2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
21 #include <linux/sched.h>
23 #include <linux/file.h>
25 #include <linux/mman.h>
26 #include <linux/slab.h>
27 #include <linux/timer.h>
28 #include <linux/aio.h>
29 #include <linux/highmem.h>
30 #include <linux/workqueue.h>
31 #include <linux/security.h>
33 #include <asm/kmap_types.h>
34 #include <asm/uaccess.h>
35 #include <asm/mmu_context.h>
38 #define dprintk printk
40 #define dprintk(x...) do { ; } while (0)
43 /*------ sysctl variables----*/
44 atomic_t aio_nr
= ATOMIC_INIT(0); /* current system wide number of aio requests */
45 unsigned aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
46 /*----end sysctl variables---*/
48 static kmem_cache_t
*kiocb_cachep
;
49 static kmem_cache_t
*kioctx_cachep
;
51 static struct workqueue_struct
*aio_wq
;
53 /* Used for rare fput completion. */
54 static void aio_fput_routine(void *);
55 static DECLARE_WORK(fput_work
, aio_fput_routine
, NULL
);
57 static DEFINE_SPINLOCK(fput_lock
);
58 static LIST_HEAD(fput_head
);
60 static void aio_kick_handler(void *);
61 static void aio_queue_work(struct kioctx
*);
64 * Creates the slab caches used by the aio routines, panic on
65 * failure as this is done early during the boot sequence.
67 static int __init
aio_setup(void)
69 kiocb_cachep
= kmem_cache_create("kiocb", sizeof(struct kiocb
),
70 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
71 kioctx_cachep
= kmem_cache_create("kioctx", sizeof(struct kioctx
),
72 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
74 aio_wq
= create_workqueue("aio");
76 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page
));
81 static void aio_free_ring(struct kioctx
*ctx
)
83 struct aio_ring_info
*info
= &ctx
->ring_info
;
86 for (i
=0; i
<info
->nr_pages
; i
++)
87 put_page(info
->ring_pages
[i
]);
89 if (info
->mmap_size
) {
90 down_write(&ctx
->mm
->mmap_sem
);
91 do_munmap(ctx
->mm
, info
->mmap_base
, info
->mmap_size
);
92 up_write(&ctx
->mm
->mmap_sem
);
95 if (info
->ring_pages
&& info
->ring_pages
!= info
->internal_pages
)
96 kfree(info
->ring_pages
);
97 info
->ring_pages
= NULL
;
101 static int aio_setup_ring(struct kioctx
*ctx
)
103 struct aio_ring
*ring
;
104 struct aio_ring_info
*info
= &ctx
->ring_info
;
105 unsigned nr_events
= ctx
->max_reqs
;
109 /* Compensate for the ring buffer's head/tail overlap entry */
110 nr_events
+= 2; /* 1 is required, 2 for good luck */
112 size
= sizeof(struct aio_ring
);
113 size
+= sizeof(struct io_event
) * nr_events
;
114 nr_pages
= (size
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
119 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
)) / sizeof(struct io_event
);
122 info
->ring_pages
= info
->internal_pages
;
123 if (nr_pages
> AIO_RING_PAGES
) {
124 info
->ring_pages
= kmalloc(sizeof(struct page
*) * nr_pages
, GFP_KERNEL
);
125 if (!info
->ring_pages
)
127 memset(info
->ring_pages
, 0, sizeof(struct page
*) * nr_pages
);
130 info
->mmap_size
= nr_pages
* PAGE_SIZE
;
131 dprintk("attempting mmap of %lu bytes\n", info
->mmap_size
);
132 down_write(&ctx
->mm
->mmap_sem
);
133 info
->mmap_base
= do_mmap(NULL
, 0, info
->mmap_size
,
134 PROT_READ
|PROT_WRITE
, MAP_ANON
|MAP_PRIVATE
,
136 if (IS_ERR((void *)info
->mmap_base
)) {
137 up_write(&ctx
->mm
->mmap_sem
);
138 printk("mmap err: %ld\n", -info
->mmap_base
);
144 dprintk("mmap address: 0x%08lx\n", info
->mmap_base
);
145 info
->nr_pages
= get_user_pages(current
, ctx
->mm
,
146 info
->mmap_base
, nr_pages
,
147 1, 0, info
->ring_pages
, NULL
);
148 up_write(&ctx
->mm
->mmap_sem
);
150 if (unlikely(info
->nr_pages
!= nr_pages
)) {
155 ctx
->user_id
= info
->mmap_base
;
157 info
->nr
= nr_events
; /* trusted copy */
159 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
160 ring
->nr
= nr_events
; /* user copy */
161 ring
->id
= ctx
->user_id
;
162 ring
->head
= ring
->tail
= 0;
163 ring
->magic
= AIO_RING_MAGIC
;
164 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
165 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
166 ring
->header_length
= sizeof(struct aio_ring
);
167 kunmap_atomic(ring
, KM_USER0
);
173 /* aio_ring_event: returns a pointer to the event at the given index from
174 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
176 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
177 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
178 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
180 #define aio_ring_event(info, nr, km) ({ \
181 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
182 struct io_event *__event; \
183 __event = kmap_atomic( \
184 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
185 __event += pos % AIO_EVENTS_PER_PAGE; \
189 #define put_aio_ring_event(event, km) do { \
190 struct io_event *__event = (event); \
192 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
196 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
198 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
200 struct mm_struct
*mm
;
203 /* Prevent overflows */
204 if ((nr_events
> (0x10000000U
/ sizeof(struct io_event
))) ||
205 (nr_events
> (0x10000000U
/ sizeof(struct kiocb
)))) {
206 pr_debug("ENOMEM: nr_events too high\n");
207 return ERR_PTR(-EINVAL
);
210 if (nr_events
> aio_max_nr
)
211 return ERR_PTR(-EAGAIN
);
213 ctx
= kmem_cache_alloc(kioctx_cachep
, GFP_KERNEL
);
215 return ERR_PTR(-ENOMEM
);
217 memset(ctx
, 0, sizeof(*ctx
));
218 ctx
->max_reqs
= nr_events
;
219 mm
= ctx
->mm
= current
->mm
;
220 atomic_inc(&mm
->mm_count
);
222 atomic_set(&ctx
->users
, 1);
223 spin_lock_init(&ctx
->ctx_lock
);
224 spin_lock_init(&ctx
->ring_info
.ring_lock
);
225 init_waitqueue_head(&ctx
->wait
);
227 INIT_LIST_HEAD(&ctx
->active_reqs
);
228 INIT_LIST_HEAD(&ctx
->run_list
);
229 INIT_WORK(&ctx
->wq
, aio_kick_handler
, ctx
);
231 if (aio_setup_ring(ctx
) < 0)
234 /* limit the number of system wide aios */
235 atomic_add(ctx
->max_reqs
, &aio_nr
); /* undone by __put_ioctx */
236 if (unlikely(atomic_read(&aio_nr
) > aio_max_nr
))
239 /* now link into global list. kludge. FIXME */
240 write_lock(&mm
->ioctx_list_lock
);
241 ctx
->next
= mm
->ioctx_list
;
242 mm
->ioctx_list
= ctx
;
243 write_unlock(&mm
->ioctx_list_lock
);
245 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
246 ctx
, ctx
->user_id
, current
->mm
, ctx
->ring_info
.nr
);
250 atomic_sub(ctx
->max_reqs
, &aio_nr
);
251 ctx
->max_reqs
= 0; /* prevent __put_ioctx from sub'ing aio_nr */
253 return ERR_PTR(-EAGAIN
);
257 kmem_cache_free(kioctx_cachep
, ctx
);
258 ctx
= ERR_PTR(-ENOMEM
);
260 dprintk("aio: error allocating ioctx %p\n", ctx
);
265 * Cancels all outstanding aio requests on an aio context. Used
266 * when the processes owning a context have all exited to encourage
267 * the rapid destruction of the kioctx.
269 static void aio_cancel_all(struct kioctx
*ctx
)
271 int (*cancel
)(struct kiocb
*, struct io_event
*);
273 spin_lock_irq(&ctx
->ctx_lock
);
275 while (!list_empty(&ctx
->active_reqs
)) {
276 struct list_head
*pos
= ctx
->active_reqs
.next
;
277 struct kiocb
*iocb
= list_kiocb(pos
);
278 list_del_init(&iocb
->ki_list
);
279 cancel
= iocb
->ki_cancel
;
280 kiocbSetCancelled(iocb
);
283 spin_unlock_irq(&ctx
->ctx_lock
);
285 spin_lock_irq(&ctx
->ctx_lock
);
288 spin_unlock_irq(&ctx
->ctx_lock
);
291 static void wait_for_all_aios(struct kioctx
*ctx
)
293 struct task_struct
*tsk
= current
;
294 DECLARE_WAITQUEUE(wait
, tsk
);
296 if (!ctx
->reqs_active
)
299 add_wait_queue(&ctx
->wait
, &wait
);
300 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
301 while (ctx
->reqs_active
) {
303 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
305 __set_task_state(tsk
, TASK_RUNNING
);
306 remove_wait_queue(&ctx
->wait
, &wait
);
309 /* wait_on_sync_kiocb:
310 * Waits on the given sync kiocb to complete.
312 ssize_t fastcall
wait_on_sync_kiocb(struct kiocb
*iocb
)
314 while (iocb
->ki_users
) {
315 set_current_state(TASK_UNINTERRUPTIBLE
);
320 __set_current_state(TASK_RUNNING
);
321 return iocb
->ki_user_data
;
324 /* exit_aio: called when the last user of mm goes away. At this point,
325 * there is no way for any new requests to be submited or any of the
326 * io_* syscalls to be called on the context. However, there may be
327 * outstanding requests which hold references to the context; as they
328 * go away, they will call put_ioctx and release any pinned memory
329 * associated with the request (held via struct page * references).
331 void fastcall
exit_aio(struct mm_struct
*mm
)
333 struct kioctx
*ctx
= mm
->ioctx_list
;
334 mm
->ioctx_list
= NULL
;
336 struct kioctx
*next
= ctx
->next
;
340 wait_for_all_aios(ctx
);
342 * this is an overkill, but ensures we don't leave
343 * the ctx on the aio_wq
345 flush_workqueue(aio_wq
);
347 if (1 != atomic_read(&ctx
->users
))
349 "exit_aio:ioctx still alive: %d %d %d\n",
350 atomic_read(&ctx
->users
), ctx
->dead
,
358 * Called when the last user of an aio context has gone away,
359 * and the struct needs to be freed.
361 void fastcall
__put_ioctx(struct kioctx
*ctx
)
363 unsigned nr_events
= ctx
->max_reqs
;
365 if (unlikely(ctx
->reqs_active
))
368 cancel_delayed_work(&ctx
->wq
);
369 flush_workqueue(aio_wq
);
373 pr_debug("__put_ioctx: freeing %p\n", ctx
);
374 kmem_cache_free(kioctx_cachep
, ctx
);
376 atomic_sub(nr_events
, &aio_nr
);
380 * Allocate a slot for an aio request. Increments the users count
381 * of the kioctx so that the kioctx stays around until all requests are
382 * complete. Returns NULL if no requests are free.
384 * Returns with kiocb->users set to 2. The io submit code path holds
385 * an extra reference while submitting the i/o.
386 * This prevents races between the aio code path referencing the
387 * req (after submitting it) and aio_complete() freeing the req.
389 static struct kiocb
*FASTCALL(__aio_get_req(struct kioctx
*ctx
));
390 static struct kiocb fastcall
*__aio_get_req(struct kioctx
*ctx
)
392 struct kiocb
*req
= NULL
;
393 struct aio_ring
*ring
;
396 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
);
400 req
->ki_flags
= 1 << KIF_LOCKED
;
404 req
->ki_cancel
= NULL
;
405 req
->ki_retry
= NULL
;
408 INIT_LIST_HEAD(&req
->ki_run_list
);
410 /* Check if the completion queue has enough free space to
411 * accept an event from this io.
413 spin_lock_irq(&ctx
->ctx_lock
);
414 ring
= kmap_atomic(ctx
->ring_info
.ring_pages
[0], KM_USER0
);
415 if (ctx
->reqs_active
< aio_ring_avail(&ctx
->ring_info
, ring
)) {
416 list_add(&req
->ki_list
, &ctx
->active_reqs
);
421 kunmap_atomic(ring
, KM_USER0
);
422 spin_unlock_irq(&ctx
->ctx_lock
);
425 kmem_cache_free(kiocb_cachep
, req
);
432 static inline struct kiocb
*aio_get_req(struct kioctx
*ctx
)
435 /* Handle a potential starvation case -- should be exceedingly rare as
436 * requests will be stuck on fput_head only if the aio_fput_routine is
437 * delayed and the requests were the last user of the struct file.
439 req
= __aio_get_req(ctx
);
440 if (unlikely(NULL
== req
)) {
441 aio_fput_routine(NULL
);
442 req
= __aio_get_req(ctx
);
447 static inline void really_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
451 kmem_cache_free(kiocb_cachep
, req
);
454 if (unlikely(!ctx
->reqs_active
&& ctx
->dead
))
458 static void aio_fput_routine(void *data
)
460 spin_lock_irq(&fput_lock
);
461 while (likely(!list_empty(&fput_head
))) {
462 struct kiocb
*req
= list_kiocb(fput_head
.next
);
463 struct kioctx
*ctx
= req
->ki_ctx
;
465 list_del(&req
->ki_list
);
466 spin_unlock_irq(&fput_lock
);
468 /* Complete the fput */
469 __fput(req
->ki_filp
);
471 /* Link the iocb into the context's free list */
472 spin_lock_irq(&ctx
->ctx_lock
);
473 really_put_req(ctx
, req
);
474 spin_unlock_irq(&ctx
->ctx_lock
);
477 spin_lock_irq(&fput_lock
);
479 spin_unlock_irq(&fput_lock
);
483 * Returns true if this put was the last user of the request.
485 static int __aio_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
487 dprintk(KERN_DEBUG
"aio_put(%p): f_count=%d\n",
488 req
, atomic_read(&req
->ki_filp
->f_count
));
491 if (unlikely(req
->ki_users
< 0))
493 if (likely(req
->ki_users
))
495 list_del(&req
->ki_list
); /* remove from active_reqs */
496 req
->ki_cancel
= NULL
;
497 req
->ki_retry
= NULL
;
499 /* Must be done under the lock to serialise against cancellation.
500 * Call this aio_fput as it duplicates fput via the fput_work.
502 if (unlikely(atomic_dec_and_test(&req
->ki_filp
->f_count
))) {
504 spin_lock(&fput_lock
);
505 list_add(&req
->ki_list
, &fput_head
);
506 spin_unlock(&fput_lock
);
507 queue_work(aio_wq
, &fput_work
);
509 really_put_req(ctx
, req
);
514 * Returns true if this put was the last user of the kiocb,
515 * false if the request is still in use.
517 int fastcall
aio_put_req(struct kiocb
*req
)
519 struct kioctx
*ctx
= req
->ki_ctx
;
521 spin_lock_irq(&ctx
->ctx_lock
);
522 ret
= __aio_put_req(ctx
, req
);
523 spin_unlock_irq(&ctx
->ctx_lock
);
529 /* Lookup an ioctx id. ioctx_list is lockless for reads.
530 * FIXME: this is O(n) and is only suitable for development.
532 struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
534 struct kioctx
*ioctx
;
535 struct mm_struct
*mm
;
538 read_lock(&mm
->ioctx_list_lock
);
539 for (ioctx
= mm
->ioctx_list
; ioctx
; ioctx
= ioctx
->next
)
540 if (likely(ioctx
->user_id
== ctx_id
&& !ioctx
->dead
)) {
544 read_unlock(&mm
->ioctx_list_lock
);
551 * Makes the calling kernel thread take on the specified
553 * Called by the retry thread execute retries within the
554 * iocb issuer's mm context, so that copy_from/to_user
555 * operations work seamlessly for aio.
556 * (Note: this routine is intended to be called only
557 * from a kernel thread context)
559 static void use_mm(struct mm_struct
*mm
)
561 struct mm_struct
*active_mm
;
562 struct task_struct
*tsk
= current
;
565 tsk
->flags
|= PF_BORROWED_MM
;
566 active_mm
= tsk
->active_mm
;
567 atomic_inc(&mm
->mm_count
);
570 activate_mm(active_mm
, mm
);
578 * Reverses the effect of use_mm, i.e. releases the
579 * specified mm context which was earlier taken on
580 * by the calling kernel thread
581 * (Note: this routine is intended to be called only
582 * from a kernel thread context)
584 * Comments: Called with ctx->ctx_lock held. This nests
585 * task_lock instead ctx_lock.
587 static void unuse_mm(struct mm_struct
*mm
)
589 struct task_struct
*tsk
= current
;
592 tsk
->flags
&= ~PF_BORROWED_MM
;
594 /* active_mm is still 'mm' */
595 enter_lazy_tlb(mm
, tsk
);
600 * Queue up a kiocb to be retried. Assumes that the kiocb
601 * has already been marked as kicked, and places it on
602 * the retry run list for the corresponding ioctx, if it
603 * isn't already queued. Returns 1 if it actually queued
604 * the kiocb (to tell the caller to activate the work
605 * queue to process it), or 0, if it found that it was
608 * Should be called with the spin lock iocb->ki_ctx->ctx_lock
611 static inline int __queue_kicked_iocb(struct kiocb
*iocb
)
613 struct kioctx
*ctx
= iocb
->ki_ctx
;
615 if (list_empty(&iocb
->ki_run_list
)) {
616 list_add_tail(&iocb
->ki_run_list
,
624 * This is the core aio execution routine. It is
625 * invoked both for initial i/o submission and
626 * subsequent retries via the aio_kick_handler.
627 * Expects to be invoked with iocb->ki_ctx->lock
628 * already held. The lock is released and reaquired
629 * as needed during processing.
631 * Calls the iocb retry method (already setup for the
632 * iocb on initial submission) for operation specific
633 * handling, but takes care of most of common retry
634 * execution details for a given iocb. The retry method
635 * needs to be non-blocking as far as possible, to avoid
636 * holding up other iocbs waiting to be serviced by the
637 * retry kernel thread.
639 * The trickier parts in this code have to do with
640 * ensuring that only one retry instance is in progress
641 * for a given iocb at any time. Providing that guarantee
642 * simplifies the coding of individual aio operations as
643 * it avoids various potential races.
645 static ssize_t
aio_run_iocb(struct kiocb
*iocb
)
647 struct kioctx
*ctx
= iocb
->ki_ctx
;
648 ssize_t (*retry
)(struct kiocb
*);
651 if (iocb
->ki_retried
++ > 1024*1024) {
652 printk("Maximal retry count. Bytes done %Zd\n",
653 iocb
->ki_nbytes
- iocb
->ki_left
);
657 if (!(iocb
->ki_retried
& 0xff)) {
658 pr_debug("%ld retry: %d of %d\n", iocb
->ki_retried
,
659 iocb
->ki_nbytes
- iocb
->ki_left
, iocb
->ki_nbytes
);
662 if (!(retry
= iocb
->ki_retry
)) {
663 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
668 * We don't want the next retry iteration for this
669 * operation to start until this one has returned and
670 * updated the iocb state. However, wait_queue functions
671 * can trigger a kick_iocb from interrupt context in the
672 * meantime, indicating that data is available for the next
673 * iteration. We want to remember that and enable the
674 * next retry iteration _after_ we are through with
677 * So, in order to be able to register a "kick", but
678 * prevent it from being queued now, we clear the kick
679 * flag, but make the kick code *think* that the iocb is
680 * still on the run list until we are actually done.
681 * When we are done with this iteration, we check if
682 * the iocb was kicked in the meantime and if so, queue
686 kiocbClearKicked(iocb
);
689 * This is so that aio_complete knows it doesn't need to
690 * pull the iocb off the run list (We can't just call
691 * INIT_LIST_HEAD because we don't want a kick_iocb to
692 * queue this on the run list yet)
694 iocb
->ki_run_list
.next
= iocb
->ki_run_list
.prev
= NULL
;
695 spin_unlock_irq(&ctx
->ctx_lock
);
697 /* Quit retrying if the i/o has been cancelled */
698 if (kiocbIsCancelled(iocb
)) {
700 aio_complete(iocb
, ret
, 0);
701 /* must not access the iocb after this */
706 * Now we are all set to call the retry method in async
707 * context. By setting this thread's io_wait context
708 * to point to the wait queue entry inside the currently
709 * running iocb for the duration of the retry, we ensure
710 * that async notification wakeups are queued by the
711 * operation instead of blocking waits, and when notified,
712 * cause the iocb to be kicked for continuation (through
713 * the aio_wake_function callback).
715 BUG_ON(current
->io_wait
!= NULL
);
716 current
->io_wait
= &iocb
->ki_wait
;
718 current
->io_wait
= NULL
;
720 if (-EIOCBRETRY
!= ret
) {
721 if (-EIOCBQUEUED
!= ret
) {
722 BUG_ON(!list_empty(&iocb
->ki_wait
.task_list
));
723 aio_complete(iocb
, ret
, 0);
724 /* must not access the iocb after this */
728 * Issue an additional retry to avoid waiting forever if
729 * no waits were queued (e.g. in case of a short read).
731 if (list_empty(&iocb
->ki_wait
.task_list
))
732 kiocbSetKicked(iocb
);
735 spin_lock_irq(&ctx
->ctx_lock
);
737 if (-EIOCBRETRY
== ret
) {
739 * OK, now that we are done with this iteration
740 * and know that there is more left to go,
741 * this is where we let go so that a subsequent
742 * "kick" can start the next iteration
745 /* will make __queue_kicked_iocb succeed from here on */
746 INIT_LIST_HEAD(&iocb
->ki_run_list
);
747 /* we must queue the next iteration ourselves, if it
748 * has already been kicked */
749 if (kiocbIsKicked(iocb
)) {
750 __queue_kicked_iocb(iocb
);
753 * __queue_kicked_iocb will always return 1 here, because
754 * iocb->ki_run_list is empty at this point so it should
755 * be safe to unconditionally queue the context into the
766 * Process all pending retries queued on the ioctx
768 * Assumes it is operating within the aio issuer's mm
769 * context. Expects to be called with ctx->ctx_lock held
771 static int __aio_run_iocbs(struct kioctx
*ctx
)
776 list_splice_init(&ctx
->run_list
, &run_list
);
777 while (!list_empty(&run_list
)) {
778 iocb
= list_entry(run_list
.next
, struct kiocb
,
780 list_del(&iocb
->ki_run_list
);
782 * Hold an extra reference while retrying i/o.
784 iocb
->ki_users
++; /* grab extra reference */
786 if (__aio_put_req(ctx
, iocb
)) /* drop extra ref */
789 if (!list_empty(&ctx
->run_list
))
794 static void aio_queue_work(struct kioctx
* ctx
)
796 unsigned long timeout
;
798 * if someone is waiting, get the work started right
799 * away, otherwise, use a longer delay
802 if (waitqueue_active(&ctx
->wait
))
806 queue_delayed_work(aio_wq
, &ctx
->wq
, timeout
);
812 * Process all pending retries queued on the ioctx
814 * Assumes it is operating within the aio issuer's mm
817 static inline void aio_run_iocbs(struct kioctx
*ctx
)
821 spin_lock_irq(&ctx
->ctx_lock
);
823 requeue
= __aio_run_iocbs(ctx
);
824 spin_unlock_irq(&ctx
->ctx_lock
);
830 * just like aio_run_iocbs, but keeps running them until
831 * the list stays empty
833 static inline void aio_run_all_iocbs(struct kioctx
*ctx
)
835 spin_lock_irq(&ctx
->ctx_lock
);
836 while (__aio_run_iocbs(ctx
))
838 spin_unlock_irq(&ctx
->ctx_lock
);
843 * Work queue handler triggered to process pending
844 * retries on an ioctx. Takes on the aio issuer's
845 * mm context before running the iocbs, so that
846 * copy_xxx_user operates on the issuer's address
848 * Run on aiod's context.
850 static void aio_kick_handler(void *data
)
852 struct kioctx
*ctx
= data
;
853 mm_segment_t oldfs
= get_fs();
858 spin_lock_irq(&ctx
->ctx_lock
);
859 requeue
=__aio_run_iocbs(ctx
);
861 spin_unlock_irq(&ctx
->ctx_lock
);
864 * we're in a worker thread already, don't use queue_delayed_work,
867 queue_work(aio_wq
, &ctx
->wq
);
872 * Called by kick_iocb to queue the kiocb for retry
873 * and if required activate the aio work queue to process
876 static void queue_kicked_iocb(struct kiocb
*iocb
)
878 struct kioctx
*ctx
= iocb
->ki_ctx
;
882 WARN_ON((!list_empty(&iocb
->ki_wait
.task_list
)));
884 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
885 run
= __queue_kicked_iocb(iocb
);
886 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
893 * Called typically from a wait queue callback context
894 * (aio_wake_function) to trigger a retry of the iocb.
895 * The retry is usually executed by aio workqueue
896 * threads (See aio_kick_handler).
898 void fastcall
kick_iocb(struct kiocb
*iocb
)
900 /* sync iocbs are easy: they can only ever be executing from a
902 if (is_sync_kiocb(iocb
)) {
903 kiocbSetKicked(iocb
);
904 wake_up_process(iocb
->ki_obj
.tsk
);
908 /* If its already kicked we shouldn't queue it again */
909 if (!kiocbTryKick(iocb
)) {
910 queue_kicked_iocb(iocb
);
913 EXPORT_SYMBOL(kick_iocb
);
916 * Called when the io request on the given iocb is complete.
917 * Returns true if this is the last user of the request. The
918 * only other user of the request can be the cancellation code.
920 int fastcall
aio_complete(struct kiocb
*iocb
, long res
, long res2
)
922 struct kioctx
*ctx
= iocb
->ki_ctx
;
923 struct aio_ring_info
*info
;
924 struct aio_ring
*ring
;
925 struct io_event
*event
;
930 /* Special case handling for sync iocbs: events go directly
931 * into the iocb for fast handling. Note that this will not
932 * work if we allow sync kiocbs to be cancelled. in which
933 * case the usage count checks will have to move under ctx_lock
936 if (is_sync_kiocb(iocb
)) {
939 iocb
->ki_user_data
= res
;
940 if (iocb
->ki_users
== 1) {
944 spin_lock_irq(&ctx
->ctx_lock
);
946 ret
= (0 == iocb
->ki_users
);
947 spin_unlock_irq(&ctx
->ctx_lock
);
949 /* sync iocbs put the task here for us */
950 wake_up_process(iocb
->ki_obj
.tsk
);
954 info
= &ctx
->ring_info
;
956 /* add a completion event to the ring buffer.
957 * must be done holding ctx->ctx_lock to prevent
958 * other code from messing with the tail
959 * pointer since we might be called from irq
962 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
964 if (iocb
->ki_run_list
.prev
&& !list_empty(&iocb
->ki_run_list
))
965 list_del_init(&iocb
->ki_run_list
);
968 * cancelled requests don't get events, userland was given one
969 * when the event got cancelled.
971 if (kiocbIsCancelled(iocb
))
974 ring
= kmap_atomic(info
->ring_pages
[0], KM_IRQ1
);
977 event
= aio_ring_event(info
, tail
, KM_IRQ0
);
978 if (++tail
>= info
->nr
)
981 event
->obj
= (u64
)(unsigned long)iocb
->ki_obj
.user
;
982 event
->data
= iocb
->ki_user_data
;
986 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
987 ctx
, tail
, iocb
, iocb
->ki_obj
.user
, iocb
->ki_user_data
,
990 /* after flagging the request as done, we
991 * must never even look at it again
993 smp_wmb(); /* make event visible before updating tail */
998 put_aio_ring_event(event
, KM_IRQ0
);
999 kunmap_atomic(ring
, KM_IRQ1
);
1001 pr_debug("added to ring %p at [%lu]\n", iocb
, tail
);
1003 pr_debug("%ld retries: %d of %d\n", iocb
->ki_retried
,
1004 iocb
->ki_nbytes
- iocb
->ki_left
, iocb
->ki_nbytes
);
1006 /* everything turned out well, dispose of the aiocb. */
1007 ret
= __aio_put_req(ctx
, iocb
);
1009 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1011 if (waitqueue_active(&ctx
->wait
))
1012 wake_up(&ctx
->wait
);
1021 * Pull an event off of the ioctx's event ring. Returns the number of
1022 * events fetched (0 or 1 ;-)
1023 * FIXME: make this use cmpxchg.
1024 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1026 static int aio_read_evt(struct kioctx
*ioctx
, struct io_event
*ent
)
1028 struct aio_ring_info
*info
= &ioctx
->ring_info
;
1029 struct aio_ring
*ring
;
1033 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
1034 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1035 (unsigned long)ring
->head
, (unsigned long)ring
->tail
,
1036 (unsigned long)ring
->nr
);
1038 if (ring
->head
== ring
->tail
)
1041 spin_lock(&info
->ring_lock
);
1043 head
= ring
->head
% info
->nr
;
1044 if (head
!= ring
->tail
) {
1045 struct io_event
*evp
= aio_ring_event(info
, head
, KM_USER1
);
1047 head
= (head
+ 1) % info
->nr
;
1048 smp_mb(); /* finish reading the event before updatng the head */
1051 put_aio_ring_event(evp
, KM_USER1
);
1053 spin_unlock(&info
->ring_lock
);
1056 kunmap_atomic(ring
, KM_USER0
);
1057 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret
,
1058 (unsigned long)ring
->head
, (unsigned long)ring
->tail
);
1062 struct aio_timeout
{
1063 struct timer_list timer
;
1065 struct task_struct
*p
;
1068 static void timeout_func(unsigned long data
)
1070 struct aio_timeout
*to
= (struct aio_timeout
*)data
;
1073 wake_up_process(to
->p
);
1076 static inline void init_timeout(struct aio_timeout
*to
)
1078 init_timer(&to
->timer
);
1079 to
->timer
.data
= (unsigned long)to
;
1080 to
->timer
.function
= timeout_func
;
1085 static inline void set_timeout(long start_jiffies
, struct aio_timeout
*to
,
1086 const struct timespec
*ts
)
1088 to
->timer
.expires
= start_jiffies
+ timespec_to_jiffies(ts
);
1089 if (time_after(to
->timer
.expires
, jiffies
))
1090 add_timer(&to
->timer
);
1095 static inline void clear_timeout(struct aio_timeout
*to
)
1097 del_singleshot_timer_sync(&to
->timer
);
1100 static int read_events(struct kioctx
*ctx
,
1101 long min_nr
, long nr
,
1102 struct io_event __user
*event
,
1103 struct timespec __user
*timeout
)
1105 long start_jiffies
= jiffies
;
1106 struct task_struct
*tsk
= current
;
1107 DECLARE_WAITQUEUE(wait
, tsk
);
1110 struct io_event ent
;
1111 struct aio_timeout to
;
1114 /* needed to zero any padding within an entry (there shouldn't be
1115 * any, but C is fun!
1117 memset(&ent
, 0, sizeof(ent
));
1120 while (likely(i
< nr
)) {
1121 ret
= aio_read_evt(ctx
, &ent
);
1122 if (unlikely(ret
<= 0))
1125 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1126 ent
.data
, ent
.obj
, ent
.res
, ent
.res2
);
1128 /* Could we split the check in two? */
1130 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1131 dprintk("aio: lost an event due to EFAULT.\n");
1136 /* Good, event copied to userland, update counts. */
1148 /* racey check, but it gets redone */
1149 if (!retry
&& unlikely(!list_empty(&ctx
->run_list
))) {
1151 aio_run_all_iocbs(ctx
);
1159 if (unlikely(copy_from_user(&ts
, timeout
, sizeof(ts
))))
1162 set_timeout(start_jiffies
, &to
, &ts
);
1165 while (likely(i
< nr
)) {
1166 add_wait_queue_exclusive(&ctx
->wait
, &wait
);
1168 set_task_state(tsk
, TASK_INTERRUPTIBLE
);
1169 ret
= aio_read_evt(ctx
, &ent
);
1175 if (to
.timed_out
) /* Only check after read evt */
1178 if (signal_pending(tsk
)) {
1182 /*ret = aio_read_evt(ctx, &ent);*/
1185 set_task_state(tsk
, TASK_RUNNING
);
1186 remove_wait_queue(&ctx
->wait
, &wait
);
1188 if (unlikely(ret
<= 0))
1192 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1193 dprintk("aio: lost an event due to EFAULT.\n");
1197 /* Good, event copied to userland, update counts. */
1208 /* Take an ioctx and remove it from the list of ioctx's. Protects
1209 * against races with itself via ->dead.
1211 static void io_destroy(struct kioctx
*ioctx
)
1213 struct mm_struct
*mm
= current
->mm
;
1214 struct kioctx
**tmp
;
1217 /* delete the entry from the list is someone else hasn't already */
1218 write_lock(&mm
->ioctx_list_lock
);
1219 was_dead
= ioctx
->dead
;
1221 for (tmp
= &mm
->ioctx_list
; *tmp
&& *tmp
!= ioctx
;
1222 tmp
= &(*tmp
)->next
)
1226 write_unlock(&mm
->ioctx_list_lock
);
1228 dprintk("aio_release(%p)\n", ioctx
);
1229 if (likely(!was_dead
))
1230 put_ioctx(ioctx
); /* twice for the list */
1232 aio_cancel_all(ioctx
);
1233 wait_for_all_aios(ioctx
);
1234 put_ioctx(ioctx
); /* once for the lookup */
1238 * Create an aio_context capable of receiving at least nr_events.
1239 * ctxp must not point to an aio_context that already exists, and
1240 * must be initialized to 0 prior to the call. On successful
1241 * creation of the aio_context, *ctxp is filled in with the resulting
1242 * handle. May fail with -EINVAL if *ctxp is not initialized,
1243 * if the specified nr_events exceeds internal limits. May fail
1244 * with -EAGAIN if the specified nr_events exceeds the user's limit
1245 * of available events. May fail with -ENOMEM if insufficient kernel
1246 * resources are available. May fail with -EFAULT if an invalid
1247 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1250 asmlinkage
long sys_io_setup(unsigned nr_events
, aio_context_t __user
*ctxp
)
1252 struct kioctx
*ioctx
= NULL
;
1256 ret
= get_user(ctx
, ctxp
);
1261 if (unlikely(ctx
|| (int)nr_events
<= 0)) {
1262 pr_debug("EINVAL: io_setup: ctx or nr_events > max\n");
1266 ioctx
= ioctx_alloc(nr_events
);
1267 ret
= PTR_ERR(ioctx
);
1268 if (!IS_ERR(ioctx
)) {
1269 ret
= put_user(ioctx
->user_id
, ctxp
);
1273 get_ioctx(ioctx
); /* io_destroy() expects us to hold a ref */
1282 * Destroy the aio_context specified. May cancel any outstanding
1283 * AIOs and block on completion. Will fail with -ENOSYS if not
1284 * implemented. May fail with -EFAULT if the context pointed to
1287 asmlinkage
long sys_io_destroy(aio_context_t ctx
)
1289 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1290 if (likely(NULL
!= ioctx
)) {
1294 pr_debug("EINVAL: io_destroy: invalid context id\n");
1299 * Default retry method for aio_read (also used for first time submit)
1300 * Responsible for updating iocb state as retries progress
1302 static ssize_t
aio_pread(struct kiocb
*iocb
)
1304 struct file
*file
= iocb
->ki_filp
;
1305 struct address_space
*mapping
= file
->f_mapping
;
1306 struct inode
*inode
= mapping
->host
;
1309 ret
= file
->f_op
->aio_read(iocb
, iocb
->ki_buf
,
1310 iocb
->ki_left
, iocb
->ki_pos
);
1313 * Can't just depend on iocb->ki_left to determine
1314 * whether we are done. This may have been a short read.
1317 iocb
->ki_buf
+= ret
;
1318 iocb
->ki_left
-= ret
;
1320 * For pipes and sockets we return once we have
1321 * some data; for regular files we retry till we
1322 * complete the entire read or find that we can't
1323 * read any more data (e.g short reads).
1325 if (!S_ISFIFO(inode
->i_mode
) && !S_ISSOCK(inode
->i_mode
))
1329 /* This means we must have transferred all that we could */
1330 /* No need to retry anymore */
1331 if ((ret
== 0) || (iocb
->ki_left
== 0))
1332 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1338 * Default retry method for aio_write (also used for first time submit)
1339 * Responsible for updating iocb state as retries progress
1341 static ssize_t
aio_pwrite(struct kiocb
*iocb
)
1343 struct file
*file
= iocb
->ki_filp
;
1346 ret
= file
->f_op
->aio_write(iocb
, iocb
->ki_buf
,
1347 iocb
->ki_left
, iocb
->ki_pos
);
1350 iocb
->ki_buf
+= ret
;
1351 iocb
->ki_left
-= ret
;
1356 /* This means we must have transferred all that we could */
1357 /* No need to retry anymore */
1358 if ((ret
== 0) || (iocb
->ki_left
== 0))
1359 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1364 static ssize_t
aio_fdsync(struct kiocb
*iocb
)
1366 struct file
*file
= iocb
->ki_filp
;
1367 ssize_t ret
= -EINVAL
;
1369 if (file
->f_op
->aio_fsync
)
1370 ret
= file
->f_op
->aio_fsync(iocb
, 1);
1374 static ssize_t
aio_fsync(struct kiocb
*iocb
)
1376 struct file
*file
= iocb
->ki_filp
;
1377 ssize_t ret
= -EINVAL
;
1379 if (file
->f_op
->aio_fsync
)
1380 ret
= file
->f_op
->aio_fsync(iocb
, 0);
1386 * Performs the initial checks and aio retry method
1387 * setup for the kiocb at the time of io submission.
1389 static ssize_t
aio_setup_iocb(struct kiocb
*kiocb
)
1391 struct file
*file
= kiocb
->ki_filp
;
1394 switch (kiocb
->ki_opcode
) {
1395 case IOCB_CMD_PREAD
:
1397 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1400 if (unlikely(!access_ok(VERIFY_WRITE
, kiocb
->ki_buf
,
1404 if (file
->f_op
->aio_read
)
1405 kiocb
->ki_retry
= aio_pread
;
1407 case IOCB_CMD_PWRITE
:
1409 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1412 if (unlikely(!access_ok(VERIFY_READ
, kiocb
->ki_buf
,
1416 if (file
->f_op
->aio_write
)
1417 kiocb
->ki_retry
= aio_pwrite
;
1419 case IOCB_CMD_FDSYNC
:
1421 if (file
->f_op
->aio_fsync
)
1422 kiocb
->ki_retry
= aio_fdsync
;
1424 case IOCB_CMD_FSYNC
:
1426 if (file
->f_op
->aio_fsync
)
1427 kiocb
->ki_retry
= aio_fsync
;
1430 dprintk("EINVAL: io_submit: no operation provided\n");
1434 if (!kiocb
->ki_retry
)
1441 * aio_wake_function:
1442 * wait queue callback function for aio notification,
1443 * Simply triggers a retry of the operation via kick_iocb.
1445 * This callback is specified in the wait queue entry in
1446 * a kiocb (current->io_wait points to this wait queue
1447 * entry when an aio operation executes; it is used
1448 * instead of a synchronous wait when an i/o blocking
1449 * condition is encountered during aio).
1452 * This routine is executed with the wait queue lock held.
1453 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1454 * the ioctx lock inside the wait queue lock. This is safe
1455 * because this callback isn't used for wait queues which
1456 * are nested inside ioctx lock (i.e. ctx->wait)
1458 static int aio_wake_function(wait_queue_t
*wait
, unsigned mode
,
1459 int sync
, void *key
)
1461 struct kiocb
*iocb
= container_of(wait
, struct kiocb
, ki_wait
);
1463 list_del_init(&wait
->task_list
);
1468 int fastcall
io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1475 /* enforce forwards compatibility on users */
1476 if (unlikely(iocb
->aio_reserved1
|| iocb
->aio_reserved2
||
1477 iocb
->aio_reserved3
)) {
1478 pr_debug("EINVAL: io_submit: reserve field set\n");
1482 /* prevent overflows */
1484 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1485 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1486 ((ssize_t
)iocb
->aio_nbytes
< 0)
1488 pr_debug("EINVAL: io_submit: overflow check\n");
1492 file
= fget(iocb
->aio_fildes
);
1493 if (unlikely(!file
))
1496 req
= aio_get_req(ctx
); /* returns with 2 references to req */
1497 if (unlikely(!req
)) {
1502 req
->ki_filp
= file
;
1503 ret
= put_user(req
->ki_key
, &user_iocb
->aio_key
);
1504 if (unlikely(ret
)) {
1505 dprintk("EFAULT: aio_key\n");
1509 req
->ki_obj
.user
= user_iocb
;
1510 req
->ki_user_data
= iocb
->aio_data
;
1511 req
->ki_pos
= iocb
->aio_offset
;
1513 req
->ki_buf
= (char __user
*)(unsigned long)iocb
->aio_buf
;
1514 req
->ki_left
= req
->ki_nbytes
= iocb
->aio_nbytes
;
1515 req
->ki_opcode
= iocb
->aio_lio_opcode
;
1516 init_waitqueue_func_entry(&req
->ki_wait
, aio_wake_function
);
1517 INIT_LIST_HEAD(&req
->ki_wait
.task_list
);
1518 req
->ki_retried
= 0;
1520 ret
= aio_setup_iocb(req
);
1525 spin_lock_irq(&ctx
->ctx_lock
);
1526 if (likely(list_empty(&ctx
->run_list
))) {
1529 list_add_tail(&req
->ki_run_list
, &ctx
->run_list
);
1530 /* drain the run list */
1531 while (__aio_run_iocbs(ctx
))
1534 spin_unlock_irq(&ctx
->ctx_lock
);
1535 aio_put_req(req
); /* drop extra ref to req */
1539 aio_put_req(req
); /* drop extra ref to req */
1540 aio_put_req(req
); /* drop i/o ref to req */
1545 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1546 * the number of iocbs queued. May return -EINVAL if the aio_context
1547 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1548 * *iocbpp[0] is not properly initialized, if the operation specified
1549 * is invalid for the file descriptor in the iocb. May fail with
1550 * -EFAULT if any of the data structures point to invalid data. May
1551 * fail with -EBADF if the file descriptor specified in the first
1552 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1553 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1554 * fail with -ENOSYS if not implemented.
1556 asmlinkage
long sys_io_submit(aio_context_t ctx_id
, long nr
,
1557 struct iocb __user
* __user
*iocbpp
)
1563 if (unlikely(nr
< 0))
1566 if (unlikely(!access_ok(VERIFY_READ
, iocbpp
, (nr
*sizeof(*iocbpp
)))))
1569 ctx
= lookup_ioctx(ctx_id
);
1570 if (unlikely(!ctx
)) {
1571 pr_debug("EINVAL: io_submit: invalid context id\n");
1576 * AKPM: should this return a partial result if some of the IOs were
1577 * successfully submitted?
1579 for (i
=0; i
<nr
; i
++) {
1580 struct iocb __user
*user_iocb
;
1583 if (unlikely(__get_user(user_iocb
, iocbpp
+ i
))) {
1588 if (unlikely(copy_from_user(&tmp
, user_iocb
, sizeof(tmp
)))) {
1593 ret
= io_submit_one(ctx
, user_iocb
, &tmp
);
1603 * Finds a given iocb for cancellation.
1604 * MUST be called with ctx->ctx_lock held.
1606 static struct kiocb
*lookup_kiocb(struct kioctx
*ctx
, struct iocb __user
*iocb
,
1609 struct list_head
*pos
;
1610 /* TODO: use a hash or array, this sucks. */
1611 list_for_each(pos
, &ctx
->active_reqs
) {
1612 struct kiocb
*kiocb
= list_kiocb(pos
);
1613 if (kiocb
->ki_obj
.user
== iocb
&& kiocb
->ki_key
== key
)
1620 * Attempts to cancel an iocb previously passed to io_submit. If
1621 * the operation is successfully cancelled, the resulting event is
1622 * copied into the memory pointed to by result without being placed
1623 * into the completion queue and 0 is returned. May fail with
1624 * -EFAULT if any of the data structures pointed to are invalid.
1625 * May fail with -EINVAL if aio_context specified by ctx_id is
1626 * invalid. May fail with -EAGAIN if the iocb specified was not
1627 * cancelled. Will fail with -ENOSYS if not implemented.
1629 asmlinkage
long sys_io_cancel(aio_context_t ctx_id
, struct iocb __user
*iocb
,
1630 struct io_event __user
*result
)
1632 int (*cancel
)(struct kiocb
*iocb
, struct io_event
*res
);
1634 struct kiocb
*kiocb
;
1638 ret
= get_user(key
, &iocb
->aio_key
);
1642 ctx
= lookup_ioctx(ctx_id
);
1646 spin_lock_irq(&ctx
->ctx_lock
);
1648 kiocb
= lookup_kiocb(ctx
, iocb
, key
);
1649 if (kiocb
&& kiocb
->ki_cancel
) {
1650 cancel
= kiocb
->ki_cancel
;
1652 kiocbSetCancelled(kiocb
);
1655 spin_unlock_irq(&ctx
->ctx_lock
);
1657 if (NULL
!= cancel
) {
1658 struct io_event tmp
;
1659 pr_debug("calling cancel\n");
1660 memset(&tmp
, 0, sizeof(tmp
));
1661 tmp
.obj
= (u64
)(unsigned long)kiocb
->ki_obj
.user
;
1662 tmp
.data
= kiocb
->ki_user_data
;
1663 ret
= cancel(kiocb
, &tmp
);
1665 /* Cancellation succeeded -- copy the result
1666 * into the user's buffer.
1668 if (copy_to_user(result
, &tmp
, sizeof(tmp
)))
1672 printk(KERN_DEBUG
"iocb has no cancel operation\n");
1680 * Attempts to read at least min_nr events and up to nr events from
1681 * the completion queue for the aio_context specified by ctx_id. May
1682 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1683 * if nr is out of range, if when is out of range. May fail with
1684 * -EFAULT if any of the memory specified to is invalid. May return
1685 * 0 or < min_nr if no events are available and the timeout specified
1686 * by when has elapsed, where when == NULL specifies an infinite
1687 * timeout. Note that the timeout pointed to by when is relative and
1688 * will be updated if not NULL and the operation blocks. Will fail
1689 * with -ENOSYS if not implemented.
1691 asmlinkage
long sys_io_getevents(aio_context_t ctx_id
,
1694 struct io_event __user
*events
,
1695 struct timespec __user
*timeout
)
1697 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
1700 if (likely(ioctx
)) {
1701 if (likely(min_nr
<= nr
&& min_nr
>= 0 && nr
>= 0))
1702 ret
= read_events(ioctx
, min_nr
, nr
, events
, timeout
);
1709 __initcall(aio_setup
);
1711 EXPORT_SYMBOL(aio_complete
);
1712 EXPORT_SYMBOL(aio_put_req
);
1713 EXPORT_SYMBOL(wait_on_sync_kiocb
);