2 * eCryptfs: Linux filesystem encryption layer
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include "ecryptfs_kernel.h"
39 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
40 struct page
*dst_page
, int dst_offset
,
41 struct page
*src_page
, int src_offset
, int size
,
44 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
45 struct page
*dst_page
, int dst_offset
,
46 struct page
*src_page
, int src_offset
, int size
,
51 * @dst: Buffer to take hex character representation of contents of
52 * src; must be at least of size (src_size * 2)
53 * @src: Buffer to be converted to a hex string respresentation
54 * @src_size: number of bytes to convert
56 void ecryptfs_to_hex(char *dst
, char *src
, size_t src_size
)
60 for (x
= 0; x
< src_size
; x
++)
61 sprintf(&dst
[x
* 2], "%.2x", (unsigned char)src
[x
]);
66 * @dst: Buffer to take the bytes from src hex; must be at least of
68 * @src: Buffer to be converted from a hex string respresentation to raw value
69 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
71 void ecryptfs_from_hex(char *dst
, char *src
, int dst_size
)
76 for (x
= 0; x
< dst_size
; x
++) {
78 tmp
[1] = src
[x
* 2 + 1];
79 dst
[x
] = (unsigned char)simple_strtol(tmp
, NULL
, 16);
84 * ecryptfs_calculate_md5 - calculates the md5 of @src
85 * @dst: Pointer to 16 bytes of allocated memory
86 * @crypt_stat: Pointer to crypt_stat struct for the current inode
87 * @src: Data to be md5'd
88 * @len: Length of @src
90 * Uses the allocated crypto context that crypt_stat references to
91 * generate the MD5 sum of the contents of src.
93 static int ecryptfs_calculate_md5(char *dst
,
94 struct ecryptfs_crypt_stat
*crypt_stat
,
97 struct scatterlist sg
;
98 struct hash_desc desc
= {
99 .tfm
= crypt_stat
->hash_tfm
,
100 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
104 mutex_lock(&crypt_stat
->cs_hash_tfm_mutex
);
105 sg_init_one(&sg
, (u8
*)src
, len
);
107 desc
.tfm
= crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH
, 0,
109 if (IS_ERR(desc
.tfm
)) {
110 rc
= PTR_ERR(desc
.tfm
);
111 ecryptfs_printk(KERN_ERR
, "Error attempting to "
112 "allocate crypto context; rc = [%d]\n",
116 crypt_stat
->hash_tfm
= desc
.tfm
;
118 crypto_hash_init(&desc
);
119 crypto_hash_update(&desc
, &sg
, len
);
120 crypto_hash_final(&desc
, dst
);
121 mutex_unlock(&crypt_stat
->cs_hash_tfm_mutex
);
126 int ecryptfs_crypto_api_algify_cipher_name(char **algified_name
,
128 char *chaining_modifier
)
130 int cipher_name_len
= strlen(cipher_name
);
131 int chaining_modifier_len
= strlen(chaining_modifier
);
132 int algified_name_len
;
135 algified_name_len
= (chaining_modifier_len
+ cipher_name_len
+ 3);
136 (*algified_name
) = kmalloc(algified_name_len
, GFP_KERNEL
);
137 if (!(*algified_name
)) {
141 snprintf((*algified_name
), algified_name_len
, "%s(%s)",
142 chaining_modifier
, cipher_name
);
150 * @iv: destination for the derived iv vale
151 * @crypt_stat: Pointer to crypt_stat struct for the current inode
152 * @offset: Offset of the page whose's iv we are to derive
154 * Generate the initialization vector from the given root IV and page
157 * Returns zero on success; non-zero on error.
159 static int ecryptfs_derive_iv(char *iv
, struct ecryptfs_crypt_stat
*crypt_stat
,
163 char dst
[MD5_DIGEST_SIZE
];
164 char src
[ECRYPTFS_MAX_IV_BYTES
+ 16];
166 if (unlikely(ecryptfs_verbosity
> 0)) {
167 ecryptfs_printk(KERN_DEBUG
, "root iv:\n");
168 ecryptfs_dump_hex(crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
170 /* TODO: It is probably secure to just cast the least
171 * significant bits of the root IV into an unsigned long and
172 * add the offset to that rather than go through all this
173 * hashing business. -Halcrow */
174 memcpy(src
, crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
175 memset((src
+ crypt_stat
->iv_bytes
), 0, 16);
176 snprintf((src
+ crypt_stat
->iv_bytes
), 16, "%ld", offset
);
177 if (unlikely(ecryptfs_verbosity
> 0)) {
178 ecryptfs_printk(KERN_DEBUG
, "source:\n");
179 ecryptfs_dump_hex(src
, (crypt_stat
->iv_bytes
+ 16));
181 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, src
,
182 (crypt_stat
->iv_bytes
+ 16));
184 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
185 "MD5 while generating IV for a page\n");
188 memcpy(iv
, dst
, crypt_stat
->iv_bytes
);
189 if (unlikely(ecryptfs_verbosity
> 0)) {
190 ecryptfs_printk(KERN_DEBUG
, "derived iv:\n");
191 ecryptfs_dump_hex(iv
, crypt_stat
->iv_bytes
);
198 * ecryptfs_init_crypt_stat
199 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
201 * Initialize the crypt_stat structure.
204 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
206 memset((void *)crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
207 mutex_init(&crypt_stat
->cs_mutex
);
208 mutex_init(&crypt_stat
->cs_tfm_mutex
);
209 mutex_init(&crypt_stat
->cs_hash_tfm_mutex
);
210 crypt_stat
->flags
|= ECRYPTFS_STRUCT_INITIALIZED
;
214 * ecryptfs_destruct_crypt_stat
215 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
217 * Releases all memory associated with a crypt_stat struct.
219 void ecryptfs_destruct_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
222 crypto_free_blkcipher(crypt_stat
->tfm
);
223 if (crypt_stat
->hash_tfm
)
224 crypto_free_hash(crypt_stat
->hash_tfm
);
225 memset(crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
228 void ecryptfs_destruct_mount_crypt_stat(
229 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
231 if (mount_crypt_stat
->global_auth_tok_key
)
232 key_put(mount_crypt_stat
->global_auth_tok_key
);
233 if (mount_crypt_stat
->global_key_tfm
)
234 crypto_free_blkcipher(mount_crypt_stat
->global_key_tfm
);
235 memset(mount_crypt_stat
, 0, sizeof(struct ecryptfs_mount_crypt_stat
));
239 * virt_to_scatterlist
240 * @addr: Virtual address
241 * @size: Size of data; should be an even multiple of the block size
242 * @sg: Pointer to scatterlist array; set to NULL to obtain only
243 * the number of scatterlist structs required in array
244 * @sg_size: Max array size
246 * Fills in a scatterlist array with page references for a passed
249 * Returns the number of scatterlist structs in array used
251 int virt_to_scatterlist(const void *addr
, int size
, struct scatterlist
*sg
,
257 int remainder_of_page
;
259 while (size
> 0 && i
< sg_size
) {
260 pg
= virt_to_page(addr
);
261 offset
= offset_in_page(addr
);
264 sg
[i
].offset
= offset
;
266 remainder_of_page
= PAGE_CACHE_SIZE
- offset
;
267 if (size
>= remainder_of_page
) {
269 sg
[i
].length
= remainder_of_page
;
270 addr
+= remainder_of_page
;
271 size
-= remainder_of_page
;
286 * encrypt_scatterlist
287 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
288 * @dest_sg: Destination of encrypted data
289 * @src_sg: Data to be encrypted
290 * @size: Length of data to be encrypted
291 * @iv: iv to use during encryption
293 * Returns the number of bytes encrypted; negative value on error
295 static int encrypt_scatterlist(struct ecryptfs_crypt_stat
*crypt_stat
,
296 struct scatterlist
*dest_sg
,
297 struct scatterlist
*src_sg
, int size
,
300 struct blkcipher_desc desc
= {
301 .tfm
= crypt_stat
->tfm
,
303 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
307 BUG_ON(!crypt_stat
|| !crypt_stat
->tfm
308 || !(crypt_stat
->flags
& ECRYPTFS_STRUCT_INITIALIZED
));
309 if (unlikely(ecryptfs_verbosity
> 0)) {
310 ecryptfs_printk(KERN_DEBUG
, "Key size [%d]; key:\n",
311 crypt_stat
->key_size
);
312 ecryptfs_dump_hex(crypt_stat
->key
,
313 crypt_stat
->key_size
);
315 /* Consider doing this once, when the file is opened */
316 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
317 rc
= crypto_blkcipher_setkey(crypt_stat
->tfm
, crypt_stat
->key
,
318 crypt_stat
->key_size
);
320 ecryptfs_printk(KERN_ERR
, "Error setting key; rc = [%d]\n",
322 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
326 ecryptfs_printk(KERN_DEBUG
, "Encrypting [%d] bytes.\n", size
);
327 crypto_blkcipher_encrypt_iv(&desc
, dest_sg
, src_sg
, size
);
328 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
334 ecryptfs_extent_to_lwr_pg_idx_and_offset(unsigned long *lower_page_idx
,
336 struct ecryptfs_crypt_stat
*crypt_stat
,
337 unsigned long extent_num
)
339 unsigned long lower_extent_num
;
340 int extents_occupied_by_headers_at_front
;
341 int bytes_occupied_by_headers_at_front
;
343 int extents_per_page
;
345 bytes_occupied_by_headers_at_front
=
346 ( crypt_stat
->header_extent_size
347 * crypt_stat
->num_header_extents_at_front
);
348 extents_occupied_by_headers_at_front
=
349 ( bytes_occupied_by_headers_at_front
350 / crypt_stat
->extent_size
);
351 lower_extent_num
= extents_occupied_by_headers_at_front
+ extent_num
;
352 extents_per_page
= PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
;
353 (*lower_page_idx
) = lower_extent_num
/ extents_per_page
;
354 extent_offset
= lower_extent_num
% extents_per_page
;
355 (*byte_offset
) = extent_offset
* crypt_stat
->extent_size
;
356 ecryptfs_printk(KERN_DEBUG
, " * crypt_stat->header_extent_size = "
357 "[%d]\n", crypt_stat
->header_extent_size
);
358 ecryptfs_printk(KERN_DEBUG
, " * crypt_stat->"
359 "num_header_extents_at_front = [%d]\n",
360 crypt_stat
->num_header_extents_at_front
);
361 ecryptfs_printk(KERN_DEBUG
, " * extents_occupied_by_headers_at_"
362 "front = [%d]\n", extents_occupied_by_headers_at_front
);
363 ecryptfs_printk(KERN_DEBUG
, " * lower_extent_num = [0x%.16x]\n",
365 ecryptfs_printk(KERN_DEBUG
, " * extents_per_page = [%d]\n",
367 ecryptfs_printk(KERN_DEBUG
, " * (*lower_page_idx) = [0x%.16x]\n",
369 ecryptfs_printk(KERN_DEBUG
, " * extent_offset = [%d]\n",
371 ecryptfs_printk(KERN_DEBUG
, " * (*byte_offset) = [%d]\n",
375 static int ecryptfs_write_out_page(struct ecryptfs_page_crypt_context
*ctx
,
376 struct page
*lower_page
,
377 struct inode
*lower_inode
,
378 int byte_offset_in_page
, int bytes_to_write
)
382 if (ctx
->mode
== ECRYPTFS_PREPARE_COMMIT_MODE
) {
383 rc
= ecryptfs_commit_lower_page(lower_page
, lower_inode
,
384 ctx
->param
.lower_file
,
388 ecryptfs_printk(KERN_ERR
, "Error calling lower "
389 "commit; rc = [%d]\n", rc
);
393 rc
= ecryptfs_writepage_and_release_lower_page(lower_page
,
397 ecryptfs_printk(KERN_ERR
, "Error calling lower "
398 "writepage(); rc = [%d]\n", rc
);
406 static int ecryptfs_read_in_page(struct ecryptfs_page_crypt_context
*ctx
,
407 struct page
**lower_page
,
408 struct inode
*lower_inode
,
409 unsigned long lower_page_idx
,
410 int byte_offset_in_page
)
414 if (ctx
->mode
== ECRYPTFS_PREPARE_COMMIT_MODE
) {
415 /* TODO: Limit this to only the data extents that are
417 rc
= ecryptfs_get_lower_page(lower_page
, lower_inode
,
418 ctx
->param
.lower_file
,
422 - byte_offset_in_page
));
425 KERN_ERR
, "Error attempting to grab, map, "
426 "and prepare_write lower page with index "
427 "[0x%.16x]; rc = [%d]\n", lower_page_idx
, rc
);
431 *lower_page
= grab_cache_page(lower_inode
->i_mapping
,
433 if (!(*lower_page
)) {
436 KERN_ERR
, "Error attempting to grab and map "
437 "lower page with index [0x%.16x]; rc = [%d]\n",
447 * ecryptfs_encrypt_page
448 * @ctx: The context of the page
450 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
451 * that eCryptfs pages may straddle the lower pages -- for instance,
452 * if the file was created on a machine with an 8K page size
453 * (resulting in an 8K header), and then the file is copied onto a
454 * host with a 32K page size, then when reading page 0 of the eCryptfs
455 * file, 24K of page 0 of the lower file will be read and decrypted,
456 * and then 8K of page 1 of the lower file will be read and decrypted.
458 * The actual operations performed on each page depends on the
459 * contents of the ecryptfs_page_crypt_context struct.
461 * Returns zero on success; negative on error
463 int ecryptfs_encrypt_page(struct ecryptfs_page_crypt_context
*ctx
)
465 char extent_iv
[ECRYPTFS_MAX_IV_BYTES
];
466 unsigned long base_extent
;
467 unsigned long extent_offset
= 0;
468 unsigned long lower_page_idx
= 0;
469 unsigned long prior_lower_page_idx
= 0;
470 struct page
*lower_page
;
471 struct inode
*lower_inode
;
472 struct ecryptfs_inode_info
*inode_info
;
473 struct ecryptfs_crypt_stat
*crypt_stat
;
475 int lower_byte_offset
= 0;
476 int orig_byte_offset
= 0;
477 int num_extents_per_page
;
478 #define ECRYPTFS_PAGE_STATE_UNREAD 0
479 #define ECRYPTFS_PAGE_STATE_READ 1
480 #define ECRYPTFS_PAGE_STATE_MODIFIED 2
481 #define ECRYPTFS_PAGE_STATE_WRITTEN 3
484 lower_inode
= ecryptfs_inode_to_lower(ctx
->page
->mapping
->host
);
485 inode_info
= ecryptfs_inode_to_private(ctx
->page
->mapping
->host
);
486 crypt_stat
= &inode_info
->crypt_stat
;
487 if (!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
)) {
488 rc
= ecryptfs_copy_page_to_lower(ctx
->page
, lower_inode
,
489 ctx
->param
.lower_file
);
491 ecryptfs_printk(KERN_ERR
, "Error attempting to copy "
492 "page at index [0x%.16x]\n",
496 num_extents_per_page
= PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
;
497 base_extent
= (ctx
->page
->index
* num_extents_per_page
);
498 page_state
= ECRYPTFS_PAGE_STATE_UNREAD
;
499 while (extent_offset
< num_extents_per_page
) {
500 ecryptfs_extent_to_lwr_pg_idx_and_offset(
501 &lower_page_idx
, &lower_byte_offset
, crypt_stat
,
502 (base_extent
+ extent_offset
));
503 if (prior_lower_page_idx
!= lower_page_idx
504 && page_state
== ECRYPTFS_PAGE_STATE_MODIFIED
) {
505 rc
= ecryptfs_write_out_page(ctx
, lower_page
,
509 - orig_byte_offset
));
511 ecryptfs_printk(KERN_ERR
, "Error attempting "
512 "to write out page; rc = [%d]"
516 page_state
= ECRYPTFS_PAGE_STATE_WRITTEN
;
518 if (page_state
== ECRYPTFS_PAGE_STATE_UNREAD
519 || page_state
== ECRYPTFS_PAGE_STATE_WRITTEN
) {
520 rc
= ecryptfs_read_in_page(ctx
, &lower_page
,
521 lower_inode
, lower_page_idx
,
524 ecryptfs_printk(KERN_ERR
, "Error attempting "
525 "to read in lower page with "
526 "index [0x%.16x]; rc = [%d]\n",
530 orig_byte_offset
= lower_byte_offset
;
531 prior_lower_page_idx
= lower_page_idx
;
532 page_state
= ECRYPTFS_PAGE_STATE_READ
;
534 BUG_ON(!(page_state
== ECRYPTFS_PAGE_STATE_MODIFIED
535 || page_state
== ECRYPTFS_PAGE_STATE_READ
));
536 rc
= ecryptfs_derive_iv(extent_iv
, crypt_stat
,
537 (base_extent
+ extent_offset
));
539 ecryptfs_printk(KERN_ERR
, "Error attempting to "
540 "derive IV for extent [0x%.16x]; "
542 (base_extent
+ extent_offset
), rc
);
545 if (unlikely(ecryptfs_verbosity
> 0)) {
546 ecryptfs_printk(KERN_DEBUG
, "Encrypting extent "
548 ecryptfs_dump_hex(extent_iv
, crypt_stat
->iv_bytes
);
549 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes before "
551 ecryptfs_dump_hex((char *)
552 (page_address(ctx
->page
)
554 * crypt_stat
->extent_size
)), 8);
556 rc
= ecryptfs_encrypt_page_offset(
557 crypt_stat
, lower_page
, lower_byte_offset
, ctx
->page
,
558 (extent_offset
* crypt_stat
->extent_size
),
559 crypt_stat
->extent_size
, extent_iv
);
560 ecryptfs_printk(KERN_DEBUG
, "Encrypt extent [0x%.16x]; "
562 (base_extent
+ extent_offset
), rc
);
563 if (unlikely(ecryptfs_verbosity
> 0)) {
564 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes after "
566 ecryptfs_dump_hex((char *)(page_address(lower_page
)
567 + lower_byte_offset
), 8);
569 page_state
= ECRYPTFS_PAGE_STATE_MODIFIED
;
572 BUG_ON(orig_byte_offset
!= 0);
573 rc
= ecryptfs_write_out_page(ctx
, lower_page
, lower_inode
, 0,
575 + crypt_stat
->extent_size
));
577 ecryptfs_printk(KERN_ERR
, "Error attempting to write out "
578 "page; rc = [%d]\n", rc
);
586 * ecryptfs_decrypt_page
587 * @file: The ecryptfs file
588 * @page: The page in ecryptfs to decrypt
590 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
591 * that eCryptfs pages may straddle the lower pages -- for instance,
592 * if the file was created on a machine with an 8K page size
593 * (resulting in an 8K header), and then the file is copied onto a
594 * host with a 32K page size, then when reading page 0 of the eCryptfs
595 * file, 24K of page 0 of the lower file will be read and decrypted,
596 * and then 8K of page 1 of the lower file will be read and decrypted.
598 * Returns zero on success; negative on error
600 int ecryptfs_decrypt_page(struct file
*file
, struct page
*page
)
602 char extent_iv
[ECRYPTFS_MAX_IV_BYTES
];
603 unsigned long base_extent
;
604 unsigned long extent_offset
= 0;
605 unsigned long lower_page_idx
= 0;
606 unsigned long prior_lower_page_idx
= 0;
607 struct page
*lower_page
;
608 char *lower_page_virt
= NULL
;
609 struct inode
*lower_inode
;
610 struct ecryptfs_crypt_stat
*crypt_stat
;
613 int num_extents_per_page
;
616 crypt_stat
= &(ecryptfs_inode_to_private(
617 page
->mapping
->host
)->crypt_stat
);
618 lower_inode
= ecryptfs_inode_to_lower(page
->mapping
->host
);
619 if (!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
)) {
620 rc
= ecryptfs_do_readpage(file
, page
, page
->index
);
622 ecryptfs_printk(KERN_ERR
, "Error attempting to copy "
623 "page at index [0x%.16x]\n",
627 num_extents_per_page
= PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
;
628 base_extent
= (page
->index
* num_extents_per_page
);
629 lower_page_virt
= kmem_cache_alloc(ecryptfs_lower_page_cache
,
631 if (!lower_page_virt
) {
633 ecryptfs_printk(KERN_ERR
, "Error getting page for encrypted "
637 lower_page
= virt_to_page(lower_page_virt
);
638 page_state
= ECRYPTFS_PAGE_STATE_UNREAD
;
639 while (extent_offset
< num_extents_per_page
) {
640 ecryptfs_extent_to_lwr_pg_idx_and_offset(
641 &lower_page_idx
, &byte_offset
, crypt_stat
,
642 (base_extent
+ extent_offset
));
643 if (prior_lower_page_idx
!= lower_page_idx
644 || page_state
== ECRYPTFS_PAGE_STATE_UNREAD
) {
645 rc
= ecryptfs_do_readpage(file
, lower_page
,
648 ecryptfs_printk(KERN_ERR
, "Error reading "
649 "lower encrypted page; rc = "
653 prior_lower_page_idx
= lower_page_idx
;
654 page_state
= ECRYPTFS_PAGE_STATE_READ
;
656 rc
= ecryptfs_derive_iv(extent_iv
, crypt_stat
,
657 (base_extent
+ extent_offset
));
659 ecryptfs_printk(KERN_ERR
, "Error attempting to "
660 "derive IV for extent [0x%.16x]; rc = "
662 (base_extent
+ extent_offset
), rc
);
665 if (unlikely(ecryptfs_verbosity
> 0)) {
666 ecryptfs_printk(KERN_DEBUG
, "Decrypting extent "
668 ecryptfs_dump_hex(extent_iv
, crypt_stat
->iv_bytes
);
669 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes before "
671 ecryptfs_dump_hex((lower_page_virt
+ byte_offset
), 8);
673 rc
= ecryptfs_decrypt_page_offset(crypt_stat
, page
,
675 * crypt_stat
->extent_size
),
676 lower_page
, byte_offset
,
677 crypt_stat
->extent_size
,
679 if (rc
!= crypt_stat
->extent_size
) {
680 ecryptfs_printk(KERN_ERR
, "Error attempting to "
681 "decrypt extent [0x%.16x]\n",
682 (base_extent
+ extent_offset
));
686 if (unlikely(ecryptfs_verbosity
> 0)) {
687 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes after "
689 ecryptfs_dump_hex((char *)(page_address(page
)
696 kmem_cache_free(ecryptfs_lower_page_cache
, lower_page_virt
);
701 * decrypt_scatterlist
703 * Returns the number of bytes decrypted; negative value on error
705 static int decrypt_scatterlist(struct ecryptfs_crypt_stat
*crypt_stat
,
706 struct scatterlist
*dest_sg
,
707 struct scatterlist
*src_sg
, int size
,
710 struct blkcipher_desc desc
= {
711 .tfm
= crypt_stat
->tfm
,
713 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
717 /* Consider doing this once, when the file is opened */
718 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
719 rc
= crypto_blkcipher_setkey(crypt_stat
->tfm
, crypt_stat
->key
,
720 crypt_stat
->key_size
);
722 ecryptfs_printk(KERN_ERR
, "Error setting key; rc = [%d]\n",
724 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
728 ecryptfs_printk(KERN_DEBUG
, "Decrypting [%d] bytes.\n", size
);
729 rc
= crypto_blkcipher_decrypt_iv(&desc
, dest_sg
, src_sg
, size
);
730 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
732 ecryptfs_printk(KERN_ERR
, "Error decrypting; rc = [%d]\n",
742 * ecryptfs_encrypt_page_offset
744 * Returns the number of bytes encrypted
747 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
748 struct page
*dst_page
, int dst_offset
,
749 struct page
*src_page
, int src_offset
, int size
,
752 struct scatterlist src_sg
, dst_sg
;
754 src_sg
.page
= src_page
;
755 src_sg
.offset
= src_offset
;
756 src_sg
.length
= size
;
757 dst_sg
.page
= dst_page
;
758 dst_sg
.offset
= dst_offset
;
759 dst_sg
.length
= size
;
760 return encrypt_scatterlist(crypt_stat
, &dst_sg
, &src_sg
, size
, iv
);
764 * ecryptfs_decrypt_page_offset
766 * Returns the number of bytes decrypted
769 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
770 struct page
*dst_page
, int dst_offset
,
771 struct page
*src_page
, int src_offset
, int size
,
774 struct scatterlist src_sg
, dst_sg
;
776 src_sg
.page
= src_page
;
777 src_sg
.offset
= src_offset
;
778 src_sg
.length
= size
;
779 dst_sg
.page
= dst_page
;
780 dst_sg
.offset
= dst_offset
;
781 dst_sg
.length
= size
;
782 return decrypt_scatterlist(crypt_stat
, &dst_sg
, &src_sg
, size
, iv
);
785 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
788 * ecryptfs_init_crypt_ctx
789 * @crypt_stat: Uninitilized crypt stats structure
791 * Initialize the crypto context.
793 * TODO: Performance: Keep a cache of initialized cipher contexts;
794 * only init if needed
796 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat
*crypt_stat
)
801 if (!crypt_stat
->cipher
) {
802 ecryptfs_printk(KERN_ERR
, "No cipher specified\n");
805 ecryptfs_printk(KERN_DEBUG
,
806 "Initializing cipher [%s]; strlen = [%d]; "
807 "key_size_bits = [%d]\n",
808 crypt_stat
->cipher
, (int)strlen(crypt_stat
->cipher
),
809 crypt_stat
->key_size
<< 3);
810 if (crypt_stat
->tfm
) {
814 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
815 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
,
816 crypt_stat
->cipher
, "cbc");
819 crypt_stat
->tfm
= crypto_alloc_blkcipher(full_alg_name
, 0,
821 kfree(full_alg_name
);
822 if (IS_ERR(crypt_stat
->tfm
)) {
823 rc
= PTR_ERR(crypt_stat
->tfm
);
824 ecryptfs_printk(KERN_ERR
, "cryptfs: init_crypt_ctx(): "
825 "Error initializing cipher [%s]\n",
827 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
830 crypto_blkcipher_set_flags(crypt_stat
->tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
831 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
837 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat
*crypt_stat
)
841 crypt_stat
->extent_mask
= 0xFFFFFFFF;
842 crypt_stat
->extent_shift
= 0;
843 if (crypt_stat
->extent_size
== 0)
845 extent_size_tmp
= crypt_stat
->extent_size
;
846 while ((extent_size_tmp
& 0x01) == 0) {
847 extent_size_tmp
>>= 1;
848 crypt_stat
->extent_mask
<<= 1;
849 crypt_stat
->extent_shift
++;
853 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat
*crypt_stat
)
855 /* Default values; may be overwritten as we are parsing the
857 crypt_stat
->extent_size
= ECRYPTFS_DEFAULT_EXTENT_SIZE
;
858 set_extent_mask_and_shift(crypt_stat
);
859 crypt_stat
->iv_bytes
= ECRYPTFS_DEFAULT_IV_BYTES
;
860 if (PAGE_CACHE_SIZE
<= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
) {
861 crypt_stat
->header_extent_size
=
862 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
864 crypt_stat
->header_extent_size
= PAGE_CACHE_SIZE
;
865 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
866 crypt_stat
->num_header_extents_at_front
= 0;
868 crypt_stat
->num_header_extents_at_front
= 1;
872 * ecryptfs_compute_root_iv
875 * On error, sets the root IV to all 0's.
877 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat
*crypt_stat
)
880 char dst
[MD5_DIGEST_SIZE
];
882 BUG_ON(crypt_stat
->iv_bytes
> MD5_DIGEST_SIZE
);
883 BUG_ON(crypt_stat
->iv_bytes
<= 0);
884 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
886 ecryptfs_printk(KERN_WARNING
, "Session key not valid; "
887 "cannot generate root IV\n");
890 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, crypt_stat
->key
,
891 crypt_stat
->key_size
);
893 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
894 "MD5 while generating root IV\n");
897 memcpy(crypt_stat
->root_iv
, dst
, crypt_stat
->iv_bytes
);
900 memset(crypt_stat
->root_iv
, 0, crypt_stat
->iv_bytes
);
901 crypt_stat
->flags
|= ECRYPTFS_SECURITY_WARNING
;
906 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat
*crypt_stat
)
908 get_random_bytes(crypt_stat
->key
, crypt_stat
->key_size
);
909 crypt_stat
->flags
|= ECRYPTFS_KEY_VALID
;
910 ecryptfs_compute_root_iv(crypt_stat
);
911 if (unlikely(ecryptfs_verbosity
> 0)) {
912 ecryptfs_printk(KERN_DEBUG
, "Generated new session key:\n");
913 ecryptfs_dump_hex(crypt_stat
->key
,
914 crypt_stat
->key_size
);
919 * ecryptfs_copy_mount_wide_flags_to_inode_flags
921 * This function propagates the mount-wide flags to individual inode
924 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
925 struct ecryptfs_crypt_stat
*crypt_stat
,
926 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
928 if (mount_crypt_stat
->flags
& ECRYPTFS_XATTR_METADATA_ENABLED
)
929 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
930 if (mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
931 crypt_stat
->flags
|= ECRYPTFS_VIEW_AS_ENCRYPTED
;
935 * ecryptfs_set_default_crypt_stat_vals
938 * Default values in the event that policy does not override them.
940 static void ecryptfs_set_default_crypt_stat_vals(
941 struct ecryptfs_crypt_stat
*crypt_stat
,
942 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
944 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
946 ecryptfs_set_default_sizes(crypt_stat
);
947 strcpy(crypt_stat
->cipher
, ECRYPTFS_DEFAULT_CIPHER
);
948 crypt_stat
->key_size
= ECRYPTFS_DEFAULT_KEY_BYTES
;
949 crypt_stat
->flags
&= ~(ECRYPTFS_KEY_VALID
);
950 crypt_stat
->file_version
= ECRYPTFS_FILE_VERSION
;
951 crypt_stat
->mount_crypt_stat
= mount_crypt_stat
;
955 * ecryptfs_new_file_context
958 * If the crypto context for the file has not yet been established,
959 * this is where we do that. Establishing a new crypto context
960 * involves the following decisions:
961 * - What cipher to use?
962 * - What set of authentication tokens to use?
963 * Here we just worry about getting enough information into the
964 * authentication tokens so that we know that they are available.
965 * We associate the available authentication tokens with the new file
966 * via the set of signatures in the crypt_stat struct. Later, when
967 * the headers are actually written out, we may again defer to
968 * userspace to perform the encryption of the session key; for the
969 * foreseeable future, this will be the case with public key packets.
971 * Returns zero on success; non-zero otherwise
973 /* Associate an authentication token(s) with the file */
974 int ecryptfs_new_file_context(struct dentry
*ecryptfs_dentry
)
977 struct ecryptfs_crypt_stat
*crypt_stat
=
978 &ecryptfs_inode_to_private(ecryptfs_dentry
->d_inode
)->crypt_stat
;
979 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
980 &ecryptfs_superblock_to_private(
981 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
984 ecryptfs_set_default_crypt_stat_vals(crypt_stat
, mount_crypt_stat
);
985 /* See if there are mount crypt options */
986 if (mount_crypt_stat
->global_auth_tok
) {
987 ecryptfs_printk(KERN_DEBUG
, "Initializing context for new "
988 "file using mount_crypt_stat\n");
989 crypt_stat
->flags
|= ECRYPTFS_ENCRYPTED
;
990 crypt_stat
->flags
|= ECRYPTFS_KEY_VALID
;
991 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
993 memcpy(crypt_stat
->keysigs
[crypt_stat
->num_keysigs
++],
994 mount_crypt_stat
->global_auth_tok_sig
,
995 ECRYPTFS_SIG_SIZE_HEX
);
997 strlen(mount_crypt_stat
->global_default_cipher_name
);
998 memcpy(crypt_stat
->cipher
,
999 mount_crypt_stat
->global_default_cipher_name
,
1001 crypt_stat
->cipher
[cipher_name_len
] = '\0';
1002 crypt_stat
->key_size
=
1003 mount_crypt_stat
->global_default_cipher_key_size
;
1004 ecryptfs_generate_new_key(crypt_stat
);
1006 /* We should not encounter this scenario since we
1007 * should detect lack of global_auth_tok at mount time
1008 * TODO: Applies to 0.1 release only; remove in future
1011 rc
= ecryptfs_init_crypt_ctx(crypt_stat
);
1013 ecryptfs_printk(KERN_ERR
, "Error initializing cryptographic "
1014 "context for cipher [%s]: rc = [%d]\n",
1015 crypt_stat
->cipher
, rc
);
1020 * contains_ecryptfs_marker - check for the ecryptfs marker
1021 * @data: The data block in which to check
1023 * Returns one if marker found; zero if not found
1025 static int contains_ecryptfs_marker(char *data
)
1029 memcpy(&m_1
, data
, 4);
1030 m_1
= be32_to_cpu(m_1
);
1031 memcpy(&m_2
, (data
+ 4), 4);
1032 m_2
= be32_to_cpu(m_2
);
1033 if ((m_1
^ MAGIC_ECRYPTFS_MARKER
) == m_2
)
1035 ecryptfs_printk(KERN_DEBUG
, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1036 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1
, m_2
,
1037 MAGIC_ECRYPTFS_MARKER
);
1038 ecryptfs_printk(KERN_DEBUG
, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1039 "[0x%.8x]\n", (m_1
^ MAGIC_ECRYPTFS_MARKER
));
1043 struct ecryptfs_flag_map_elem
{
1048 /* Add support for additional flags by adding elements here. */
1049 static struct ecryptfs_flag_map_elem ecryptfs_flag_map
[] = {
1050 {0x00000001, ECRYPTFS_ENABLE_HMAC
},
1051 {0x00000002, ECRYPTFS_ENCRYPTED
},
1052 {0x00000004, ECRYPTFS_METADATA_IN_XATTR
}
1056 * ecryptfs_process_flags
1058 * @page_virt: Source data to be parsed
1059 * @bytes_read: Updated with the number of bytes read
1061 * Returns zero on success; non-zero if the flag set is invalid
1063 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat
*crypt_stat
,
1064 char *page_virt
, int *bytes_read
)
1070 memcpy(&flags
, page_virt
, 4);
1071 flags
= be32_to_cpu(flags
);
1072 for (i
= 0; i
< ((sizeof(ecryptfs_flag_map
)
1073 / sizeof(struct ecryptfs_flag_map_elem
))); i
++)
1074 if (flags
& ecryptfs_flag_map
[i
].file_flag
) {
1075 crypt_stat
->flags
|= ecryptfs_flag_map
[i
].local_flag
;
1077 crypt_stat
->flags
&= ~(ecryptfs_flag_map
[i
].local_flag
);
1078 /* Version is in top 8 bits of the 32-bit flag vector */
1079 crypt_stat
->file_version
= ((flags
>> 24) & 0xFF);
1085 * write_ecryptfs_marker
1086 * @page_virt: The pointer to in a page to begin writing the marker
1087 * @written: Number of bytes written
1089 * Marker = 0x3c81b7f5
1091 static void write_ecryptfs_marker(char *page_virt
, size_t *written
)
1095 get_random_bytes(&m_1
, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2));
1096 m_2
= (m_1
^ MAGIC_ECRYPTFS_MARKER
);
1097 m_1
= cpu_to_be32(m_1
);
1098 memcpy(page_virt
, &m_1
, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2));
1099 m_2
= cpu_to_be32(m_2
);
1100 memcpy(page_virt
+ (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2), &m_2
,
1101 (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2));
1102 (*written
) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
1106 write_ecryptfs_flags(char *page_virt
, struct ecryptfs_crypt_stat
*crypt_stat
,
1112 for (i
= 0; i
< ((sizeof(ecryptfs_flag_map
)
1113 / sizeof(struct ecryptfs_flag_map_elem
))); i
++)
1114 if (crypt_stat
->flags
& ecryptfs_flag_map
[i
].local_flag
)
1115 flags
|= ecryptfs_flag_map
[i
].file_flag
;
1116 /* Version is in top 8 bits of the 32-bit flag vector */
1117 flags
|= ((((u8
)crypt_stat
->file_version
) << 24) & 0xFF000000);
1118 flags
= cpu_to_be32(flags
);
1119 memcpy(page_virt
, &flags
, 4);
1123 struct ecryptfs_cipher_code_str_map_elem
{
1124 char cipher_str
[16];
1128 /* Add support for additional ciphers by adding elements here. The
1129 * cipher_code is whatever OpenPGP applicatoins use to identify the
1130 * ciphers. List in order of probability. */
1131 static struct ecryptfs_cipher_code_str_map_elem
1132 ecryptfs_cipher_code_str_map
[] = {
1133 {"aes",RFC2440_CIPHER_AES_128
},
1134 {"blowfish", RFC2440_CIPHER_BLOWFISH
},
1135 {"des3_ede", RFC2440_CIPHER_DES3_EDE
},
1136 {"cast5", RFC2440_CIPHER_CAST_5
},
1137 {"twofish", RFC2440_CIPHER_TWOFISH
},
1138 {"cast6", RFC2440_CIPHER_CAST_6
},
1139 {"aes", RFC2440_CIPHER_AES_192
},
1140 {"aes", RFC2440_CIPHER_AES_256
}
1144 * ecryptfs_code_for_cipher_string
1145 * @str: The string representing the cipher name
1147 * Returns zero on no match, or the cipher code on match
1149 u16
ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat
*crypt_stat
)
1153 struct ecryptfs_cipher_code_str_map_elem
*map
=
1154 ecryptfs_cipher_code_str_map
;
1156 if (strcmp(crypt_stat
->cipher
, "aes") == 0) {
1157 switch (crypt_stat
->key_size
) {
1159 code
= RFC2440_CIPHER_AES_128
;
1162 code
= RFC2440_CIPHER_AES_192
;
1165 code
= RFC2440_CIPHER_AES_256
;
1168 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
1169 if (strcmp(crypt_stat
->cipher
, map
[i
].cipher_str
) == 0){
1170 code
= map
[i
].cipher_code
;
1178 * ecryptfs_cipher_code_to_string
1179 * @str: Destination to write out the cipher name
1180 * @cipher_code: The code to convert to cipher name string
1182 * Returns zero on success
1184 int ecryptfs_cipher_code_to_string(char *str
, u16 cipher_code
)
1190 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
1191 if (cipher_code
== ecryptfs_cipher_code_str_map
[i
].cipher_code
)
1192 strcpy(str
, ecryptfs_cipher_code_str_map
[i
].cipher_str
);
1193 if (str
[0] == '\0') {
1194 ecryptfs_printk(KERN_WARNING
, "Cipher code not recognized: "
1195 "[%d]\n", cipher_code
);
1202 * ecryptfs_read_header_region
1207 * Returns zero on success; non-zero otherwise
1209 static int ecryptfs_read_header_region(char *data
, struct dentry
*dentry
,
1210 struct vfsmount
*mnt
)
1212 struct file
*lower_file
;
1216 if ((rc
= ecryptfs_open_lower_file(&lower_file
, dentry
, mnt
,
1219 "Error opening lower_file to read header region\n");
1222 lower_file
->f_pos
= 0;
1225 /* For releases 0.1 and 0.2, all of the header information
1226 * fits in the first data extent-sized region. */
1227 rc
= lower_file
->f_op
->read(lower_file
, (char __user
*)data
,
1228 ECRYPTFS_DEFAULT_EXTENT_SIZE
, &lower_file
->f_pos
);
1230 if ((rc
= ecryptfs_close_lower_file(lower_file
))) {
1231 printk(KERN_ERR
"Error closing lower_file\n");
1239 int ecryptfs_read_and_validate_header_region(char *data
, struct dentry
*dentry
,
1240 struct vfsmount
*mnt
)
1244 rc
= ecryptfs_read_header_region(data
, dentry
, mnt
);
1247 if (!contains_ecryptfs_marker(data
+ ECRYPTFS_FILE_SIZE_BYTES
))
1255 ecryptfs_write_header_metadata(char *virt
,
1256 struct ecryptfs_crypt_stat
*crypt_stat
,
1259 u32 header_extent_size
;
1260 u16 num_header_extents_at_front
;
1262 header_extent_size
= (u32
)crypt_stat
->header_extent_size
;
1263 num_header_extents_at_front
=
1264 (u16
)crypt_stat
->num_header_extents_at_front
;
1265 header_extent_size
= cpu_to_be32(header_extent_size
);
1266 memcpy(virt
, &header_extent_size
, 4);
1268 num_header_extents_at_front
= cpu_to_be16(num_header_extents_at_front
);
1269 memcpy(virt
, &num_header_extents_at_front
, 2);
1273 struct kmem_cache
*ecryptfs_header_cache_0
;
1274 struct kmem_cache
*ecryptfs_header_cache_1
;
1275 struct kmem_cache
*ecryptfs_header_cache_2
;
1278 * ecryptfs_write_headers_virt
1286 * Octets 0-7: Unencrypted file size (big-endian)
1287 * Octets 8-15: eCryptfs special marker
1288 * Octets 16-19: Flags
1289 * Octet 16: File format version number (between 0 and 255)
1290 * Octets 17-18: Reserved
1291 * Octet 19: Bit 1 (lsb): Reserved
1293 * Bits 3-8: Reserved
1294 * Octets 20-23: Header extent size (big-endian)
1295 * Octets 24-25: Number of header extents at front of file
1297 * Octet 26: Begin RFC 2440 authentication token packet set
1299 * Lower data (CBC encrypted)
1301 * Lower data (CBC encrypted)
1304 * Returns zero on success
1306 static int ecryptfs_write_headers_virt(char *page_virt
, size_t *size
,
1307 struct ecryptfs_crypt_stat
*crypt_stat
,
1308 struct dentry
*ecryptfs_dentry
)
1314 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1315 write_ecryptfs_marker((page_virt
+ offset
), &written
);
1317 write_ecryptfs_flags((page_virt
+ offset
), crypt_stat
, &written
);
1319 ecryptfs_write_header_metadata((page_virt
+ offset
), crypt_stat
,
1322 rc
= ecryptfs_generate_key_packet_set((page_virt
+ offset
), crypt_stat
,
1323 ecryptfs_dentry
, &written
,
1324 PAGE_CACHE_SIZE
- offset
);
1326 ecryptfs_printk(KERN_WARNING
, "Error generating key packet "
1327 "set; rc = [%d]\n", rc
);
1335 static int ecryptfs_write_metadata_to_contents(struct ecryptfs_crypt_stat
*crypt_stat
,
1336 struct file
*lower_file
,
1340 int current_header_page
;
1345 lower_file
->f_pos
= 0;
1348 size
= vfs_write(lower_file
, (char __user
*)page_virt
, PAGE_CACHE_SIZE
,
1349 &lower_file
->f_pos
);
1352 printk(KERN_ERR
"Error attempting to write lower page; "
1357 header_pages
= ((crypt_stat
->header_extent_size
1358 * crypt_stat
->num_header_extents_at_front
)
1360 memset(page_virt
, 0, PAGE_CACHE_SIZE
);
1361 current_header_page
= 1;
1362 while (current_header_page
< header_pages
) {
1363 size
= vfs_write(lower_file
, (char __user
*)page_virt
,
1364 PAGE_CACHE_SIZE
, &lower_file
->f_pos
);
1367 printk(KERN_ERR
"Error attempting to write lower page; "
1372 current_header_page
++;
1379 static int ecryptfs_write_metadata_to_xattr(struct dentry
*ecryptfs_dentry
,
1380 struct ecryptfs_crypt_stat
*crypt_stat
,
1381 char *page_virt
, size_t size
)
1385 rc
= ecryptfs_setxattr(ecryptfs_dentry
, ECRYPTFS_XATTR_NAME
, page_virt
,
1391 * ecryptfs_write_metadata
1392 * @lower_file: The lower file struct, which was returned from dentry_open
1394 * Write the file headers out. This will likely involve a userspace
1395 * callout, in which the session key is encrypted with one or more
1396 * public keys and/or the passphrase necessary to do the encryption is
1397 * retrieved via a prompt. Exactly what happens at this point should
1398 * be policy-dependent.
1400 * Returns zero on success; non-zero on error
1402 int ecryptfs_write_metadata(struct dentry
*ecryptfs_dentry
,
1403 struct file
*lower_file
)
1405 struct ecryptfs_crypt_stat
*crypt_stat
;
1410 crypt_stat
= &ecryptfs_inode_to_private(
1411 ecryptfs_dentry
->d_inode
)->crypt_stat
;
1412 if (likely(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
)) {
1413 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
1414 ecryptfs_printk(KERN_DEBUG
, "Key is "
1415 "invalid; bailing out\n");
1421 ecryptfs_printk(KERN_WARNING
,
1422 "Called with crypt_stat->encrypted == 0\n");
1425 /* Released in this function */
1426 page_virt
= kmem_cache_zalloc(ecryptfs_header_cache_0
, GFP_USER
);
1428 ecryptfs_printk(KERN_ERR
, "Out of memory\n");
1432 rc
= ecryptfs_write_headers_virt(page_virt
, &size
, crypt_stat
,
1435 ecryptfs_printk(KERN_ERR
, "Error whilst writing headers\n");
1436 memset(page_virt
, 0, PAGE_CACHE_SIZE
);
1439 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
1440 rc
= ecryptfs_write_metadata_to_xattr(ecryptfs_dentry
,
1441 crypt_stat
, page_virt
,
1444 rc
= ecryptfs_write_metadata_to_contents(crypt_stat
, lower_file
,
1447 printk(KERN_ERR
"Error writing metadata out to lower file; "
1452 kmem_cache_free(ecryptfs_header_cache_0
, page_virt
);
1457 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1458 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1459 static int parse_header_metadata(struct ecryptfs_crypt_stat
*crypt_stat
,
1460 char *virt
, int *bytes_read
,
1461 int validate_header_size
)
1464 u32 header_extent_size
;
1465 u16 num_header_extents_at_front
;
1467 memcpy(&header_extent_size
, virt
, 4);
1468 header_extent_size
= be32_to_cpu(header_extent_size
);
1470 memcpy(&num_header_extents_at_front
, virt
, 2);
1471 num_header_extents_at_front
= be16_to_cpu(num_header_extents_at_front
);
1472 crypt_stat
->header_extent_size
= (int)header_extent_size
;
1473 crypt_stat
->num_header_extents_at_front
=
1474 (int)num_header_extents_at_front
;
1476 if ((validate_header_size
== ECRYPTFS_VALIDATE_HEADER_SIZE
)
1477 && ((crypt_stat
->header_extent_size
1478 * crypt_stat
->num_header_extents_at_front
)
1479 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)) {
1481 ecryptfs_printk(KERN_WARNING
, "Invalid header extent size: "
1482 "[%d]\n", crypt_stat
->header_extent_size
);
1488 * set_default_header_data
1490 * For version 0 file format; this function is only for backwards
1491 * compatibility for files created with the prior versions of
1494 static void set_default_header_data(struct ecryptfs_crypt_stat
*crypt_stat
)
1496 crypt_stat
->header_extent_size
= 4096;
1497 crypt_stat
->num_header_extents_at_front
= 1;
1501 * ecryptfs_read_headers_virt
1503 * Read/parse the header data. The header format is detailed in the
1504 * comment block for the ecryptfs_write_headers_virt() function.
1506 * Returns zero on success
1508 static int ecryptfs_read_headers_virt(char *page_virt
,
1509 struct ecryptfs_crypt_stat
*crypt_stat
,
1510 struct dentry
*ecryptfs_dentry
,
1511 int validate_header_size
)
1517 ecryptfs_set_default_sizes(crypt_stat
);
1518 crypt_stat
->mount_crypt_stat
= &ecryptfs_superblock_to_private(
1519 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1520 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1521 rc
= contains_ecryptfs_marker(page_virt
+ offset
);
1526 offset
+= MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
1527 rc
= ecryptfs_process_flags(crypt_stat
, (page_virt
+ offset
),
1530 ecryptfs_printk(KERN_WARNING
, "Error processing flags\n");
1533 if (crypt_stat
->file_version
> ECRYPTFS_SUPPORTED_FILE_VERSION
) {
1534 ecryptfs_printk(KERN_WARNING
, "File version is [%d]; only "
1535 "file version [%d] is supported by this "
1536 "version of eCryptfs\n",
1537 crypt_stat
->file_version
,
1538 ECRYPTFS_SUPPORTED_FILE_VERSION
);
1542 offset
+= bytes_read
;
1543 if (crypt_stat
->file_version
>= 1) {
1544 rc
= parse_header_metadata(crypt_stat
, (page_virt
+ offset
),
1545 &bytes_read
, validate_header_size
);
1547 ecryptfs_printk(KERN_WARNING
, "Error reading header "
1548 "metadata; rc = [%d]\n", rc
);
1550 offset
+= bytes_read
;
1552 set_default_header_data(crypt_stat
);
1553 rc
= ecryptfs_parse_packet_set(crypt_stat
, (page_virt
+ offset
),
1560 * ecryptfs_read_xattr_region
1562 * Attempts to read the crypto metadata from the extended attribute
1563 * region of the lower file.
1565 int ecryptfs_read_xattr_region(char *page_virt
, struct dentry
*ecryptfs_dentry
)
1570 size
= ecryptfs_getxattr(ecryptfs_dentry
, ECRYPTFS_XATTR_NAME
,
1571 page_virt
, ECRYPTFS_DEFAULT_EXTENT_SIZE
);
1573 printk(KERN_DEBUG
"Error attempting to read the [%s] "
1574 "xattr from the lower file; return value = [%zd]\n",
1575 ECRYPTFS_XATTR_NAME
, size
);
1583 int ecryptfs_read_and_validate_xattr_region(char *page_virt
,
1584 struct dentry
*ecryptfs_dentry
)
1588 rc
= ecryptfs_read_xattr_region(page_virt
, ecryptfs_dentry
);
1591 if (!contains_ecryptfs_marker(page_virt
+ ECRYPTFS_FILE_SIZE_BYTES
)) {
1592 printk(KERN_WARNING
"Valid data found in [%s] xattr, but "
1593 "the marker is invalid\n", ECRYPTFS_XATTR_NAME
);
1601 * ecryptfs_read_metadata
1603 * Common entry point for reading file metadata. From here, we could
1604 * retrieve the header information from the header region of the file,
1605 * the xattr region of the file, or some other repostory that is
1606 * stored separately from the file itself. The current implementation
1607 * supports retrieving the metadata information from the file contents
1608 * and from the xattr region.
1610 * Returns zero if valid headers found and parsed; non-zero otherwise
1612 int ecryptfs_read_metadata(struct dentry
*ecryptfs_dentry
,
1613 struct file
*lower_file
)
1616 char *page_virt
= NULL
;
1619 struct ecryptfs_crypt_stat
*crypt_stat
=
1620 &ecryptfs_inode_to_private(ecryptfs_dentry
->d_inode
)->crypt_stat
;
1621 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
1622 &ecryptfs_superblock_to_private(
1623 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1625 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
1627 /* Read the first page from the underlying file */
1628 page_virt
= kmem_cache_alloc(ecryptfs_header_cache_1
, GFP_USER
);
1631 ecryptfs_printk(KERN_ERR
, "Unable to allocate page_virt\n");
1634 lower_file
->f_pos
= 0;
1637 bytes_read
= lower_file
->f_op
->read(lower_file
,
1638 (char __user
*)page_virt
,
1639 ECRYPTFS_DEFAULT_EXTENT_SIZE
,
1640 &lower_file
->f_pos
);
1642 if (bytes_read
!= ECRYPTFS_DEFAULT_EXTENT_SIZE
) {
1646 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1648 ECRYPTFS_VALIDATE_HEADER_SIZE
);
1650 rc
= ecryptfs_read_xattr_region(page_virt
,
1653 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1654 "file header region or xattr region\n");
1658 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1660 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE
);
1662 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1663 "file xattr region either\n");
1666 if (crypt_stat
->mount_crypt_stat
->flags
1667 & ECRYPTFS_XATTR_METADATA_ENABLED
) {
1668 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
1670 printk(KERN_WARNING
"Attempt to access file with "
1671 "crypto metadata only in the extended attribute "
1672 "region, but eCryptfs was mounted without "
1673 "xattr support enabled. eCryptfs will not treat "
1674 "this like an encrypted file.\n");
1680 memset(page_virt
, 0, PAGE_CACHE_SIZE
);
1681 kmem_cache_free(ecryptfs_header_cache_1
, page_virt
);
1687 * ecryptfs_encode_filename - converts a plaintext file name to cipher text
1688 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1689 * @name: The plaintext name
1690 * @length: The length of the plaintext
1691 * @encoded_name: The encypted name
1693 * Encrypts and encodes a filename into something that constitutes a
1694 * valid filename for a filesystem, with printable characters.
1696 * We assume that we have a properly initialized crypto context,
1697 * pointed to by crypt_stat->tfm.
1699 * TODO: Implement filename decoding and decryption here, in place of
1700 * memcpy. We are keeping the framework around for now to (1)
1701 * facilitate testing of the components needed to implement filename
1702 * encryption and (2) to provide a code base from which other
1703 * developers in the community can easily implement this feature.
1705 * Returns the length of encoded filename; negative if error
1708 ecryptfs_encode_filename(struct ecryptfs_crypt_stat
*crypt_stat
,
1709 const char *name
, int length
, char **encoded_name
)
1713 (*encoded_name
) = kmalloc(length
+ 2, GFP_KERNEL
);
1714 if (!(*encoded_name
)) {
1718 /* TODO: Filename encryption is a scheduled feature for a
1719 * future version of eCryptfs. This function is here only for
1720 * the purpose of providing a framework for other developers
1721 * to easily implement filename encryption. Hint: Replace this
1722 * memcpy() with a call to encrypt and encode the
1723 * filename, the set the length accordingly. */
1724 memcpy((void *)(*encoded_name
), (void *)name
, length
);
1725 (*encoded_name
)[length
] = '\0';
1732 * ecryptfs_decode_filename - converts the cipher text name to plaintext
1733 * @crypt_stat: The crypt_stat struct associated with the file
1734 * @name: The filename in cipher text
1735 * @length: The length of the cipher text name
1736 * @decrypted_name: The plaintext name
1738 * Decodes and decrypts the filename.
1740 * We assume that we have a properly initialized crypto context,
1741 * pointed to by crypt_stat->tfm.
1743 * TODO: Implement filename decoding and decryption here, in place of
1744 * memcpy. We are keeping the framework around for now to (1)
1745 * facilitate testing of the components needed to implement filename
1746 * encryption and (2) to provide a code base from which other
1747 * developers in the community can easily implement this feature.
1749 * Returns the length of decoded filename; negative if error
1752 ecryptfs_decode_filename(struct ecryptfs_crypt_stat
*crypt_stat
,
1753 const char *name
, int length
, char **decrypted_name
)
1757 (*decrypted_name
) = kmalloc(length
+ 2, GFP_KERNEL
);
1758 if (!(*decrypted_name
)) {
1762 /* TODO: Filename encryption is a scheduled feature for a
1763 * future version of eCryptfs. This function is here only for
1764 * the purpose of providing a framework for other developers
1765 * to easily implement filename encryption. Hint: Replace this
1766 * memcpy() with a call to decode and decrypt the
1767 * filename, the set the length accordingly. */
1768 memcpy((void *)(*decrypted_name
), (void *)name
, length
);
1769 (*decrypted_name
)[length
+ 1] = '\0'; /* Only for convenience
1770 * in printing out the
1779 * ecryptfs_process_cipher - Perform cipher initialization.
1780 * @key_tfm: Crypto context for key material, set by this function
1781 * @cipher_name: Name of the cipher
1782 * @key_size: Size of the key in bytes
1784 * Returns zero on success. Any crypto_tfm structs allocated here
1785 * should be released by other functions, such as on a superblock put
1786 * event, regardless of whether this function succeeds for fails.
1789 ecryptfs_process_cipher(struct crypto_blkcipher
**key_tfm
, char *cipher_name
,
1792 char dummy_key
[ECRYPTFS_MAX_KEY_BYTES
];
1793 char *full_alg_name
;
1797 if (*key_size
> ECRYPTFS_MAX_KEY_BYTES
) {
1799 printk(KERN_ERR
"Requested key size is [%Zd] bytes; maximum "
1800 "allowable is [%d]\n", *key_size
, ECRYPTFS_MAX_KEY_BYTES
);
1803 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
, cipher_name
,
1807 *key_tfm
= crypto_alloc_blkcipher(full_alg_name
, 0, CRYPTO_ALG_ASYNC
);
1808 kfree(full_alg_name
);
1809 if (IS_ERR(*key_tfm
)) {
1810 rc
= PTR_ERR(*key_tfm
);
1811 printk(KERN_ERR
"Unable to allocate crypto cipher with name "
1812 "[%s]; rc = [%d]\n", cipher_name
, rc
);
1815 crypto_blkcipher_set_flags(*key_tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
1816 if (*key_size
== 0) {
1817 struct blkcipher_alg
*alg
= crypto_blkcipher_alg(*key_tfm
);
1819 *key_size
= alg
->max_keysize
;
1821 get_random_bytes(dummy_key
, *key_size
);
1822 rc
= crypto_blkcipher_setkey(*key_tfm
, dummy_key
, *key_size
);
1824 printk(KERN_ERR
"Error attempting to set key of size [%Zd] for "
1825 "cipher [%s]; rc = [%d]\n", *key_size
, cipher_name
, rc
);