[INET]: Consolidate xxx_frag_create()
[linux-2.6/kmemtrace.git] / net / ipv4 / ip_fragment.c
blob0d6cff1de5a32544cd90529cecfafbafc15df344
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The IP fragmentation functionality.
8 * Version: $Id: ip_fragment.c,v 1.59 2002/01/12 07:54:56 davem Exp $
10 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
11 * Alan Cox <Alan.Cox@linux.org>
13 * Fixes:
14 * Alan Cox : Split from ip.c , see ip_input.c for history.
15 * David S. Miller : Begin massive cleanup...
16 * Andi Kleen : Add sysctls.
17 * xxxx : Overlapfrag bug.
18 * Ultima : ip_expire() kernel panic.
19 * Bill Hawes : Frag accounting and evictor fixes.
20 * John McDonald : 0 length frag bug.
21 * Alexey Kuznetsov: SMP races, threading, cleanup.
22 * Patrick McHardy : LRU queue of frag heads for evictor.
25 #include <linux/compiler.h>
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/mm.h>
29 #include <linux/jiffies.h>
30 #include <linux/skbuff.h>
31 #include <linux/list.h>
32 #include <linux/ip.h>
33 #include <linux/icmp.h>
34 #include <linux/netdevice.h>
35 #include <linux/jhash.h>
36 #include <linux/random.h>
37 #include <net/sock.h>
38 #include <net/ip.h>
39 #include <net/icmp.h>
40 #include <net/checksum.h>
41 #include <net/inetpeer.h>
42 #include <net/inet_frag.h>
43 #include <linux/tcp.h>
44 #include <linux/udp.h>
45 #include <linux/inet.h>
46 #include <linux/netfilter_ipv4.h>
48 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
49 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
50 * as well. Or notify me, at least. --ANK
53 int sysctl_ipfrag_max_dist __read_mostly = 64;
55 struct ipfrag_skb_cb
57 struct inet_skb_parm h;
58 int offset;
61 #define FRAG_CB(skb) ((struct ipfrag_skb_cb*)((skb)->cb))
63 /* Describe an entry in the "incomplete datagrams" queue. */
64 struct ipq {
65 struct inet_frag_queue q;
67 u32 user;
68 __be32 saddr;
69 __be32 daddr;
70 __be16 id;
71 u8 protocol;
72 int iif;
73 unsigned int rid;
74 struct inet_peer *peer;
77 struct inet_frags_ctl ip4_frags_ctl __read_mostly = {
79 * Fragment cache limits. We will commit 256K at one time. Should we
80 * cross that limit we will prune down to 192K. This should cope with
81 * even the most extreme cases without allowing an attacker to
82 * measurably harm machine performance.
84 .high_thresh = 256 * 1024,
85 .low_thresh = 192 * 1024,
88 * Important NOTE! Fragment queue must be destroyed before MSL expires.
89 * RFC791 is wrong proposing to prolongate timer each fragment arrival
90 * by TTL.
92 .timeout = IP_FRAG_TIME,
93 .secret_interval = 10 * 60 * HZ,
96 static struct inet_frags ip4_frags;
98 int ip_frag_nqueues(void)
100 return ip4_frags.nqueues;
103 int ip_frag_mem(void)
105 return atomic_read(&ip4_frags.mem);
108 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
109 struct net_device *dev);
111 struct ip4_create_arg {
112 struct iphdr *iph;
113 u32 user;
116 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
118 return jhash_3words((__force u32)id << 16 | prot,
119 (__force u32)saddr, (__force u32)daddr,
120 ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1);
123 static unsigned int ip4_hashfn(struct inet_frag_queue *q)
125 struct ipq *ipq;
127 ipq = container_of(q, struct ipq, q);
128 return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
131 static int ip4_frag_equal(struct inet_frag_queue *q1,
132 struct inet_frag_queue *q2)
134 struct ipq *qp1, *qp2;
136 qp1 = container_of(q1, struct ipq, q);
137 qp2 = container_of(q2, struct ipq, q);
138 return (qp1->id == qp2->id &&
139 qp1->saddr == qp2->saddr &&
140 qp1->daddr == qp2->daddr &&
141 qp1->protocol == qp2->protocol &&
142 qp1->user == qp2->user);
145 /* Memory Tracking Functions. */
146 static __inline__ void frag_kfree_skb(struct sk_buff *skb, int *work)
148 if (work)
149 *work -= skb->truesize;
150 atomic_sub(skb->truesize, &ip4_frags.mem);
151 kfree_skb(skb);
154 static void ip4_frag_init(struct inet_frag_queue *q, void *a)
156 struct ipq *qp = container_of(q, struct ipq, q);
157 struct ip4_create_arg *arg = a;
159 qp->protocol = arg->iph->protocol;
160 qp->id = arg->iph->id;
161 qp->saddr = arg->iph->saddr;
162 qp->daddr = arg->iph->daddr;
163 qp->user = arg->user;
164 qp->peer = sysctl_ipfrag_max_dist ?
165 inet_getpeer(arg->iph->saddr, 1) : NULL;
168 static __inline__ void ip4_frag_free(struct inet_frag_queue *q)
170 struct ipq *qp;
172 qp = container_of(q, struct ipq, q);
173 if (qp->peer)
174 inet_putpeer(qp->peer);
175 kfree(qp);
179 /* Destruction primitives. */
181 static __inline__ void ipq_put(struct ipq *ipq)
183 inet_frag_put(&ipq->q, &ip4_frags);
186 /* Kill ipq entry. It is not destroyed immediately,
187 * because caller (and someone more) holds reference count.
189 static void ipq_kill(struct ipq *ipq)
191 inet_frag_kill(&ipq->q, &ip4_frags);
194 /* Memory limiting on fragments. Evictor trashes the oldest
195 * fragment queue until we are back under the threshold.
197 static void ip_evictor(void)
199 int evicted;
201 evicted = inet_frag_evictor(&ip4_frags);
202 if (evicted)
203 IP_ADD_STATS_BH(IPSTATS_MIB_REASMFAILS, evicted);
207 * Oops, a fragment queue timed out. Kill it and send an ICMP reply.
209 static void ip_expire(unsigned long arg)
211 struct ipq *qp;
213 qp = container_of((struct inet_frag_queue *) arg, struct ipq, q);
215 spin_lock(&qp->q.lock);
217 if (qp->q.last_in & COMPLETE)
218 goto out;
220 ipq_kill(qp);
222 IP_INC_STATS_BH(IPSTATS_MIB_REASMTIMEOUT);
223 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
225 if ((qp->q.last_in&FIRST_IN) && qp->q.fragments != NULL) {
226 struct sk_buff *head = qp->q.fragments;
227 /* Send an ICMP "Fragment Reassembly Timeout" message. */
228 if ((head->dev = dev_get_by_index(&init_net, qp->iif)) != NULL) {
229 icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
230 dev_put(head->dev);
233 out:
234 spin_unlock(&qp->q.lock);
235 ipq_put(qp);
238 /* Creation primitives. */
240 /* Add an entry to the 'ipq' queue for a newly received IP datagram. */
241 static struct ipq *ip_frag_create(struct iphdr *iph, u32 user, unsigned int h)
243 struct inet_frag_queue *q;
244 struct ip4_create_arg arg;
246 arg.iph = iph;
247 arg.user = user;
249 q = inet_frag_create(&ip4_frags, &arg, h);
250 if (q == NULL)
251 goto out_nomem;
253 return container_of(q, struct ipq, q);
255 out_nomem:
256 LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n");
257 return NULL;
260 /* Find the correct entry in the "incomplete datagrams" queue for
261 * this IP datagram, and create new one, if nothing is found.
263 static inline struct ipq *ip_find(struct iphdr *iph, u32 user)
265 __be16 id = iph->id;
266 __be32 saddr = iph->saddr;
267 __be32 daddr = iph->daddr;
268 __u8 protocol = iph->protocol;
269 unsigned int hash;
270 struct ipq *qp;
271 struct hlist_node *n;
273 read_lock(&ip4_frags.lock);
274 hash = ipqhashfn(id, saddr, daddr, protocol);
275 hlist_for_each_entry(qp, n, &ip4_frags.hash[hash], q.list) {
276 if (qp->id == id &&
277 qp->saddr == saddr &&
278 qp->daddr == daddr &&
279 qp->protocol == protocol &&
280 qp->user == user) {
281 atomic_inc(&qp->q.refcnt);
282 read_unlock(&ip4_frags.lock);
283 return qp;
286 read_unlock(&ip4_frags.lock);
288 return ip_frag_create(iph, user, hash);
291 /* Is the fragment too far ahead to be part of ipq? */
292 static inline int ip_frag_too_far(struct ipq *qp)
294 struct inet_peer *peer = qp->peer;
295 unsigned int max = sysctl_ipfrag_max_dist;
296 unsigned int start, end;
298 int rc;
300 if (!peer || !max)
301 return 0;
303 start = qp->rid;
304 end = atomic_inc_return(&peer->rid);
305 qp->rid = end;
307 rc = qp->q.fragments && (end - start) > max;
309 if (rc) {
310 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
313 return rc;
316 static int ip_frag_reinit(struct ipq *qp)
318 struct sk_buff *fp;
320 if (!mod_timer(&qp->q.timer, jiffies + ip4_frags_ctl.timeout)) {
321 atomic_inc(&qp->q.refcnt);
322 return -ETIMEDOUT;
325 fp = qp->q.fragments;
326 do {
327 struct sk_buff *xp = fp->next;
328 frag_kfree_skb(fp, NULL);
329 fp = xp;
330 } while (fp);
332 qp->q.last_in = 0;
333 qp->q.len = 0;
334 qp->q.meat = 0;
335 qp->q.fragments = NULL;
336 qp->iif = 0;
338 return 0;
341 /* Add new segment to existing queue. */
342 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
344 struct sk_buff *prev, *next;
345 struct net_device *dev;
346 int flags, offset;
347 int ihl, end;
348 int err = -ENOENT;
350 if (qp->q.last_in & COMPLETE)
351 goto err;
353 if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
354 unlikely(ip_frag_too_far(qp)) &&
355 unlikely(err = ip_frag_reinit(qp))) {
356 ipq_kill(qp);
357 goto err;
360 offset = ntohs(ip_hdr(skb)->frag_off);
361 flags = offset & ~IP_OFFSET;
362 offset &= IP_OFFSET;
363 offset <<= 3; /* offset is in 8-byte chunks */
364 ihl = ip_hdrlen(skb);
366 /* Determine the position of this fragment. */
367 end = offset + skb->len - ihl;
368 err = -EINVAL;
370 /* Is this the final fragment? */
371 if ((flags & IP_MF) == 0) {
372 /* If we already have some bits beyond end
373 * or have different end, the segment is corrrupted.
375 if (end < qp->q.len ||
376 ((qp->q.last_in & LAST_IN) && end != qp->q.len))
377 goto err;
378 qp->q.last_in |= LAST_IN;
379 qp->q.len = end;
380 } else {
381 if (end&7) {
382 end &= ~7;
383 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
384 skb->ip_summed = CHECKSUM_NONE;
386 if (end > qp->q.len) {
387 /* Some bits beyond end -> corruption. */
388 if (qp->q.last_in & LAST_IN)
389 goto err;
390 qp->q.len = end;
393 if (end == offset)
394 goto err;
396 err = -ENOMEM;
397 if (pskb_pull(skb, ihl) == NULL)
398 goto err;
400 err = pskb_trim_rcsum(skb, end - offset);
401 if (err)
402 goto err;
404 /* Find out which fragments are in front and at the back of us
405 * in the chain of fragments so far. We must know where to put
406 * this fragment, right?
408 prev = NULL;
409 for (next = qp->q.fragments; next != NULL; next = next->next) {
410 if (FRAG_CB(next)->offset >= offset)
411 break; /* bingo! */
412 prev = next;
415 /* We found where to put this one. Check for overlap with
416 * preceding fragment, and, if needed, align things so that
417 * any overlaps are eliminated.
419 if (prev) {
420 int i = (FRAG_CB(prev)->offset + prev->len) - offset;
422 if (i > 0) {
423 offset += i;
424 err = -EINVAL;
425 if (end <= offset)
426 goto err;
427 err = -ENOMEM;
428 if (!pskb_pull(skb, i))
429 goto err;
430 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
431 skb->ip_summed = CHECKSUM_NONE;
435 err = -ENOMEM;
437 while (next && FRAG_CB(next)->offset < end) {
438 int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
440 if (i < next->len) {
441 /* Eat head of the next overlapped fragment
442 * and leave the loop. The next ones cannot overlap.
444 if (!pskb_pull(next, i))
445 goto err;
446 FRAG_CB(next)->offset += i;
447 qp->q.meat -= i;
448 if (next->ip_summed != CHECKSUM_UNNECESSARY)
449 next->ip_summed = CHECKSUM_NONE;
450 break;
451 } else {
452 struct sk_buff *free_it = next;
454 /* Old fragment is completely overridden with
455 * new one drop it.
457 next = next->next;
459 if (prev)
460 prev->next = next;
461 else
462 qp->q.fragments = next;
464 qp->q.meat -= free_it->len;
465 frag_kfree_skb(free_it, NULL);
469 FRAG_CB(skb)->offset = offset;
471 /* Insert this fragment in the chain of fragments. */
472 skb->next = next;
473 if (prev)
474 prev->next = skb;
475 else
476 qp->q.fragments = skb;
478 dev = skb->dev;
479 if (dev) {
480 qp->iif = dev->ifindex;
481 skb->dev = NULL;
483 qp->q.stamp = skb->tstamp;
484 qp->q.meat += skb->len;
485 atomic_add(skb->truesize, &ip4_frags.mem);
486 if (offset == 0)
487 qp->q.last_in |= FIRST_IN;
489 if (qp->q.last_in == (FIRST_IN | LAST_IN) && qp->q.meat == qp->q.len)
490 return ip_frag_reasm(qp, prev, dev);
492 write_lock(&ip4_frags.lock);
493 list_move_tail(&qp->q.lru_list, &ip4_frags.lru_list);
494 write_unlock(&ip4_frags.lock);
495 return -EINPROGRESS;
497 err:
498 kfree_skb(skb);
499 return err;
503 /* Build a new IP datagram from all its fragments. */
505 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
506 struct net_device *dev)
508 struct iphdr *iph;
509 struct sk_buff *fp, *head = qp->q.fragments;
510 int len;
511 int ihlen;
512 int err;
514 ipq_kill(qp);
516 /* Make the one we just received the head. */
517 if (prev) {
518 head = prev->next;
519 fp = skb_clone(head, GFP_ATOMIC);
521 if (!fp)
522 goto out_nomem;
524 fp->next = head->next;
525 prev->next = fp;
527 skb_morph(head, qp->q.fragments);
528 head->next = qp->q.fragments->next;
530 kfree_skb(qp->q.fragments);
531 qp->q.fragments = head;
534 BUG_TRAP(head != NULL);
535 BUG_TRAP(FRAG_CB(head)->offset == 0);
537 /* Allocate a new buffer for the datagram. */
538 ihlen = ip_hdrlen(head);
539 len = ihlen + qp->q.len;
541 err = -E2BIG;
542 if (len > 65535)
543 goto out_oversize;
545 /* Head of list must not be cloned. */
546 err = -ENOMEM;
547 if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
548 goto out_nomem;
550 /* If the first fragment is fragmented itself, we split
551 * it to two chunks: the first with data and paged part
552 * and the second, holding only fragments. */
553 if (skb_shinfo(head)->frag_list) {
554 struct sk_buff *clone;
555 int i, plen = 0;
557 if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
558 goto out_nomem;
559 clone->next = head->next;
560 head->next = clone;
561 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
562 skb_shinfo(head)->frag_list = NULL;
563 for (i=0; i<skb_shinfo(head)->nr_frags; i++)
564 plen += skb_shinfo(head)->frags[i].size;
565 clone->len = clone->data_len = head->data_len - plen;
566 head->data_len -= clone->len;
567 head->len -= clone->len;
568 clone->csum = 0;
569 clone->ip_summed = head->ip_summed;
570 atomic_add(clone->truesize, &ip4_frags.mem);
573 skb_shinfo(head)->frag_list = head->next;
574 skb_push(head, head->data - skb_network_header(head));
575 atomic_sub(head->truesize, &ip4_frags.mem);
577 for (fp=head->next; fp; fp = fp->next) {
578 head->data_len += fp->len;
579 head->len += fp->len;
580 if (head->ip_summed != fp->ip_summed)
581 head->ip_summed = CHECKSUM_NONE;
582 else if (head->ip_summed == CHECKSUM_COMPLETE)
583 head->csum = csum_add(head->csum, fp->csum);
584 head->truesize += fp->truesize;
585 atomic_sub(fp->truesize, &ip4_frags.mem);
588 head->next = NULL;
589 head->dev = dev;
590 head->tstamp = qp->q.stamp;
592 iph = ip_hdr(head);
593 iph->frag_off = 0;
594 iph->tot_len = htons(len);
595 IP_INC_STATS_BH(IPSTATS_MIB_REASMOKS);
596 qp->q.fragments = NULL;
597 return 0;
599 out_nomem:
600 LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing "
601 "queue %p\n", qp);
602 goto out_fail;
603 out_oversize:
604 if (net_ratelimit())
605 printk(KERN_INFO
606 "Oversized IP packet from %d.%d.%d.%d.\n",
607 NIPQUAD(qp->saddr));
608 out_fail:
609 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
610 return err;
613 /* Process an incoming IP datagram fragment. */
614 int ip_defrag(struct sk_buff *skb, u32 user)
616 struct ipq *qp;
618 IP_INC_STATS_BH(IPSTATS_MIB_REASMREQDS);
620 /* Start by cleaning up the memory. */
621 if (atomic_read(&ip4_frags.mem) > ip4_frags_ctl.high_thresh)
622 ip_evictor();
624 /* Lookup (or create) queue header */
625 if ((qp = ip_find(ip_hdr(skb), user)) != NULL) {
626 int ret;
628 spin_lock(&qp->q.lock);
630 ret = ip_frag_queue(qp, skb);
632 spin_unlock(&qp->q.lock);
633 ipq_put(qp);
634 return ret;
637 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
638 kfree_skb(skb);
639 return -ENOMEM;
642 void __init ipfrag_init(void)
644 ip4_frags.ctl = &ip4_frags_ctl;
645 ip4_frags.hashfn = ip4_hashfn;
646 ip4_frags.constructor = ip4_frag_init;
647 ip4_frags.destructor = ip4_frag_free;
648 ip4_frags.skb_free = NULL;
649 ip4_frags.qsize = sizeof(struct ipq);
650 ip4_frags.equal = ip4_frag_equal;
651 ip4_frags.frag_expire = ip_expire;
652 inet_frags_init(&ip4_frags);
655 EXPORT_SYMBOL(ip_defrag);