x86: add debug of invalid per_cpu map accesses
[linux-2.6/kmemtrace.git] / arch / x86 / mm / numa_64.c
blobe157cb274b25d6dcd4e6a47b87be95619af9366c
1 /*
2 * Generic VM initialization for x86-64 NUMA setups.
3 * Copyright 2002,2003 Andi Kleen, SuSE Labs.
4 */
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/string.h>
8 #include <linux/init.h>
9 #include <linux/bootmem.h>
10 #include <linux/mmzone.h>
11 #include <linux/ctype.h>
12 #include <linux/module.h>
13 #include <linux/nodemask.h>
14 #include <linux/sched.h>
16 #include <asm/e820.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h>
19 #include <asm/numa.h>
20 #include <asm/acpi.h>
21 #include <asm/k8.h>
23 #ifndef Dprintk
24 #define Dprintk(x...)
25 #endif
27 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
28 EXPORT_SYMBOL(node_data);
30 bootmem_data_t plat_node_bdata[MAX_NUMNODES];
32 struct memnode memnode;
34 u16 x86_cpu_to_node_map_init[NR_CPUS] = {
35 [0 ... NR_CPUS-1] = NUMA_NO_NODE
37 void *x86_cpu_to_node_map_early_ptr;
38 DEFINE_PER_CPU(u16, x86_cpu_to_node_map) = NUMA_NO_NODE;
39 EXPORT_PER_CPU_SYMBOL(x86_cpu_to_node_map);
40 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
41 EXPORT_SYMBOL(x86_cpu_to_node_map_early_ptr);
42 #endif
44 u16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
45 [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
48 cpumask_t node_to_cpumask_map[MAX_NUMNODES] __read_mostly;
49 EXPORT_SYMBOL(node_to_cpumask_map);
51 int numa_off __initdata;
52 unsigned long __initdata nodemap_addr;
53 unsigned long __initdata nodemap_size;
56 * Given a shift value, try to populate memnodemap[]
57 * Returns :
58 * 1 if OK
59 * 0 if memnodmap[] too small (of shift too small)
60 * -1 if node overlap or lost ram (shift too big)
62 static int __init populate_memnodemap(const struct bootnode *nodes,
63 int numnodes, int shift)
65 unsigned long addr, end;
66 int i, res = -1;
68 memset(memnodemap, 0xff, memnodemapsize);
69 for (i = 0; i < numnodes; i++) {
70 addr = nodes[i].start;
71 end = nodes[i].end;
72 if (addr >= end)
73 continue;
74 if ((end >> shift) >= memnodemapsize)
75 return 0;
76 do {
77 if (memnodemap[addr >> shift] != 0xff)
78 return -1;
79 memnodemap[addr >> shift] = i;
80 addr += (1UL << shift);
81 } while (addr < end);
82 res = 1;
84 return res;
87 static int __init allocate_cachealigned_memnodemap(void)
89 unsigned long pad, pad_addr;
91 memnodemap = memnode.embedded_map;
92 if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
93 return 0;
95 pad = L1_CACHE_BYTES - 1;
96 pad_addr = 0x8000;
97 nodemap_size = pad + memnodemapsize;
98 nodemap_addr = find_e820_area(pad_addr, end_pfn<<PAGE_SHIFT,
99 nodemap_size);
100 if (nodemap_addr == -1UL) {
101 printk(KERN_ERR
102 "NUMA: Unable to allocate Memory to Node hash map\n");
103 nodemap_addr = nodemap_size = 0;
104 return -1;
106 pad_addr = (nodemap_addr + pad) & ~pad;
107 memnodemap = phys_to_virt(pad_addr);
108 reserve_early(nodemap_addr, nodemap_addr + nodemap_size);
110 printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
111 nodemap_addr, nodemap_addr + nodemap_size);
112 return 0;
116 * The LSB of all start and end addresses in the node map is the value of the
117 * maximum possible shift.
119 static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
120 int numnodes)
122 int i, nodes_used = 0;
123 unsigned long start, end;
124 unsigned long bitfield = 0, memtop = 0;
126 for (i = 0; i < numnodes; i++) {
127 start = nodes[i].start;
128 end = nodes[i].end;
129 if (start >= end)
130 continue;
131 bitfield |= start;
132 nodes_used++;
133 if (end > memtop)
134 memtop = end;
136 if (nodes_used <= 1)
137 i = 63;
138 else
139 i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
140 memnodemapsize = (memtop >> i)+1;
141 return i;
144 int __init compute_hash_shift(struct bootnode *nodes, int numnodes)
146 int shift;
148 shift = extract_lsb_from_nodes(nodes, numnodes);
149 if (allocate_cachealigned_memnodemap())
150 return -1;
151 printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
152 shift);
154 if (populate_memnodemap(nodes, numnodes, shift) != 1) {
155 printk(KERN_INFO "Your memory is not aligned you need to "
156 "rebuild your kernel with a bigger NODEMAPSIZE "
157 "shift=%d\n", shift);
158 return -1;
160 return shift;
163 int early_pfn_to_nid(unsigned long pfn)
165 return phys_to_nid(pfn << PAGE_SHIFT);
168 static void * __init early_node_mem(int nodeid, unsigned long start,
169 unsigned long end, unsigned long size)
171 unsigned long mem = find_e820_area(start, end, size);
172 void *ptr;
174 if (mem != -1L)
175 return __va(mem);
176 ptr = __alloc_bootmem_nopanic(size,
177 SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS));
178 if (ptr == NULL) {
179 printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
180 size, nodeid);
181 return NULL;
183 return ptr;
186 /* Initialize bootmem allocator for a node */
187 void __init setup_node_bootmem(int nodeid, unsigned long start,
188 unsigned long end)
190 unsigned long start_pfn, end_pfn, bootmap_pages, bootmap_size;
191 unsigned long bootmap_start, nodedata_phys;
192 void *bootmap;
193 const int pgdat_size = round_up(sizeof(pg_data_t), PAGE_SIZE);
195 start = round_up(start, ZONE_ALIGN);
197 printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid,
198 start, end);
200 start_pfn = start >> PAGE_SHIFT;
201 end_pfn = end >> PAGE_SHIFT;
203 node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size);
204 if (node_data[nodeid] == NULL)
205 return;
206 nodedata_phys = __pa(node_data[nodeid]);
208 memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
209 NODE_DATA(nodeid)->bdata = &plat_node_bdata[nodeid];
210 NODE_DATA(nodeid)->node_start_pfn = start_pfn;
211 NODE_DATA(nodeid)->node_spanned_pages = end_pfn - start_pfn;
213 /* Find a place for the bootmem map */
214 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
215 bootmap_start = round_up(nodedata_phys + pgdat_size, PAGE_SIZE);
216 bootmap = early_node_mem(nodeid, bootmap_start, end,
217 bootmap_pages<<PAGE_SHIFT);
218 if (bootmap == NULL) {
219 if (nodedata_phys < start || nodedata_phys >= end)
220 free_bootmem((unsigned long)node_data[nodeid],
221 pgdat_size);
222 node_data[nodeid] = NULL;
223 return;
225 bootmap_start = __pa(bootmap);
226 Dprintk("bootmap start %lu pages %lu\n", bootmap_start, bootmap_pages);
228 bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
229 bootmap_start >> PAGE_SHIFT,
230 start_pfn, end_pfn);
232 free_bootmem_with_active_regions(nodeid, end);
234 reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys, pgdat_size);
235 reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start,
236 bootmap_pages<<PAGE_SHIFT);
237 #ifdef CONFIG_ACPI_NUMA
238 srat_reserve_add_area(nodeid);
239 #endif
240 node_set_online(nodeid);
243 #ifdef CONFIG_FLAT_NODE_MEM_MAP
244 /* Initialize final allocator for a zone */
245 static void __init flat_setup_node_zones(int nodeid)
247 unsigned long start_pfn, end_pfn, memmapsize, limit;
249 start_pfn = node_start_pfn(nodeid);
250 end_pfn = node_end_pfn(nodeid);
252 Dprintk(KERN_INFO "Setting up memmap for node %d %lx-%lx\n",
253 nodeid, start_pfn, end_pfn);
256 * Try to allocate mem_map at end to not fill up precious <4GB
257 * memory.
259 memmapsize = sizeof(struct page) * (end_pfn-start_pfn);
260 limit = end_pfn << PAGE_SHIFT;
262 NODE_DATA(nodeid)->node_mem_map =
263 __alloc_bootmem_core(NODE_DATA(nodeid)->bdata,
264 memmapsize, SMP_CACHE_BYTES,
265 round_down(limit - memmapsize, PAGE_SIZE),
266 limit);
268 #else
269 #define flat_setup_node_zones(i) do {} while (0)
270 #endif
273 * There are unfortunately some poorly designed mainboards around that
274 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
275 * mapping. To avoid this fill in the mapping for all possible CPUs,
276 * as the number of CPUs is not known yet. We round robin the existing
277 * nodes.
279 void __init numa_init_array(void)
281 int rr, i;
283 rr = first_node(node_online_map);
284 for (i = 0; i < NR_CPUS; i++) {
285 if (cpu_to_node(i) != NUMA_NO_NODE)
286 continue;
287 numa_set_node(i, rr);
288 rr = next_node(rr, node_online_map);
289 if (rr == MAX_NUMNODES)
290 rr = first_node(node_online_map);
294 #ifdef CONFIG_NUMA_EMU
295 /* Numa emulation */
296 char *cmdline __initdata;
299 * Setups up nid to range from addr to addr + size. If the end
300 * boundary is greater than max_addr, then max_addr is used instead.
301 * The return value is 0 if there is additional memory left for
302 * allocation past addr and -1 otherwise. addr is adjusted to be at
303 * the end of the node.
305 static int __init setup_node_range(int nid, struct bootnode *nodes, u64 *addr,
306 u64 size, u64 max_addr)
308 int ret = 0;
310 nodes[nid].start = *addr;
311 *addr += size;
312 if (*addr >= max_addr) {
313 *addr = max_addr;
314 ret = -1;
316 nodes[nid].end = *addr;
317 node_set(nid, node_possible_map);
318 printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
319 nodes[nid].start, nodes[nid].end,
320 (nodes[nid].end - nodes[nid].start) >> 20);
321 return ret;
325 * Splits num_nodes nodes up equally starting at node_start. The return value
326 * is the number of nodes split up and addr is adjusted to be at the end of the
327 * last node allocated.
329 static int __init split_nodes_equally(struct bootnode *nodes, u64 *addr,
330 u64 max_addr, int node_start,
331 int num_nodes)
333 unsigned int big;
334 u64 size;
335 int i;
337 if (num_nodes <= 0)
338 return -1;
339 if (num_nodes > MAX_NUMNODES)
340 num_nodes = MAX_NUMNODES;
341 size = (max_addr - *addr - e820_hole_size(*addr, max_addr)) /
342 num_nodes;
344 * Calculate the number of big nodes that can be allocated as a result
345 * of consolidating the leftovers.
347 big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) /
348 FAKE_NODE_MIN_SIZE;
350 /* Round down to nearest FAKE_NODE_MIN_SIZE. */
351 size &= FAKE_NODE_MIN_HASH_MASK;
352 if (!size) {
353 printk(KERN_ERR "Not enough memory for each node. "
354 "NUMA emulation disabled.\n");
355 return -1;
358 for (i = node_start; i < num_nodes + node_start; i++) {
359 u64 end = *addr + size;
361 if (i < big)
362 end += FAKE_NODE_MIN_SIZE;
364 * The final node can have the remaining system RAM. Other
365 * nodes receive roughly the same amount of available pages.
367 if (i == num_nodes + node_start - 1)
368 end = max_addr;
369 else
370 while (end - *addr - e820_hole_size(*addr, end) <
371 size) {
372 end += FAKE_NODE_MIN_SIZE;
373 if (end > max_addr) {
374 end = max_addr;
375 break;
378 if (setup_node_range(i, nodes, addr, end - *addr, max_addr) < 0)
379 break;
381 return i - node_start + 1;
385 * Splits the remaining system RAM into chunks of size. The remaining memory is
386 * always assigned to a final node and can be asymmetric. Returns the number of
387 * nodes split.
389 static int __init split_nodes_by_size(struct bootnode *nodes, u64 *addr,
390 u64 max_addr, int node_start, u64 size)
392 int i = node_start;
393 size = (size << 20) & FAKE_NODE_MIN_HASH_MASK;
394 while (!setup_node_range(i++, nodes, addr, size, max_addr))
396 return i - node_start;
400 * Sets up the system RAM area from start_pfn to end_pfn according to the
401 * numa=fake command-line option.
403 static int __init numa_emulation(unsigned long start_pfn, unsigned long end_pfn)
405 struct bootnode nodes[MAX_NUMNODES];
406 u64 size, addr = start_pfn << PAGE_SHIFT;
407 u64 max_addr = end_pfn << PAGE_SHIFT;
408 int num_nodes = 0, num = 0, coeff_flag, coeff = -1, i;
410 memset(&nodes, 0, sizeof(nodes));
412 * If the numa=fake command-line is just a single number N, split the
413 * system RAM into N fake nodes.
415 if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) {
416 long n = simple_strtol(cmdline, NULL, 0);
418 num_nodes = split_nodes_equally(nodes, &addr, max_addr, 0, n);
419 if (num_nodes < 0)
420 return num_nodes;
421 goto out;
424 /* Parse the command line. */
425 for (coeff_flag = 0; ; cmdline++) {
426 if (*cmdline && isdigit(*cmdline)) {
427 num = num * 10 + *cmdline - '0';
428 continue;
430 if (*cmdline == '*') {
431 if (num > 0)
432 coeff = num;
433 coeff_flag = 1;
435 if (!*cmdline || *cmdline == ',') {
436 if (!coeff_flag)
437 coeff = 1;
439 * Round down to the nearest FAKE_NODE_MIN_SIZE.
440 * Command-line coefficients are in megabytes.
442 size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK;
443 if (size)
444 for (i = 0; i < coeff; i++, num_nodes++)
445 if (setup_node_range(num_nodes, nodes,
446 &addr, size, max_addr) < 0)
447 goto done;
448 if (!*cmdline)
449 break;
450 coeff_flag = 0;
451 coeff = -1;
453 num = 0;
455 done:
456 if (!num_nodes)
457 return -1;
458 /* Fill remainder of system RAM, if appropriate. */
459 if (addr < max_addr) {
460 if (coeff_flag && coeff < 0) {
461 /* Split remaining nodes into num-sized chunks */
462 num_nodes += split_nodes_by_size(nodes, &addr, max_addr,
463 num_nodes, num);
464 goto out;
466 switch (*(cmdline - 1)) {
467 case '*':
468 /* Split remaining nodes into coeff chunks */
469 if (coeff <= 0)
470 break;
471 num_nodes += split_nodes_equally(nodes, &addr, max_addr,
472 num_nodes, coeff);
473 break;
474 case ',':
475 /* Do not allocate remaining system RAM */
476 break;
477 default:
478 /* Give one final node */
479 setup_node_range(num_nodes, nodes, &addr,
480 max_addr - addr, max_addr);
481 num_nodes++;
484 out:
485 memnode_shift = compute_hash_shift(nodes, num_nodes);
486 if (memnode_shift < 0) {
487 memnode_shift = 0;
488 printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
489 "disabled.\n");
490 return -1;
494 * We need to vacate all active ranges that may have been registered by
495 * SRAT and set acpi_numa to -1 so that srat_disabled() always returns
496 * true. NUMA emulation has succeeded so we will not scan ACPI nodes.
498 remove_all_active_ranges();
499 #ifdef CONFIG_ACPI_NUMA
500 acpi_numa = -1;
501 #endif
502 for_each_node_mask(i, node_possible_map) {
503 e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
504 nodes[i].end >> PAGE_SHIFT);
505 setup_node_bootmem(i, nodes[i].start, nodes[i].end);
507 acpi_fake_nodes(nodes, num_nodes);
508 numa_init_array();
509 return 0;
511 #endif /* CONFIG_NUMA_EMU */
513 void __init numa_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
515 int i;
517 nodes_clear(node_possible_map);
519 #ifdef CONFIG_NUMA_EMU
520 if (cmdline && !numa_emulation(start_pfn, end_pfn))
521 return;
522 nodes_clear(node_possible_map);
523 #endif
525 #ifdef CONFIG_ACPI_NUMA
526 if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
527 end_pfn << PAGE_SHIFT))
528 return;
529 nodes_clear(node_possible_map);
530 #endif
532 #ifdef CONFIG_K8_NUMA
533 if (!numa_off && !k8_scan_nodes(start_pfn<<PAGE_SHIFT,
534 end_pfn<<PAGE_SHIFT))
535 return;
536 nodes_clear(node_possible_map);
537 #endif
538 printk(KERN_INFO "%s\n",
539 numa_off ? "NUMA turned off" : "No NUMA configuration found");
541 printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
542 start_pfn << PAGE_SHIFT,
543 end_pfn << PAGE_SHIFT);
544 /* setup dummy node covering all memory */
545 memnode_shift = 63;
546 memnodemap = memnode.embedded_map;
547 memnodemap[0] = 0;
548 nodes_clear(node_online_map);
549 node_set_online(0);
550 node_set(0, node_possible_map);
551 for (i = 0; i < NR_CPUS; i++)
552 numa_set_node(i, 0);
553 /* cpumask_of_cpu() may not be available during early startup */
554 memset(&node_to_cpumask_map[0], 0, sizeof(node_to_cpumask_map[0]));
555 cpu_set(0, node_to_cpumask_map[0]);
556 e820_register_active_regions(0, start_pfn, end_pfn);
557 setup_node_bootmem(0, start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
560 __cpuinit void numa_add_cpu(int cpu)
562 set_bit(cpu, (unsigned long *)&node_to_cpumask_map[cpu_to_node(cpu)]);
565 void __cpuinit numa_set_node(int cpu, int node)
567 u16 *cpu_to_node_map = x86_cpu_to_node_map_early_ptr;
569 cpu_pda(cpu)->nodenumber = node;
571 if(cpu_to_node_map)
572 cpu_to_node_map[cpu] = node;
573 else if(per_cpu_offset(cpu))
574 per_cpu(x86_cpu_to_node_map, cpu) = node;
575 else
576 Dprintk(KERN_INFO "Setting node for non-present cpu %d\n", cpu);
579 unsigned long __init numa_free_all_bootmem(void)
581 unsigned long pages = 0;
582 int i;
584 for_each_online_node(i)
585 pages += free_all_bootmem_node(NODE_DATA(i));
587 return pages;
590 void __init paging_init(void)
592 unsigned long max_zone_pfns[MAX_NR_ZONES];
593 int i;
595 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
596 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
597 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
598 max_zone_pfns[ZONE_NORMAL] = end_pfn;
600 sparse_memory_present_with_active_regions(MAX_NUMNODES);
601 sparse_init();
603 for_each_online_node(i)
604 flat_setup_node_zones(i);
606 free_area_init_nodes(max_zone_pfns);
609 static __init int numa_setup(char *opt)
611 if (!opt)
612 return -EINVAL;
613 if (!strncmp(opt, "off", 3))
614 numa_off = 1;
615 #ifdef CONFIG_NUMA_EMU
616 if (!strncmp(opt, "fake=", 5))
617 cmdline = opt + 5;
618 #endif
619 #ifdef CONFIG_ACPI_NUMA
620 if (!strncmp(opt, "noacpi", 6))
621 acpi_numa = -1;
622 if (!strncmp(opt, "hotadd=", 7))
623 hotadd_percent = simple_strtoul(opt+7, NULL, 10);
624 #endif
625 return 0;
627 early_param("numa", numa_setup);
630 * Setup early cpu_to_node.
632 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
633 * and apicid_to_node[] tables have valid entries for a CPU.
634 * This means we skip cpu_to_node[] initialisation for NUMA
635 * emulation and faking node case (when running a kernel compiled
636 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
637 * is already initialized in a round robin manner at numa_init_array,
638 * prior to this call, and this initialization is good enough
639 * for the fake NUMA cases.
641 void __init init_cpu_to_node(void)
643 int i;
645 for (i = 0; i < NR_CPUS; i++) {
646 u16 apicid = x86_cpu_to_apicid_init[i];
648 if (apicid == BAD_APICID)
649 continue;
650 if (apicid_to_node[apicid] == NUMA_NO_NODE)
651 continue;
652 numa_set_node(i, apicid_to_node[apicid]);