[PATCH] forcedeth: new device ids
[linux-2.6/kmemtrace.git] / kernel / signal.c
blobe5f8aea78ffebd71a1322ca8279321aac3b077e6
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/config.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/fs.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/signal.h>
26 #include <linux/audit.h>
27 #include <linux/capability.h>
28 #include <asm/param.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/siginfo.h>
34 * SLAB caches for signal bits.
37 static kmem_cache_t *sigqueue_cachep;
40 * In POSIX a signal is sent either to a specific thread (Linux task)
41 * or to the process as a whole (Linux thread group). How the signal
42 * is sent determines whether it's to one thread or the whole group,
43 * which determines which signal mask(s) are involved in blocking it
44 * from being delivered until later. When the signal is delivered,
45 * either it's caught or ignored by a user handler or it has a default
46 * effect that applies to the whole thread group (POSIX process).
48 * The possible effects an unblocked signal set to SIG_DFL can have are:
49 * ignore - Nothing Happens
50 * terminate - kill the process, i.e. all threads in the group,
51 * similar to exit_group. The group leader (only) reports
52 * WIFSIGNALED status to its parent.
53 * coredump - write a core dump file describing all threads using
54 * the same mm and then kill all those threads
55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58 * Other signals when not blocked and set to SIG_DFL behaves as follows.
59 * The job control signals also have other special effects.
61 * +--------------------+------------------+
62 * | POSIX signal | default action |
63 * +--------------------+------------------+
64 * | SIGHUP | terminate |
65 * | SIGINT | terminate |
66 * | SIGQUIT | coredump |
67 * | SIGILL | coredump |
68 * | SIGTRAP | coredump |
69 * | SIGABRT/SIGIOT | coredump |
70 * | SIGBUS | coredump |
71 * | SIGFPE | coredump |
72 * | SIGKILL | terminate(+) |
73 * | SIGUSR1 | terminate |
74 * | SIGSEGV | coredump |
75 * | SIGUSR2 | terminate |
76 * | SIGPIPE | terminate |
77 * | SIGALRM | terminate |
78 * | SIGTERM | terminate |
79 * | SIGCHLD | ignore |
80 * | SIGCONT | ignore(*) |
81 * | SIGSTOP | stop(*)(+) |
82 * | SIGTSTP | stop(*) |
83 * | SIGTTIN | stop(*) |
84 * | SIGTTOU | stop(*) |
85 * | SIGURG | ignore |
86 * | SIGXCPU | coredump |
87 * | SIGXFSZ | coredump |
88 * | SIGVTALRM | terminate |
89 * | SIGPROF | terminate |
90 * | SIGPOLL/SIGIO | terminate |
91 * | SIGSYS/SIGUNUSED | coredump |
92 * | SIGSTKFLT | terminate |
93 * | SIGWINCH | ignore |
94 * | SIGPWR | terminate |
95 * | SIGRTMIN-SIGRTMAX | terminate |
96 * +--------------------+------------------+
97 * | non-POSIX signal | default action |
98 * +--------------------+------------------+
99 * | SIGEMT | coredump |
100 * +--------------------+------------------+
102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103 * (*) Special job control effects:
104 * When SIGCONT is sent, it resumes the process (all threads in the group)
105 * from TASK_STOPPED state and also clears any pending/queued stop signals
106 * (any of those marked with "stop(*)"). This happens regardless of blocking,
107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
108 * any pending/queued SIGCONT signals; this happens regardless of blocking,
109 * catching, or ignored the stop signal, though (except for SIGSTOP) the
110 * default action of stopping the process may happen later or never.
113 #ifdef SIGEMT
114 #define M_SIGEMT M(SIGEMT)
115 #else
116 #define M_SIGEMT 0
117 #endif
119 #if SIGRTMIN > BITS_PER_LONG
120 #define M(sig) (1ULL << ((sig)-1))
121 #else
122 #define M(sig) (1UL << ((sig)-1))
123 #endif
124 #define T(sig, mask) (M(sig) & (mask))
126 #define SIG_KERNEL_ONLY_MASK (\
127 M(SIGKILL) | M(SIGSTOP) )
129 #define SIG_KERNEL_STOP_MASK (\
130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
132 #define SIG_KERNEL_COREDUMP_MASK (\
133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
137 #define SIG_KERNEL_IGNORE_MASK (\
138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
140 #define sig_kernel_only(sig) \
141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
142 #define sig_kernel_coredump(sig) \
143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
144 #define sig_kernel_ignore(sig) \
145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
146 #define sig_kernel_stop(sig) \
147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
149 #define sig_needs_tasklist(sig) ((sig) == SIGCONT)
151 #define sig_user_defined(t, signr) \
152 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
153 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
155 #define sig_fatal(t, signr) \
156 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
157 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
159 static int sig_ignored(struct task_struct *t, int sig)
161 void __user * handler;
164 * Tracers always want to know about signals..
166 if (t->ptrace & PT_PTRACED)
167 return 0;
170 * Blocked signals are never ignored, since the
171 * signal handler may change by the time it is
172 * unblocked.
174 if (sigismember(&t->blocked, sig))
175 return 0;
177 /* Is it explicitly or implicitly ignored? */
178 handler = t->sighand->action[sig-1].sa.sa_handler;
179 return handler == SIG_IGN ||
180 (handler == SIG_DFL && sig_kernel_ignore(sig));
184 * Re-calculate pending state from the set of locally pending
185 * signals, globally pending signals, and blocked signals.
187 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
189 unsigned long ready;
190 long i;
192 switch (_NSIG_WORDS) {
193 default:
194 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
195 ready |= signal->sig[i] &~ blocked->sig[i];
196 break;
198 case 4: ready = signal->sig[3] &~ blocked->sig[3];
199 ready |= signal->sig[2] &~ blocked->sig[2];
200 ready |= signal->sig[1] &~ blocked->sig[1];
201 ready |= signal->sig[0] &~ blocked->sig[0];
202 break;
204 case 2: ready = signal->sig[1] &~ blocked->sig[1];
205 ready |= signal->sig[0] &~ blocked->sig[0];
206 break;
208 case 1: ready = signal->sig[0] &~ blocked->sig[0];
210 return ready != 0;
213 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
215 fastcall void recalc_sigpending_tsk(struct task_struct *t)
217 if (t->signal->group_stop_count > 0 ||
218 (freezing(t)) ||
219 PENDING(&t->pending, &t->blocked) ||
220 PENDING(&t->signal->shared_pending, &t->blocked))
221 set_tsk_thread_flag(t, TIF_SIGPENDING);
222 else
223 clear_tsk_thread_flag(t, TIF_SIGPENDING);
226 void recalc_sigpending(void)
228 recalc_sigpending_tsk(current);
231 /* Given the mask, find the first available signal that should be serviced. */
233 static int
234 next_signal(struct sigpending *pending, sigset_t *mask)
236 unsigned long i, *s, *m, x;
237 int sig = 0;
239 s = pending->signal.sig;
240 m = mask->sig;
241 switch (_NSIG_WORDS) {
242 default:
243 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
244 if ((x = *s &~ *m) != 0) {
245 sig = ffz(~x) + i*_NSIG_BPW + 1;
246 break;
248 break;
250 case 2: if ((x = s[0] &~ m[0]) != 0)
251 sig = 1;
252 else if ((x = s[1] &~ m[1]) != 0)
253 sig = _NSIG_BPW + 1;
254 else
255 break;
256 sig += ffz(~x);
257 break;
259 case 1: if ((x = *s &~ *m) != 0)
260 sig = ffz(~x) + 1;
261 break;
264 return sig;
267 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
268 int override_rlimit)
270 struct sigqueue *q = NULL;
272 atomic_inc(&t->user->sigpending);
273 if (override_rlimit ||
274 atomic_read(&t->user->sigpending) <=
275 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
276 q = kmem_cache_alloc(sigqueue_cachep, flags);
277 if (unlikely(q == NULL)) {
278 atomic_dec(&t->user->sigpending);
279 } else {
280 INIT_LIST_HEAD(&q->list);
281 q->flags = 0;
282 q->user = get_uid(t->user);
284 return(q);
287 static void __sigqueue_free(struct sigqueue *q)
289 if (q->flags & SIGQUEUE_PREALLOC)
290 return;
291 atomic_dec(&q->user->sigpending);
292 free_uid(q->user);
293 kmem_cache_free(sigqueue_cachep, q);
296 void flush_sigqueue(struct sigpending *queue)
298 struct sigqueue *q;
300 sigemptyset(&queue->signal);
301 while (!list_empty(&queue->list)) {
302 q = list_entry(queue->list.next, struct sigqueue , list);
303 list_del_init(&q->list);
304 __sigqueue_free(q);
309 * Flush all pending signals for a task.
311 void flush_signals(struct task_struct *t)
313 unsigned long flags;
315 spin_lock_irqsave(&t->sighand->siglock, flags);
316 clear_tsk_thread_flag(t,TIF_SIGPENDING);
317 flush_sigqueue(&t->pending);
318 flush_sigqueue(&t->signal->shared_pending);
319 spin_unlock_irqrestore(&t->sighand->siglock, flags);
323 * Flush all handlers for a task.
326 void
327 flush_signal_handlers(struct task_struct *t, int force_default)
329 int i;
330 struct k_sigaction *ka = &t->sighand->action[0];
331 for (i = _NSIG ; i != 0 ; i--) {
332 if (force_default || ka->sa.sa_handler != SIG_IGN)
333 ka->sa.sa_handler = SIG_DFL;
334 ka->sa.sa_flags = 0;
335 sigemptyset(&ka->sa.sa_mask);
336 ka++;
341 /* Notify the system that a driver wants to block all signals for this
342 * process, and wants to be notified if any signals at all were to be
343 * sent/acted upon. If the notifier routine returns non-zero, then the
344 * signal will be acted upon after all. If the notifier routine returns 0,
345 * then then signal will be blocked. Only one block per process is
346 * allowed. priv is a pointer to private data that the notifier routine
347 * can use to determine if the signal should be blocked or not. */
349 void
350 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
352 unsigned long flags;
354 spin_lock_irqsave(&current->sighand->siglock, flags);
355 current->notifier_mask = mask;
356 current->notifier_data = priv;
357 current->notifier = notifier;
358 spin_unlock_irqrestore(&current->sighand->siglock, flags);
361 /* Notify the system that blocking has ended. */
363 void
364 unblock_all_signals(void)
366 unsigned long flags;
368 spin_lock_irqsave(&current->sighand->siglock, flags);
369 current->notifier = NULL;
370 current->notifier_data = NULL;
371 recalc_sigpending();
372 spin_unlock_irqrestore(&current->sighand->siglock, flags);
375 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
377 struct sigqueue *q, *first = NULL;
378 int still_pending = 0;
380 if (unlikely(!sigismember(&list->signal, sig)))
381 return 0;
384 * Collect the siginfo appropriate to this signal. Check if
385 * there is another siginfo for the same signal.
387 list_for_each_entry(q, &list->list, list) {
388 if (q->info.si_signo == sig) {
389 if (first) {
390 still_pending = 1;
391 break;
393 first = q;
396 if (first) {
397 list_del_init(&first->list);
398 copy_siginfo(info, &first->info);
399 __sigqueue_free(first);
400 if (!still_pending)
401 sigdelset(&list->signal, sig);
402 } else {
404 /* Ok, it wasn't in the queue. This must be
405 a fast-pathed signal or we must have been
406 out of queue space. So zero out the info.
408 sigdelset(&list->signal, sig);
409 info->si_signo = sig;
410 info->si_errno = 0;
411 info->si_code = 0;
412 info->si_pid = 0;
413 info->si_uid = 0;
415 return 1;
418 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
419 siginfo_t *info)
421 int sig = 0;
423 sig = next_signal(pending, mask);
424 if (sig) {
425 if (current->notifier) {
426 if (sigismember(current->notifier_mask, sig)) {
427 if (!(current->notifier)(current->notifier_data)) {
428 clear_thread_flag(TIF_SIGPENDING);
429 return 0;
434 if (!collect_signal(sig, pending, info))
435 sig = 0;
438 recalc_sigpending();
440 return sig;
444 * Dequeue a signal and return the element to the caller, which is
445 * expected to free it.
447 * All callers have to hold the siglock.
449 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
451 int signr = __dequeue_signal(&tsk->pending, mask, info);
452 if (!signr)
453 signr = __dequeue_signal(&tsk->signal->shared_pending,
454 mask, info);
455 if (signr && unlikely(sig_kernel_stop(signr))) {
457 * Set a marker that we have dequeued a stop signal. Our
458 * caller might release the siglock and then the pending
459 * stop signal it is about to process is no longer in the
460 * pending bitmasks, but must still be cleared by a SIGCONT
461 * (and overruled by a SIGKILL). So those cases clear this
462 * shared flag after we've set it. Note that this flag may
463 * remain set after the signal we return is ignored or
464 * handled. That doesn't matter because its only purpose
465 * is to alert stop-signal processing code when another
466 * processor has come along and cleared the flag.
468 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
469 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
471 if ( signr &&
472 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
473 info->si_sys_private){
475 * Release the siglock to ensure proper locking order
476 * of timer locks outside of siglocks. Note, we leave
477 * irqs disabled here, since the posix-timers code is
478 * about to disable them again anyway.
480 spin_unlock(&tsk->sighand->siglock);
481 do_schedule_next_timer(info);
482 spin_lock(&tsk->sighand->siglock);
484 return signr;
488 * Tell a process that it has a new active signal..
490 * NOTE! we rely on the previous spin_lock to
491 * lock interrupts for us! We can only be called with
492 * "siglock" held, and the local interrupt must
493 * have been disabled when that got acquired!
495 * No need to set need_resched since signal event passing
496 * goes through ->blocked
498 void signal_wake_up(struct task_struct *t, int resume)
500 unsigned int mask;
502 set_tsk_thread_flag(t, TIF_SIGPENDING);
505 * For SIGKILL, we want to wake it up in the stopped/traced case.
506 * We don't check t->state here because there is a race with it
507 * executing another processor and just now entering stopped state.
508 * By using wake_up_state, we ensure the process will wake up and
509 * handle its death signal.
511 mask = TASK_INTERRUPTIBLE;
512 if (resume)
513 mask |= TASK_STOPPED | TASK_TRACED;
514 if (!wake_up_state(t, mask))
515 kick_process(t);
519 * Remove signals in mask from the pending set and queue.
520 * Returns 1 if any signals were found.
522 * All callers must be holding the siglock.
524 * This version takes a sigset mask and looks at all signals,
525 * not just those in the first mask word.
527 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
529 struct sigqueue *q, *n;
530 sigset_t m;
532 sigandsets(&m, mask, &s->signal);
533 if (sigisemptyset(&m))
534 return 0;
536 signandsets(&s->signal, &s->signal, mask);
537 list_for_each_entry_safe(q, n, &s->list, list) {
538 if (sigismember(mask, q->info.si_signo)) {
539 list_del_init(&q->list);
540 __sigqueue_free(q);
543 return 1;
546 * Remove signals in mask from the pending set and queue.
547 * Returns 1 if any signals were found.
549 * All callers must be holding the siglock.
551 static int rm_from_queue(unsigned long mask, struct sigpending *s)
553 struct sigqueue *q, *n;
555 if (!sigtestsetmask(&s->signal, mask))
556 return 0;
558 sigdelsetmask(&s->signal, mask);
559 list_for_each_entry_safe(q, n, &s->list, list) {
560 if (q->info.si_signo < SIGRTMIN &&
561 (mask & sigmask(q->info.si_signo))) {
562 list_del_init(&q->list);
563 __sigqueue_free(q);
566 return 1;
570 * Bad permissions for sending the signal
572 static int check_kill_permission(int sig, struct siginfo *info,
573 struct task_struct *t)
575 int error = -EINVAL;
576 if (!valid_signal(sig))
577 return error;
578 error = -EPERM;
579 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
580 && ((sig != SIGCONT) ||
581 (current->signal->session != t->signal->session))
582 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
583 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
584 && !capable(CAP_KILL))
585 return error;
587 error = security_task_kill(t, info, sig);
588 if (!error)
589 audit_signal_info(sig, t); /* Let audit system see the signal */
590 return error;
593 /* forward decl */
594 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
597 * Handle magic process-wide effects of stop/continue signals.
598 * Unlike the signal actions, these happen immediately at signal-generation
599 * time regardless of blocking, ignoring, or handling. This does the
600 * actual continuing for SIGCONT, but not the actual stopping for stop
601 * signals. The process stop is done as a signal action for SIG_DFL.
603 static void handle_stop_signal(int sig, struct task_struct *p)
605 struct task_struct *t;
607 if (p->signal->flags & SIGNAL_GROUP_EXIT)
609 * The process is in the middle of dying already.
611 return;
613 if (sig_kernel_stop(sig)) {
615 * This is a stop signal. Remove SIGCONT from all queues.
617 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
618 t = p;
619 do {
620 rm_from_queue(sigmask(SIGCONT), &t->pending);
621 t = next_thread(t);
622 } while (t != p);
623 } else if (sig == SIGCONT) {
625 * Remove all stop signals from all queues,
626 * and wake all threads.
628 if (unlikely(p->signal->group_stop_count > 0)) {
630 * There was a group stop in progress. We'll
631 * pretend it finished before we got here. We are
632 * obliged to report it to the parent: if the
633 * SIGSTOP happened "after" this SIGCONT, then it
634 * would have cleared this pending SIGCONT. If it
635 * happened "before" this SIGCONT, then the parent
636 * got the SIGCHLD about the stop finishing before
637 * the continue happened. We do the notification
638 * now, and it's as if the stop had finished and
639 * the SIGCHLD was pending on entry to this kill.
641 p->signal->group_stop_count = 0;
642 p->signal->flags = SIGNAL_STOP_CONTINUED;
643 spin_unlock(&p->sighand->siglock);
644 do_notify_parent_cldstop(p, CLD_STOPPED);
645 spin_lock(&p->sighand->siglock);
647 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
648 t = p;
649 do {
650 unsigned int state;
651 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
654 * If there is a handler for SIGCONT, we must make
655 * sure that no thread returns to user mode before
656 * we post the signal, in case it was the only
657 * thread eligible to run the signal handler--then
658 * it must not do anything between resuming and
659 * running the handler. With the TIF_SIGPENDING
660 * flag set, the thread will pause and acquire the
661 * siglock that we hold now and until we've queued
662 * the pending signal.
664 * Wake up the stopped thread _after_ setting
665 * TIF_SIGPENDING
667 state = TASK_STOPPED;
668 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
669 set_tsk_thread_flag(t, TIF_SIGPENDING);
670 state |= TASK_INTERRUPTIBLE;
672 wake_up_state(t, state);
674 t = next_thread(t);
675 } while (t != p);
677 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
679 * We were in fact stopped, and are now continued.
680 * Notify the parent with CLD_CONTINUED.
682 p->signal->flags = SIGNAL_STOP_CONTINUED;
683 p->signal->group_exit_code = 0;
684 spin_unlock(&p->sighand->siglock);
685 do_notify_parent_cldstop(p, CLD_CONTINUED);
686 spin_lock(&p->sighand->siglock);
687 } else {
689 * We are not stopped, but there could be a stop
690 * signal in the middle of being processed after
691 * being removed from the queue. Clear that too.
693 p->signal->flags = 0;
695 } else if (sig == SIGKILL) {
697 * Make sure that any pending stop signal already dequeued
698 * is undone by the wakeup for SIGKILL.
700 p->signal->flags = 0;
704 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
705 struct sigpending *signals)
707 struct sigqueue * q = NULL;
708 int ret = 0;
711 * fast-pathed signals for kernel-internal things like SIGSTOP
712 * or SIGKILL.
714 if (info == SEND_SIG_FORCED)
715 goto out_set;
717 /* Real-time signals must be queued if sent by sigqueue, or
718 some other real-time mechanism. It is implementation
719 defined whether kill() does so. We attempt to do so, on
720 the principle of least surprise, but since kill is not
721 allowed to fail with EAGAIN when low on memory we just
722 make sure at least one signal gets delivered and don't
723 pass on the info struct. */
725 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
726 (is_si_special(info) ||
727 info->si_code >= 0)));
728 if (q) {
729 list_add_tail(&q->list, &signals->list);
730 switch ((unsigned long) info) {
731 case (unsigned long) SEND_SIG_NOINFO:
732 q->info.si_signo = sig;
733 q->info.si_errno = 0;
734 q->info.si_code = SI_USER;
735 q->info.si_pid = current->pid;
736 q->info.si_uid = current->uid;
737 break;
738 case (unsigned long) SEND_SIG_PRIV:
739 q->info.si_signo = sig;
740 q->info.si_errno = 0;
741 q->info.si_code = SI_KERNEL;
742 q->info.si_pid = 0;
743 q->info.si_uid = 0;
744 break;
745 default:
746 copy_siginfo(&q->info, info);
747 break;
749 } else if (!is_si_special(info)) {
750 if (sig >= SIGRTMIN && info->si_code != SI_USER)
752 * Queue overflow, abort. We may abort if the signal was rt
753 * and sent by user using something other than kill().
755 return -EAGAIN;
758 out_set:
759 sigaddset(&signals->signal, sig);
760 return ret;
763 #define LEGACY_QUEUE(sigptr, sig) \
764 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
767 static int
768 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
770 int ret = 0;
772 BUG_ON(!irqs_disabled());
773 assert_spin_locked(&t->sighand->siglock);
775 /* Short-circuit ignored signals. */
776 if (sig_ignored(t, sig))
777 goto out;
779 /* Support queueing exactly one non-rt signal, so that we
780 can get more detailed information about the cause of
781 the signal. */
782 if (LEGACY_QUEUE(&t->pending, sig))
783 goto out;
785 ret = send_signal(sig, info, t, &t->pending);
786 if (!ret && !sigismember(&t->blocked, sig))
787 signal_wake_up(t, sig == SIGKILL);
788 out:
789 return ret;
793 * Force a signal that the process can't ignore: if necessary
794 * we unblock the signal and change any SIG_IGN to SIG_DFL.
798 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
800 unsigned long int flags;
801 int ret;
803 spin_lock_irqsave(&t->sighand->siglock, flags);
804 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
805 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
807 if (sigismember(&t->blocked, sig)) {
808 sigdelset(&t->blocked, sig);
810 recalc_sigpending_tsk(t);
811 ret = specific_send_sig_info(sig, info, t);
812 spin_unlock_irqrestore(&t->sighand->siglock, flags);
814 return ret;
817 void
818 force_sig_specific(int sig, struct task_struct *t)
820 force_sig_info(sig, SEND_SIG_FORCED, t);
824 * Test if P wants to take SIG. After we've checked all threads with this,
825 * it's equivalent to finding no threads not blocking SIG. Any threads not
826 * blocking SIG were ruled out because they are not running and already
827 * have pending signals. Such threads will dequeue from the shared queue
828 * as soon as they're available, so putting the signal on the shared queue
829 * will be equivalent to sending it to one such thread.
831 static inline int wants_signal(int sig, struct task_struct *p)
833 if (sigismember(&p->blocked, sig))
834 return 0;
835 if (p->flags & PF_EXITING)
836 return 0;
837 if (sig == SIGKILL)
838 return 1;
839 if (p->state & (TASK_STOPPED | TASK_TRACED))
840 return 0;
841 return task_curr(p) || !signal_pending(p);
844 static void
845 __group_complete_signal(int sig, struct task_struct *p)
847 struct task_struct *t;
850 * Now find a thread we can wake up to take the signal off the queue.
852 * If the main thread wants the signal, it gets first crack.
853 * Probably the least surprising to the average bear.
855 if (wants_signal(sig, p))
856 t = p;
857 else if (thread_group_empty(p))
859 * There is just one thread and it does not need to be woken.
860 * It will dequeue unblocked signals before it runs again.
862 return;
863 else {
865 * Otherwise try to find a suitable thread.
867 t = p->signal->curr_target;
868 if (t == NULL)
869 /* restart balancing at this thread */
870 t = p->signal->curr_target = p;
872 while (!wants_signal(sig, t)) {
873 t = next_thread(t);
874 if (t == p->signal->curr_target)
876 * No thread needs to be woken.
877 * Any eligible threads will see
878 * the signal in the queue soon.
880 return;
882 p->signal->curr_target = t;
886 * Found a killable thread. If the signal will be fatal,
887 * then start taking the whole group down immediately.
889 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
890 !sigismember(&t->real_blocked, sig) &&
891 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
893 * This signal will be fatal to the whole group.
895 if (!sig_kernel_coredump(sig)) {
897 * Start a group exit and wake everybody up.
898 * This way we don't have other threads
899 * running and doing things after a slower
900 * thread has the fatal signal pending.
902 p->signal->flags = SIGNAL_GROUP_EXIT;
903 p->signal->group_exit_code = sig;
904 p->signal->group_stop_count = 0;
905 t = p;
906 do {
907 sigaddset(&t->pending.signal, SIGKILL);
908 signal_wake_up(t, 1);
909 t = next_thread(t);
910 } while (t != p);
911 return;
915 * There will be a core dump. We make all threads other
916 * than the chosen one go into a group stop so that nothing
917 * happens until it gets scheduled, takes the signal off
918 * the shared queue, and does the core dump. This is a
919 * little more complicated than strictly necessary, but it
920 * keeps the signal state that winds up in the core dump
921 * unchanged from the death state, e.g. which thread had
922 * the core-dump signal unblocked.
924 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
925 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
926 p->signal->group_stop_count = 0;
927 p->signal->group_exit_task = t;
928 t = p;
929 do {
930 p->signal->group_stop_count++;
931 signal_wake_up(t, 0);
932 t = next_thread(t);
933 } while (t != p);
934 wake_up_process(p->signal->group_exit_task);
935 return;
939 * The signal is already in the shared-pending queue.
940 * Tell the chosen thread to wake up and dequeue it.
942 signal_wake_up(t, sig == SIGKILL);
943 return;
947 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
949 int ret = 0;
951 assert_spin_locked(&p->sighand->siglock);
952 handle_stop_signal(sig, p);
954 /* Short-circuit ignored signals. */
955 if (sig_ignored(p, sig))
956 return ret;
958 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
959 /* This is a non-RT signal and we already have one queued. */
960 return ret;
963 * Put this signal on the shared-pending queue, or fail with EAGAIN.
964 * We always use the shared queue for process-wide signals,
965 * to avoid several races.
967 ret = send_signal(sig, info, p, &p->signal->shared_pending);
968 if (unlikely(ret))
969 return ret;
971 __group_complete_signal(sig, p);
972 return 0;
976 * Nuke all other threads in the group.
978 void zap_other_threads(struct task_struct *p)
980 struct task_struct *t;
982 p->signal->flags = SIGNAL_GROUP_EXIT;
983 p->signal->group_stop_count = 0;
985 if (thread_group_empty(p))
986 return;
988 for (t = next_thread(p); t != p; t = next_thread(t)) {
990 * Don't bother with already dead threads
992 if (t->exit_state)
993 continue;
996 * We don't want to notify the parent, since we are
997 * killed as part of a thread group due to another
998 * thread doing an execve() or similar. So set the
999 * exit signal to -1 to allow immediate reaping of
1000 * the process. But don't detach the thread group
1001 * leader.
1003 if (t != p->group_leader)
1004 t->exit_signal = -1;
1006 /* SIGKILL will be handled before any pending SIGSTOP */
1007 sigaddset(&t->pending.signal, SIGKILL);
1008 signal_wake_up(t, 1);
1013 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1015 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1017 struct sighand_struct *sighand;
1019 for (;;) {
1020 sighand = rcu_dereference(tsk->sighand);
1021 if (unlikely(sighand == NULL))
1022 break;
1024 spin_lock_irqsave(&sighand->siglock, *flags);
1025 if (likely(sighand == tsk->sighand))
1026 break;
1027 spin_unlock_irqrestore(&sighand->siglock, *flags);
1030 return sighand;
1033 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1035 unsigned long flags;
1036 int ret;
1038 ret = check_kill_permission(sig, info, p);
1040 if (!ret && sig) {
1041 ret = -ESRCH;
1042 if (lock_task_sighand(p, &flags)) {
1043 ret = __group_send_sig_info(sig, info, p);
1044 unlock_task_sighand(p, &flags);
1048 return ret;
1052 * kill_pg_info() sends a signal to a process group: this is what the tty
1053 * control characters do (^C, ^Z etc)
1056 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1058 struct task_struct *p = NULL;
1059 int retval, success;
1061 if (pgrp <= 0)
1062 return -EINVAL;
1064 success = 0;
1065 retval = -ESRCH;
1066 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1067 int err = group_send_sig_info(sig, info, p);
1068 success |= !err;
1069 retval = err;
1070 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1071 return success ? 0 : retval;
1075 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1077 int retval;
1079 read_lock(&tasklist_lock);
1080 retval = __kill_pg_info(sig, info, pgrp);
1081 read_unlock(&tasklist_lock);
1083 return retval;
1087 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1089 int error;
1090 int acquired_tasklist_lock = 0;
1091 struct task_struct *p;
1093 rcu_read_lock();
1094 if (unlikely(sig_needs_tasklist(sig))) {
1095 read_lock(&tasklist_lock);
1096 acquired_tasklist_lock = 1;
1098 p = find_task_by_pid(pid);
1099 error = -ESRCH;
1100 if (p)
1101 error = group_send_sig_info(sig, info, p);
1102 if (unlikely(acquired_tasklist_lock))
1103 read_unlock(&tasklist_lock);
1104 rcu_read_unlock();
1105 return error;
1108 /* like kill_proc_info(), but doesn't use uid/euid of "current" */
1109 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1110 uid_t uid, uid_t euid)
1112 int ret = -EINVAL;
1113 struct task_struct *p;
1115 if (!valid_signal(sig))
1116 return ret;
1118 read_lock(&tasklist_lock);
1119 p = find_task_by_pid(pid);
1120 if (!p) {
1121 ret = -ESRCH;
1122 goto out_unlock;
1124 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1125 && (euid != p->suid) && (euid != p->uid)
1126 && (uid != p->suid) && (uid != p->uid)) {
1127 ret = -EPERM;
1128 goto out_unlock;
1130 if (sig && p->sighand) {
1131 unsigned long flags;
1132 spin_lock_irqsave(&p->sighand->siglock, flags);
1133 ret = __group_send_sig_info(sig, info, p);
1134 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1136 out_unlock:
1137 read_unlock(&tasklist_lock);
1138 return ret;
1140 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1143 * kill_something_info() interprets pid in interesting ways just like kill(2).
1145 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1146 * is probably wrong. Should make it like BSD or SYSV.
1149 static int kill_something_info(int sig, struct siginfo *info, int pid)
1151 if (!pid) {
1152 return kill_pg_info(sig, info, process_group(current));
1153 } else if (pid == -1) {
1154 int retval = 0, count = 0;
1155 struct task_struct * p;
1157 read_lock(&tasklist_lock);
1158 for_each_process(p) {
1159 if (p->pid > 1 && p->tgid != current->tgid) {
1160 int err = group_send_sig_info(sig, info, p);
1161 ++count;
1162 if (err != -EPERM)
1163 retval = err;
1166 read_unlock(&tasklist_lock);
1167 return count ? retval : -ESRCH;
1168 } else if (pid < 0) {
1169 return kill_pg_info(sig, info, -pid);
1170 } else {
1171 return kill_proc_info(sig, info, pid);
1176 * These are for backward compatibility with the rest of the kernel source.
1180 * These two are the most common entry points. They send a signal
1181 * just to the specific thread.
1184 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1186 int ret;
1187 unsigned long flags;
1190 * Make sure legacy kernel users don't send in bad values
1191 * (normal paths check this in check_kill_permission).
1193 if (!valid_signal(sig))
1194 return -EINVAL;
1197 * We need the tasklist lock even for the specific
1198 * thread case (when we don't need to follow the group
1199 * lists) in order to avoid races with "p->sighand"
1200 * going away or changing from under us.
1202 read_lock(&tasklist_lock);
1203 spin_lock_irqsave(&p->sighand->siglock, flags);
1204 ret = specific_send_sig_info(sig, info, p);
1205 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1206 read_unlock(&tasklist_lock);
1207 return ret;
1210 #define __si_special(priv) \
1211 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1214 send_sig(int sig, struct task_struct *p, int priv)
1216 return send_sig_info(sig, __si_special(priv), p);
1220 * This is the entry point for "process-wide" signals.
1221 * They will go to an appropriate thread in the thread group.
1224 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1226 int ret;
1227 read_lock(&tasklist_lock);
1228 ret = group_send_sig_info(sig, info, p);
1229 read_unlock(&tasklist_lock);
1230 return ret;
1233 void
1234 force_sig(int sig, struct task_struct *p)
1236 force_sig_info(sig, SEND_SIG_PRIV, p);
1240 * When things go south during signal handling, we
1241 * will force a SIGSEGV. And if the signal that caused
1242 * the problem was already a SIGSEGV, we'll want to
1243 * make sure we don't even try to deliver the signal..
1246 force_sigsegv(int sig, struct task_struct *p)
1248 if (sig == SIGSEGV) {
1249 unsigned long flags;
1250 spin_lock_irqsave(&p->sighand->siglock, flags);
1251 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1252 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1254 force_sig(SIGSEGV, p);
1255 return 0;
1259 kill_pg(pid_t pgrp, int sig, int priv)
1261 return kill_pg_info(sig, __si_special(priv), pgrp);
1265 kill_proc(pid_t pid, int sig, int priv)
1267 return kill_proc_info(sig, __si_special(priv), pid);
1271 * These functions support sending signals using preallocated sigqueue
1272 * structures. This is needed "because realtime applications cannot
1273 * afford to lose notifications of asynchronous events, like timer
1274 * expirations or I/O completions". In the case of Posix Timers
1275 * we allocate the sigqueue structure from the timer_create. If this
1276 * allocation fails we are able to report the failure to the application
1277 * with an EAGAIN error.
1280 struct sigqueue *sigqueue_alloc(void)
1282 struct sigqueue *q;
1284 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1285 q->flags |= SIGQUEUE_PREALLOC;
1286 return(q);
1289 void sigqueue_free(struct sigqueue *q)
1291 unsigned long flags;
1292 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1294 * If the signal is still pending remove it from the
1295 * pending queue.
1297 if (unlikely(!list_empty(&q->list))) {
1298 spinlock_t *lock = &current->sighand->siglock;
1299 read_lock(&tasklist_lock);
1300 spin_lock_irqsave(lock, flags);
1301 if (!list_empty(&q->list))
1302 list_del_init(&q->list);
1303 spin_unlock_irqrestore(lock, flags);
1304 read_unlock(&tasklist_lock);
1306 q->flags &= ~SIGQUEUE_PREALLOC;
1307 __sigqueue_free(q);
1310 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1312 unsigned long flags;
1313 int ret = 0;
1315 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1318 * The rcu based delayed sighand destroy makes it possible to
1319 * run this without tasklist lock held. The task struct itself
1320 * cannot go away as create_timer did get_task_struct().
1322 * We return -1, when the task is marked exiting, so
1323 * posix_timer_event can redirect it to the group leader
1325 rcu_read_lock();
1327 if (!likely(lock_task_sighand(p, &flags))) {
1328 ret = -1;
1329 goto out_err;
1332 if (unlikely(!list_empty(&q->list))) {
1334 * If an SI_TIMER entry is already queue just increment
1335 * the overrun count.
1337 BUG_ON(q->info.si_code != SI_TIMER);
1338 q->info.si_overrun++;
1339 goto out;
1341 /* Short-circuit ignored signals. */
1342 if (sig_ignored(p, sig)) {
1343 ret = 1;
1344 goto out;
1347 list_add_tail(&q->list, &p->pending.list);
1348 sigaddset(&p->pending.signal, sig);
1349 if (!sigismember(&p->blocked, sig))
1350 signal_wake_up(p, sig == SIGKILL);
1352 out:
1353 unlock_task_sighand(p, &flags);
1354 out_err:
1355 rcu_read_unlock();
1357 return ret;
1361 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1363 unsigned long flags;
1364 int ret = 0;
1366 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1368 read_lock(&tasklist_lock);
1369 /* Since it_lock is held, p->sighand cannot be NULL. */
1370 spin_lock_irqsave(&p->sighand->siglock, flags);
1371 handle_stop_signal(sig, p);
1373 /* Short-circuit ignored signals. */
1374 if (sig_ignored(p, sig)) {
1375 ret = 1;
1376 goto out;
1379 if (unlikely(!list_empty(&q->list))) {
1381 * If an SI_TIMER entry is already queue just increment
1382 * the overrun count. Other uses should not try to
1383 * send the signal multiple times.
1385 BUG_ON(q->info.si_code != SI_TIMER);
1386 q->info.si_overrun++;
1387 goto out;
1391 * Put this signal on the shared-pending queue.
1392 * We always use the shared queue for process-wide signals,
1393 * to avoid several races.
1395 list_add_tail(&q->list, &p->signal->shared_pending.list);
1396 sigaddset(&p->signal->shared_pending.signal, sig);
1398 __group_complete_signal(sig, p);
1399 out:
1400 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1401 read_unlock(&tasklist_lock);
1402 return ret;
1406 * Wake up any threads in the parent blocked in wait* syscalls.
1408 static inline void __wake_up_parent(struct task_struct *p,
1409 struct task_struct *parent)
1411 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1415 * Let a parent know about the death of a child.
1416 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1419 void do_notify_parent(struct task_struct *tsk, int sig)
1421 struct siginfo info;
1422 unsigned long flags;
1423 struct sighand_struct *psig;
1425 BUG_ON(sig == -1);
1427 /* do_notify_parent_cldstop should have been called instead. */
1428 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1430 BUG_ON(!tsk->ptrace &&
1431 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1433 info.si_signo = sig;
1434 info.si_errno = 0;
1435 info.si_pid = tsk->pid;
1436 info.si_uid = tsk->uid;
1438 /* FIXME: find out whether or not this is supposed to be c*time. */
1439 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1440 tsk->signal->utime));
1441 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1442 tsk->signal->stime));
1444 info.si_status = tsk->exit_code & 0x7f;
1445 if (tsk->exit_code & 0x80)
1446 info.si_code = CLD_DUMPED;
1447 else if (tsk->exit_code & 0x7f)
1448 info.si_code = CLD_KILLED;
1449 else {
1450 info.si_code = CLD_EXITED;
1451 info.si_status = tsk->exit_code >> 8;
1454 psig = tsk->parent->sighand;
1455 spin_lock_irqsave(&psig->siglock, flags);
1456 if (!tsk->ptrace && sig == SIGCHLD &&
1457 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1458 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1460 * We are exiting and our parent doesn't care. POSIX.1
1461 * defines special semantics for setting SIGCHLD to SIG_IGN
1462 * or setting the SA_NOCLDWAIT flag: we should be reaped
1463 * automatically and not left for our parent's wait4 call.
1464 * Rather than having the parent do it as a magic kind of
1465 * signal handler, we just set this to tell do_exit that we
1466 * can be cleaned up without becoming a zombie. Note that
1467 * we still call __wake_up_parent in this case, because a
1468 * blocked sys_wait4 might now return -ECHILD.
1470 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1471 * is implementation-defined: we do (if you don't want
1472 * it, just use SIG_IGN instead).
1474 tsk->exit_signal = -1;
1475 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1476 sig = 0;
1478 if (valid_signal(sig) && sig > 0)
1479 __group_send_sig_info(sig, &info, tsk->parent);
1480 __wake_up_parent(tsk, tsk->parent);
1481 spin_unlock_irqrestore(&psig->siglock, flags);
1484 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1486 struct siginfo info;
1487 unsigned long flags;
1488 struct task_struct *parent;
1489 struct sighand_struct *sighand;
1491 if (tsk->ptrace & PT_PTRACED)
1492 parent = tsk->parent;
1493 else {
1494 tsk = tsk->group_leader;
1495 parent = tsk->real_parent;
1498 info.si_signo = SIGCHLD;
1499 info.si_errno = 0;
1500 info.si_pid = tsk->pid;
1501 info.si_uid = tsk->uid;
1503 /* FIXME: find out whether or not this is supposed to be c*time. */
1504 info.si_utime = cputime_to_jiffies(tsk->utime);
1505 info.si_stime = cputime_to_jiffies(tsk->stime);
1507 info.si_code = why;
1508 switch (why) {
1509 case CLD_CONTINUED:
1510 info.si_status = SIGCONT;
1511 break;
1512 case CLD_STOPPED:
1513 info.si_status = tsk->signal->group_exit_code & 0x7f;
1514 break;
1515 case CLD_TRAPPED:
1516 info.si_status = tsk->exit_code & 0x7f;
1517 break;
1518 default:
1519 BUG();
1522 sighand = parent->sighand;
1523 spin_lock_irqsave(&sighand->siglock, flags);
1524 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1525 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1526 __group_send_sig_info(SIGCHLD, &info, parent);
1528 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1530 __wake_up_parent(tsk, parent);
1531 spin_unlock_irqrestore(&sighand->siglock, flags);
1535 * This must be called with current->sighand->siglock held.
1537 * This should be the path for all ptrace stops.
1538 * We always set current->last_siginfo while stopped here.
1539 * That makes it a way to test a stopped process for
1540 * being ptrace-stopped vs being job-control-stopped.
1542 * If we actually decide not to stop at all because the tracer is gone,
1543 * we leave nostop_code in current->exit_code.
1545 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1548 * If there is a group stop in progress,
1549 * we must participate in the bookkeeping.
1551 if (current->signal->group_stop_count > 0)
1552 --current->signal->group_stop_count;
1554 current->last_siginfo = info;
1555 current->exit_code = exit_code;
1557 /* Let the debugger run. */
1558 set_current_state(TASK_TRACED);
1559 spin_unlock_irq(&current->sighand->siglock);
1560 try_to_freeze();
1561 read_lock(&tasklist_lock);
1562 if (likely(current->ptrace & PT_PTRACED) &&
1563 likely(current->parent != current->real_parent ||
1564 !(current->ptrace & PT_ATTACHED)) &&
1565 (likely(current->parent->signal != current->signal) ||
1566 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
1567 do_notify_parent_cldstop(current, CLD_TRAPPED);
1568 read_unlock(&tasklist_lock);
1569 schedule();
1570 } else {
1572 * By the time we got the lock, our tracer went away.
1573 * Don't stop here.
1575 read_unlock(&tasklist_lock);
1576 set_current_state(TASK_RUNNING);
1577 current->exit_code = nostop_code;
1581 * We are back. Now reacquire the siglock before touching
1582 * last_siginfo, so that we are sure to have synchronized with
1583 * any signal-sending on another CPU that wants to examine it.
1585 spin_lock_irq(&current->sighand->siglock);
1586 current->last_siginfo = NULL;
1589 * Queued signals ignored us while we were stopped for tracing.
1590 * So check for any that we should take before resuming user mode.
1592 recalc_sigpending();
1595 void ptrace_notify(int exit_code)
1597 siginfo_t info;
1599 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1601 memset(&info, 0, sizeof info);
1602 info.si_signo = SIGTRAP;
1603 info.si_code = exit_code;
1604 info.si_pid = current->pid;
1605 info.si_uid = current->uid;
1607 /* Let the debugger run. */
1608 spin_lock_irq(&current->sighand->siglock);
1609 ptrace_stop(exit_code, 0, &info);
1610 spin_unlock_irq(&current->sighand->siglock);
1613 static void
1614 finish_stop(int stop_count)
1617 * If there are no other threads in the group, or if there is
1618 * a group stop in progress and we are the last to stop,
1619 * report to the parent. When ptraced, every thread reports itself.
1621 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1622 read_lock(&tasklist_lock);
1623 do_notify_parent_cldstop(current, CLD_STOPPED);
1624 read_unlock(&tasklist_lock);
1627 schedule();
1629 * Now we don't run again until continued.
1631 current->exit_code = 0;
1635 * This performs the stopping for SIGSTOP and other stop signals.
1636 * We have to stop all threads in the thread group.
1637 * Returns nonzero if we've actually stopped and released the siglock.
1638 * Returns zero if we didn't stop and still hold the siglock.
1640 static int do_signal_stop(int signr)
1642 struct signal_struct *sig = current->signal;
1643 int stop_count;
1645 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1646 return 0;
1648 if (sig->group_stop_count > 0) {
1650 * There is a group stop in progress. We don't need to
1651 * start another one.
1653 stop_count = --sig->group_stop_count;
1654 } else {
1656 * There is no group stop already in progress.
1657 * We must initiate one now.
1659 struct task_struct *t;
1661 sig->group_exit_code = signr;
1663 stop_count = 0;
1664 for (t = next_thread(current); t != current; t = next_thread(t))
1666 * Setting state to TASK_STOPPED for a group
1667 * stop is always done with the siglock held,
1668 * so this check has no races.
1670 if (!t->exit_state &&
1671 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1672 stop_count++;
1673 signal_wake_up(t, 0);
1675 sig->group_stop_count = stop_count;
1678 if (stop_count == 0)
1679 sig->flags = SIGNAL_STOP_STOPPED;
1680 current->exit_code = sig->group_exit_code;
1681 __set_current_state(TASK_STOPPED);
1683 spin_unlock_irq(&current->sighand->siglock);
1684 finish_stop(stop_count);
1685 return 1;
1689 * Do appropriate magic when group_stop_count > 0.
1690 * We return nonzero if we stopped, after releasing the siglock.
1691 * We return zero if we still hold the siglock and should look
1692 * for another signal without checking group_stop_count again.
1694 static int handle_group_stop(void)
1696 int stop_count;
1698 if (current->signal->group_exit_task == current) {
1700 * Group stop is so we can do a core dump,
1701 * We are the initiating thread, so get on with it.
1703 current->signal->group_exit_task = NULL;
1704 return 0;
1707 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1709 * Group stop is so another thread can do a core dump,
1710 * or else we are racing against a death signal.
1711 * Just punt the stop so we can get the next signal.
1713 return 0;
1716 * There is a group stop in progress. We stop
1717 * without any associated signal being in our queue.
1719 stop_count = --current->signal->group_stop_count;
1720 if (stop_count == 0)
1721 current->signal->flags = SIGNAL_STOP_STOPPED;
1722 current->exit_code = current->signal->group_exit_code;
1723 set_current_state(TASK_STOPPED);
1724 spin_unlock_irq(&current->sighand->siglock);
1725 finish_stop(stop_count);
1726 return 1;
1729 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1730 struct pt_regs *regs, void *cookie)
1732 sigset_t *mask = &current->blocked;
1733 int signr = 0;
1735 try_to_freeze();
1737 relock:
1738 spin_lock_irq(&current->sighand->siglock);
1739 for (;;) {
1740 struct k_sigaction *ka;
1742 if (unlikely(current->signal->group_stop_count > 0) &&
1743 handle_group_stop())
1744 goto relock;
1746 signr = dequeue_signal(current, mask, info);
1748 if (!signr)
1749 break; /* will return 0 */
1751 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1752 ptrace_signal_deliver(regs, cookie);
1754 /* Let the debugger run. */
1755 ptrace_stop(signr, signr, info);
1757 /* We're back. Did the debugger cancel the sig? */
1758 signr = current->exit_code;
1759 if (signr == 0)
1760 continue;
1762 current->exit_code = 0;
1764 /* Update the siginfo structure if the signal has
1765 changed. If the debugger wanted something
1766 specific in the siginfo structure then it should
1767 have updated *info via PTRACE_SETSIGINFO. */
1768 if (signr != info->si_signo) {
1769 info->si_signo = signr;
1770 info->si_errno = 0;
1771 info->si_code = SI_USER;
1772 info->si_pid = current->parent->pid;
1773 info->si_uid = current->parent->uid;
1776 /* If the (new) signal is now blocked, requeue it. */
1777 if (sigismember(&current->blocked, signr)) {
1778 specific_send_sig_info(signr, info, current);
1779 continue;
1783 ka = &current->sighand->action[signr-1];
1784 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1785 continue;
1786 if (ka->sa.sa_handler != SIG_DFL) {
1787 /* Run the handler. */
1788 *return_ka = *ka;
1790 if (ka->sa.sa_flags & SA_ONESHOT)
1791 ka->sa.sa_handler = SIG_DFL;
1793 break; /* will return non-zero "signr" value */
1797 * Now we are doing the default action for this signal.
1799 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1800 continue;
1802 /* Init gets no signals it doesn't want. */
1803 if (current == child_reaper)
1804 continue;
1806 if (sig_kernel_stop(signr)) {
1808 * The default action is to stop all threads in
1809 * the thread group. The job control signals
1810 * do nothing in an orphaned pgrp, but SIGSTOP
1811 * always works. Note that siglock needs to be
1812 * dropped during the call to is_orphaned_pgrp()
1813 * because of lock ordering with tasklist_lock.
1814 * This allows an intervening SIGCONT to be posted.
1815 * We need to check for that and bail out if necessary.
1817 if (signr != SIGSTOP) {
1818 spin_unlock_irq(&current->sighand->siglock);
1820 /* signals can be posted during this window */
1822 if (is_orphaned_pgrp(process_group(current)))
1823 goto relock;
1825 spin_lock_irq(&current->sighand->siglock);
1828 if (likely(do_signal_stop(signr))) {
1829 /* It released the siglock. */
1830 goto relock;
1834 * We didn't actually stop, due to a race
1835 * with SIGCONT or something like that.
1837 continue;
1840 spin_unlock_irq(&current->sighand->siglock);
1843 * Anything else is fatal, maybe with a core dump.
1845 current->flags |= PF_SIGNALED;
1846 if (sig_kernel_coredump(signr)) {
1848 * If it was able to dump core, this kills all
1849 * other threads in the group and synchronizes with
1850 * their demise. If we lost the race with another
1851 * thread getting here, it set group_exit_code
1852 * first and our do_group_exit call below will use
1853 * that value and ignore the one we pass it.
1855 do_coredump((long)signr, signr, regs);
1859 * Death signals, no core dump.
1861 do_group_exit(signr);
1862 /* NOTREACHED */
1864 spin_unlock_irq(&current->sighand->siglock);
1865 return signr;
1868 EXPORT_SYMBOL(recalc_sigpending);
1869 EXPORT_SYMBOL_GPL(dequeue_signal);
1870 EXPORT_SYMBOL(flush_signals);
1871 EXPORT_SYMBOL(force_sig);
1872 EXPORT_SYMBOL(kill_pg);
1873 EXPORT_SYMBOL(kill_proc);
1874 EXPORT_SYMBOL(ptrace_notify);
1875 EXPORT_SYMBOL(send_sig);
1876 EXPORT_SYMBOL(send_sig_info);
1877 EXPORT_SYMBOL(sigprocmask);
1878 EXPORT_SYMBOL(block_all_signals);
1879 EXPORT_SYMBOL(unblock_all_signals);
1883 * System call entry points.
1886 asmlinkage long sys_restart_syscall(void)
1888 struct restart_block *restart = &current_thread_info()->restart_block;
1889 return restart->fn(restart);
1892 long do_no_restart_syscall(struct restart_block *param)
1894 return -EINTR;
1898 * We don't need to get the kernel lock - this is all local to this
1899 * particular thread.. (and that's good, because this is _heavily_
1900 * used by various programs)
1904 * This is also useful for kernel threads that want to temporarily
1905 * (or permanently) block certain signals.
1907 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1908 * interface happily blocks "unblockable" signals like SIGKILL
1909 * and friends.
1911 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1913 int error;
1915 spin_lock_irq(&current->sighand->siglock);
1916 if (oldset)
1917 *oldset = current->blocked;
1919 error = 0;
1920 switch (how) {
1921 case SIG_BLOCK:
1922 sigorsets(&current->blocked, &current->blocked, set);
1923 break;
1924 case SIG_UNBLOCK:
1925 signandsets(&current->blocked, &current->blocked, set);
1926 break;
1927 case SIG_SETMASK:
1928 current->blocked = *set;
1929 break;
1930 default:
1931 error = -EINVAL;
1933 recalc_sigpending();
1934 spin_unlock_irq(&current->sighand->siglock);
1936 return error;
1939 asmlinkage long
1940 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1942 int error = -EINVAL;
1943 sigset_t old_set, new_set;
1945 /* XXX: Don't preclude handling different sized sigset_t's. */
1946 if (sigsetsize != sizeof(sigset_t))
1947 goto out;
1949 if (set) {
1950 error = -EFAULT;
1951 if (copy_from_user(&new_set, set, sizeof(*set)))
1952 goto out;
1953 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1955 error = sigprocmask(how, &new_set, &old_set);
1956 if (error)
1957 goto out;
1958 if (oset)
1959 goto set_old;
1960 } else if (oset) {
1961 spin_lock_irq(&current->sighand->siglock);
1962 old_set = current->blocked;
1963 spin_unlock_irq(&current->sighand->siglock);
1965 set_old:
1966 error = -EFAULT;
1967 if (copy_to_user(oset, &old_set, sizeof(*oset)))
1968 goto out;
1970 error = 0;
1971 out:
1972 return error;
1975 long do_sigpending(void __user *set, unsigned long sigsetsize)
1977 long error = -EINVAL;
1978 sigset_t pending;
1980 if (sigsetsize > sizeof(sigset_t))
1981 goto out;
1983 spin_lock_irq(&current->sighand->siglock);
1984 sigorsets(&pending, &current->pending.signal,
1985 &current->signal->shared_pending.signal);
1986 spin_unlock_irq(&current->sighand->siglock);
1988 /* Outside the lock because only this thread touches it. */
1989 sigandsets(&pending, &current->blocked, &pending);
1991 error = -EFAULT;
1992 if (!copy_to_user(set, &pending, sigsetsize))
1993 error = 0;
1995 out:
1996 return error;
1999 asmlinkage long
2000 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2002 return do_sigpending(set, sigsetsize);
2005 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2007 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2009 int err;
2011 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2012 return -EFAULT;
2013 if (from->si_code < 0)
2014 return __copy_to_user(to, from, sizeof(siginfo_t))
2015 ? -EFAULT : 0;
2017 * If you change siginfo_t structure, please be sure
2018 * this code is fixed accordingly.
2019 * It should never copy any pad contained in the structure
2020 * to avoid security leaks, but must copy the generic
2021 * 3 ints plus the relevant union member.
2023 err = __put_user(from->si_signo, &to->si_signo);
2024 err |= __put_user(from->si_errno, &to->si_errno);
2025 err |= __put_user((short)from->si_code, &to->si_code);
2026 switch (from->si_code & __SI_MASK) {
2027 case __SI_KILL:
2028 err |= __put_user(from->si_pid, &to->si_pid);
2029 err |= __put_user(from->si_uid, &to->si_uid);
2030 break;
2031 case __SI_TIMER:
2032 err |= __put_user(from->si_tid, &to->si_tid);
2033 err |= __put_user(from->si_overrun, &to->si_overrun);
2034 err |= __put_user(from->si_ptr, &to->si_ptr);
2035 break;
2036 case __SI_POLL:
2037 err |= __put_user(from->si_band, &to->si_band);
2038 err |= __put_user(from->si_fd, &to->si_fd);
2039 break;
2040 case __SI_FAULT:
2041 err |= __put_user(from->si_addr, &to->si_addr);
2042 #ifdef __ARCH_SI_TRAPNO
2043 err |= __put_user(from->si_trapno, &to->si_trapno);
2044 #endif
2045 break;
2046 case __SI_CHLD:
2047 err |= __put_user(from->si_pid, &to->si_pid);
2048 err |= __put_user(from->si_uid, &to->si_uid);
2049 err |= __put_user(from->si_status, &to->si_status);
2050 err |= __put_user(from->si_utime, &to->si_utime);
2051 err |= __put_user(from->si_stime, &to->si_stime);
2052 break;
2053 case __SI_RT: /* This is not generated by the kernel as of now. */
2054 case __SI_MESGQ: /* But this is */
2055 err |= __put_user(from->si_pid, &to->si_pid);
2056 err |= __put_user(from->si_uid, &to->si_uid);
2057 err |= __put_user(from->si_ptr, &to->si_ptr);
2058 break;
2059 default: /* this is just in case for now ... */
2060 err |= __put_user(from->si_pid, &to->si_pid);
2061 err |= __put_user(from->si_uid, &to->si_uid);
2062 break;
2064 return err;
2067 #endif
2069 asmlinkage long
2070 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2071 siginfo_t __user *uinfo,
2072 const struct timespec __user *uts,
2073 size_t sigsetsize)
2075 int ret, sig;
2076 sigset_t these;
2077 struct timespec ts;
2078 siginfo_t info;
2079 long timeout = 0;
2081 /* XXX: Don't preclude handling different sized sigset_t's. */
2082 if (sigsetsize != sizeof(sigset_t))
2083 return -EINVAL;
2085 if (copy_from_user(&these, uthese, sizeof(these)))
2086 return -EFAULT;
2089 * Invert the set of allowed signals to get those we
2090 * want to block.
2092 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2093 signotset(&these);
2095 if (uts) {
2096 if (copy_from_user(&ts, uts, sizeof(ts)))
2097 return -EFAULT;
2098 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2099 || ts.tv_sec < 0)
2100 return -EINVAL;
2103 spin_lock_irq(&current->sighand->siglock);
2104 sig = dequeue_signal(current, &these, &info);
2105 if (!sig) {
2106 timeout = MAX_SCHEDULE_TIMEOUT;
2107 if (uts)
2108 timeout = (timespec_to_jiffies(&ts)
2109 + (ts.tv_sec || ts.tv_nsec));
2111 if (timeout) {
2112 /* None ready -- temporarily unblock those we're
2113 * interested while we are sleeping in so that we'll
2114 * be awakened when they arrive. */
2115 current->real_blocked = current->blocked;
2116 sigandsets(&current->blocked, &current->blocked, &these);
2117 recalc_sigpending();
2118 spin_unlock_irq(&current->sighand->siglock);
2120 timeout = schedule_timeout_interruptible(timeout);
2122 spin_lock_irq(&current->sighand->siglock);
2123 sig = dequeue_signal(current, &these, &info);
2124 current->blocked = current->real_blocked;
2125 siginitset(&current->real_blocked, 0);
2126 recalc_sigpending();
2129 spin_unlock_irq(&current->sighand->siglock);
2131 if (sig) {
2132 ret = sig;
2133 if (uinfo) {
2134 if (copy_siginfo_to_user(uinfo, &info))
2135 ret = -EFAULT;
2137 } else {
2138 ret = -EAGAIN;
2139 if (timeout)
2140 ret = -EINTR;
2143 return ret;
2146 asmlinkage long
2147 sys_kill(int pid, int sig)
2149 struct siginfo info;
2151 info.si_signo = sig;
2152 info.si_errno = 0;
2153 info.si_code = SI_USER;
2154 info.si_pid = current->tgid;
2155 info.si_uid = current->uid;
2157 return kill_something_info(sig, &info, pid);
2160 static int do_tkill(int tgid, int pid, int sig)
2162 int error;
2163 struct siginfo info;
2164 struct task_struct *p;
2166 error = -ESRCH;
2167 info.si_signo = sig;
2168 info.si_errno = 0;
2169 info.si_code = SI_TKILL;
2170 info.si_pid = current->tgid;
2171 info.si_uid = current->uid;
2173 read_lock(&tasklist_lock);
2174 p = find_task_by_pid(pid);
2175 if (p && (tgid <= 0 || p->tgid == tgid)) {
2176 error = check_kill_permission(sig, &info, p);
2178 * The null signal is a permissions and process existence
2179 * probe. No signal is actually delivered.
2181 if (!error && sig && p->sighand) {
2182 spin_lock_irq(&p->sighand->siglock);
2183 handle_stop_signal(sig, p);
2184 error = specific_send_sig_info(sig, &info, p);
2185 spin_unlock_irq(&p->sighand->siglock);
2188 read_unlock(&tasklist_lock);
2190 return error;
2194 * sys_tgkill - send signal to one specific thread
2195 * @tgid: the thread group ID of the thread
2196 * @pid: the PID of the thread
2197 * @sig: signal to be sent
2199 * This syscall also checks the tgid and returns -ESRCH even if the PID
2200 * exists but it's not belonging to the target process anymore. This
2201 * method solves the problem of threads exiting and PIDs getting reused.
2203 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2205 /* This is only valid for single tasks */
2206 if (pid <= 0 || tgid <= 0)
2207 return -EINVAL;
2209 return do_tkill(tgid, pid, sig);
2213 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2215 asmlinkage long
2216 sys_tkill(int pid, int sig)
2218 /* This is only valid for single tasks */
2219 if (pid <= 0)
2220 return -EINVAL;
2222 return do_tkill(0, pid, sig);
2225 asmlinkage long
2226 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2228 siginfo_t info;
2230 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2231 return -EFAULT;
2233 /* Not even root can pretend to send signals from the kernel.
2234 Nor can they impersonate a kill(), which adds source info. */
2235 if (info.si_code >= 0)
2236 return -EPERM;
2237 info.si_signo = sig;
2239 /* POSIX.1b doesn't mention process groups. */
2240 return kill_proc_info(sig, &info, pid);
2243 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2245 struct k_sigaction *k;
2246 sigset_t mask;
2248 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2249 return -EINVAL;
2251 k = &current->sighand->action[sig-1];
2253 spin_lock_irq(&current->sighand->siglock);
2254 if (signal_pending(current)) {
2256 * If there might be a fatal signal pending on multiple
2257 * threads, make sure we take it before changing the action.
2259 spin_unlock_irq(&current->sighand->siglock);
2260 return -ERESTARTNOINTR;
2263 if (oact)
2264 *oact = *k;
2266 if (act) {
2267 sigdelsetmask(&act->sa.sa_mask,
2268 sigmask(SIGKILL) | sigmask(SIGSTOP));
2269 *k = *act;
2271 * POSIX 3.3.1.3:
2272 * "Setting a signal action to SIG_IGN for a signal that is
2273 * pending shall cause the pending signal to be discarded,
2274 * whether or not it is blocked."
2276 * "Setting a signal action to SIG_DFL for a signal that is
2277 * pending and whose default action is to ignore the signal
2278 * (for example, SIGCHLD), shall cause the pending signal to
2279 * be discarded, whether or not it is blocked"
2281 if (act->sa.sa_handler == SIG_IGN ||
2282 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2283 struct task_struct *t = current;
2284 sigemptyset(&mask);
2285 sigaddset(&mask, sig);
2286 rm_from_queue_full(&mask, &t->signal->shared_pending);
2287 do {
2288 rm_from_queue_full(&mask, &t->pending);
2289 recalc_sigpending_tsk(t);
2290 t = next_thread(t);
2291 } while (t != current);
2295 spin_unlock_irq(&current->sighand->siglock);
2296 return 0;
2299 int
2300 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2302 stack_t oss;
2303 int error;
2305 if (uoss) {
2306 oss.ss_sp = (void __user *) current->sas_ss_sp;
2307 oss.ss_size = current->sas_ss_size;
2308 oss.ss_flags = sas_ss_flags(sp);
2311 if (uss) {
2312 void __user *ss_sp;
2313 size_t ss_size;
2314 int ss_flags;
2316 error = -EFAULT;
2317 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2318 || __get_user(ss_sp, &uss->ss_sp)
2319 || __get_user(ss_flags, &uss->ss_flags)
2320 || __get_user(ss_size, &uss->ss_size))
2321 goto out;
2323 error = -EPERM;
2324 if (on_sig_stack(sp))
2325 goto out;
2327 error = -EINVAL;
2330 * Note - this code used to test ss_flags incorrectly
2331 * old code may have been written using ss_flags==0
2332 * to mean ss_flags==SS_ONSTACK (as this was the only
2333 * way that worked) - this fix preserves that older
2334 * mechanism
2336 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2337 goto out;
2339 if (ss_flags == SS_DISABLE) {
2340 ss_size = 0;
2341 ss_sp = NULL;
2342 } else {
2343 error = -ENOMEM;
2344 if (ss_size < MINSIGSTKSZ)
2345 goto out;
2348 current->sas_ss_sp = (unsigned long) ss_sp;
2349 current->sas_ss_size = ss_size;
2352 if (uoss) {
2353 error = -EFAULT;
2354 if (copy_to_user(uoss, &oss, sizeof(oss)))
2355 goto out;
2358 error = 0;
2359 out:
2360 return error;
2363 #ifdef __ARCH_WANT_SYS_SIGPENDING
2365 asmlinkage long
2366 sys_sigpending(old_sigset_t __user *set)
2368 return do_sigpending(set, sizeof(*set));
2371 #endif
2373 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2374 /* Some platforms have their own version with special arguments others
2375 support only sys_rt_sigprocmask. */
2377 asmlinkage long
2378 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2380 int error;
2381 old_sigset_t old_set, new_set;
2383 if (set) {
2384 error = -EFAULT;
2385 if (copy_from_user(&new_set, set, sizeof(*set)))
2386 goto out;
2387 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2389 spin_lock_irq(&current->sighand->siglock);
2390 old_set = current->blocked.sig[0];
2392 error = 0;
2393 switch (how) {
2394 default:
2395 error = -EINVAL;
2396 break;
2397 case SIG_BLOCK:
2398 sigaddsetmask(&current->blocked, new_set);
2399 break;
2400 case SIG_UNBLOCK:
2401 sigdelsetmask(&current->blocked, new_set);
2402 break;
2403 case SIG_SETMASK:
2404 current->blocked.sig[0] = new_set;
2405 break;
2408 recalc_sigpending();
2409 spin_unlock_irq(&current->sighand->siglock);
2410 if (error)
2411 goto out;
2412 if (oset)
2413 goto set_old;
2414 } else if (oset) {
2415 old_set = current->blocked.sig[0];
2416 set_old:
2417 error = -EFAULT;
2418 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2419 goto out;
2421 error = 0;
2422 out:
2423 return error;
2425 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2427 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2428 asmlinkage long
2429 sys_rt_sigaction(int sig,
2430 const struct sigaction __user *act,
2431 struct sigaction __user *oact,
2432 size_t sigsetsize)
2434 struct k_sigaction new_sa, old_sa;
2435 int ret = -EINVAL;
2437 /* XXX: Don't preclude handling different sized sigset_t's. */
2438 if (sigsetsize != sizeof(sigset_t))
2439 goto out;
2441 if (act) {
2442 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2443 return -EFAULT;
2446 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2448 if (!ret && oact) {
2449 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2450 return -EFAULT;
2452 out:
2453 return ret;
2455 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2457 #ifdef __ARCH_WANT_SYS_SGETMASK
2460 * For backwards compatibility. Functionality superseded by sigprocmask.
2462 asmlinkage long
2463 sys_sgetmask(void)
2465 /* SMP safe */
2466 return current->blocked.sig[0];
2469 asmlinkage long
2470 sys_ssetmask(int newmask)
2472 int old;
2474 spin_lock_irq(&current->sighand->siglock);
2475 old = current->blocked.sig[0];
2477 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2478 sigmask(SIGSTOP)));
2479 recalc_sigpending();
2480 spin_unlock_irq(&current->sighand->siglock);
2482 return old;
2484 #endif /* __ARCH_WANT_SGETMASK */
2486 #ifdef __ARCH_WANT_SYS_SIGNAL
2488 * For backwards compatibility. Functionality superseded by sigaction.
2490 asmlinkage unsigned long
2491 sys_signal(int sig, __sighandler_t handler)
2493 struct k_sigaction new_sa, old_sa;
2494 int ret;
2496 new_sa.sa.sa_handler = handler;
2497 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2498 sigemptyset(&new_sa.sa.sa_mask);
2500 ret = do_sigaction(sig, &new_sa, &old_sa);
2502 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2504 #endif /* __ARCH_WANT_SYS_SIGNAL */
2506 #ifdef __ARCH_WANT_SYS_PAUSE
2508 asmlinkage long
2509 sys_pause(void)
2511 current->state = TASK_INTERRUPTIBLE;
2512 schedule();
2513 return -ERESTARTNOHAND;
2516 #endif
2518 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2519 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2521 sigset_t newset;
2523 /* XXX: Don't preclude handling different sized sigset_t's. */
2524 if (sigsetsize != sizeof(sigset_t))
2525 return -EINVAL;
2527 if (copy_from_user(&newset, unewset, sizeof(newset)))
2528 return -EFAULT;
2529 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2531 spin_lock_irq(&current->sighand->siglock);
2532 current->saved_sigmask = current->blocked;
2533 current->blocked = newset;
2534 recalc_sigpending();
2535 spin_unlock_irq(&current->sighand->siglock);
2537 current->state = TASK_INTERRUPTIBLE;
2538 schedule();
2539 set_thread_flag(TIF_RESTORE_SIGMASK);
2540 return -ERESTARTNOHAND;
2542 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2544 void __init signals_init(void)
2546 sigqueue_cachep =
2547 kmem_cache_create("sigqueue",
2548 sizeof(struct sigqueue),
2549 __alignof__(struct sigqueue),
2550 SLAB_PANIC, NULL, NULL);