[JFFS2] Check for all-zero node headers
[linux-2.6/kmemtrace.git] / fs / ecryptfs / crypto.c
blob6ac630625b70821274c4b8c753fbc90bc1daaec1
1 /**
2 * eCryptfs: Linux filesystem encryption layer
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include "ecryptfs_kernel.h"
38 static int
39 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
40 struct page *dst_page, int dst_offset,
41 struct page *src_page, int src_offset, int size,
42 unsigned char *iv);
43 static int
44 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
45 struct page *dst_page, int dst_offset,
46 struct page *src_page, int src_offset, int size,
47 unsigned char *iv);
49 /**
50 * ecryptfs_to_hex
51 * @dst: Buffer to take hex character representation of contents of
52 * src; must be at least of size (src_size * 2)
53 * @src: Buffer to be converted to a hex string respresentation
54 * @src_size: number of bytes to convert
56 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
58 int x;
60 for (x = 0; x < src_size; x++)
61 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
64 /**
65 * ecryptfs_from_hex
66 * @dst: Buffer to take the bytes from src hex; must be at least of
67 * size (src_size / 2)
68 * @src: Buffer to be converted from a hex string respresentation to raw value
69 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
71 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
73 int x;
74 char tmp[3] = { 0, };
76 for (x = 0; x < dst_size; x++) {
77 tmp[0] = src[x * 2];
78 tmp[1] = src[x * 2 + 1];
79 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
83 /**
84 * ecryptfs_calculate_md5 - calculates the md5 of @src
85 * @dst: Pointer to 16 bytes of allocated memory
86 * @crypt_stat: Pointer to crypt_stat struct for the current inode
87 * @src: Data to be md5'd
88 * @len: Length of @src
90 * Uses the allocated crypto context that crypt_stat references to
91 * generate the MD5 sum of the contents of src.
93 static int ecryptfs_calculate_md5(char *dst,
94 struct ecryptfs_crypt_stat *crypt_stat,
95 char *src, int len)
97 struct scatterlist sg;
98 struct hash_desc desc = {
99 .tfm = crypt_stat->hash_tfm,
100 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
102 int rc = 0;
104 mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
105 sg_init_one(&sg, (u8 *)src, len);
106 if (!desc.tfm) {
107 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
108 CRYPTO_ALG_ASYNC);
109 if (IS_ERR(desc.tfm)) {
110 rc = PTR_ERR(desc.tfm);
111 ecryptfs_printk(KERN_ERR, "Error attempting to "
112 "allocate crypto context; rc = [%d]\n",
113 rc);
114 goto out;
116 crypt_stat->hash_tfm = desc.tfm;
118 crypto_hash_init(&desc);
119 crypto_hash_update(&desc, &sg, len);
120 crypto_hash_final(&desc, dst);
121 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
122 out:
123 return rc;
126 int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
127 char *cipher_name,
128 char *chaining_modifier)
130 int cipher_name_len = strlen(cipher_name);
131 int chaining_modifier_len = strlen(chaining_modifier);
132 int algified_name_len;
133 int rc;
135 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
136 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
137 if (!(*algified_name)) {
138 rc = -ENOMEM;
139 goto out;
141 snprintf((*algified_name), algified_name_len, "%s(%s)",
142 chaining_modifier, cipher_name);
143 rc = 0;
144 out:
145 return rc;
149 * ecryptfs_derive_iv
150 * @iv: destination for the derived iv vale
151 * @crypt_stat: Pointer to crypt_stat struct for the current inode
152 * @offset: Offset of the page whose's iv we are to derive
154 * Generate the initialization vector from the given root IV and page
155 * offset.
157 * Returns zero on success; non-zero on error.
159 static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
160 pgoff_t offset)
162 int rc = 0;
163 char dst[MD5_DIGEST_SIZE];
164 char src[ECRYPTFS_MAX_IV_BYTES + 16];
166 if (unlikely(ecryptfs_verbosity > 0)) {
167 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
168 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
170 /* TODO: It is probably secure to just cast the least
171 * significant bits of the root IV into an unsigned long and
172 * add the offset to that rather than go through all this
173 * hashing business. -Halcrow */
174 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
175 memset((src + crypt_stat->iv_bytes), 0, 16);
176 snprintf((src + crypt_stat->iv_bytes), 16, "%ld", offset);
177 if (unlikely(ecryptfs_verbosity > 0)) {
178 ecryptfs_printk(KERN_DEBUG, "source:\n");
179 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
181 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
182 (crypt_stat->iv_bytes + 16));
183 if (rc) {
184 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
185 "MD5 while generating IV for a page\n");
186 goto out;
188 memcpy(iv, dst, crypt_stat->iv_bytes);
189 if (unlikely(ecryptfs_verbosity > 0)) {
190 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
191 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
193 out:
194 return rc;
198 * ecryptfs_init_crypt_stat
199 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
201 * Initialize the crypt_stat structure.
203 void
204 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
206 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
207 mutex_init(&crypt_stat->cs_mutex);
208 mutex_init(&crypt_stat->cs_tfm_mutex);
209 mutex_init(&crypt_stat->cs_hash_tfm_mutex);
210 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
214 * ecryptfs_destruct_crypt_stat
215 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
217 * Releases all memory associated with a crypt_stat struct.
219 void ecryptfs_destruct_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
221 if (crypt_stat->tfm)
222 crypto_free_blkcipher(crypt_stat->tfm);
223 if (crypt_stat->hash_tfm)
224 crypto_free_hash(crypt_stat->hash_tfm);
225 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
228 void ecryptfs_destruct_mount_crypt_stat(
229 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
231 if (mount_crypt_stat->global_auth_tok_key)
232 key_put(mount_crypt_stat->global_auth_tok_key);
233 if (mount_crypt_stat->global_key_tfm)
234 crypto_free_blkcipher(mount_crypt_stat->global_key_tfm);
235 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
239 * virt_to_scatterlist
240 * @addr: Virtual address
241 * @size: Size of data; should be an even multiple of the block size
242 * @sg: Pointer to scatterlist array; set to NULL to obtain only
243 * the number of scatterlist structs required in array
244 * @sg_size: Max array size
246 * Fills in a scatterlist array with page references for a passed
247 * virtual address.
249 * Returns the number of scatterlist structs in array used
251 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
252 int sg_size)
254 int i = 0;
255 struct page *pg;
256 int offset;
257 int remainder_of_page;
259 while (size > 0 && i < sg_size) {
260 pg = virt_to_page(addr);
261 offset = offset_in_page(addr);
262 if (sg) {
263 sg[i].page = pg;
264 sg[i].offset = offset;
266 remainder_of_page = PAGE_CACHE_SIZE - offset;
267 if (size >= remainder_of_page) {
268 if (sg)
269 sg[i].length = remainder_of_page;
270 addr += remainder_of_page;
271 size -= remainder_of_page;
272 } else {
273 if (sg)
274 sg[i].length = size;
275 addr += size;
276 size = 0;
278 i++;
280 if (size > 0)
281 return -ENOMEM;
282 return i;
286 * encrypt_scatterlist
287 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
288 * @dest_sg: Destination of encrypted data
289 * @src_sg: Data to be encrypted
290 * @size: Length of data to be encrypted
291 * @iv: iv to use during encryption
293 * Returns the number of bytes encrypted; negative value on error
295 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
296 struct scatterlist *dest_sg,
297 struct scatterlist *src_sg, int size,
298 unsigned char *iv)
300 struct blkcipher_desc desc = {
301 .tfm = crypt_stat->tfm,
302 .info = iv,
303 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
305 int rc = 0;
307 BUG_ON(!crypt_stat || !crypt_stat->tfm
308 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
309 if (unlikely(ecryptfs_verbosity > 0)) {
310 ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
311 crypt_stat->key_size);
312 ecryptfs_dump_hex(crypt_stat->key,
313 crypt_stat->key_size);
315 /* Consider doing this once, when the file is opened */
316 mutex_lock(&crypt_stat->cs_tfm_mutex);
317 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
318 crypt_stat->key_size);
319 if (rc) {
320 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
321 rc);
322 mutex_unlock(&crypt_stat->cs_tfm_mutex);
323 rc = -EINVAL;
324 goto out;
326 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
327 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
328 mutex_unlock(&crypt_stat->cs_tfm_mutex);
329 out:
330 return rc;
333 static void
334 ecryptfs_extent_to_lwr_pg_idx_and_offset(unsigned long *lower_page_idx,
335 int *byte_offset,
336 struct ecryptfs_crypt_stat *crypt_stat,
337 unsigned long extent_num)
339 unsigned long lower_extent_num;
340 int extents_occupied_by_headers_at_front;
341 int bytes_occupied_by_headers_at_front;
342 int extent_offset;
343 int extents_per_page;
345 bytes_occupied_by_headers_at_front =
346 ( crypt_stat->header_extent_size
347 * crypt_stat->num_header_extents_at_front );
348 extents_occupied_by_headers_at_front =
349 ( bytes_occupied_by_headers_at_front
350 / crypt_stat->extent_size );
351 lower_extent_num = extents_occupied_by_headers_at_front + extent_num;
352 extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
353 (*lower_page_idx) = lower_extent_num / extents_per_page;
354 extent_offset = lower_extent_num % extents_per_page;
355 (*byte_offset) = extent_offset * crypt_stat->extent_size;
356 ecryptfs_printk(KERN_DEBUG, " * crypt_stat->header_extent_size = "
357 "[%d]\n", crypt_stat->header_extent_size);
358 ecryptfs_printk(KERN_DEBUG, " * crypt_stat->"
359 "num_header_extents_at_front = [%d]\n",
360 crypt_stat->num_header_extents_at_front);
361 ecryptfs_printk(KERN_DEBUG, " * extents_occupied_by_headers_at_"
362 "front = [%d]\n", extents_occupied_by_headers_at_front);
363 ecryptfs_printk(KERN_DEBUG, " * lower_extent_num = [0x%.16x]\n",
364 lower_extent_num);
365 ecryptfs_printk(KERN_DEBUG, " * extents_per_page = [%d]\n",
366 extents_per_page);
367 ecryptfs_printk(KERN_DEBUG, " * (*lower_page_idx) = [0x%.16x]\n",
368 (*lower_page_idx));
369 ecryptfs_printk(KERN_DEBUG, " * extent_offset = [%d]\n",
370 extent_offset);
371 ecryptfs_printk(KERN_DEBUG, " * (*byte_offset) = [%d]\n",
372 (*byte_offset));
375 static int ecryptfs_write_out_page(struct ecryptfs_page_crypt_context *ctx,
376 struct page *lower_page,
377 struct inode *lower_inode,
378 int byte_offset_in_page, int bytes_to_write)
380 int rc = 0;
382 if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) {
383 rc = ecryptfs_commit_lower_page(lower_page, lower_inode,
384 ctx->param.lower_file,
385 byte_offset_in_page,
386 bytes_to_write);
387 if (rc) {
388 ecryptfs_printk(KERN_ERR, "Error calling lower "
389 "commit; rc = [%d]\n", rc);
390 goto out;
392 } else {
393 rc = ecryptfs_writepage_and_release_lower_page(lower_page,
394 lower_inode,
395 ctx->param.wbc);
396 if (rc) {
397 ecryptfs_printk(KERN_ERR, "Error calling lower "
398 "writepage(); rc = [%d]\n", rc);
399 goto out;
402 out:
403 return rc;
406 static int ecryptfs_read_in_page(struct ecryptfs_page_crypt_context *ctx,
407 struct page **lower_page,
408 struct inode *lower_inode,
409 unsigned long lower_page_idx,
410 int byte_offset_in_page)
412 int rc = 0;
414 if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) {
415 /* TODO: Limit this to only the data extents that are
416 * needed */
417 rc = ecryptfs_get_lower_page(lower_page, lower_inode,
418 ctx->param.lower_file,
419 lower_page_idx,
420 byte_offset_in_page,
421 (PAGE_CACHE_SIZE
422 - byte_offset_in_page));
423 if (rc) {
424 ecryptfs_printk(
425 KERN_ERR, "Error attempting to grab, map, "
426 "and prepare_write lower page with index "
427 "[0x%.16x]; rc = [%d]\n", lower_page_idx, rc);
428 goto out;
430 } else {
431 *lower_page = grab_cache_page(lower_inode->i_mapping,
432 lower_page_idx);
433 if (!(*lower_page)) {
434 rc = -EINVAL;
435 ecryptfs_printk(
436 KERN_ERR, "Error attempting to grab and map "
437 "lower page with index [0x%.16x]; rc = [%d]\n",
438 lower_page_idx, rc);
439 goto out;
442 out:
443 return rc;
447 * ecryptfs_encrypt_page
448 * @ctx: The context of the page
450 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
451 * that eCryptfs pages may straddle the lower pages -- for instance,
452 * if the file was created on a machine with an 8K page size
453 * (resulting in an 8K header), and then the file is copied onto a
454 * host with a 32K page size, then when reading page 0 of the eCryptfs
455 * file, 24K of page 0 of the lower file will be read and decrypted,
456 * and then 8K of page 1 of the lower file will be read and decrypted.
458 * The actual operations performed on each page depends on the
459 * contents of the ecryptfs_page_crypt_context struct.
461 * Returns zero on success; negative on error
463 int ecryptfs_encrypt_page(struct ecryptfs_page_crypt_context *ctx)
465 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
466 unsigned long base_extent;
467 unsigned long extent_offset = 0;
468 unsigned long lower_page_idx = 0;
469 unsigned long prior_lower_page_idx = 0;
470 struct page *lower_page;
471 struct inode *lower_inode;
472 struct ecryptfs_inode_info *inode_info;
473 struct ecryptfs_crypt_stat *crypt_stat;
474 int rc = 0;
475 int lower_byte_offset = 0;
476 int orig_byte_offset = 0;
477 int num_extents_per_page;
478 #define ECRYPTFS_PAGE_STATE_UNREAD 0
479 #define ECRYPTFS_PAGE_STATE_READ 1
480 #define ECRYPTFS_PAGE_STATE_MODIFIED 2
481 #define ECRYPTFS_PAGE_STATE_WRITTEN 3
482 int page_state;
484 lower_inode = ecryptfs_inode_to_lower(ctx->page->mapping->host);
485 inode_info = ecryptfs_inode_to_private(ctx->page->mapping->host);
486 crypt_stat = &inode_info->crypt_stat;
487 if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
488 rc = ecryptfs_copy_page_to_lower(ctx->page, lower_inode,
489 ctx->param.lower_file);
490 if (rc)
491 ecryptfs_printk(KERN_ERR, "Error attempting to copy "
492 "page at index [0x%.16x]\n",
493 ctx->page->index);
494 goto out;
496 num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
497 base_extent = (ctx->page->index * num_extents_per_page);
498 page_state = ECRYPTFS_PAGE_STATE_UNREAD;
499 while (extent_offset < num_extents_per_page) {
500 ecryptfs_extent_to_lwr_pg_idx_and_offset(
501 &lower_page_idx, &lower_byte_offset, crypt_stat,
502 (base_extent + extent_offset));
503 if (prior_lower_page_idx != lower_page_idx
504 && page_state == ECRYPTFS_PAGE_STATE_MODIFIED) {
505 rc = ecryptfs_write_out_page(ctx, lower_page,
506 lower_inode,
507 orig_byte_offset,
508 (PAGE_CACHE_SIZE
509 - orig_byte_offset));
510 if (rc) {
511 ecryptfs_printk(KERN_ERR, "Error attempting "
512 "to write out page; rc = [%d]"
513 "\n", rc);
514 goto out;
516 page_state = ECRYPTFS_PAGE_STATE_WRITTEN;
518 if (page_state == ECRYPTFS_PAGE_STATE_UNREAD
519 || page_state == ECRYPTFS_PAGE_STATE_WRITTEN) {
520 rc = ecryptfs_read_in_page(ctx, &lower_page,
521 lower_inode, lower_page_idx,
522 lower_byte_offset);
523 if (rc) {
524 ecryptfs_printk(KERN_ERR, "Error attempting "
525 "to read in lower page with "
526 "index [0x%.16x]; rc = [%d]\n",
527 lower_page_idx, rc);
528 goto out;
530 orig_byte_offset = lower_byte_offset;
531 prior_lower_page_idx = lower_page_idx;
532 page_state = ECRYPTFS_PAGE_STATE_READ;
534 BUG_ON(!(page_state == ECRYPTFS_PAGE_STATE_MODIFIED
535 || page_state == ECRYPTFS_PAGE_STATE_READ));
536 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
537 (base_extent + extent_offset));
538 if (rc) {
539 ecryptfs_printk(KERN_ERR, "Error attempting to "
540 "derive IV for extent [0x%.16x]; "
541 "rc = [%d]\n",
542 (base_extent + extent_offset), rc);
543 goto out;
545 if (unlikely(ecryptfs_verbosity > 0)) {
546 ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
547 "with iv:\n");
548 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
549 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
550 "encryption:\n");
551 ecryptfs_dump_hex((char *)
552 (page_address(ctx->page)
553 + (extent_offset
554 * crypt_stat->extent_size)), 8);
556 rc = ecryptfs_encrypt_page_offset(
557 crypt_stat, lower_page, lower_byte_offset, ctx->page,
558 (extent_offset * crypt_stat->extent_size),
559 crypt_stat->extent_size, extent_iv);
560 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
561 "rc = [%d]\n",
562 (base_extent + extent_offset), rc);
563 if (unlikely(ecryptfs_verbosity > 0)) {
564 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
565 "encryption:\n");
566 ecryptfs_dump_hex((char *)(page_address(lower_page)
567 + lower_byte_offset), 8);
569 page_state = ECRYPTFS_PAGE_STATE_MODIFIED;
570 extent_offset++;
572 BUG_ON(orig_byte_offset != 0);
573 rc = ecryptfs_write_out_page(ctx, lower_page, lower_inode, 0,
574 (lower_byte_offset
575 + crypt_stat->extent_size));
576 if (rc) {
577 ecryptfs_printk(KERN_ERR, "Error attempting to write out "
578 "page; rc = [%d]\n", rc);
579 goto out;
581 out:
582 return rc;
586 * ecryptfs_decrypt_page
587 * @file: The ecryptfs file
588 * @page: The page in ecryptfs to decrypt
590 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
591 * that eCryptfs pages may straddle the lower pages -- for instance,
592 * if the file was created on a machine with an 8K page size
593 * (resulting in an 8K header), and then the file is copied onto a
594 * host with a 32K page size, then when reading page 0 of the eCryptfs
595 * file, 24K of page 0 of the lower file will be read and decrypted,
596 * and then 8K of page 1 of the lower file will be read and decrypted.
598 * Returns zero on success; negative on error
600 int ecryptfs_decrypt_page(struct file *file, struct page *page)
602 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
603 unsigned long base_extent;
604 unsigned long extent_offset = 0;
605 unsigned long lower_page_idx = 0;
606 unsigned long prior_lower_page_idx = 0;
607 struct page *lower_page;
608 char *lower_page_virt = NULL;
609 struct inode *lower_inode;
610 struct ecryptfs_crypt_stat *crypt_stat;
611 int rc = 0;
612 int byte_offset;
613 int num_extents_per_page;
614 int page_state;
616 crypt_stat = &(ecryptfs_inode_to_private(
617 page->mapping->host)->crypt_stat);
618 lower_inode = ecryptfs_inode_to_lower(page->mapping->host);
619 if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
620 rc = ecryptfs_do_readpage(file, page, page->index);
621 if (rc)
622 ecryptfs_printk(KERN_ERR, "Error attempting to copy "
623 "page at index [0x%.16x]\n",
624 page->index);
625 goto out;
627 num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
628 base_extent = (page->index * num_extents_per_page);
629 lower_page_virt = kmem_cache_alloc(ecryptfs_lower_page_cache,
630 GFP_KERNEL);
631 if (!lower_page_virt) {
632 rc = -ENOMEM;
633 ecryptfs_printk(KERN_ERR, "Error getting page for encrypted "
634 "lower page(s)\n");
635 goto out;
637 lower_page = virt_to_page(lower_page_virt);
638 page_state = ECRYPTFS_PAGE_STATE_UNREAD;
639 while (extent_offset < num_extents_per_page) {
640 ecryptfs_extent_to_lwr_pg_idx_and_offset(
641 &lower_page_idx, &byte_offset, crypt_stat,
642 (base_extent + extent_offset));
643 if (prior_lower_page_idx != lower_page_idx
644 || page_state == ECRYPTFS_PAGE_STATE_UNREAD) {
645 rc = ecryptfs_do_readpage(file, lower_page,
646 lower_page_idx);
647 if (rc) {
648 ecryptfs_printk(KERN_ERR, "Error reading "
649 "lower encrypted page; rc = "
650 "[%d]\n", rc);
651 goto out;
653 prior_lower_page_idx = lower_page_idx;
654 page_state = ECRYPTFS_PAGE_STATE_READ;
656 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
657 (base_extent + extent_offset));
658 if (rc) {
659 ecryptfs_printk(KERN_ERR, "Error attempting to "
660 "derive IV for extent [0x%.16x]; rc = "
661 "[%d]\n",
662 (base_extent + extent_offset), rc);
663 goto out;
665 if (unlikely(ecryptfs_verbosity > 0)) {
666 ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
667 "with iv:\n");
668 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
669 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
670 "decryption:\n");
671 ecryptfs_dump_hex((lower_page_virt + byte_offset), 8);
673 rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
674 (extent_offset
675 * crypt_stat->extent_size),
676 lower_page, byte_offset,
677 crypt_stat->extent_size,
678 extent_iv);
679 if (rc != crypt_stat->extent_size) {
680 ecryptfs_printk(KERN_ERR, "Error attempting to "
681 "decrypt extent [0x%.16x]\n",
682 (base_extent + extent_offset));
683 goto out;
685 rc = 0;
686 if (unlikely(ecryptfs_verbosity > 0)) {
687 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
688 "decryption:\n");
689 ecryptfs_dump_hex((char *)(page_address(page)
690 + byte_offset), 8);
692 extent_offset++;
694 out:
695 if (lower_page_virt)
696 kmem_cache_free(ecryptfs_lower_page_cache, lower_page_virt);
697 return rc;
701 * decrypt_scatterlist
703 * Returns the number of bytes decrypted; negative value on error
705 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
706 struct scatterlist *dest_sg,
707 struct scatterlist *src_sg, int size,
708 unsigned char *iv)
710 struct blkcipher_desc desc = {
711 .tfm = crypt_stat->tfm,
712 .info = iv,
713 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
715 int rc = 0;
717 /* Consider doing this once, when the file is opened */
718 mutex_lock(&crypt_stat->cs_tfm_mutex);
719 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
720 crypt_stat->key_size);
721 if (rc) {
722 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
723 rc);
724 mutex_unlock(&crypt_stat->cs_tfm_mutex);
725 rc = -EINVAL;
726 goto out;
728 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
729 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
730 mutex_unlock(&crypt_stat->cs_tfm_mutex);
731 if (rc) {
732 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
733 rc);
734 goto out;
736 rc = size;
737 out:
738 return rc;
742 * ecryptfs_encrypt_page_offset
744 * Returns the number of bytes encrypted
746 static int
747 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
748 struct page *dst_page, int dst_offset,
749 struct page *src_page, int src_offset, int size,
750 unsigned char *iv)
752 struct scatterlist src_sg, dst_sg;
754 src_sg.page = src_page;
755 src_sg.offset = src_offset;
756 src_sg.length = size;
757 dst_sg.page = dst_page;
758 dst_sg.offset = dst_offset;
759 dst_sg.length = size;
760 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
764 * ecryptfs_decrypt_page_offset
766 * Returns the number of bytes decrypted
768 static int
769 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
770 struct page *dst_page, int dst_offset,
771 struct page *src_page, int src_offset, int size,
772 unsigned char *iv)
774 struct scatterlist src_sg, dst_sg;
776 src_sg.page = src_page;
777 src_sg.offset = src_offset;
778 src_sg.length = size;
779 dst_sg.page = dst_page;
780 dst_sg.offset = dst_offset;
781 dst_sg.length = size;
782 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
785 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
788 * ecryptfs_init_crypt_ctx
789 * @crypt_stat: Uninitilized crypt stats structure
791 * Initialize the crypto context.
793 * TODO: Performance: Keep a cache of initialized cipher contexts;
794 * only init if needed
796 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
798 char *full_alg_name;
799 int rc = -EINVAL;
801 if (!crypt_stat->cipher) {
802 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
803 goto out;
805 ecryptfs_printk(KERN_DEBUG,
806 "Initializing cipher [%s]; strlen = [%d]; "
807 "key_size_bits = [%d]\n",
808 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
809 crypt_stat->key_size << 3);
810 if (crypt_stat->tfm) {
811 rc = 0;
812 goto out;
814 mutex_lock(&crypt_stat->cs_tfm_mutex);
815 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
816 crypt_stat->cipher, "cbc");
817 if (rc)
818 goto out;
819 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
820 CRYPTO_ALG_ASYNC);
821 kfree(full_alg_name);
822 if (IS_ERR(crypt_stat->tfm)) {
823 rc = PTR_ERR(crypt_stat->tfm);
824 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
825 "Error initializing cipher [%s]\n",
826 crypt_stat->cipher);
827 mutex_unlock(&crypt_stat->cs_tfm_mutex);
828 goto out;
830 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
831 mutex_unlock(&crypt_stat->cs_tfm_mutex);
832 rc = 0;
833 out:
834 return rc;
837 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
839 int extent_size_tmp;
841 crypt_stat->extent_mask = 0xFFFFFFFF;
842 crypt_stat->extent_shift = 0;
843 if (crypt_stat->extent_size == 0)
844 return;
845 extent_size_tmp = crypt_stat->extent_size;
846 while ((extent_size_tmp & 0x01) == 0) {
847 extent_size_tmp >>= 1;
848 crypt_stat->extent_mask <<= 1;
849 crypt_stat->extent_shift++;
853 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
855 /* Default values; may be overwritten as we are parsing the
856 * packets. */
857 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
858 set_extent_mask_and_shift(crypt_stat);
859 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
860 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) {
861 crypt_stat->header_extent_size =
862 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
863 } else
864 crypt_stat->header_extent_size = PAGE_CACHE_SIZE;
865 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
866 crypt_stat->num_header_extents_at_front = 0;
867 else
868 crypt_stat->num_header_extents_at_front = 1;
872 * ecryptfs_compute_root_iv
873 * @crypt_stats
875 * On error, sets the root IV to all 0's.
877 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
879 int rc = 0;
880 char dst[MD5_DIGEST_SIZE];
882 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
883 BUG_ON(crypt_stat->iv_bytes <= 0);
884 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
885 rc = -EINVAL;
886 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
887 "cannot generate root IV\n");
888 goto out;
890 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
891 crypt_stat->key_size);
892 if (rc) {
893 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
894 "MD5 while generating root IV\n");
895 goto out;
897 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
898 out:
899 if (rc) {
900 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
901 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
903 return rc;
906 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
908 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
909 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
910 ecryptfs_compute_root_iv(crypt_stat);
911 if (unlikely(ecryptfs_verbosity > 0)) {
912 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
913 ecryptfs_dump_hex(crypt_stat->key,
914 crypt_stat->key_size);
919 * ecryptfs_copy_mount_wide_flags_to_inode_flags
921 * This function propagates the mount-wide flags to individual inode
922 * flags.
924 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
925 struct ecryptfs_crypt_stat *crypt_stat,
926 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
928 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
929 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
930 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
931 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
935 * ecryptfs_set_default_crypt_stat_vals
936 * @crypt_stat
938 * Default values in the event that policy does not override them.
940 static void ecryptfs_set_default_crypt_stat_vals(
941 struct ecryptfs_crypt_stat *crypt_stat,
942 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
944 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
945 mount_crypt_stat);
946 ecryptfs_set_default_sizes(crypt_stat);
947 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
948 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
949 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
950 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
951 crypt_stat->mount_crypt_stat = mount_crypt_stat;
955 * ecryptfs_new_file_context
956 * @ecryptfs_dentry
958 * If the crypto context for the file has not yet been established,
959 * this is where we do that. Establishing a new crypto context
960 * involves the following decisions:
961 * - What cipher to use?
962 * - What set of authentication tokens to use?
963 * Here we just worry about getting enough information into the
964 * authentication tokens so that we know that they are available.
965 * We associate the available authentication tokens with the new file
966 * via the set of signatures in the crypt_stat struct. Later, when
967 * the headers are actually written out, we may again defer to
968 * userspace to perform the encryption of the session key; for the
969 * foreseeable future, this will be the case with public key packets.
971 * Returns zero on success; non-zero otherwise
973 /* Associate an authentication token(s) with the file */
974 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
976 int rc = 0;
977 struct ecryptfs_crypt_stat *crypt_stat =
978 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
979 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
980 &ecryptfs_superblock_to_private(
981 ecryptfs_dentry->d_sb)->mount_crypt_stat;
982 int cipher_name_len;
984 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
985 /* See if there are mount crypt options */
986 if (mount_crypt_stat->global_auth_tok) {
987 ecryptfs_printk(KERN_DEBUG, "Initializing context for new "
988 "file using mount_crypt_stat\n");
989 crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
990 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
991 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
992 mount_crypt_stat);
993 memcpy(crypt_stat->keysigs[crypt_stat->num_keysigs++],
994 mount_crypt_stat->global_auth_tok_sig,
995 ECRYPTFS_SIG_SIZE_HEX);
996 cipher_name_len =
997 strlen(mount_crypt_stat->global_default_cipher_name);
998 memcpy(crypt_stat->cipher,
999 mount_crypt_stat->global_default_cipher_name,
1000 cipher_name_len);
1001 crypt_stat->cipher[cipher_name_len] = '\0';
1002 crypt_stat->key_size =
1003 mount_crypt_stat->global_default_cipher_key_size;
1004 ecryptfs_generate_new_key(crypt_stat);
1005 } else
1006 /* We should not encounter this scenario since we
1007 * should detect lack of global_auth_tok at mount time
1008 * TODO: Applies to 0.1 release only; remove in future
1009 * release */
1010 BUG();
1011 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1012 if (rc)
1013 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1014 "context for cipher [%s]: rc = [%d]\n",
1015 crypt_stat->cipher, rc);
1016 return rc;
1020 * contains_ecryptfs_marker - check for the ecryptfs marker
1021 * @data: The data block in which to check
1023 * Returns one if marker found; zero if not found
1025 static int contains_ecryptfs_marker(char *data)
1027 u32 m_1, m_2;
1029 memcpy(&m_1, data, 4);
1030 m_1 = be32_to_cpu(m_1);
1031 memcpy(&m_2, (data + 4), 4);
1032 m_2 = be32_to_cpu(m_2);
1033 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1034 return 1;
1035 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1036 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1037 MAGIC_ECRYPTFS_MARKER);
1038 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1039 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1040 return 0;
1043 struct ecryptfs_flag_map_elem {
1044 u32 file_flag;
1045 u32 local_flag;
1048 /* Add support for additional flags by adding elements here. */
1049 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1050 {0x00000001, ECRYPTFS_ENABLE_HMAC},
1051 {0x00000002, ECRYPTFS_ENCRYPTED},
1052 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}
1056 * ecryptfs_process_flags
1057 * @crypt_stat
1058 * @page_virt: Source data to be parsed
1059 * @bytes_read: Updated with the number of bytes read
1061 * Returns zero on success; non-zero if the flag set is invalid
1063 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1064 char *page_virt, int *bytes_read)
1066 int rc = 0;
1067 int i;
1068 u32 flags;
1070 memcpy(&flags, page_virt, 4);
1071 flags = be32_to_cpu(flags);
1072 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1073 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1074 if (flags & ecryptfs_flag_map[i].file_flag) {
1075 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1076 } else
1077 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1078 /* Version is in top 8 bits of the 32-bit flag vector */
1079 crypt_stat->file_version = ((flags >> 24) & 0xFF);
1080 (*bytes_read) = 4;
1081 return rc;
1085 * write_ecryptfs_marker
1086 * @page_virt: The pointer to in a page to begin writing the marker
1087 * @written: Number of bytes written
1089 * Marker = 0x3c81b7f5
1091 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1093 u32 m_1, m_2;
1095 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1096 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1097 m_1 = cpu_to_be32(m_1);
1098 memcpy(page_virt, &m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1099 m_2 = cpu_to_be32(m_2);
1100 memcpy(page_virt + (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2), &m_2,
1101 (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1102 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1105 static void
1106 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
1107 size_t *written)
1109 u32 flags = 0;
1110 int i;
1112 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1113 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1114 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1115 flags |= ecryptfs_flag_map[i].file_flag;
1116 /* Version is in top 8 bits of the 32-bit flag vector */
1117 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1118 flags = cpu_to_be32(flags);
1119 memcpy(page_virt, &flags, 4);
1120 (*written) = 4;
1123 struct ecryptfs_cipher_code_str_map_elem {
1124 char cipher_str[16];
1125 u16 cipher_code;
1128 /* Add support for additional ciphers by adding elements here. The
1129 * cipher_code is whatever OpenPGP applicatoins use to identify the
1130 * ciphers. List in order of probability. */
1131 static struct ecryptfs_cipher_code_str_map_elem
1132 ecryptfs_cipher_code_str_map[] = {
1133 {"aes",RFC2440_CIPHER_AES_128 },
1134 {"blowfish", RFC2440_CIPHER_BLOWFISH},
1135 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1136 {"cast5", RFC2440_CIPHER_CAST_5},
1137 {"twofish", RFC2440_CIPHER_TWOFISH},
1138 {"cast6", RFC2440_CIPHER_CAST_6},
1139 {"aes", RFC2440_CIPHER_AES_192},
1140 {"aes", RFC2440_CIPHER_AES_256}
1144 * ecryptfs_code_for_cipher_string
1145 * @str: The string representing the cipher name
1147 * Returns zero on no match, or the cipher code on match
1149 u16 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat)
1151 int i;
1152 u16 code = 0;
1153 struct ecryptfs_cipher_code_str_map_elem *map =
1154 ecryptfs_cipher_code_str_map;
1156 if (strcmp(crypt_stat->cipher, "aes") == 0) {
1157 switch (crypt_stat->key_size) {
1158 case 16:
1159 code = RFC2440_CIPHER_AES_128;
1160 break;
1161 case 24:
1162 code = RFC2440_CIPHER_AES_192;
1163 break;
1164 case 32:
1165 code = RFC2440_CIPHER_AES_256;
1167 } else {
1168 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1169 if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){
1170 code = map[i].cipher_code;
1171 break;
1174 return code;
1178 * ecryptfs_cipher_code_to_string
1179 * @str: Destination to write out the cipher name
1180 * @cipher_code: The code to convert to cipher name string
1182 * Returns zero on success
1184 int ecryptfs_cipher_code_to_string(char *str, u16 cipher_code)
1186 int rc = 0;
1187 int i;
1189 str[0] = '\0';
1190 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1191 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1192 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1193 if (str[0] == '\0') {
1194 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1195 "[%d]\n", cipher_code);
1196 rc = -EINVAL;
1198 return rc;
1202 * ecryptfs_read_header_region
1203 * @data
1204 * @dentry
1205 * @nd
1207 * Returns zero on success; non-zero otherwise
1209 static int ecryptfs_read_header_region(char *data, struct dentry *dentry,
1210 struct vfsmount *mnt)
1212 struct file *lower_file;
1213 mm_segment_t oldfs;
1214 int rc;
1216 if ((rc = ecryptfs_open_lower_file(&lower_file, dentry, mnt,
1217 O_RDONLY))) {
1218 printk(KERN_ERR
1219 "Error opening lower_file to read header region\n");
1220 goto out;
1222 lower_file->f_pos = 0;
1223 oldfs = get_fs();
1224 set_fs(get_ds());
1225 /* For releases 0.1 and 0.2, all of the header information
1226 * fits in the first data extent-sized region. */
1227 rc = lower_file->f_op->read(lower_file, (char __user *)data,
1228 ECRYPTFS_DEFAULT_EXTENT_SIZE, &lower_file->f_pos);
1229 set_fs(oldfs);
1230 if ((rc = ecryptfs_close_lower_file(lower_file))) {
1231 printk(KERN_ERR "Error closing lower_file\n");
1232 goto out;
1234 rc = 0;
1235 out:
1236 return rc;
1239 int ecryptfs_read_and_validate_header_region(char *data, struct dentry *dentry,
1240 struct vfsmount *mnt)
1242 int rc;
1244 rc = ecryptfs_read_header_region(data, dentry, mnt);
1245 if (rc)
1246 goto out;
1247 if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES))
1248 rc = -EINVAL;
1249 out:
1250 return rc;
1254 void
1255 ecryptfs_write_header_metadata(char *virt,
1256 struct ecryptfs_crypt_stat *crypt_stat,
1257 size_t *written)
1259 u32 header_extent_size;
1260 u16 num_header_extents_at_front;
1262 header_extent_size = (u32)crypt_stat->header_extent_size;
1263 num_header_extents_at_front =
1264 (u16)crypt_stat->num_header_extents_at_front;
1265 header_extent_size = cpu_to_be32(header_extent_size);
1266 memcpy(virt, &header_extent_size, 4);
1267 virt += 4;
1268 num_header_extents_at_front = cpu_to_be16(num_header_extents_at_front);
1269 memcpy(virt, &num_header_extents_at_front, 2);
1270 (*written) = 6;
1273 struct kmem_cache *ecryptfs_header_cache_0;
1274 struct kmem_cache *ecryptfs_header_cache_1;
1275 struct kmem_cache *ecryptfs_header_cache_2;
1278 * ecryptfs_write_headers_virt
1279 * @page_virt
1280 * @crypt_stat
1281 * @ecryptfs_dentry
1283 * Format version: 1
1285 * Header Extent:
1286 * Octets 0-7: Unencrypted file size (big-endian)
1287 * Octets 8-15: eCryptfs special marker
1288 * Octets 16-19: Flags
1289 * Octet 16: File format version number (between 0 and 255)
1290 * Octets 17-18: Reserved
1291 * Octet 19: Bit 1 (lsb): Reserved
1292 * Bit 2: Encrypted?
1293 * Bits 3-8: Reserved
1294 * Octets 20-23: Header extent size (big-endian)
1295 * Octets 24-25: Number of header extents at front of file
1296 * (big-endian)
1297 * Octet 26: Begin RFC 2440 authentication token packet set
1298 * Data Extent 0:
1299 * Lower data (CBC encrypted)
1300 * Data Extent 1:
1301 * Lower data (CBC encrypted)
1302 * ...
1304 * Returns zero on success
1306 static int ecryptfs_write_headers_virt(char *page_virt, size_t *size,
1307 struct ecryptfs_crypt_stat *crypt_stat,
1308 struct dentry *ecryptfs_dentry)
1310 int rc;
1311 size_t written;
1312 size_t offset;
1314 offset = ECRYPTFS_FILE_SIZE_BYTES;
1315 write_ecryptfs_marker((page_virt + offset), &written);
1316 offset += written;
1317 write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
1318 offset += written;
1319 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1320 &written);
1321 offset += written;
1322 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1323 ecryptfs_dentry, &written,
1324 PAGE_CACHE_SIZE - offset);
1325 if (rc)
1326 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1327 "set; rc = [%d]\n", rc);
1328 if (size) {
1329 offset += written;
1330 *size = offset;
1332 return rc;
1335 static int ecryptfs_write_metadata_to_contents(struct ecryptfs_crypt_stat *crypt_stat,
1336 struct file *lower_file,
1337 char *page_virt)
1339 mm_segment_t oldfs;
1340 int current_header_page;
1341 int header_pages;
1342 ssize_t size;
1343 int rc = 0;
1345 lower_file->f_pos = 0;
1346 oldfs = get_fs();
1347 set_fs(get_ds());
1348 size = vfs_write(lower_file, (char __user *)page_virt, PAGE_CACHE_SIZE,
1349 &lower_file->f_pos);
1350 if (size < 0) {
1351 rc = (int)size;
1352 printk(KERN_ERR "Error attempting to write lower page; "
1353 "rc = [%d]\n", rc);
1354 set_fs(oldfs);
1355 goto out;
1357 header_pages = ((crypt_stat->header_extent_size
1358 * crypt_stat->num_header_extents_at_front)
1359 / PAGE_CACHE_SIZE);
1360 memset(page_virt, 0, PAGE_CACHE_SIZE);
1361 current_header_page = 1;
1362 while (current_header_page < header_pages) {
1363 size = vfs_write(lower_file, (char __user *)page_virt,
1364 PAGE_CACHE_SIZE, &lower_file->f_pos);
1365 if (size < 0) {
1366 rc = (int)size;
1367 printk(KERN_ERR "Error attempting to write lower page; "
1368 "rc = [%d]\n", rc);
1369 set_fs(oldfs);
1370 goto out;
1372 current_header_page++;
1374 set_fs(oldfs);
1375 out:
1376 return rc;
1379 static int ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1380 struct ecryptfs_crypt_stat *crypt_stat,
1381 char *page_virt, size_t size)
1383 int rc;
1385 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1386 size, 0);
1387 return rc;
1391 * ecryptfs_write_metadata
1392 * @lower_file: The lower file struct, which was returned from dentry_open
1394 * Write the file headers out. This will likely involve a userspace
1395 * callout, in which the session key is encrypted with one or more
1396 * public keys and/or the passphrase necessary to do the encryption is
1397 * retrieved via a prompt. Exactly what happens at this point should
1398 * be policy-dependent.
1400 * Returns zero on success; non-zero on error
1402 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1403 struct file *lower_file)
1405 struct ecryptfs_crypt_stat *crypt_stat;
1406 char *page_virt;
1407 size_t size;
1408 int rc = 0;
1410 crypt_stat = &ecryptfs_inode_to_private(
1411 ecryptfs_dentry->d_inode)->crypt_stat;
1412 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1413 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1414 ecryptfs_printk(KERN_DEBUG, "Key is "
1415 "invalid; bailing out\n");
1416 rc = -EINVAL;
1417 goto out;
1419 } else {
1420 rc = -EINVAL;
1421 ecryptfs_printk(KERN_WARNING,
1422 "Called with crypt_stat->encrypted == 0\n");
1423 goto out;
1425 /* Released in this function */
1426 page_virt = kmem_cache_zalloc(ecryptfs_header_cache_0, GFP_USER);
1427 if (!page_virt) {
1428 ecryptfs_printk(KERN_ERR, "Out of memory\n");
1429 rc = -ENOMEM;
1430 goto out;
1432 rc = ecryptfs_write_headers_virt(page_virt, &size, crypt_stat,
1433 ecryptfs_dentry);
1434 if (unlikely(rc)) {
1435 ecryptfs_printk(KERN_ERR, "Error whilst writing headers\n");
1436 memset(page_virt, 0, PAGE_CACHE_SIZE);
1437 goto out_free;
1439 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1440 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry,
1441 crypt_stat, page_virt,
1442 size);
1443 else
1444 rc = ecryptfs_write_metadata_to_contents(crypt_stat, lower_file,
1445 page_virt);
1446 if (rc) {
1447 printk(KERN_ERR "Error writing metadata out to lower file; "
1448 "rc = [%d]\n", rc);
1449 goto out_free;
1451 out_free:
1452 kmem_cache_free(ecryptfs_header_cache_0, page_virt);
1453 out:
1454 return rc;
1457 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1458 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1459 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1460 char *virt, int *bytes_read,
1461 int validate_header_size)
1463 int rc = 0;
1464 u32 header_extent_size;
1465 u16 num_header_extents_at_front;
1467 memcpy(&header_extent_size, virt, 4);
1468 header_extent_size = be32_to_cpu(header_extent_size);
1469 virt += 4;
1470 memcpy(&num_header_extents_at_front, virt, 2);
1471 num_header_extents_at_front = be16_to_cpu(num_header_extents_at_front);
1472 crypt_stat->header_extent_size = (int)header_extent_size;
1473 crypt_stat->num_header_extents_at_front =
1474 (int)num_header_extents_at_front;
1475 (*bytes_read) = 6;
1476 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1477 && ((crypt_stat->header_extent_size
1478 * crypt_stat->num_header_extents_at_front)
1479 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1480 rc = -EINVAL;
1481 ecryptfs_printk(KERN_WARNING, "Invalid header extent size: "
1482 "[%d]\n", crypt_stat->header_extent_size);
1484 return rc;
1488 * set_default_header_data
1490 * For version 0 file format; this function is only for backwards
1491 * compatibility for files created with the prior versions of
1492 * eCryptfs.
1494 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1496 crypt_stat->header_extent_size = 4096;
1497 crypt_stat->num_header_extents_at_front = 1;
1501 * ecryptfs_read_headers_virt
1503 * Read/parse the header data. The header format is detailed in the
1504 * comment block for the ecryptfs_write_headers_virt() function.
1506 * Returns zero on success
1508 static int ecryptfs_read_headers_virt(char *page_virt,
1509 struct ecryptfs_crypt_stat *crypt_stat,
1510 struct dentry *ecryptfs_dentry,
1511 int validate_header_size)
1513 int rc = 0;
1514 int offset;
1515 int bytes_read;
1517 ecryptfs_set_default_sizes(crypt_stat);
1518 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1519 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1520 offset = ECRYPTFS_FILE_SIZE_BYTES;
1521 rc = contains_ecryptfs_marker(page_virt + offset);
1522 if (rc == 0) {
1523 rc = -EINVAL;
1524 goto out;
1526 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1527 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1528 &bytes_read);
1529 if (rc) {
1530 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1531 goto out;
1533 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1534 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1535 "file version [%d] is supported by this "
1536 "version of eCryptfs\n",
1537 crypt_stat->file_version,
1538 ECRYPTFS_SUPPORTED_FILE_VERSION);
1539 rc = -EINVAL;
1540 goto out;
1542 offset += bytes_read;
1543 if (crypt_stat->file_version >= 1) {
1544 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1545 &bytes_read, validate_header_size);
1546 if (rc) {
1547 ecryptfs_printk(KERN_WARNING, "Error reading header "
1548 "metadata; rc = [%d]\n", rc);
1550 offset += bytes_read;
1551 } else
1552 set_default_header_data(crypt_stat);
1553 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1554 ecryptfs_dentry);
1555 out:
1556 return rc;
1560 * ecryptfs_read_xattr_region
1562 * Attempts to read the crypto metadata from the extended attribute
1563 * region of the lower file.
1565 int ecryptfs_read_xattr_region(char *page_virt, struct dentry *ecryptfs_dentry)
1567 ssize_t size;
1568 int rc = 0;
1570 size = ecryptfs_getxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME,
1571 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1572 if (size < 0) {
1573 printk(KERN_DEBUG "Error attempting to read the [%s] "
1574 "xattr from the lower file; return value = [%zd]\n",
1575 ECRYPTFS_XATTR_NAME, size);
1576 rc = -EINVAL;
1577 goto out;
1579 out:
1580 return rc;
1583 int ecryptfs_read_and_validate_xattr_region(char *page_virt,
1584 struct dentry *ecryptfs_dentry)
1586 int rc;
1588 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry);
1589 if (rc)
1590 goto out;
1591 if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) {
1592 printk(KERN_WARNING "Valid data found in [%s] xattr, but "
1593 "the marker is invalid\n", ECRYPTFS_XATTR_NAME);
1594 rc = -EINVAL;
1596 out:
1597 return rc;
1601 * ecryptfs_read_metadata
1603 * Common entry point for reading file metadata. From here, we could
1604 * retrieve the header information from the header region of the file,
1605 * the xattr region of the file, or some other repostory that is
1606 * stored separately from the file itself. The current implementation
1607 * supports retrieving the metadata information from the file contents
1608 * and from the xattr region.
1610 * Returns zero if valid headers found and parsed; non-zero otherwise
1612 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry,
1613 struct file *lower_file)
1615 int rc = 0;
1616 char *page_virt = NULL;
1617 mm_segment_t oldfs;
1618 ssize_t bytes_read;
1619 struct ecryptfs_crypt_stat *crypt_stat =
1620 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1621 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1622 &ecryptfs_superblock_to_private(
1623 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1625 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1626 mount_crypt_stat);
1627 /* Read the first page from the underlying file */
1628 page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
1629 if (!page_virt) {
1630 rc = -ENOMEM;
1631 ecryptfs_printk(KERN_ERR, "Unable to allocate page_virt\n");
1632 goto out;
1634 lower_file->f_pos = 0;
1635 oldfs = get_fs();
1636 set_fs(get_ds());
1637 bytes_read = lower_file->f_op->read(lower_file,
1638 (char __user *)page_virt,
1639 ECRYPTFS_DEFAULT_EXTENT_SIZE,
1640 &lower_file->f_pos);
1641 set_fs(oldfs);
1642 if (bytes_read != ECRYPTFS_DEFAULT_EXTENT_SIZE) {
1643 rc = -EINVAL;
1644 goto out;
1646 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1647 ecryptfs_dentry,
1648 ECRYPTFS_VALIDATE_HEADER_SIZE);
1649 if (rc) {
1650 rc = ecryptfs_read_xattr_region(page_virt,
1651 ecryptfs_dentry);
1652 if (rc) {
1653 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1654 "file header region or xattr region\n");
1655 rc = -EINVAL;
1656 goto out;
1658 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1659 ecryptfs_dentry,
1660 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1661 if (rc) {
1662 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1663 "file xattr region either\n");
1664 rc = -EINVAL;
1666 if (crypt_stat->mount_crypt_stat->flags
1667 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1668 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1669 } else {
1670 printk(KERN_WARNING "Attempt to access file with "
1671 "crypto metadata only in the extended attribute "
1672 "region, but eCryptfs was mounted without "
1673 "xattr support enabled. eCryptfs will not treat "
1674 "this like an encrypted file.\n");
1675 rc = -EINVAL;
1678 out:
1679 if (page_virt) {
1680 memset(page_virt, 0, PAGE_CACHE_SIZE);
1681 kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1683 return rc;
1687 * ecryptfs_encode_filename - converts a plaintext file name to cipher text
1688 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1689 * @name: The plaintext name
1690 * @length: The length of the plaintext
1691 * @encoded_name: The encypted name
1693 * Encrypts and encodes a filename into something that constitutes a
1694 * valid filename for a filesystem, with printable characters.
1696 * We assume that we have a properly initialized crypto context,
1697 * pointed to by crypt_stat->tfm.
1699 * TODO: Implement filename decoding and decryption here, in place of
1700 * memcpy. We are keeping the framework around for now to (1)
1701 * facilitate testing of the components needed to implement filename
1702 * encryption and (2) to provide a code base from which other
1703 * developers in the community can easily implement this feature.
1705 * Returns the length of encoded filename; negative if error
1708 ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1709 const char *name, int length, char **encoded_name)
1711 int error = 0;
1713 (*encoded_name) = kmalloc(length + 2, GFP_KERNEL);
1714 if (!(*encoded_name)) {
1715 error = -ENOMEM;
1716 goto out;
1718 /* TODO: Filename encryption is a scheduled feature for a
1719 * future version of eCryptfs. This function is here only for
1720 * the purpose of providing a framework for other developers
1721 * to easily implement filename encryption. Hint: Replace this
1722 * memcpy() with a call to encrypt and encode the
1723 * filename, the set the length accordingly. */
1724 memcpy((void *)(*encoded_name), (void *)name, length);
1725 (*encoded_name)[length] = '\0';
1726 error = length + 1;
1727 out:
1728 return error;
1732 * ecryptfs_decode_filename - converts the cipher text name to plaintext
1733 * @crypt_stat: The crypt_stat struct associated with the file
1734 * @name: The filename in cipher text
1735 * @length: The length of the cipher text name
1736 * @decrypted_name: The plaintext name
1738 * Decodes and decrypts the filename.
1740 * We assume that we have a properly initialized crypto context,
1741 * pointed to by crypt_stat->tfm.
1743 * TODO: Implement filename decoding and decryption here, in place of
1744 * memcpy. We are keeping the framework around for now to (1)
1745 * facilitate testing of the components needed to implement filename
1746 * encryption and (2) to provide a code base from which other
1747 * developers in the community can easily implement this feature.
1749 * Returns the length of decoded filename; negative if error
1752 ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1753 const char *name, int length, char **decrypted_name)
1755 int error = 0;
1757 (*decrypted_name) = kmalloc(length + 2, GFP_KERNEL);
1758 if (!(*decrypted_name)) {
1759 error = -ENOMEM;
1760 goto out;
1762 /* TODO: Filename encryption is a scheduled feature for a
1763 * future version of eCryptfs. This function is here only for
1764 * the purpose of providing a framework for other developers
1765 * to easily implement filename encryption. Hint: Replace this
1766 * memcpy() with a call to decode and decrypt the
1767 * filename, the set the length accordingly. */
1768 memcpy((void *)(*decrypted_name), (void *)name, length);
1769 (*decrypted_name)[length + 1] = '\0'; /* Only for convenience
1770 * in printing out the
1771 * string in debug
1772 * messages */
1773 error = length;
1774 out:
1775 return error;
1779 * ecryptfs_process_cipher - Perform cipher initialization.
1780 * @key_tfm: Crypto context for key material, set by this function
1781 * @cipher_name: Name of the cipher
1782 * @key_size: Size of the key in bytes
1784 * Returns zero on success. Any crypto_tfm structs allocated here
1785 * should be released by other functions, such as on a superblock put
1786 * event, regardless of whether this function succeeds for fails.
1789 ecryptfs_process_cipher(struct crypto_blkcipher **key_tfm, char *cipher_name,
1790 size_t *key_size)
1792 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1793 char *full_alg_name;
1794 int rc;
1796 *key_tfm = NULL;
1797 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1798 rc = -EINVAL;
1799 printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum "
1800 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1801 goto out;
1803 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1804 "ecb");
1805 if (rc)
1806 goto out;
1807 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1808 kfree(full_alg_name);
1809 if (IS_ERR(*key_tfm)) {
1810 rc = PTR_ERR(*key_tfm);
1811 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1812 "[%s]; rc = [%d]\n", cipher_name, rc);
1813 goto out;
1815 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1816 if (*key_size == 0) {
1817 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1819 *key_size = alg->max_keysize;
1821 get_random_bytes(dummy_key, *key_size);
1822 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1823 if (rc) {
1824 printk(KERN_ERR "Error attempting to set key of size [%Zd] for "
1825 "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
1826 rc = -EINVAL;
1827 goto out;
1829 out:
1830 return rc;