) to find next
888 * allocatable block in bitmap.
889 * @bh: bufferhead contains the block group bitmap
890 * @maxblocks: the ending block (group relative) for the search
892 * Find an allocatable block in a bitmap. We honor both the bitmap and
893 * its last-committed copy (if that exists), and perform the "most
894 * appropriate allocation" algorithm of looking for a free block near
895 * the initial goal; then for a free byte somewhere in the bitmap; then
896 * for any free bit in the bitmap.
898 static ext4_grpblk_t
899 find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
900 ext4_grpblk_t maxblocks)
902 ext4_grpblk_t here, next;
903 char *p, *r;
905 if (start > 0) {
907 * The goal was occupied; search forward for a free
908 * block within the next XX blocks.
910 * end_goal is more or less random, but it has to be
911 * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
912 * next 64-bit boundary is simple..
914 ext4_grpblk_t end_goal = (start + 63) & ~63;
915 if (end_goal > maxblocks)
916 end_goal = maxblocks;
917 here = ext4_find_next_zero_bit(bh->b_data, end_goal, start);
918 if (here < end_goal && ext4_test_allocatable(here, bh))
919 return here;
920 ext4_debug("Bit not found near goal\n");
923 here = start;
924 if (here < 0)
925 here = 0;
927 p = ((char *)bh->b_data) + (here >> 3);
928 r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3));
929 next = (r - ((char *)bh->b_data)) << 3;
931 if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh))
932 return next;
935 * The bitmap search --- search forward alternately through the actual
936 * bitmap and the last-committed copy until we find a bit free in
937 * both
939 here = bitmap_search_next_usable_block(here, bh, maxblocks);
940 return here;
944 * claim_block()
945 * @block: the free block (group relative) to allocate
946 * @bh: the bufferhead containts the block group bitmap
948 * We think we can allocate this block in this bitmap. Try to set the bit.
949 * If that succeeds then check that nobody has allocated and then freed the
950 * block since we saw that is was not marked in b_committed_data. If it _was_
951 * allocated and freed then clear the bit in the bitmap again and return
952 * zero (failure).
954 static inline int
955 claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh)
957 struct journal_head *jh = bh2jh(bh);
958 int ret;
960 if (ext4_set_bit_atomic(lock, block, bh->b_data))
961 return 0;
962 jbd_lock_bh_state(bh);
963 if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) {
964 ext4_clear_bit_atomic(lock, block, bh->b_data);
965 ret = 0;
966 } else {
967 ret = 1;
969 jbd_unlock_bh_state(bh);
970 return ret;
974 * ext4_try_to_allocate()
975 * @sb: superblock
976 * @handle: handle to this transaction
977 * @group: given allocation block group
978 * @bitmap_bh: bufferhead holds the block bitmap
979 * @grp_goal: given target block within the group
980 * @count: target number of blocks to allocate
981 * @my_rsv: reservation window
983 * Attempt to allocate blocks within a give range. Set the range of allocation
984 * first, then find the first free bit(s) from the bitmap (within the range),
985 * and at last, allocate the blocks by claiming the found free bit as allocated.
987 * To set the range of this allocation:
988 * if there is a reservation window, only try to allocate block(s) from the
989 * file's own reservation window;
990 * Otherwise, the allocation range starts from the give goal block, ends at
991 * the block group's last block.
993 * If we failed to allocate the desired block then we may end up crossing to a
994 * new bitmap. In that case we must release write access to the old one via
995 * ext4_journal_release_buffer(), else we'll run out of credits.
997 static ext4_grpblk_t
998 ext4_try_to_allocate(struct super_block *sb, handle_t *handle,
999 ext4_group_t group, struct buffer_head *bitmap_bh,
1000 ext4_grpblk_t grp_goal, unsigned long *count,
1001 struct ext4_reserve_window *my_rsv)
1003 ext4_fsblk_t group_first_block;
1004 ext4_grpblk_t start, end;
1005 unsigned long num = 0;
1007 /* we do allocation within the reservation window if we have a window */
1008 if (my_rsv) {
1009 group_first_block = ext4_group_first_block_no(sb, group);
1010 if (my_rsv->_rsv_start >= group_first_block)
1011 start = my_rsv->_rsv_start - group_first_block;
1012 else
1013 /* reservation window cross group boundary */
1014 start = 0;
1015 end = my_rsv->_rsv_end - group_first_block + 1;
1016 if (end > EXT4_BLOCKS_PER_GROUP(sb))
1017 /* reservation window crosses group boundary */
1018 end = EXT4_BLOCKS_PER_GROUP(sb);
1019 if ((start <= grp_goal) && (grp_goal < end))
1020 start = grp_goal;
1021 else
1022 grp_goal = -1;
1023 } else {
1024 if (grp_goal > 0)
1025 start = grp_goal;
1026 else
1027 start = 0;
1028 end = EXT4_BLOCKS_PER_GROUP(sb);
1031 BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb));
1033 repeat:
1034 if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) {
1035 grp_goal = find_next_usable_block(start, bitmap_bh, end);
1036 if (grp_goal < 0)
1037 goto fail_access;
1038 if (!my_rsv) {
1039 int i;
1041 for (i = 0; i < 7 && grp_goal > start &&
1042 ext4_test_allocatable(grp_goal - 1,
1043 bitmap_bh);
1044 i++, grp_goal--)
1048 start = grp_goal;
1050 if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group),
1051 grp_goal, bitmap_bh)) {
1053 * The block was allocated by another thread, or it was
1054 * allocated and then freed by another thread
1056 start++;
1057 grp_goal++;
1058 if (start >= end)
1059 goto fail_access;
1060 goto repeat;
1062 num++;
1063 grp_goal++;
1064 while (num < *count && grp_goal < end
1065 && ext4_test_allocatable(grp_goal, bitmap_bh)
1066 && claim_block(sb_bgl_lock(EXT4_SB(sb), group),
1067 grp_goal, bitmap_bh)) {
1068 num++;
1069 grp_goal++;
1071 *count = num;
1072 return grp_goal - num;
1073 fail_access:
1074 *count = num;
1075 return -1;
1079 * find_next_reservable_window():
1080 * find a reservable space within the given range.
1081 * It does not allocate the reservation window for now:
1082 * alloc_new_reservation() will do the work later.
1084 * @search_head: the head of the searching list;
1085 * This is not necessarily the list head of the whole filesystem
1087 * We have both head and start_block to assist the search
1088 * for the reservable space. The list starts from head,
1089 * but we will shift to the place where start_block is,
1090 * then start from there, when looking for a reservable space.
1092 * @size: the target new reservation window size
1094 * @group_first_block: the first block we consider to start
1095 * the real search from
1097 * @last_block:
1098 * the maximum block number that our goal reservable space
1099 * could start from. This is normally the last block in this
1100 * group. The search will end when we found the start of next
1101 * possible reservable space is out of this boundary.
1102 * This could handle the cross boundary reservation window
1103 * request.
1105 * basically we search from the given range, rather than the whole
1106 * reservation double linked list, (start_block, last_block)
1107 * to find a free region that is of my size and has not
1108 * been reserved.
1111 static int find_next_reservable_window(
1112 struct ext4_reserve_window_node *search_head,
1113 struct ext4_reserve_window_node *my_rsv,
1114 struct super_block * sb,
1115 ext4_fsblk_t start_block,
1116 ext4_fsblk_t last_block)
1118 struct rb_node *next;
1119 struct ext4_reserve_window_node *rsv, *prev;
1120 ext4_fsblk_t cur;
1121 int size = my_rsv->rsv_goal_size;
1123 /* TODO: make the start of the reservation window byte-aligned */
1124 /* cur = *start_block & ~7;*/
1125 cur = start_block;
1126 rsv = search_head;
1127 if (!rsv)
1128 return -1;
1130 while (1) {
1131 if (cur <= rsv->rsv_end)
1132 cur = rsv->rsv_end + 1;
1134 /* TODO?
1135 * in the case we could not find a reservable space
1136 * that is what is expected, during the re-search, we could
1137 * remember what's the largest reservable space we could have
1138 * and return that one.
1140 * For now it will fail if we could not find the reservable
1141 * space with expected-size (or more)...
1143 if (cur > last_block)
1144 return -1; /* fail */
1146 prev = rsv;
1147 next = rb_next(&rsv->rsv_node);
1148 rsv = rb_entry(next,struct ext4_reserve_window_node,rsv_node);
1151 * Reached the last reservation, we can just append to the
1152 * previous one.
1154 if (!next)
1155 break;
1157 if (cur + size <= rsv->rsv_start) {
1159 * Found a reserveable space big enough. We could
1160 * have a reservation across the group boundary here
1162 break;
1166 * we come here either :
1167 * when we reach the end of the whole list,
1168 * and there is empty reservable space after last entry in the list.
1169 * append it to the end of the list.
1171 * or we found one reservable space in the middle of the list,
1172 * return the reservation window that we could append to.
1173 * succeed.
1176 if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
1177 rsv_window_remove(sb, my_rsv);
1180 * Let's book the whole avaliable window for now. We will check the
1181 * disk bitmap later and then, if there are free blocks then we adjust
1182 * the window size if it's larger than requested.
1183 * Otherwise, we will remove this node from the tree next time
1184 * call find_next_reservable_window.
1186 my_rsv->rsv_start = cur;
1187 my_rsv->rsv_end = cur + size - 1;
1188 my_rsv->rsv_alloc_hit = 0;
1190 if (prev != my_rsv)
1191 ext4_rsv_window_add(sb, my_rsv);
1193 return 0;
1197 * alloc_new_reservation()--allocate a new reservation window
1199 * To make a new reservation, we search part of the filesystem
1200 * reservation list (the list that inside the group). We try to
1201 * allocate a new reservation window near the allocation goal,
1202 * or the beginning of the group, if there is no goal.
1204 * We first find a reservable space after the goal, then from
1205 * there, we check the bitmap for the first free block after
1206 * it. If there is no free block until the end of group, then the
1207 * whole group is full, we failed. Otherwise, check if the free
1208 * block is inside the expected reservable space, if so, we
1209 * succeed.
1210 * If the first free block is outside the reservable space, then
1211 * start from the first free block, we search for next available
1212 * space, and go on.
1214 * on succeed, a new reservation will be found and inserted into the list
1215 * It contains at least one free block, and it does not overlap with other
1216 * reservation windows.
1218 * failed: we failed to find a reservation window in this group
1220 * @rsv: the reservation
1222 * @grp_goal: The goal (group-relative). It is where the search for a
1223 * free reservable space should start from.
1224 * if we have a grp_goal(grp_goal >0 ), then start from there,
1225 * no grp_goal(grp_goal = -1), we start from the first block
1226 * of the group.
1228 * @sb: the super block
1229 * @group: the group we are trying to allocate in
1230 * @bitmap_bh: the block group block bitmap
1233 static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv,
1234 ext4_grpblk_t grp_goal, struct super_block *sb,
1235 ext4_group_t group, struct buffer_head *bitmap_bh)
1237 struct ext4_reserve_window_node *search_head;
1238 ext4_fsblk_t group_first_block, group_end_block, start_block;
1239 ext4_grpblk_t first_free_block;
1240 struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root;
1241 unsigned long size;
1242 int ret;
1243 spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1245 group_first_block = ext4_group_first_block_no(sb, group);
1246 group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1248 if (grp_goal < 0)
1249 start_block = group_first_block;
1250 else
1251 start_block = grp_goal + group_first_block;
1253 size = my_rsv->rsv_goal_size;
1255 if (!rsv_is_empty(&my_rsv->rsv_window)) {
1257 * if the old reservation is cross group boundary
1258 * and if the goal is inside the old reservation window,
1259 * we will come here when we just failed to allocate from
1260 * the first part of the window. We still have another part
1261 * that belongs to the next group. In this case, there is no
1262 * point to discard our window and try to allocate a new one
1263 * in this group(which will fail). we should
1264 * keep the reservation window, just simply move on.
1266 * Maybe we could shift the start block of the reservation
1267 * window to the first block of next group.
1270 if ((my_rsv->rsv_start <= group_end_block) &&
1271 (my_rsv->rsv_end > group_end_block) &&
1272 (start_block >= my_rsv->rsv_start))
1273 return -1;
1275 if ((my_rsv->rsv_alloc_hit >
1276 (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
1278 * if the previously allocation hit ratio is
1279 * greater than 1/2, then we double the size of
1280 * the reservation window the next time,
1281 * otherwise we keep the same size window
1283 size = size * 2;
1284 if (size > EXT4_MAX_RESERVE_BLOCKS)
1285 size = EXT4_MAX_RESERVE_BLOCKS;
1286 my_rsv->rsv_goal_size= size;
1290 spin_lock(rsv_lock);
1292 * shift the search start to the window near the goal block
1294 search_head = search_reserve_window(fs_rsv_root, start_block);
1297 * find_next_reservable_window() simply finds a reservable window
1298 * inside the given range(start_block, group_end_block).
1300 * To make sure the reservation window has a free bit inside it, we
1301 * need to check the bitmap after we found a reservable window.
1303 retry:
1304 ret = find_next_reservable_window(search_head, my_rsv, sb,
1305 start_block, group_end_block);
1307 if (ret == -1) {
1308 if (!rsv_is_empty(&my_rsv->rsv_window))
1309 rsv_window_remove(sb, my_rsv);
1310 spin_unlock(rsv_lock);
1311 return -1;
1315 * On success, find_next_reservable_window() returns the
1316 * reservation window where there is a reservable space after it.
1317 * Before we reserve this reservable space, we need
1318 * to make sure there is at least a free block inside this region.
1320 * searching the first free bit on the block bitmap and copy of
1321 * last committed bitmap alternatively, until we found a allocatable
1322 * block. Search start from the start block of the reservable space
1323 * we just found.
1325 spin_unlock(rsv_lock);
1326 first_free_block = bitmap_search_next_usable_block(
1327 my_rsv->rsv_start - group_first_block,
1328 bitmap_bh, group_end_block - group_first_block + 1);
1330 if (first_free_block < 0) {
1332 * no free block left on the bitmap, no point
1333 * to reserve the space. return failed.
1335 spin_lock(rsv_lock);
1336 if (!rsv_is_empty(&my_rsv->rsv_window))
1337 rsv_window_remove(sb, my_rsv);
1338 spin_unlock(rsv_lock);
1339 return -1; /* failed */
1342 start_block = first_free_block + group_first_block;
1344 * check if the first free block is within the
1345 * free space we just reserved
1347 if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)
1348 return 0; /* success */
1350 * if the first free bit we found is out of the reservable space
1351 * continue search for next reservable space,
1352 * start from where the free block is,
1353 * we also shift the list head to where we stopped last time
1355 search_head = my_rsv;
1356 spin_lock(rsv_lock);
1357 goto retry;
1361 * try_to_extend_reservation()
1362 * @my_rsv: given reservation window
1363 * @sb: super block
1364 * @size: the delta to extend
1366 * Attempt to expand the reservation window large enough to have
1367 * required number of free blocks
1369 * Since ext4_try_to_allocate() will always allocate blocks within
1370 * the reservation window range, if the window size is too small,
1371 * multiple blocks allocation has to stop at the end of the reservation
1372 * window. To make this more efficient, given the total number of
1373 * blocks needed and the current size of the window, we try to
1374 * expand the reservation window size if necessary on a best-effort
1375 * basis before ext4_new_blocks() tries to allocate blocks,
1377 static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv,
1378 struct super_block *sb, int size)
1380 struct ext4_reserve_window_node *next_rsv;
1381 struct rb_node *next;
1382 spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1384 if (!spin_trylock(rsv_lock))
1385 return;
1387 next = rb_next(&my_rsv->rsv_node);
1389 if (!next)
1390 my_rsv->rsv_end += size;
1391 else {
1392 next_rsv = rb_entry(next, struct ext4_reserve_window_node, rsv_node);
1394 if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1395 my_rsv->rsv_end += size;
1396 else
1397 my_rsv->rsv_end = next_rsv->rsv_start - 1;
1399 spin_unlock(rsv_lock);
1403 * ext4_try_to_allocate_with_rsv()
1404 * @sb: superblock
1405 * @handle: handle to this transaction
1406 * @group: given allocation block group
1407 * @bitmap_bh: bufferhead holds the block bitmap
1408 * @grp_goal: given target block within the group
1409 * @count: target number of blocks to allocate
1410 * @my_rsv: reservation window
1411 * @errp: pointer to store the error code
1413 * This is the main function used to allocate a new block and its reservation
1414 * window.
1416 * Each time when a new block allocation is need, first try to allocate from
1417 * its own reservation. If it does not have a reservation window, instead of
1418 * looking for a free bit on bitmap first, then look up the reservation list to
1419 * see if it is inside somebody else's reservation window, we try to allocate a
1420 * reservation window for it starting from the goal first. Then do the block
1421 * allocation within the reservation window.
1423 * This will avoid keeping on searching the reservation list again and
1424 * again when somebody is looking for a free block (without
1425 * reservation), and there are lots of free blocks, but they are all
1426 * being reserved.
1428 * We use a red-black tree for the per-filesystem reservation list.
1431 static ext4_grpblk_t
1432 ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1433 ext4_group_t group, struct buffer_head *bitmap_bh,
1434 ext4_grpblk_t grp_goal,
1435 struct ext4_reserve_window_node * my_rsv,
1436 unsigned long *count, int *errp)
1438 ext4_fsblk_t group_first_block, group_last_block;
1439 ext4_grpblk_t ret = 0;
1440 int fatal;
1441 unsigned long num = *count;
1443 *errp = 0;
1446 * Make sure we use undo access for the bitmap, because it is critical
1447 * that we do the frozen_data COW on bitmap buffers in all cases even
1448 * if the buffer is in BJ_Forget state in the committing transaction.
1450 BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1451 fatal = ext4_journal_get_undo_access(handle, bitmap_bh);
1452 if (fatal) {
1453 *errp = fatal;
1454 return -1;
1458 * we don't deal with reservation when
1459 * filesystem is mounted without reservation
1460 * or the file is not a regular file
1461 * or last attempt to allocate a block with reservation turned on failed
1463 if (my_rsv == NULL ) {
1464 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1465 grp_goal, count, NULL);
1466 goto out;
1469 * grp_goal is a group relative block number (if there is a goal)
1470 * 0 <= grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1471 * first block is a filesystem wide block number
1472 * first block is the block number of the first block in this group
1474 group_first_block = ext4_group_first_block_no(sb, group);
1475 group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1478 * Basically we will allocate a new block from inode's reservation
1479 * window.
1481 * We need to allocate a new reservation window, if:
1482 * a) inode does not have a reservation window; or
1483 * b) last attempt to allocate a block from existing reservation
1484 * failed; or
1485 * c) we come here with a goal and with a reservation window
1487 * We do not need to allocate a new reservation window if we come here
1488 * at the beginning with a goal and the goal is inside the window, or
1489 * we don't have a goal but already have a reservation window.
1490 * then we could go to allocate from the reservation window directly.
1492 while (1) {
1493 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1494 !goal_in_my_reservation(&my_rsv->rsv_window,
1495 grp_goal, group, sb)) {
1496 if (my_rsv->rsv_goal_size < *count)
1497 my_rsv->rsv_goal_size = *count;
1498 ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1499 group, bitmap_bh);
1500 if (ret < 0)
1501 break; /* failed */
1503 if (!goal_in_my_reservation(&my_rsv->rsv_window,
1504 grp_goal, group, sb))
1505 grp_goal = -1;
1506 } else if (grp_goal >= 0) {
1507 int curr = my_rsv->rsv_end -
1508 (grp_goal + group_first_block) + 1;
1510 if (curr < *count)
1511 try_to_extend_reservation(my_rsv, sb,
1512 *count - curr);
1515 if ((my_rsv->rsv_start > group_last_block) ||
1516 (my_rsv->rsv_end < group_first_block)) {
1517 rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1);
1518 BUG();
1520 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1521 grp_goal, &num, &my_rsv->rsv_window);
1522 if (ret >= 0) {
1523 my_rsv->rsv_alloc_hit += num;
1524 *count = num;
1525 break; /* succeed */
1527 num = *count;
1529 out:
1530 if (ret >= 0) {
1531 BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1532 "bitmap block");
1533 fatal = ext4_journal_dirty_metadata(handle, bitmap_bh);
1534 if (fatal) {
1535 *errp = fatal;
1536 return -1;
1538 return ret;
1541 BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1542 ext4_journal_release_buffer(handle, bitmap_bh);
1543 return ret;
1547 * ext4_has_free_blocks()
1548 * @sbi: in-core super block structure.
1550 * Check if filesystem has at least 1 free block available for allocation.
1552 static int ext4_has_free_blocks(struct ext4_sb_info *sbi)
1554 ext4_fsblk_t free_blocks, root_blocks;
1556 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1557 root_blocks = ext4_r_blocks_count(sbi->s_es);
1558 if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
1559 sbi->s_resuid != current->fsuid &&
1560 (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) {
1561 return 0;
1563 return 1;
1567 * ext4_should_retry_alloc()
1568 * @sb: super block
1569 * @retries number of attemps has been made
1571 * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1572 * it is profitable to retry the operation, this function will wait
1573 * for the current or commiting transaction to complete, and then
1574 * return TRUE.
1576 * if the total number of retries exceed three times, return FALSE.
1578 int ext4_should_retry_alloc(struct super_block *sb, int *retries)
1580 if (!ext4_has_free_blocks(EXT4_SB(sb)) || (*retries)++ > 3)
1581 return 0;
1583 jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1585 return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal);
1589 * ext4_new_blocks_old() -- core block(s) allocation function
1590 * @handle: handle to this transaction
1591 * @inode: file inode
1592 * @goal: given target block(filesystem wide)
1593 * @count: target number of blocks to allocate
1594 * @errp: error code
1596 * ext4_new_blocks uses a goal block to assist allocation. It tries to
1597 * allocate block(s) from the block group contains the goal block first. If that
1598 * fails, it will try to allocate block(s) from other block groups without
1599 * any specific goal block.
1602 ext4_fsblk_t ext4_new_blocks_old(handle_t *handle, struct inode *inode,
1603 ext4_fsblk_t goal, unsigned long *count, int *errp)
1605 struct buffer_head *bitmap_bh = NULL;
1606 struct buffer_head *gdp_bh;
1607 ext4_group_t group_no;
1608 ext4_group_t goal_group;
1609 ext4_grpblk_t grp_target_blk; /* blockgroup relative goal block */
1610 ext4_grpblk_t grp_alloc_blk; /* blockgroup-relative allocated block*/
1611 ext4_fsblk_t ret_block; /* filesyetem-wide allocated block */
1612 ext4_group_t bgi; /* blockgroup iteration index */
1613 int fatal = 0, err;
1614 int performed_allocation = 0;
1615 ext4_grpblk_t free_blocks; /* number of free blocks in a group */
1616 struct super_block *sb;
1617 struct ext4_group_desc *gdp;
1618 struct ext4_super_block *es;
1619 struct ext4_sb_info *sbi;
1620 struct ext4_reserve_window_node *my_rsv = NULL;
1621 struct ext4_block_alloc_info *block_i;
1622 unsigned short windowsz = 0;
1623 ext4_group_t ngroups;
1624 unsigned long num = *count;
1626 *errp = -ENOSPC;
1627 sb = inode->i_sb;
1628 if (!sb) {
1629 printk("ext4_new_block: nonexistent device");
1630 return 0;
1634 * Check quota for allocation of this block.
1636 if (DQUOT_ALLOC_BLOCK(inode, num)) {
1637 *errp = -EDQUOT;
1638 return 0;
1641 sbi = EXT4_SB(sb);
1642 es = EXT4_SB(sb)->s_es;
1643 ext4_debug("goal=%llu.\n", goal);
1645 * Allocate a block from reservation only when
1646 * filesystem is mounted with reservation(default,-o reservation), and
1647 * it's a regular file, and
1648 * the desired window size is greater than 0 (One could use ioctl
1649 * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1650 * reservation on that particular file)
1652 block_i = EXT4_I(inode)->i_block_alloc_info;
1653 if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1654 my_rsv = &block_i->rsv_window_node;
1656 if (!ext4_has_free_blocks(sbi)) {
1657 *errp = -ENOSPC;
1658 goto out;
1662 * First, test whether the goal block is free.
1664 if (goal < le32_to_cpu(es->s_first_data_block) ||
1665 goal >= ext4_blocks_count(es))
1666 goal = le32_to_cpu(es->s_first_data_block);
1667 ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk);
1668 goal_group = group_no;
1669 retry_alloc:
1670 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1671 if (!gdp)
1672 goto io_error;
1674 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1676 * if there is not enough free blocks to make a new resevation
1677 * turn off reservation for this allocation
1679 if (my_rsv && (free_blocks < windowsz)
1680 && (rsv_is_empty(&my_rsv->rsv_window)))
1681 my_rsv = NULL;
1683 if (free_blocks > 0) {
1684 bitmap_bh = read_block_bitmap(sb, group_no);
1685 if (!bitmap_bh)
1686 goto io_error;
1687 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1688 group_no, bitmap_bh, grp_target_blk,
1689 my_rsv, &num, &fatal);
1690 if (fatal)
1691 goto out;
1692 if (grp_alloc_blk >= 0)
1693 goto allocated;
1696 ngroups = EXT4_SB(sb)->s_groups_count;
1697 smp_rmb();
1700 * Now search the rest of the groups. We assume that
1701 * group_no and gdp correctly point to the last group visited.
1703 for (bgi = 0; bgi < ngroups; bgi++) {
1704 group_no++;
1705 if (group_no >= ngroups)
1706 group_no = 0;
1707 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1708 if (!gdp)
1709 goto io_error;
1710 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1712 * skip this group if the number of
1713 * free blocks is less than half of the reservation
1714 * window size.
1716 if (free_blocks <= (windowsz/2))
1717 continue;
1719 brelse(bitmap_bh);
1720 bitmap_bh = read_block_bitmap(sb, group_no);
1721 if (!bitmap_bh)
1722 goto io_error;
1724 * try to allocate block(s) from this group, without a goal(-1).
1726 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1727 group_no, bitmap_bh, -1, my_rsv,
1728 &num, &fatal);
1729 if (fatal)
1730 goto out;
1731 if (grp_alloc_blk >= 0)
1732 goto allocated;
1735 * We may end up a bogus ealier ENOSPC error due to
1736 * filesystem is "full" of reservations, but
1737 * there maybe indeed free blocks avaliable on disk
1738 * In this case, we just forget about the reservations
1739 * just do block allocation as without reservations.
1741 if (my_rsv) {
1742 my_rsv = NULL;
1743 windowsz = 0;
1744 group_no = goal_group;
1745 goto retry_alloc;
1747 /* No space left on the device */
1748 *errp = -ENOSPC;
1749 goto out;
1751 allocated:
1753 ext4_debug("using block group %lu(%d)\n",
1754 group_no, gdp->bg_free_blocks_count);
1756 BUFFER_TRACE(gdp_bh, "get_write_access");
1757 fatal = ext4_journal_get_write_access(handle, gdp_bh);
1758 if (fatal)
1759 goto out;
1761 ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no);
1763 if (in_range(ext4_block_bitmap(sb, gdp), ret_block, num) ||
1764 in_range(ext4_inode_bitmap(sb, gdp), ret_block, num) ||
1765 in_range(ret_block, ext4_inode_table(sb, gdp),
1766 EXT4_SB(sb)->s_itb_per_group) ||
1767 in_range(ret_block + num - 1, ext4_inode_table(sb, gdp),
1768 EXT4_SB(sb)->s_itb_per_group)) {
1769 ext4_error(sb, "ext4_new_block",
1770 "Allocating block in system zone - "
1771 "blocks from %llu, length %lu",
1772 ret_block, num);
1773 goto out;
1776 performed_allocation = 1;
1778 #ifdef CONFIG_JBD2_DEBUG
1780 struct buffer_head *debug_bh;
1782 /* Record bitmap buffer state in the newly allocated block */
1783 debug_bh = sb_find_get_block(sb, ret_block);
1784 if (debug_bh) {
1785 BUFFER_TRACE(debug_bh, "state when allocated");
1786 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1787 brelse(debug_bh);
1790 jbd_lock_bh_state(bitmap_bh);
1791 spin_lock(sb_bgl_lock(sbi, group_no));
1792 if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1793 int i;
1795 for (i = 0; i < num; i++) {
1796 if (ext4_test_bit(grp_alloc_blk+i,
1797 bh2jh(bitmap_bh)->b_committed_data)) {
1798 printk("%s: block was unexpectedly set in "
1799 "b_committed_data\n", __FUNCTION__);
1803 ext4_debug("found bit %d\n", grp_alloc_blk);
1804 spin_unlock(sb_bgl_lock(sbi, group_no));
1805 jbd_unlock_bh_state(bitmap_bh);
1806 #endif
1808 if (ret_block + num - 1 >= ext4_blocks_count(es)) {
1809 ext4_error(sb, "ext4_new_block",
1810 "block(%llu) >= blocks count(%llu) - "
1811 "block_group = %lu, es == %p ", ret_block,
1812 ext4_blocks_count(es), group_no, es);
1813 goto out;
1817 * It is up to the caller to add the new buffer to a journal
1818 * list of some description. We don't know in advance whether
1819 * the caller wants to use it as metadata or data.
1821 spin_lock(sb_bgl_lock(sbi, group_no));
1822 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1823 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1824 le16_add_cpu(&gdp->bg_free_blocks_count, -num);
1825 gdp->bg_checksum = ext4_group_desc_csum(sbi, group_no, gdp);
1826 spin_unlock(sb_bgl_lock(sbi, group_no));
1827 percpu_counter_sub(&sbi->s_freeblocks_counter, num);
1829 BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1830 err = ext4_journal_dirty_metadata(handle, gdp_bh);
1831 if (!fatal)
1832 fatal = err;
1834 sb->s_dirt = 1;
1835 if (fatal)
1836 goto out;
1838 *errp = 0;
1839 brelse(bitmap_bh);
1840 DQUOT_FREE_BLOCK(inode, *count-num);
1841 *count = num;
1842 return ret_block;
1844 io_error:
1845 *errp = -EIO;
1846 out:
1847 if (fatal) {
1848 *errp = fatal;
1849 ext4_std_error(sb, fatal);
1852 * Undo the block allocation
1854 if (!performed_allocation)
1855 DQUOT_FREE_BLOCK(inode, *count);
1856 brelse(bitmap_bh);
1857 return 0;
1860 ext4_fsblk_t ext4_new_block(handle_t *handle, struct inode *inode,
1861 ext4_fsblk_t goal, int *errp)
1863 struct ext4_allocation_request ar;
1864 ext4_fsblk_t ret;
1866 if (!test_opt(inode->i_sb, MBALLOC)) {
1867 unsigned long count = 1;
1868 ret = ext4_new_blocks_old(handle, inode, goal, &count, errp);
1869 return ret;
1872 memset(&ar, 0, sizeof(ar));
1873 ar.inode = inode;
1874 ar.goal = goal;
1875 ar.len = 1;
1876 ret = ext4_mb_new_blocks(handle, &ar, errp);
1877 return ret;
1880 ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode,
1881 ext4_fsblk_t goal, unsigned long *count, int *errp)
1883 struct ext4_allocation_request ar;
1884 ext4_fsblk_t ret;
1886 if (!test_opt(inode->i_sb, MBALLOC)) {
1887 ret = ext4_new_blocks_old(handle, inode, goal, count, errp);
1888 return ret;
1891 memset(&ar, 0, sizeof(ar));
1892 ar.inode = inode;
1893 ar.goal = goal;
1894 ar.len = *count;
1895 ret = ext4_mb_new_blocks(handle, &ar, errp);
1896 *count = ar.len;
1897 return ret;
1902 * ext4_count_free_blocks() -- count filesystem free blocks
1903 * @sb: superblock
1905 * Adds up the number of free blocks from each block group.
1907 ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb)
1909 ext4_fsblk_t desc_count;
1910 struct ext4_group_desc *gdp;
1911 ext4_group_t i;
1912 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
1913 #ifdef EXT4FS_DEBUG
1914 struct ext4_super_block *es;
1915 ext4_fsblk_t bitmap_count;
1916 unsigned long x;
1917 struct buffer_head *bitmap_bh = NULL;
1919 es = EXT4_SB(sb)->s_es;
1920 desc_count = 0;
1921 bitmap_count = 0;
1922 gdp = NULL;
1924 smp_rmb();
1925 for (i = 0; i < ngroups; i++) {
1926 gdp = ext4_get_group_desc(sb, i, NULL);
1927 if (!gdp)
1928 continue;
1929 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1930 brelse(bitmap_bh);
1931 bitmap_bh = read_block_bitmap(sb, i);
1932 if (bitmap_bh == NULL)
1933 continue;
1935 x = ext4_count_free(bitmap_bh, sb->s_blocksize);
1936 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1937 i, le16_to_cpu(gdp->bg_free_blocks_count), x);
1938 bitmap_count += x;
1940 brelse(bitmap_bh);
1941 printk("ext4_count_free_blocks: stored = %llu"
1942 ", computed = %llu, %llu\n",
1943 ext4_free_blocks_count(es),
1944 desc_count, bitmap_count);
1945 return bitmap_count;
1946 #else
1947 desc_count = 0;
1948 smp_rmb();
1949 for (i = 0; i < ngroups; i++) {
1950 gdp = ext4_get_group_desc(sb, i, NULL);
1951 if (!gdp)
1952 continue;
1953 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1956 return desc_count;
1957 #endif
1960 static inline int test_root(ext4_group_t a, int b)
1962 int num = b;
1964 while (a > num)
1965 num *= b;
1966 return num == a;
1969 static int ext4_group_sparse(ext4_group_t group)
1971 if (group <= 1)
1972 return 1;
1973 if (!(group & 1))
1974 return 0;
1975 return (test_root(group, 7) || test_root(group, 5) ||
1976 test_root(group, 3));
1980 * ext4_bg_has_super - number of blocks used by the superblock in group
1981 * @sb: superblock for filesystem
1982 * @group: group number to check
1984 * Return the number of blocks used by the superblock (primary or backup)
1985 * in this group. Currently this will be only 0 or 1.
1987 int ext4_bg_has_super(struct super_block *sb, ext4_group_t group)
1989 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1990 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1991 !ext4_group_sparse(group))
1992 return 0;
1993 return 1;
1996 static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb,
1997 ext4_group_t group)
1999 unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
2000 ext4_group_t first = metagroup * EXT4_DESC_PER_BLOCK(sb);
2001 ext4_group_t last = first + EXT4_DESC_PER_BLOCK(sb) - 1;
2003 if (group == first || group == first + 1 || group == last)
2004 return 1;
2005 return 0;
2008 static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb,
2009 ext4_group_t group)
2011 return ext4_bg_has_super(sb, group) ? EXT4_SB(sb)->s_gdb_count : 0;
2015 * ext4_bg_num_gdb - number of blocks used by the group table in group
2016 * @sb: superblock for filesystem
2017 * @group: group number to check
2019 * Return the number of blocks used by the group descriptor table
2020 * (primary or backup) in this group. In the future there may be a
2021 * different number of descriptor blocks in each group.
2023 unsigned long ext4_bg_num_gdb(struct super_block *sb, ext4_group_t group)
2025 unsigned long first_meta_bg =
2026 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg);
2027 unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
2029 if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) ||
2030 metagroup < first_meta_bg)
2031 return ext4_bg_num_gdb_nometa(sb,group);
2033 return ext4_bg_num_gdb_meta(sb,group);