2 * linux/kernel/profile.c
3 * Simple profiling. Manages a direct-mapped profile hit count buffer,
4 * with configurable resolution, support for restricting the cpus on
5 * which profiling is done, and switching between cpu time and
6 * schedule() calls via kernel command line parameters passed at boot.
8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
10 * Consolidation of architecture support code for profiling,
11 * William Irwin, Oracle, July 2004
12 * Amortized hit count accounting via per-cpu open-addressed hashtables
13 * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
16 #include <linux/config.h>
17 #include <linux/module.h>
18 #include <linux/profile.h>
19 #include <linux/bootmem.h>
20 #include <linux/notifier.h>
22 #include <linux/cpumask.h>
23 #include <linux/cpu.h>
24 #include <linux/profile.h>
25 #include <linux/highmem.h>
26 #include <linux/mutex.h>
27 #include <asm/sections.h>
28 #include <asm/semaphore.h>
33 #define PROFILE_GRPSHIFT 3
34 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT)
35 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit))
36 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ)
38 /* Oprofile timer tick hook */
39 int (*timer_hook
)(struct pt_regs
*) __read_mostly
;
41 static atomic_t
*prof_buffer
;
42 static unsigned long prof_len
, prof_shift
;
43 static int prof_on __read_mostly
;
44 static cpumask_t prof_cpu_mask
= CPU_MASK_ALL
;
46 static DEFINE_PER_CPU(struct profile_hit
*[2], cpu_profile_hits
);
47 static DEFINE_PER_CPU(int, cpu_profile_flip
);
48 static DEFINE_MUTEX(profile_flip_mutex
);
49 #endif /* CONFIG_SMP */
51 static int __init
profile_setup(char * str
)
53 static char __initdata schedstr
[] = "schedule";
56 if (!strncmp(str
, schedstr
, strlen(schedstr
))) {
57 prof_on
= SCHED_PROFILING
;
58 if (str
[strlen(schedstr
)] == ',')
59 str
+= strlen(schedstr
) + 1;
60 if (get_option(&str
, &par
))
63 "kernel schedule profiling enabled (shift: %ld)\n",
65 } else if (get_option(&str
, &par
)) {
67 prof_on
= CPU_PROFILING
;
68 printk(KERN_INFO
"kernel profiling enabled (shift: %ld)\n",
73 __setup("profile=", profile_setup
);
76 void __init
profile_init(void)
81 /* only text is profiled */
82 prof_len
= (_etext
- _stext
) >> prof_shift
;
83 prof_buffer
= alloc_bootmem(prof_len
*sizeof(atomic_t
));
86 /* Profile event notifications */
88 #ifdef CONFIG_PROFILING
90 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier
);
91 static ATOMIC_NOTIFIER_HEAD(task_free_notifier
);
92 static BLOCKING_NOTIFIER_HEAD(munmap_notifier
);
94 void profile_task_exit(struct task_struct
* task
)
96 blocking_notifier_call_chain(&task_exit_notifier
, 0, task
);
99 int profile_handoff_task(struct task_struct
* task
)
102 ret
= atomic_notifier_call_chain(&task_free_notifier
, 0, task
);
103 return (ret
== NOTIFY_OK
) ? 1 : 0;
106 void profile_munmap(unsigned long addr
)
108 blocking_notifier_call_chain(&munmap_notifier
, 0, (void *)addr
);
111 int task_handoff_register(struct notifier_block
* n
)
113 return atomic_notifier_chain_register(&task_free_notifier
, n
);
116 int task_handoff_unregister(struct notifier_block
* n
)
118 return atomic_notifier_chain_unregister(&task_free_notifier
, n
);
121 int profile_event_register(enum profile_type type
, struct notifier_block
* n
)
126 case PROFILE_TASK_EXIT
:
127 err
= blocking_notifier_chain_register(
128 &task_exit_notifier
, n
);
131 err
= blocking_notifier_chain_register(
132 &munmap_notifier
, n
);
140 int profile_event_unregister(enum profile_type type
, struct notifier_block
* n
)
145 case PROFILE_TASK_EXIT
:
146 err
= blocking_notifier_chain_unregister(
147 &task_exit_notifier
, n
);
150 err
= blocking_notifier_chain_unregister(
151 &munmap_notifier
, n
);
158 int register_timer_hook(int (*hook
)(struct pt_regs
*))
166 void unregister_timer_hook(int (*hook
)(struct pt_regs
*))
168 WARN_ON(hook
!= timer_hook
);
170 /* make sure all CPUs see the NULL hook */
171 synchronize_sched(); /* Allow ongoing interrupts to complete. */
174 EXPORT_SYMBOL_GPL(register_timer_hook
);
175 EXPORT_SYMBOL_GPL(unregister_timer_hook
);
176 EXPORT_SYMBOL_GPL(task_handoff_register
);
177 EXPORT_SYMBOL_GPL(task_handoff_unregister
);
179 #endif /* CONFIG_PROFILING */
181 EXPORT_SYMBOL_GPL(profile_event_register
);
182 EXPORT_SYMBOL_GPL(profile_event_unregister
);
186 * Each cpu has a pair of open-addressed hashtables for pending
187 * profile hits. read_profile() IPI's all cpus to request them
188 * to flip buffers and flushes their contents to prof_buffer itself.
189 * Flip requests are serialized by the profile_flip_mutex. The sole
190 * use of having a second hashtable is for avoiding cacheline
191 * contention that would otherwise happen during flushes of pending
192 * profile hits required for the accuracy of reported profile hits
193 * and so resurrect the interrupt livelock issue.
195 * The open-addressed hashtables are indexed by profile buffer slot
196 * and hold the number of pending hits to that profile buffer slot on
197 * a cpu in an entry. When the hashtable overflows, all pending hits
198 * are accounted to their corresponding profile buffer slots with
199 * atomic_add() and the hashtable emptied. As numerous pending hits
200 * may be accounted to a profile buffer slot in a hashtable entry,
201 * this amortizes a number of atomic profile buffer increments likely
202 * to be far larger than the number of entries in the hashtable,
203 * particularly given that the number of distinct profile buffer
204 * positions to which hits are accounted during short intervals (e.g.
205 * several seconds) is usually very small. Exclusion from buffer
206 * flipping is provided by interrupt disablement (note that for
207 * SCHED_PROFILING profile_hit() may be called from process context).
208 * The hash function is meant to be lightweight as opposed to strong,
209 * and was vaguely inspired by ppc64 firmware-supported inverted
210 * pagetable hash functions, but uses a full hashtable full of finite
211 * collision chains, not just pairs of them.
215 static void __profile_flip_buffers(void *unused
)
217 int cpu
= smp_processor_id();
219 per_cpu(cpu_profile_flip
, cpu
) = !per_cpu(cpu_profile_flip
, cpu
);
222 static void profile_flip_buffers(void)
226 mutex_lock(&profile_flip_mutex
);
227 j
= per_cpu(cpu_profile_flip
, get_cpu());
229 on_each_cpu(__profile_flip_buffers
, NULL
, 0, 1);
230 for_each_online_cpu(cpu
) {
231 struct profile_hit
*hits
= per_cpu(cpu_profile_hits
, cpu
)[j
];
232 for (i
= 0; i
< NR_PROFILE_HIT
; ++i
) {
238 atomic_add(hits
[i
].hits
, &prof_buffer
[hits
[i
].pc
]);
239 hits
[i
].hits
= hits
[i
].pc
= 0;
242 mutex_unlock(&profile_flip_mutex
);
245 static void profile_discard_flip_buffers(void)
249 mutex_lock(&profile_flip_mutex
);
250 i
= per_cpu(cpu_profile_flip
, get_cpu());
252 on_each_cpu(__profile_flip_buffers
, NULL
, 0, 1);
253 for_each_online_cpu(cpu
) {
254 struct profile_hit
*hits
= per_cpu(cpu_profile_hits
, cpu
)[i
];
255 memset(hits
, 0, NR_PROFILE_HIT
*sizeof(struct profile_hit
));
257 mutex_unlock(&profile_flip_mutex
);
260 void profile_hit(int type
, void *__pc
)
262 unsigned long primary
, secondary
, flags
, pc
= (unsigned long)__pc
;
264 struct profile_hit
*hits
;
266 if (prof_on
!= type
|| !prof_buffer
)
268 pc
= min((pc
- (unsigned long)_stext
) >> prof_shift
, prof_len
- 1);
269 i
= primary
= (pc
& (NR_PROFILE_GRP
- 1)) << PROFILE_GRPSHIFT
;
270 secondary
= (~(pc
<< 1) & (NR_PROFILE_GRP
- 1)) << PROFILE_GRPSHIFT
;
272 hits
= per_cpu(cpu_profile_hits
, cpu
)[per_cpu(cpu_profile_flip
, cpu
)];
277 local_irq_save(flags
);
279 for (j
= 0; j
< PROFILE_GRPSZ
; ++j
) {
280 if (hits
[i
+ j
].pc
== pc
) {
283 } else if (!hits
[i
+ j
].hits
) {
285 hits
[i
+ j
].hits
= 1;
289 i
= (i
+ secondary
) & (NR_PROFILE_HIT
- 1);
290 } while (i
!= primary
);
291 atomic_inc(&prof_buffer
[pc
]);
292 for (i
= 0; i
< NR_PROFILE_HIT
; ++i
) {
293 atomic_add(hits
[i
].hits
, &prof_buffer
[hits
[i
].pc
]);
294 hits
[i
].pc
= hits
[i
].hits
= 0;
297 local_irq_restore(flags
);
301 #ifdef CONFIG_HOTPLUG_CPU
302 static int profile_cpu_callback(struct notifier_block
*info
,
303 unsigned long action
, void *__cpu
)
305 int node
, cpu
= (unsigned long)__cpu
;
310 node
= cpu_to_node(cpu
);
311 per_cpu(cpu_profile_flip
, cpu
) = 0;
312 if (!per_cpu(cpu_profile_hits
, cpu
)[1]) {
313 page
= alloc_pages_node(node
, GFP_KERNEL
| __GFP_ZERO
, 0);
316 per_cpu(cpu_profile_hits
, cpu
)[1] = page_address(page
);
318 if (!per_cpu(cpu_profile_hits
, cpu
)[0]) {
319 page
= alloc_pages_node(node
, GFP_KERNEL
| __GFP_ZERO
, 0);
322 per_cpu(cpu_profile_hits
, cpu
)[0] = page_address(page
);
326 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[1]);
327 per_cpu(cpu_profile_hits
, cpu
)[1] = NULL
;
331 cpu_set(cpu
, prof_cpu_mask
);
333 case CPU_UP_CANCELED
:
335 cpu_clear(cpu
, prof_cpu_mask
);
336 if (per_cpu(cpu_profile_hits
, cpu
)[0]) {
337 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[0]);
338 per_cpu(cpu_profile_hits
, cpu
)[0] = NULL
;
341 if (per_cpu(cpu_profile_hits
, cpu
)[1]) {
342 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[1]);
343 per_cpu(cpu_profile_hits
, cpu
)[1] = NULL
;
350 #endif /* CONFIG_HOTPLUG_CPU */
351 #else /* !CONFIG_SMP */
352 #define profile_flip_buffers() do { } while (0)
353 #define profile_discard_flip_buffers() do { } while (0)
355 void profile_hit(int type
, void *__pc
)
359 if (prof_on
!= type
|| !prof_buffer
)
361 pc
= ((unsigned long)__pc
- (unsigned long)_stext
) >> prof_shift
;
362 atomic_inc(&prof_buffer
[min(pc
, prof_len
- 1)]);
364 #endif /* !CONFIG_SMP */
366 void profile_tick(int type
, struct pt_regs
*regs
)
368 if (type
== CPU_PROFILING
&& timer_hook
)
370 if (!user_mode(regs
) && cpu_isset(smp_processor_id(), prof_cpu_mask
))
371 profile_hit(type
, (void *)profile_pc(regs
));
374 #ifdef CONFIG_PROC_FS
375 #include <linux/proc_fs.h>
376 #include <asm/uaccess.h>
377 #include <asm/ptrace.h>
379 static int prof_cpu_mask_read_proc (char *page
, char **start
, off_t off
,
380 int count
, int *eof
, void *data
)
382 int len
= cpumask_scnprintf(page
, count
, *(cpumask_t
*)data
);
385 len
+= sprintf(page
+ len
, "\n");
389 static int prof_cpu_mask_write_proc (struct file
*file
, const char __user
*buffer
,
390 unsigned long count
, void *data
)
392 cpumask_t
*mask
= (cpumask_t
*)data
;
393 unsigned long full_count
= count
, err
;
396 err
= cpumask_parse(buffer
, count
, new_value
);
404 void create_prof_cpu_mask(struct proc_dir_entry
*root_irq_dir
)
406 struct proc_dir_entry
*entry
;
408 /* create /proc/irq/prof_cpu_mask */
409 if (!(entry
= create_proc_entry("prof_cpu_mask", 0600, root_irq_dir
)))
412 entry
->data
= (void *)&prof_cpu_mask
;
413 entry
->read_proc
= prof_cpu_mask_read_proc
;
414 entry
->write_proc
= prof_cpu_mask_write_proc
;
418 * This function accesses profiling information. The returned data is
419 * binary: the sampling step and the actual contents of the profile
420 * buffer. Use of the program readprofile is recommended in order to
421 * get meaningful info out of these data.
424 read_profile(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
426 unsigned long p
= *ppos
;
429 unsigned int sample_step
= 1 << prof_shift
;
431 profile_flip_buffers();
432 if (p
>= (prof_len
+1)*sizeof(unsigned int))
434 if (count
> (prof_len
+1)*sizeof(unsigned int) - p
)
435 count
= (prof_len
+1)*sizeof(unsigned int) - p
;
438 while (p
< sizeof(unsigned int) && count
> 0) {
439 put_user(*((char *)(&sample_step
)+p
),buf
);
440 buf
++; p
++; count
--; read
++;
442 pnt
= (char *)prof_buffer
+ p
- sizeof(atomic_t
);
443 if (copy_to_user(buf
,(void *)pnt
,count
))
451 * Writing to /proc/profile resets the counters
453 * Writing a 'profiling multiplier' value into it also re-sets the profiling
454 * interrupt frequency, on architectures that support this.
456 static ssize_t
write_profile(struct file
*file
, const char __user
*buf
,
457 size_t count
, loff_t
*ppos
)
460 extern int setup_profiling_timer (unsigned int multiplier
);
462 if (count
== sizeof(int)) {
463 unsigned int multiplier
;
465 if (copy_from_user(&multiplier
, buf
, sizeof(int)))
468 if (setup_profiling_timer(multiplier
))
472 profile_discard_flip_buffers();
473 memset(prof_buffer
, 0, prof_len
* sizeof(atomic_t
));
477 static struct file_operations proc_profile_operations
= {
478 .read
= read_profile
,
479 .write
= write_profile
,
483 static void __init
profile_nop(void *unused
)
487 static int __init
create_hash_tables(void)
491 for_each_online_cpu(cpu
) {
492 int node
= cpu_to_node(cpu
);
495 page
= alloc_pages_node(node
, GFP_KERNEL
| __GFP_ZERO
, 0);
498 per_cpu(cpu_profile_hits
, cpu
)[1]
499 = (struct profile_hit
*)page_address(page
);
500 page
= alloc_pages_node(node
, GFP_KERNEL
| __GFP_ZERO
, 0);
503 per_cpu(cpu_profile_hits
, cpu
)[0]
504 = (struct profile_hit
*)page_address(page
);
510 on_each_cpu(profile_nop
, NULL
, 0, 1);
511 for_each_online_cpu(cpu
) {
514 if (per_cpu(cpu_profile_hits
, cpu
)[0]) {
515 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[0]);
516 per_cpu(cpu_profile_hits
, cpu
)[0] = NULL
;
519 if (per_cpu(cpu_profile_hits
, cpu
)[1]) {
520 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[1]);
521 per_cpu(cpu_profile_hits
, cpu
)[1] = NULL
;
528 #define create_hash_tables() ({ 0; })
531 static int __init
create_proc_profile(void)
533 struct proc_dir_entry
*entry
;
537 if (create_hash_tables())
539 if (!(entry
= create_proc_entry("profile", S_IWUSR
| S_IRUGO
, NULL
)))
541 entry
->proc_fops
= &proc_profile_operations
;
542 entry
->size
= (1+prof_len
) * sizeof(atomic_t
);
543 hotcpu_notifier(profile_cpu_callback
, 0);
546 module_init(create_proc_profile
);
547 #endif /* CONFIG_PROC_FS */