Full conversion to early_initcall() interface, remove old interface.
[linux-2.6/kmemtrace.git] / include / linux / sched.h
blobf37eb1a2163503012eea1666fc94c57e110868e2
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
33 * Scheduling policies
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
42 #ifdef __KERNEL__
44 struct sched_param {
45 int sched_priority;
48 #include <asm/param.h> /* for HZ */
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rtmutex.h>
82 #include <linux/time.h>
83 #include <linux/param.h>
84 #include <linux/resource.h>
85 #include <linux/timer.h>
86 #include <linux/hrtimer.h>
87 #include <linux/task_io_accounting.h>
88 #include <linux/kobject.h>
89 #include <linux/latencytop.h>
91 #include <asm/processor.h>
93 struct mem_cgroup;
94 struct exec_domain;
95 struct futex_pi_state;
96 struct robust_list_head;
97 struct bio;
100 * List of flags we want to share for kernel threads,
101 * if only because they are not used by them anyway.
103 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
106 * These are the constant used to fake the fixed-point load-average
107 * counting. Some notes:
108 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
109 * a load-average precision of 10 bits integer + 11 bits fractional
110 * - if you want to count load-averages more often, you need more
111 * precision, or rounding will get you. With 2-second counting freq,
112 * the EXP_n values would be 1981, 2034 and 2043 if still using only
113 * 11 bit fractions.
115 extern unsigned long avenrun[]; /* Load averages */
117 #define FSHIFT 11 /* nr of bits of precision */
118 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
119 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
120 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
121 #define EXP_5 2014 /* 1/exp(5sec/5min) */
122 #define EXP_15 2037 /* 1/exp(5sec/15min) */
124 #define CALC_LOAD(load,exp,n) \
125 load *= exp; \
126 load += n*(FIXED_1-exp); \
127 load >>= FSHIFT;
129 extern unsigned long total_forks;
130 extern int nr_threads;
131 DECLARE_PER_CPU(unsigned long, process_counts);
132 extern int nr_processes(void);
133 extern unsigned long nr_running(void);
134 extern unsigned long nr_uninterruptible(void);
135 extern unsigned long nr_active(void);
136 extern unsigned long nr_iowait(void);
137 extern unsigned long weighted_cpuload(const int cpu);
139 struct seq_file;
140 struct cfs_rq;
141 struct task_group;
142 #ifdef CONFIG_SCHED_DEBUG
143 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
144 extern void proc_sched_set_task(struct task_struct *p);
145 extern void
146 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
147 #else
148 static inline void
149 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
152 static inline void proc_sched_set_task(struct task_struct *p)
155 static inline void
156 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
159 #endif
161 extern unsigned long long time_sync_thresh;
164 * Task state bitmask. NOTE! These bits are also
165 * encoded in fs/proc/array.c: get_task_state().
167 * We have two separate sets of flags: task->state
168 * is about runnability, while task->exit_state are
169 * about the task exiting. Confusing, but this way
170 * modifying one set can't modify the other one by
171 * mistake.
173 #define TASK_RUNNING 0
174 #define TASK_INTERRUPTIBLE 1
175 #define TASK_UNINTERRUPTIBLE 2
176 #define __TASK_STOPPED 4
177 #define __TASK_TRACED 8
178 /* in tsk->exit_state */
179 #define EXIT_ZOMBIE 16
180 #define EXIT_DEAD 32
181 /* in tsk->state again */
182 #define TASK_DEAD 64
183 #define TASK_WAKEKILL 128
185 /* Convenience macros for the sake of set_task_state */
186 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
187 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
188 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
190 /* Convenience macros for the sake of wake_up */
191 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
192 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
194 /* get_task_state() */
195 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
196 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
197 __TASK_TRACED)
199 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
200 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
201 #define task_is_stopped_or_traced(task) \
202 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
203 #define task_contributes_to_load(task) \
204 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
206 #define __set_task_state(tsk, state_value) \
207 do { (tsk)->state = (state_value); } while (0)
208 #define set_task_state(tsk, state_value) \
209 set_mb((tsk)->state, (state_value))
212 * set_current_state() includes a barrier so that the write of current->state
213 * is correctly serialised wrt the caller's subsequent test of whether to
214 * actually sleep:
216 * set_current_state(TASK_UNINTERRUPTIBLE);
217 * if (do_i_need_to_sleep())
218 * schedule();
220 * If the caller does not need such serialisation then use __set_current_state()
222 #define __set_current_state(state_value) \
223 do { current->state = (state_value); } while (0)
224 #define set_current_state(state_value) \
225 set_mb(current->state, (state_value))
227 /* Task command name length */
228 #define TASK_COMM_LEN 16
230 #include <linux/spinlock.h>
233 * This serializes "schedule()" and also protects
234 * the run-queue from deletions/modifications (but
235 * _adding_ to the beginning of the run-queue has
236 * a separate lock).
238 extern rwlock_t tasklist_lock;
239 extern spinlock_t mmlist_lock;
241 struct task_struct;
243 extern void sched_init(void);
244 extern void sched_init_smp(void);
245 extern asmlinkage void schedule_tail(struct task_struct *prev);
246 extern void init_idle(struct task_struct *idle, int cpu);
247 extern void init_idle_bootup_task(struct task_struct *idle);
249 extern cpumask_t nohz_cpu_mask;
250 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
251 extern int select_nohz_load_balancer(int cpu);
252 #else
253 static inline int select_nohz_load_balancer(int cpu)
255 return 0;
257 #endif
259 extern unsigned long rt_needs_cpu(int cpu);
262 * Only dump TASK_* tasks. (0 for all tasks)
264 extern void show_state_filter(unsigned long state_filter);
266 static inline void show_state(void)
268 show_state_filter(0);
271 extern void show_regs(struct pt_regs *);
274 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
275 * task), SP is the stack pointer of the first frame that should be shown in the back
276 * trace (or NULL if the entire call-chain of the task should be shown).
278 extern void show_stack(struct task_struct *task, unsigned long *sp);
280 void io_schedule(void);
281 long io_schedule_timeout(long timeout);
283 extern void cpu_init (void);
284 extern void trap_init(void);
285 extern void account_process_tick(struct task_struct *task, int user);
286 extern void update_process_times(int user);
287 extern void scheduler_tick(void);
288 extern void hrtick_resched(void);
290 extern void sched_show_task(struct task_struct *p);
292 #ifdef CONFIG_DETECT_SOFTLOCKUP
293 extern void softlockup_tick(void);
294 extern void touch_softlockup_watchdog(void);
295 extern void touch_all_softlockup_watchdogs(void);
296 extern unsigned long softlockup_thresh;
297 extern unsigned long sysctl_hung_task_check_count;
298 extern unsigned long sysctl_hung_task_timeout_secs;
299 extern unsigned long sysctl_hung_task_warnings;
300 #else
301 static inline void softlockup_tick(void)
304 static inline void touch_softlockup_watchdog(void)
307 static inline void touch_all_softlockup_watchdogs(void)
310 #endif
313 /* Attach to any functions which should be ignored in wchan output. */
314 #define __sched __attribute__((__section__(".sched.text")))
316 /* Linker adds these: start and end of __sched functions */
317 extern char __sched_text_start[], __sched_text_end[];
319 /* Is this address in the __sched functions? */
320 extern int in_sched_functions(unsigned long addr);
322 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
323 extern signed long schedule_timeout(signed long timeout);
324 extern signed long schedule_timeout_interruptible(signed long timeout);
325 extern signed long schedule_timeout_killable(signed long timeout);
326 extern signed long schedule_timeout_uninterruptible(signed long timeout);
327 asmlinkage void schedule(void);
329 struct nsproxy;
330 struct user_namespace;
332 /* Maximum number of active map areas.. This is a random (large) number */
333 #define DEFAULT_MAX_MAP_COUNT 65536
335 extern int sysctl_max_map_count;
337 #include <linux/aio.h>
339 extern unsigned long
340 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
341 unsigned long, unsigned long);
342 extern unsigned long
343 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
344 unsigned long len, unsigned long pgoff,
345 unsigned long flags);
346 extern void arch_unmap_area(struct mm_struct *, unsigned long);
347 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
349 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
351 * The mm counters are not protected by its page_table_lock,
352 * so must be incremented atomically.
354 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
355 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
356 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
357 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
358 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
360 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
362 * The mm counters are protected by its page_table_lock,
363 * so can be incremented directly.
365 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
366 #define get_mm_counter(mm, member) ((mm)->_##member)
367 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
368 #define inc_mm_counter(mm, member) (mm)->_##member++
369 #define dec_mm_counter(mm, member) (mm)->_##member--
371 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
373 #define get_mm_rss(mm) \
374 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
375 #define update_hiwater_rss(mm) do { \
376 unsigned long _rss = get_mm_rss(mm); \
377 if ((mm)->hiwater_rss < _rss) \
378 (mm)->hiwater_rss = _rss; \
379 } while (0)
380 #define update_hiwater_vm(mm) do { \
381 if ((mm)->hiwater_vm < (mm)->total_vm) \
382 (mm)->hiwater_vm = (mm)->total_vm; \
383 } while (0)
385 extern void set_dumpable(struct mm_struct *mm, int value);
386 extern int get_dumpable(struct mm_struct *mm);
388 /* mm flags */
389 /* dumpable bits */
390 #define MMF_DUMPABLE 0 /* core dump is permitted */
391 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
392 #define MMF_DUMPABLE_BITS 2
394 /* coredump filter bits */
395 #define MMF_DUMP_ANON_PRIVATE 2
396 #define MMF_DUMP_ANON_SHARED 3
397 #define MMF_DUMP_MAPPED_PRIVATE 4
398 #define MMF_DUMP_MAPPED_SHARED 5
399 #define MMF_DUMP_ELF_HEADERS 6
400 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
401 #define MMF_DUMP_FILTER_BITS 5
402 #define MMF_DUMP_FILTER_MASK \
403 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
404 #define MMF_DUMP_FILTER_DEFAULT \
405 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED))
407 struct sighand_struct {
408 atomic_t count;
409 struct k_sigaction action[_NSIG];
410 spinlock_t siglock;
411 wait_queue_head_t signalfd_wqh;
414 struct pacct_struct {
415 int ac_flag;
416 long ac_exitcode;
417 unsigned long ac_mem;
418 cputime_t ac_utime, ac_stime;
419 unsigned long ac_minflt, ac_majflt;
423 * NOTE! "signal_struct" does not have it's own
424 * locking, because a shared signal_struct always
425 * implies a shared sighand_struct, so locking
426 * sighand_struct is always a proper superset of
427 * the locking of signal_struct.
429 struct signal_struct {
430 atomic_t count;
431 atomic_t live;
433 wait_queue_head_t wait_chldexit; /* for wait4() */
435 /* current thread group signal load-balancing target: */
436 struct task_struct *curr_target;
438 /* shared signal handling: */
439 struct sigpending shared_pending;
441 /* thread group exit support */
442 int group_exit_code;
443 /* overloaded:
444 * - notify group_exit_task when ->count is equal to notify_count
445 * - everyone except group_exit_task is stopped during signal delivery
446 * of fatal signals, group_exit_task processes the signal.
448 struct task_struct *group_exit_task;
449 int notify_count;
451 /* thread group stop support, overloads group_exit_code too */
452 int group_stop_count;
453 unsigned int flags; /* see SIGNAL_* flags below */
455 /* POSIX.1b Interval Timers */
456 struct list_head posix_timers;
458 /* ITIMER_REAL timer for the process */
459 struct hrtimer real_timer;
460 struct pid *leader_pid;
461 ktime_t it_real_incr;
463 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
464 cputime_t it_prof_expires, it_virt_expires;
465 cputime_t it_prof_incr, it_virt_incr;
467 /* job control IDs */
470 * pgrp and session fields are deprecated.
471 * use the task_session_Xnr and task_pgrp_Xnr routines below
474 union {
475 pid_t pgrp __deprecated;
476 pid_t __pgrp;
479 struct pid *tty_old_pgrp;
481 union {
482 pid_t session __deprecated;
483 pid_t __session;
486 /* boolean value for session group leader */
487 int leader;
489 struct tty_struct *tty; /* NULL if no tty */
492 * Cumulative resource counters for dead threads in the group,
493 * and for reaped dead child processes forked by this group.
494 * Live threads maintain their own counters and add to these
495 * in __exit_signal, except for the group leader.
497 cputime_t utime, stime, cutime, cstime;
498 cputime_t gtime;
499 cputime_t cgtime;
500 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
501 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
502 unsigned long inblock, oublock, cinblock, coublock;
505 * Cumulative ns of scheduled CPU time for dead threads in the
506 * group, not including a zombie group leader. (This only differs
507 * from jiffies_to_ns(utime + stime) if sched_clock uses something
508 * other than jiffies.)
510 unsigned long long sum_sched_runtime;
513 * We don't bother to synchronize most readers of this at all,
514 * because there is no reader checking a limit that actually needs
515 * to get both rlim_cur and rlim_max atomically, and either one
516 * alone is a single word that can safely be read normally.
517 * getrlimit/setrlimit use task_lock(current->group_leader) to
518 * protect this instead of the siglock, because they really
519 * have no need to disable irqs.
521 struct rlimit rlim[RLIM_NLIMITS];
523 struct list_head cpu_timers[3];
525 /* keep the process-shared keyrings here so that they do the right
526 * thing in threads created with CLONE_THREAD */
527 #ifdef CONFIG_KEYS
528 struct key *session_keyring; /* keyring inherited over fork */
529 struct key *process_keyring; /* keyring private to this process */
530 #endif
531 #ifdef CONFIG_BSD_PROCESS_ACCT
532 struct pacct_struct pacct; /* per-process accounting information */
533 #endif
534 #ifdef CONFIG_TASKSTATS
535 struct taskstats *stats;
536 #endif
537 #ifdef CONFIG_AUDIT
538 unsigned audit_tty;
539 struct tty_audit_buf *tty_audit_buf;
540 #endif
543 /* Context switch must be unlocked if interrupts are to be enabled */
544 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
545 # define __ARCH_WANT_UNLOCKED_CTXSW
546 #endif
549 * Bits in flags field of signal_struct.
551 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
552 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
553 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
554 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
556 * Pending notifications to parent.
558 #define SIGNAL_CLD_STOPPED 0x00000010
559 #define SIGNAL_CLD_CONTINUED 0x00000020
560 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
562 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
564 /* If true, all threads except ->group_exit_task have pending SIGKILL */
565 static inline int signal_group_exit(const struct signal_struct *sig)
567 return (sig->flags & SIGNAL_GROUP_EXIT) ||
568 (sig->group_exit_task != NULL);
572 * Some day this will be a full-fledged user tracking system..
574 struct user_struct {
575 atomic_t __count; /* reference count */
576 atomic_t processes; /* How many processes does this user have? */
577 atomic_t files; /* How many open files does this user have? */
578 atomic_t sigpending; /* How many pending signals does this user have? */
579 #ifdef CONFIG_INOTIFY_USER
580 atomic_t inotify_watches; /* How many inotify watches does this user have? */
581 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
582 #endif
583 #ifdef CONFIG_POSIX_MQUEUE
584 /* protected by mq_lock */
585 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
586 #endif
587 unsigned long locked_shm; /* How many pages of mlocked shm ? */
589 #ifdef CONFIG_KEYS
590 struct key *uid_keyring; /* UID specific keyring */
591 struct key *session_keyring; /* UID's default session keyring */
592 #endif
594 /* Hash table maintenance information */
595 struct hlist_node uidhash_node;
596 uid_t uid;
598 #ifdef CONFIG_USER_SCHED
599 struct task_group *tg;
600 #ifdef CONFIG_SYSFS
601 struct kobject kobj;
602 struct work_struct work;
603 #endif
604 #endif
607 extern int uids_sysfs_init(void);
609 extern struct user_struct *find_user(uid_t);
611 extern struct user_struct root_user;
612 #define INIT_USER (&root_user)
614 struct backing_dev_info;
615 struct reclaim_state;
617 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
618 struct sched_info {
619 /* cumulative counters */
620 unsigned long pcount; /* # of times run on this cpu */
621 unsigned long long cpu_time, /* time spent on the cpu */
622 run_delay; /* time spent waiting on a runqueue */
624 /* timestamps */
625 unsigned long long last_arrival,/* when we last ran on a cpu */
626 last_queued; /* when we were last queued to run */
627 #ifdef CONFIG_SCHEDSTATS
628 /* BKL stats */
629 unsigned int bkl_count;
630 #endif
632 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
634 #ifdef CONFIG_SCHEDSTATS
635 extern const struct file_operations proc_schedstat_operations;
636 #endif /* CONFIG_SCHEDSTATS */
638 #ifdef CONFIG_TASK_DELAY_ACCT
639 struct task_delay_info {
640 spinlock_t lock;
641 unsigned int flags; /* Private per-task flags */
643 /* For each stat XXX, add following, aligned appropriately
645 * struct timespec XXX_start, XXX_end;
646 * u64 XXX_delay;
647 * u32 XXX_count;
649 * Atomicity of updates to XXX_delay, XXX_count protected by
650 * single lock above (split into XXX_lock if contention is an issue).
654 * XXX_count is incremented on every XXX operation, the delay
655 * associated with the operation is added to XXX_delay.
656 * XXX_delay contains the accumulated delay time in nanoseconds.
658 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
659 u64 blkio_delay; /* wait for sync block io completion */
660 u64 swapin_delay; /* wait for swapin block io completion */
661 u32 blkio_count; /* total count of the number of sync block */
662 /* io operations performed */
663 u32 swapin_count; /* total count of the number of swapin block */
664 /* io operations performed */
666 #endif /* CONFIG_TASK_DELAY_ACCT */
668 static inline int sched_info_on(void)
670 #ifdef CONFIG_SCHEDSTATS
671 return 1;
672 #elif defined(CONFIG_TASK_DELAY_ACCT)
673 extern int delayacct_on;
674 return delayacct_on;
675 #else
676 return 0;
677 #endif
680 enum cpu_idle_type {
681 CPU_IDLE,
682 CPU_NOT_IDLE,
683 CPU_NEWLY_IDLE,
684 CPU_MAX_IDLE_TYPES
688 * sched-domains (multiprocessor balancing) declarations:
692 * Increase resolution of nice-level calculations:
694 #define SCHED_LOAD_SHIFT 10
695 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
697 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
699 #ifdef CONFIG_SMP
700 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
701 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
702 #define SD_BALANCE_EXEC 4 /* Balance on exec */
703 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
704 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
705 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
706 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
707 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
708 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
709 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
710 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
711 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
713 #define BALANCE_FOR_MC_POWER \
714 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
716 #define BALANCE_FOR_PKG_POWER \
717 ((sched_mc_power_savings || sched_smt_power_savings) ? \
718 SD_POWERSAVINGS_BALANCE : 0)
720 #define test_sd_parent(sd, flag) ((sd->parent && \
721 (sd->parent->flags & flag)) ? 1 : 0)
724 struct sched_group {
725 struct sched_group *next; /* Must be a circular list */
726 cpumask_t cpumask;
729 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
730 * single CPU. This is read only (except for setup, hotplug CPU).
731 * Note : Never change cpu_power without recompute its reciprocal
733 unsigned int __cpu_power;
735 * reciprocal value of cpu_power to avoid expensive divides
736 * (see include/linux/reciprocal_div.h)
738 u32 reciprocal_cpu_power;
741 enum sched_domain_level {
742 SD_LV_NONE = 0,
743 SD_LV_SIBLING,
744 SD_LV_MC,
745 SD_LV_CPU,
746 SD_LV_NODE,
747 SD_LV_ALLNODES,
748 SD_LV_MAX
751 struct sched_domain_attr {
752 int relax_domain_level;
755 #define SD_ATTR_INIT (struct sched_domain_attr) { \
756 .relax_domain_level = -1, \
759 struct sched_domain {
760 /* These fields must be setup */
761 struct sched_domain *parent; /* top domain must be null terminated */
762 struct sched_domain *child; /* bottom domain must be null terminated */
763 struct sched_group *groups; /* the balancing groups of the domain */
764 cpumask_t span; /* span of all CPUs in this domain */
765 unsigned long min_interval; /* Minimum balance interval ms */
766 unsigned long max_interval; /* Maximum balance interval ms */
767 unsigned int busy_factor; /* less balancing by factor if busy */
768 unsigned int imbalance_pct; /* No balance until over watermark */
769 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
770 unsigned int busy_idx;
771 unsigned int idle_idx;
772 unsigned int newidle_idx;
773 unsigned int wake_idx;
774 unsigned int forkexec_idx;
775 int flags; /* See SD_* */
776 enum sched_domain_level level;
778 /* Runtime fields. */
779 unsigned long last_balance; /* init to jiffies. units in jiffies */
780 unsigned int balance_interval; /* initialise to 1. units in ms. */
781 unsigned int nr_balance_failed; /* initialise to 0 */
783 #ifdef CONFIG_SCHEDSTATS
784 /* load_balance() stats */
785 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
786 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
787 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
788 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
789 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
790 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
791 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
792 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
794 /* Active load balancing */
795 unsigned int alb_count;
796 unsigned int alb_failed;
797 unsigned int alb_pushed;
799 /* SD_BALANCE_EXEC stats */
800 unsigned int sbe_count;
801 unsigned int sbe_balanced;
802 unsigned int sbe_pushed;
804 /* SD_BALANCE_FORK stats */
805 unsigned int sbf_count;
806 unsigned int sbf_balanced;
807 unsigned int sbf_pushed;
809 /* try_to_wake_up() stats */
810 unsigned int ttwu_wake_remote;
811 unsigned int ttwu_move_affine;
812 unsigned int ttwu_move_balance;
813 #endif
816 extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
817 struct sched_domain_attr *dattr_new);
818 extern int arch_reinit_sched_domains(void);
820 #endif /* CONFIG_SMP */
823 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of
824 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a
825 * task of nice 0 or enough lower priority tasks to bring up the
826 * weighted_cpuload
828 static inline int above_background_load(void)
830 unsigned long cpu;
832 for_each_online_cpu(cpu) {
833 if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE)
834 return 1;
836 return 0;
839 struct io_context; /* See blkdev.h */
840 #define NGROUPS_SMALL 32
841 #define NGROUPS_PER_BLOCK ((unsigned int)(PAGE_SIZE / sizeof(gid_t)))
842 struct group_info {
843 int ngroups;
844 atomic_t usage;
845 gid_t small_block[NGROUPS_SMALL];
846 int nblocks;
847 gid_t *blocks[0];
851 * get_group_info() must be called with the owning task locked (via task_lock())
852 * when task != current. The reason being that the vast majority of callers are
853 * looking at current->group_info, which can not be changed except by the
854 * current task. Changing current->group_info requires the task lock, too.
856 #define get_group_info(group_info) do { \
857 atomic_inc(&(group_info)->usage); \
858 } while (0)
860 #define put_group_info(group_info) do { \
861 if (atomic_dec_and_test(&(group_info)->usage)) \
862 groups_free(group_info); \
863 } while (0)
865 extern struct group_info *groups_alloc(int gidsetsize);
866 extern void groups_free(struct group_info *group_info);
867 extern int set_current_groups(struct group_info *group_info);
868 extern int groups_search(struct group_info *group_info, gid_t grp);
869 /* access the groups "array" with this macro */
870 #define GROUP_AT(gi, i) \
871 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
873 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
874 extern void prefetch_stack(struct task_struct *t);
875 #else
876 static inline void prefetch_stack(struct task_struct *t) { }
877 #endif
879 struct audit_context; /* See audit.c */
880 struct mempolicy;
881 struct pipe_inode_info;
882 struct uts_namespace;
884 struct rq;
885 struct sched_domain;
887 struct sched_class {
888 const struct sched_class *next;
890 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
891 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
892 void (*yield_task) (struct rq *rq);
893 int (*select_task_rq)(struct task_struct *p, int sync);
895 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
897 struct task_struct * (*pick_next_task) (struct rq *rq);
898 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
900 #ifdef CONFIG_SMP
901 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
902 struct rq *busiest, unsigned long max_load_move,
903 struct sched_domain *sd, enum cpu_idle_type idle,
904 int *all_pinned, int *this_best_prio);
906 int (*move_one_task) (struct rq *this_rq, int this_cpu,
907 struct rq *busiest, struct sched_domain *sd,
908 enum cpu_idle_type idle);
909 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
910 void (*post_schedule) (struct rq *this_rq);
911 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
912 #endif
914 void (*set_curr_task) (struct rq *rq);
915 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
916 void (*task_new) (struct rq *rq, struct task_struct *p);
917 void (*set_cpus_allowed)(struct task_struct *p,
918 const cpumask_t *newmask);
920 void (*join_domain)(struct rq *rq);
921 void (*leave_domain)(struct rq *rq);
923 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
924 int running);
925 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
926 int running);
927 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
928 int oldprio, int running);
930 #ifdef CONFIG_FAIR_GROUP_SCHED
931 void (*moved_group) (struct task_struct *p);
932 #endif
935 struct load_weight {
936 unsigned long weight, inv_weight;
940 * CFS stats for a schedulable entity (task, task-group etc)
942 * Current field usage histogram:
944 * 4 se->block_start
945 * 4 se->run_node
946 * 4 se->sleep_start
947 * 6 se->load.weight
949 struct sched_entity {
950 struct load_weight load; /* for load-balancing */
951 struct rb_node run_node;
952 struct list_head group_node;
953 unsigned int on_rq;
955 u64 exec_start;
956 u64 sum_exec_runtime;
957 u64 vruntime;
958 u64 prev_sum_exec_runtime;
960 u64 last_wakeup;
961 u64 avg_overlap;
963 #ifdef CONFIG_SCHEDSTATS
964 u64 wait_start;
965 u64 wait_max;
966 u64 wait_count;
967 u64 wait_sum;
969 u64 sleep_start;
970 u64 sleep_max;
971 s64 sum_sleep_runtime;
973 u64 block_start;
974 u64 block_max;
975 u64 exec_max;
976 u64 slice_max;
978 u64 nr_migrations;
979 u64 nr_migrations_cold;
980 u64 nr_failed_migrations_affine;
981 u64 nr_failed_migrations_running;
982 u64 nr_failed_migrations_hot;
983 u64 nr_forced_migrations;
984 u64 nr_forced2_migrations;
986 u64 nr_wakeups;
987 u64 nr_wakeups_sync;
988 u64 nr_wakeups_migrate;
989 u64 nr_wakeups_local;
990 u64 nr_wakeups_remote;
991 u64 nr_wakeups_affine;
992 u64 nr_wakeups_affine_attempts;
993 u64 nr_wakeups_passive;
994 u64 nr_wakeups_idle;
995 #endif
997 #ifdef CONFIG_FAIR_GROUP_SCHED
998 struct sched_entity *parent;
999 /* rq on which this entity is (to be) queued: */
1000 struct cfs_rq *cfs_rq;
1001 /* rq "owned" by this entity/group: */
1002 struct cfs_rq *my_q;
1003 #endif
1006 struct sched_rt_entity {
1007 struct list_head run_list;
1008 unsigned int time_slice;
1009 unsigned long timeout;
1010 int nr_cpus_allowed;
1012 struct sched_rt_entity *back;
1013 #ifdef CONFIG_RT_GROUP_SCHED
1014 struct sched_rt_entity *parent;
1015 /* rq on which this entity is (to be) queued: */
1016 struct rt_rq *rt_rq;
1017 /* rq "owned" by this entity/group: */
1018 struct rt_rq *my_q;
1019 #endif
1022 struct task_struct {
1023 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1024 void *stack;
1025 atomic_t usage;
1026 unsigned int flags; /* per process flags, defined below */
1027 unsigned int ptrace;
1029 int lock_depth; /* BKL lock depth */
1031 #ifdef CONFIG_SMP
1032 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1033 int oncpu;
1034 #endif
1035 #endif
1037 int prio, static_prio, normal_prio;
1038 const struct sched_class *sched_class;
1039 struct sched_entity se;
1040 struct sched_rt_entity rt;
1042 #ifdef CONFIG_PREEMPT_NOTIFIERS
1043 /* list of struct preempt_notifier: */
1044 struct hlist_head preempt_notifiers;
1045 #endif
1048 * fpu_counter contains the number of consecutive context switches
1049 * that the FPU is used. If this is over a threshold, the lazy fpu
1050 * saving becomes unlazy to save the trap. This is an unsigned char
1051 * so that after 256 times the counter wraps and the behavior turns
1052 * lazy again; this to deal with bursty apps that only use FPU for
1053 * a short time
1055 unsigned char fpu_counter;
1056 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1057 #ifdef CONFIG_BLK_DEV_IO_TRACE
1058 unsigned int btrace_seq;
1059 #endif
1061 unsigned int policy;
1062 cpumask_t cpus_allowed;
1064 #ifdef CONFIG_PREEMPT_RCU
1065 int rcu_read_lock_nesting;
1066 int rcu_flipctr_idx;
1067 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1069 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1070 struct sched_info sched_info;
1071 #endif
1073 struct list_head tasks;
1075 * ptrace_list/ptrace_children forms the list of my children
1076 * that were stolen by a ptracer.
1078 struct list_head ptrace_children;
1079 struct list_head ptrace_list;
1081 struct mm_struct *mm, *active_mm;
1083 /* task state */
1084 struct linux_binfmt *binfmt;
1085 int exit_state;
1086 int exit_code, exit_signal;
1087 int pdeath_signal; /* The signal sent when the parent dies */
1088 /* ??? */
1089 unsigned int personality;
1090 unsigned did_exec:1;
1091 pid_t pid;
1092 pid_t tgid;
1094 #ifdef CONFIG_CC_STACKPROTECTOR
1095 /* Canary value for the -fstack-protector gcc feature */
1096 unsigned long stack_canary;
1097 #endif
1099 * pointers to (original) parent process, youngest child, younger sibling,
1100 * older sibling, respectively. (p->father can be replaced with
1101 * p->parent->pid)
1103 struct task_struct *real_parent; /* real parent process (when being debugged) */
1104 struct task_struct *parent; /* parent process */
1106 * children/sibling forms the list of my children plus the
1107 * tasks I'm ptracing.
1109 struct list_head children; /* list of my children */
1110 struct list_head sibling; /* linkage in my parent's children list */
1111 struct task_struct *group_leader; /* threadgroup leader */
1113 /* PID/PID hash table linkage. */
1114 struct pid_link pids[PIDTYPE_MAX];
1115 struct list_head thread_group;
1117 struct completion *vfork_done; /* for vfork() */
1118 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1119 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1121 unsigned int rt_priority;
1122 cputime_t utime, stime, utimescaled, stimescaled;
1123 cputime_t gtime;
1124 cputime_t prev_utime, prev_stime;
1125 unsigned long nvcsw, nivcsw; /* context switch counts */
1126 struct timespec start_time; /* monotonic time */
1127 struct timespec real_start_time; /* boot based time */
1128 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1129 unsigned long min_flt, maj_flt;
1131 cputime_t it_prof_expires, it_virt_expires;
1132 unsigned long long it_sched_expires;
1133 struct list_head cpu_timers[3];
1135 /* process credentials */
1136 uid_t uid,euid,suid,fsuid;
1137 gid_t gid,egid,sgid,fsgid;
1138 struct group_info *group_info;
1139 kernel_cap_t cap_effective, cap_inheritable, cap_permitted, cap_bset;
1140 unsigned securebits;
1141 struct user_struct *user;
1142 #ifdef CONFIG_KEYS
1143 struct key *request_key_auth; /* assumed request_key authority */
1144 struct key *thread_keyring; /* keyring private to this thread */
1145 unsigned char jit_keyring; /* default keyring to attach requested keys to */
1146 #endif
1147 char comm[TASK_COMM_LEN]; /* executable name excluding path
1148 - access with [gs]et_task_comm (which lock
1149 it with task_lock())
1150 - initialized normally by flush_old_exec */
1151 /* file system info */
1152 int link_count, total_link_count;
1153 #ifdef CONFIG_SYSVIPC
1154 /* ipc stuff */
1155 struct sysv_sem sysvsem;
1156 #endif
1157 #ifdef CONFIG_DETECT_SOFTLOCKUP
1158 /* hung task detection */
1159 unsigned long last_switch_timestamp;
1160 unsigned long last_switch_count;
1161 #endif
1162 /* CPU-specific state of this task */
1163 struct thread_struct thread;
1164 /* filesystem information */
1165 struct fs_struct *fs;
1166 /* open file information */
1167 struct files_struct *files;
1168 /* namespaces */
1169 struct nsproxy *nsproxy;
1170 /* signal handlers */
1171 struct signal_struct *signal;
1172 struct sighand_struct *sighand;
1174 sigset_t blocked, real_blocked;
1175 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1176 struct sigpending pending;
1178 unsigned long sas_ss_sp;
1179 size_t sas_ss_size;
1180 int (*notifier)(void *priv);
1181 void *notifier_data;
1182 sigset_t *notifier_mask;
1183 #ifdef CONFIG_SECURITY
1184 void *security;
1185 #endif
1186 struct audit_context *audit_context;
1187 #ifdef CONFIG_AUDITSYSCALL
1188 uid_t loginuid;
1189 unsigned int sessionid;
1190 #endif
1191 seccomp_t seccomp;
1193 /* Thread group tracking */
1194 u32 parent_exec_id;
1195 u32 self_exec_id;
1196 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1197 spinlock_t alloc_lock;
1199 /* Protection of the PI data structures: */
1200 spinlock_t pi_lock;
1202 #ifdef CONFIG_RT_MUTEXES
1203 /* PI waiters blocked on a rt_mutex held by this task */
1204 struct plist_head pi_waiters;
1205 /* Deadlock detection and priority inheritance handling */
1206 struct rt_mutex_waiter *pi_blocked_on;
1207 #endif
1209 #ifdef CONFIG_DEBUG_MUTEXES
1210 /* mutex deadlock detection */
1211 struct mutex_waiter *blocked_on;
1212 #endif
1213 #ifdef CONFIG_TRACE_IRQFLAGS
1214 unsigned int irq_events;
1215 int hardirqs_enabled;
1216 unsigned long hardirq_enable_ip;
1217 unsigned int hardirq_enable_event;
1218 unsigned long hardirq_disable_ip;
1219 unsigned int hardirq_disable_event;
1220 int softirqs_enabled;
1221 unsigned long softirq_disable_ip;
1222 unsigned int softirq_disable_event;
1223 unsigned long softirq_enable_ip;
1224 unsigned int softirq_enable_event;
1225 int hardirq_context;
1226 int softirq_context;
1227 #endif
1228 #ifdef CONFIG_LOCKDEP
1229 # define MAX_LOCK_DEPTH 48UL
1230 u64 curr_chain_key;
1231 int lockdep_depth;
1232 struct held_lock held_locks[MAX_LOCK_DEPTH];
1233 unsigned int lockdep_recursion;
1234 #endif
1236 /* journalling filesystem info */
1237 void *journal_info;
1239 /* stacked block device info */
1240 struct bio *bio_list, **bio_tail;
1242 /* VM state */
1243 struct reclaim_state *reclaim_state;
1245 struct backing_dev_info *backing_dev_info;
1247 struct io_context *io_context;
1249 unsigned long ptrace_message;
1250 siginfo_t *last_siginfo; /* For ptrace use. */
1251 #ifdef CONFIG_TASK_XACCT
1252 /* i/o counters(bytes read/written, #syscalls */
1253 u64 rchar, wchar, syscr, syscw;
1254 #endif
1255 struct task_io_accounting ioac;
1256 #if defined(CONFIG_TASK_XACCT)
1257 u64 acct_rss_mem1; /* accumulated rss usage */
1258 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1259 cputime_t acct_stimexpd;/* stime since last update */
1260 #endif
1261 #ifdef CONFIG_NUMA
1262 struct mempolicy *mempolicy;
1263 short il_next;
1264 #endif
1265 #ifdef CONFIG_CPUSETS
1266 nodemask_t mems_allowed;
1267 int cpuset_mems_generation;
1268 int cpuset_mem_spread_rotor;
1269 #endif
1270 #ifdef CONFIG_CGROUPS
1271 /* Control Group info protected by css_set_lock */
1272 struct css_set *cgroups;
1273 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1274 struct list_head cg_list;
1275 #endif
1276 #ifdef CONFIG_FUTEX
1277 struct robust_list_head __user *robust_list;
1278 #ifdef CONFIG_COMPAT
1279 struct compat_robust_list_head __user *compat_robust_list;
1280 #endif
1281 struct list_head pi_state_list;
1282 struct futex_pi_state *pi_state_cache;
1283 #endif
1284 atomic_t fs_excl; /* holding fs exclusive resources */
1285 struct rcu_head rcu;
1288 * cache last used pipe for splice
1290 struct pipe_inode_info *splice_pipe;
1291 #ifdef CONFIG_TASK_DELAY_ACCT
1292 struct task_delay_info *delays;
1293 #endif
1294 #ifdef CONFIG_FAULT_INJECTION
1295 int make_it_fail;
1296 #endif
1297 struct prop_local_single dirties;
1298 #ifdef CONFIG_LATENCYTOP
1299 int latency_record_count;
1300 struct latency_record latency_record[LT_SAVECOUNT];
1301 #endif
1305 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1306 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1307 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1308 * values are inverted: lower p->prio value means higher priority.
1310 * The MAX_USER_RT_PRIO value allows the actual maximum
1311 * RT priority to be separate from the value exported to
1312 * user-space. This allows kernel threads to set their
1313 * priority to a value higher than any user task. Note:
1314 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1317 #define MAX_USER_RT_PRIO 100
1318 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1320 #define MAX_PRIO (MAX_RT_PRIO + 40)
1321 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1323 static inline int rt_prio(int prio)
1325 if (unlikely(prio < MAX_RT_PRIO))
1326 return 1;
1327 return 0;
1330 static inline int rt_task(struct task_struct *p)
1332 return rt_prio(p->prio);
1335 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1337 tsk->signal->__session = session;
1340 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1342 tsk->signal->__pgrp = pgrp;
1345 static inline struct pid *task_pid(struct task_struct *task)
1347 return task->pids[PIDTYPE_PID].pid;
1350 static inline struct pid *task_tgid(struct task_struct *task)
1352 return task->group_leader->pids[PIDTYPE_PID].pid;
1355 static inline struct pid *task_pgrp(struct task_struct *task)
1357 return task->group_leader->pids[PIDTYPE_PGID].pid;
1360 static inline struct pid *task_session(struct task_struct *task)
1362 return task->group_leader->pids[PIDTYPE_SID].pid;
1365 struct pid_namespace;
1368 * the helpers to get the task's different pids as they are seen
1369 * from various namespaces
1371 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1372 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1373 * current.
1374 * task_xid_nr_ns() : id seen from the ns specified;
1376 * set_task_vxid() : assigns a virtual id to a task;
1378 * see also pid_nr() etc in include/linux/pid.h
1381 static inline pid_t task_pid_nr(struct task_struct *tsk)
1383 return tsk->pid;
1386 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1388 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1390 return pid_vnr(task_pid(tsk));
1394 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1396 return tsk->tgid;
1399 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1401 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1403 return pid_vnr(task_tgid(tsk));
1407 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1409 return tsk->signal->__pgrp;
1412 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1414 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1416 return pid_vnr(task_pgrp(tsk));
1420 static inline pid_t task_session_nr(struct task_struct *tsk)
1422 return tsk->signal->__session;
1425 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1427 static inline pid_t task_session_vnr(struct task_struct *tsk)
1429 return pid_vnr(task_session(tsk));
1434 * pid_alive - check that a task structure is not stale
1435 * @p: Task structure to be checked.
1437 * Test if a process is not yet dead (at most zombie state)
1438 * If pid_alive fails, then pointers within the task structure
1439 * can be stale and must not be dereferenced.
1441 static inline int pid_alive(struct task_struct *p)
1443 return p->pids[PIDTYPE_PID].pid != NULL;
1447 * is_global_init - check if a task structure is init
1448 * @tsk: Task structure to be checked.
1450 * Check if a task structure is the first user space task the kernel created.
1452 static inline int is_global_init(struct task_struct *tsk)
1454 return tsk->pid == 1;
1458 * is_container_init:
1459 * check whether in the task is init in its own pid namespace.
1461 extern int is_container_init(struct task_struct *tsk);
1463 extern struct pid *cad_pid;
1465 extern void free_task(struct task_struct *tsk);
1466 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1468 extern void __put_task_struct(struct task_struct *t);
1470 static inline void put_task_struct(struct task_struct *t)
1472 if (atomic_dec_and_test(&t->usage))
1473 __put_task_struct(t);
1477 * Per process flags
1479 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1480 /* Not implemented yet, only for 486*/
1481 #define PF_STARTING 0x00000002 /* being created */
1482 #define PF_EXITING 0x00000004 /* getting shut down */
1483 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1484 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1485 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1486 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1487 #define PF_DUMPCORE 0x00000200 /* dumped core */
1488 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1489 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1490 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1491 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1492 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1493 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1494 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1495 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1496 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1497 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1498 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */
1499 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1500 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1501 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1502 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1503 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1504 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1505 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1508 * Only the _current_ task can read/write to tsk->flags, but other
1509 * tasks can access tsk->flags in readonly mode for example
1510 * with tsk_used_math (like during threaded core dumping).
1511 * There is however an exception to this rule during ptrace
1512 * or during fork: the ptracer task is allowed to write to the
1513 * child->flags of its traced child (same goes for fork, the parent
1514 * can write to the child->flags), because we're guaranteed the
1515 * child is not running and in turn not changing child->flags
1516 * at the same time the parent does it.
1518 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1519 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1520 #define clear_used_math() clear_stopped_child_used_math(current)
1521 #define set_used_math() set_stopped_child_used_math(current)
1522 #define conditional_stopped_child_used_math(condition, child) \
1523 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1524 #define conditional_used_math(condition) \
1525 conditional_stopped_child_used_math(condition, current)
1526 #define copy_to_stopped_child_used_math(child) \
1527 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1528 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1529 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1530 #define used_math() tsk_used_math(current)
1532 #ifdef CONFIG_SMP
1533 extern int set_cpus_allowed_ptr(struct task_struct *p,
1534 const cpumask_t *new_mask);
1535 #else
1536 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1537 const cpumask_t *new_mask)
1539 if (!cpu_isset(0, *new_mask))
1540 return -EINVAL;
1541 return 0;
1543 #endif
1544 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1546 return set_cpus_allowed_ptr(p, &new_mask);
1549 extern unsigned long long sched_clock(void);
1551 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1552 static inline void sched_clock_init(void)
1556 static inline u64 sched_clock_cpu(int cpu)
1558 return sched_clock();
1561 static inline void sched_clock_tick(void)
1565 static inline void sched_clock_idle_sleep_event(void)
1569 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1572 #else
1573 extern void sched_clock_init(void);
1574 extern u64 sched_clock_cpu(int cpu);
1575 extern void sched_clock_tick(void);
1576 extern void sched_clock_idle_sleep_event(void);
1577 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1578 #endif
1581 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1582 * clock constructed from sched_clock():
1584 extern unsigned long long cpu_clock(int cpu);
1586 extern unsigned long long
1587 task_sched_runtime(struct task_struct *task);
1589 /* sched_exec is called by processes performing an exec */
1590 #ifdef CONFIG_SMP
1591 extern void sched_exec(void);
1592 #else
1593 #define sched_exec() {}
1594 #endif
1596 extern void sched_clock_idle_sleep_event(void);
1597 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1599 #ifdef CONFIG_HOTPLUG_CPU
1600 extern void idle_task_exit(void);
1601 #else
1602 static inline void idle_task_exit(void) {}
1603 #endif
1605 extern void sched_idle_next(void);
1607 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1608 extern void wake_up_idle_cpu(int cpu);
1609 #else
1610 static inline void wake_up_idle_cpu(int cpu) { }
1611 #endif
1613 #ifdef CONFIG_SCHED_DEBUG
1614 extern unsigned int sysctl_sched_latency;
1615 extern unsigned int sysctl_sched_min_granularity;
1616 extern unsigned int sysctl_sched_wakeup_granularity;
1617 extern unsigned int sysctl_sched_child_runs_first;
1618 extern unsigned int sysctl_sched_features;
1619 extern unsigned int sysctl_sched_migration_cost;
1620 extern unsigned int sysctl_sched_nr_migrate;
1622 int sched_nr_latency_handler(struct ctl_table *table, int write,
1623 struct file *file, void __user *buffer, size_t *length,
1624 loff_t *ppos);
1625 #endif
1626 extern unsigned int sysctl_sched_rt_period;
1627 extern int sysctl_sched_rt_runtime;
1629 int sched_rt_handler(struct ctl_table *table, int write,
1630 struct file *filp, void __user *buffer, size_t *lenp,
1631 loff_t *ppos);
1633 extern unsigned int sysctl_sched_compat_yield;
1635 #ifdef CONFIG_RT_MUTEXES
1636 extern int rt_mutex_getprio(struct task_struct *p);
1637 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1638 extern void rt_mutex_adjust_pi(struct task_struct *p);
1639 #else
1640 static inline int rt_mutex_getprio(struct task_struct *p)
1642 return p->normal_prio;
1644 # define rt_mutex_adjust_pi(p) do { } while (0)
1645 #endif
1647 extern void set_user_nice(struct task_struct *p, long nice);
1648 extern int task_prio(const struct task_struct *p);
1649 extern int task_nice(const struct task_struct *p);
1650 extern int can_nice(const struct task_struct *p, const int nice);
1651 extern int task_curr(const struct task_struct *p);
1652 extern int idle_cpu(int cpu);
1653 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1654 extern struct task_struct *idle_task(int cpu);
1655 extern struct task_struct *curr_task(int cpu);
1656 extern void set_curr_task(int cpu, struct task_struct *p);
1658 void yield(void);
1661 * The default (Linux) execution domain.
1663 extern struct exec_domain default_exec_domain;
1665 union thread_union {
1666 struct thread_info thread_info;
1667 unsigned long stack[THREAD_SIZE/sizeof(long)];
1670 #ifndef __HAVE_ARCH_KSTACK_END
1671 static inline int kstack_end(void *addr)
1673 /* Reliable end of stack detection:
1674 * Some APM bios versions misalign the stack
1676 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1678 #endif
1680 extern union thread_union init_thread_union;
1681 extern struct task_struct init_task;
1683 extern struct mm_struct init_mm;
1685 extern struct pid_namespace init_pid_ns;
1688 * find a task by one of its numerical ids
1690 * find_task_by_pid_type_ns():
1691 * it is the most generic call - it finds a task by all id,
1692 * type and namespace specified
1693 * find_task_by_pid_ns():
1694 * finds a task by its pid in the specified namespace
1695 * find_task_by_vpid():
1696 * finds a task by its virtual pid
1697 * find_task_by_pid():
1698 * finds a task by its global pid
1700 * see also find_pid() etc in include/linux/pid.h
1703 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1704 struct pid_namespace *ns);
1706 static inline struct task_struct *__deprecated find_task_by_pid(pid_t nr)
1708 return find_task_by_pid_type_ns(PIDTYPE_PID, nr, &init_pid_ns);
1710 extern struct task_struct *find_task_by_vpid(pid_t nr);
1711 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1712 struct pid_namespace *ns);
1714 extern void __set_special_pids(struct pid *pid);
1716 /* per-UID process charging. */
1717 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1718 static inline struct user_struct *get_uid(struct user_struct *u)
1720 atomic_inc(&u->__count);
1721 return u;
1723 extern void free_uid(struct user_struct *);
1724 extern void switch_uid(struct user_struct *);
1725 extern void release_uids(struct user_namespace *ns);
1727 #include <asm/current.h>
1729 extern void do_timer(unsigned long ticks);
1731 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1732 extern int wake_up_process(struct task_struct *tsk);
1733 extern void wake_up_new_task(struct task_struct *tsk,
1734 unsigned long clone_flags);
1735 #ifdef CONFIG_SMP
1736 extern void kick_process(struct task_struct *tsk);
1737 #else
1738 static inline void kick_process(struct task_struct *tsk) { }
1739 #endif
1740 extern void sched_fork(struct task_struct *p, int clone_flags);
1741 extern void sched_dead(struct task_struct *p);
1743 extern int in_group_p(gid_t);
1744 extern int in_egroup_p(gid_t);
1746 extern void proc_caches_init(void);
1747 extern void flush_signals(struct task_struct *);
1748 extern void ignore_signals(struct task_struct *);
1749 extern void flush_signal_handlers(struct task_struct *, int force_default);
1750 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1752 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1754 unsigned long flags;
1755 int ret;
1757 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1758 ret = dequeue_signal(tsk, mask, info);
1759 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1761 return ret;
1764 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1765 sigset_t *mask);
1766 extern void unblock_all_signals(void);
1767 extern void release_task(struct task_struct * p);
1768 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1769 extern int force_sigsegv(int, struct task_struct *);
1770 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1771 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1772 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1773 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1774 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1775 extern int kill_pid(struct pid *pid, int sig, int priv);
1776 extern int kill_proc_info(int, struct siginfo *, pid_t);
1777 extern void do_notify_parent(struct task_struct *, int);
1778 extern void force_sig(int, struct task_struct *);
1779 extern void force_sig_specific(int, struct task_struct *);
1780 extern int send_sig(int, struct task_struct *, int);
1781 extern void zap_other_threads(struct task_struct *p);
1782 extern int kill_proc(pid_t, int, int);
1783 extern struct sigqueue *sigqueue_alloc(void);
1784 extern void sigqueue_free(struct sigqueue *);
1785 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
1786 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1787 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1789 static inline int kill_cad_pid(int sig, int priv)
1791 return kill_pid(cad_pid, sig, priv);
1794 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1795 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1796 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1797 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1799 static inline int is_si_special(const struct siginfo *info)
1801 return info <= SEND_SIG_FORCED;
1804 /* True if we are on the alternate signal stack. */
1806 static inline int on_sig_stack(unsigned long sp)
1808 return (sp - current->sas_ss_sp < current->sas_ss_size);
1811 static inline int sas_ss_flags(unsigned long sp)
1813 return (current->sas_ss_size == 0 ? SS_DISABLE
1814 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1818 * Routines for handling mm_structs
1820 extern struct mm_struct * mm_alloc(void);
1822 /* mmdrop drops the mm and the page tables */
1823 extern void __mmdrop(struct mm_struct *);
1824 static inline void mmdrop(struct mm_struct * mm)
1826 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1827 __mmdrop(mm);
1830 /* mmput gets rid of the mappings and all user-space */
1831 extern void mmput(struct mm_struct *);
1832 /* Grab a reference to a task's mm, if it is not already going away */
1833 extern struct mm_struct *get_task_mm(struct task_struct *task);
1834 /* Remove the current tasks stale references to the old mm_struct */
1835 extern void mm_release(struct task_struct *, struct mm_struct *);
1836 /* Allocate a new mm structure and copy contents from tsk->mm */
1837 extern struct mm_struct *dup_mm(struct task_struct *tsk);
1839 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1840 extern void flush_thread(void);
1841 extern void exit_thread(void);
1843 extern void exit_files(struct task_struct *);
1844 extern void __cleanup_signal(struct signal_struct *);
1845 extern void __cleanup_sighand(struct sighand_struct *);
1847 extern void exit_itimers(struct signal_struct *);
1848 extern void flush_itimer_signals(void);
1850 extern NORET_TYPE void do_group_exit(int);
1852 extern void daemonize(const char *, ...);
1853 extern int allow_signal(int);
1854 extern int disallow_signal(int);
1856 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1857 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1858 struct task_struct *fork_idle(int);
1860 extern void set_task_comm(struct task_struct *tsk, char *from);
1861 extern char *get_task_comm(char *to, struct task_struct *tsk);
1863 #ifdef CONFIG_SMP
1864 extern void wait_task_inactive(struct task_struct * p);
1865 #else
1866 #define wait_task_inactive(p) do { } while (0)
1867 #endif
1869 #define remove_parent(p) list_del_init(&(p)->sibling)
1870 #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children)
1872 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1874 #define for_each_process(p) \
1875 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1878 * Careful: do_each_thread/while_each_thread is a double loop so
1879 * 'break' will not work as expected - use goto instead.
1881 #define do_each_thread(g, t) \
1882 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1884 #define while_each_thread(g, t) \
1885 while ((t = next_thread(t)) != g)
1887 /* de_thread depends on thread_group_leader not being a pid based check */
1888 #define thread_group_leader(p) (p == p->group_leader)
1890 /* Do to the insanities of de_thread it is possible for a process
1891 * to have the pid of the thread group leader without actually being
1892 * the thread group leader. For iteration through the pids in proc
1893 * all we care about is that we have a task with the appropriate
1894 * pid, we don't actually care if we have the right task.
1896 static inline int has_group_leader_pid(struct task_struct *p)
1898 return p->pid == p->tgid;
1901 static inline
1902 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1904 return p1->tgid == p2->tgid;
1907 static inline struct task_struct *next_thread(const struct task_struct *p)
1909 return list_entry(rcu_dereference(p->thread_group.next),
1910 struct task_struct, thread_group);
1913 static inline int thread_group_empty(struct task_struct *p)
1915 return list_empty(&p->thread_group);
1918 #define delay_group_leader(p) \
1919 (thread_group_leader(p) && !thread_group_empty(p))
1922 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1923 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1924 * pins the final release of task.io_context. Also protects ->cpuset and
1925 * ->cgroup.subsys[].
1927 * Nests both inside and outside of read_lock(&tasklist_lock).
1928 * It must not be nested with write_lock_irq(&tasklist_lock),
1929 * neither inside nor outside.
1931 static inline void task_lock(struct task_struct *p)
1933 spin_lock(&p->alloc_lock);
1936 static inline void task_unlock(struct task_struct *p)
1938 spin_unlock(&p->alloc_lock);
1941 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1942 unsigned long *flags);
1944 static inline void unlock_task_sighand(struct task_struct *tsk,
1945 unsigned long *flags)
1947 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1950 #ifndef __HAVE_THREAD_FUNCTIONS
1952 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
1953 #define task_stack_page(task) ((task)->stack)
1955 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1957 *task_thread_info(p) = *task_thread_info(org);
1958 task_thread_info(p)->task = p;
1961 static inline unsigned long *end_of_stack(struct task_struct *p)
1963 return (unsigned long *)(task_thread_info(p) + 1);
1966 #endif
1968 extern void thread_info_cache_init(void);
1970 /* set thread flags in other task's structures
1971 * - see asm/thread_info.h for TIF_xxxx flags available
1973 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1975 set_ti_thread_flag(task_thread_info(tsk), flag);
1978 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1980 clear_ti_thread_flag(task_thread_info(tsk), flag);
1983 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1985 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1988 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1990 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1993 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1995 return test_ti_thread_flag(task_thread_info(tsk), flag);
1998 static inline void set_tsk_need_resched(struct task_struct *tsk)
2000 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2003 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2005 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2008 static inline int test_tsk_need_resched(struct task_struct *tsk)
2010 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2013 static inline int signal_pending(struct task_struct *p)
2015 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2018 extern int __fatal_signal_pending(struct task_struct *p);
2020 static inline int fatal_signal_pending(struct task_struct *p)
2022 return signal_pending(p) && __fatal_signal_pending(p);
2025 static inline int signal_pending_state(long state, struct task_struct *p)
2027 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2028 return 0;
2029 if (!signal_pending(p))
2030 return 0;
2032 if (state & (__TASK_STOPPED | __TASK_TRACED))
2033 return 0;
2035 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2038 static inline int need_resched(void)
2040 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2044 * cond_resched() and cond_resched_lock(): latency reduction via
2045 * explicit rescheduling in places that are safe. The return
2046 * value indicates whether a reschedule was done in fact.
2047 * cond_resched_lock() will drop the spinlock before scheduling,
2048 * cond_resched_softirq() will enable bhs before scheduling.
2050 extern int _cond_resched(void);
2051 #ifdef CONFIG_PREEMPT_BKL
2052 static inline int cond_resched(void)
2054 return 0;
2056 #else
2057 static inline int cond_resched(void)
2059 return _cond_resched();
2061 #endif
2062 extern int cond_resched_lock(spinlock_t * lock);
2063 extern int cond_resched_softirq(void);
2064 static inline int cond_resched_bkl(void)
2066 return _cond_resched();
2070 * Does a critical section need to be broken due to another
2071 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2072 * but a general need for low latency)
2074 static inline int spin_needbreak(spinlock_t *lock)
2076 #ifdef CONFIG_PREEMPT
2077 return spin_is_contended(lock);
2078 #else
2079 return 0;
2080 #endif
2084 * Reevaluate whether the task has signals pending delivery.
2085 * Wake the task if so.
2086 * This is required every time the blocked sigset_t changes.
2087 * callers must hold sighand->siglock.
2089 extern void recalc_sigpending_and_wake(struct task_struct *t);
2090 extern void recalc_sigpending(void);
2092 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2095 * Wrappers for p->thread_info->cpu access. No-op on UP.
2097 #ifdef CONFIG_SMP
2099 static inline unsigned int task_cpu(const struct task_struct *p)
2101 return task_thread_info(p)->cpu;
2104 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2106 #else
2108 static inline unsigned int task_cpu(const struct task_struct *p)
2110 return 0;
2113 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2117 #endif /* CONFIG_SMP */
2119 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
2120 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2121 #else
2122 static inline void arch_pick_mmap_layout(struct mm_struct *mm)
2124 mm->mmap_base = TASK_UNMAPPED_BASE;
2125 mm->get_unmapped_area = arch_get_unmapped_area;
2126 mm->unmap_area = arch_unmap_area;
2128 #endif
2130 extern long sched_setaffinity(pid_t pid, const cpumask_t *new_mask);
2131 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
2133 extern int sched_mc_power_savings, sched_smt_power_savings;
2135 extern void normalize_rt_tasks(void);
2137 #ifdef CONFIG_GROUP_SCHED
2139 extern struct task_group init_task_group;
2140 #ifdef CONFIG_USER_SCHED
2141 extern struct task_group root_task_group;
2142 #endif
2144 extern struct task_group *sched_create_group(struct task_group *parent);
2145 extern void sched_destroy_group(struct task_group *tg);
2146 extern void sched_move_task(struct task_struct *tsk);
2147 #ifdef CONFIG_FAIR_GROUP_SCHED
2148 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2149 extern unsigned long sched_group_shares(struct task_group *tg);
2150 #endif
2151 #ifdef CONFIG_RT_GROUP_SCHED
2152 extern int sched_group_set_rt_runtime(struct task_group *tg,
2153 long rt_runtime_us);
2154 extern long sched_group_rt_runtime(struct task_group *tg);
2155 extern int sched_group_set_rt_period(struct task_group *tg,
2156 long rt_period_us);
2157 extern long sched_group_rt_period(struct task_group *tg);
2158 #endif
2159 #endif
2161 #ifdef CONFIG_TASK_XACCT
2162 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2164 tsk->rchar += amt;
2167 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2169 tsk->wchar += amt;
2172 static inline void inc_syscr(struct task_struct *tsk)
2174 tsk->syscr++;
2177 static inline void inc_syscw(struct task_struct *tsk)
2179 tsk->syscw++;
2181 #else
2182 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2186 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2190 static inline void inc_syscr(struct task_struct *tsk)
2194 static inline void inc_syscw(struct task_struct *tsk)
2197 #endif
2199 #ifndef TASK_SIZE_OF
2200 #define TASK_SIZE_OF(tsk) TASK_SIZE
2201 #endif
2203 #ifdef CONFIG_MM_OWNER
2204 extern void mm_update_next_owner(struct mm_struct *mm);
2205 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2206 #else
2207 static inline void mm_update_next_owner(struct mm_struct *mm)
2211 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2214 #endif /* CONFIG_MM_OWNER */
2216 #endif /* __KERNEL__ */
2218 #endif