CGroup API files: drop mem_cgroup_force_empty()
[linux-2.6/kmemtrace.git] / net / core / skbuff.c
blob4fe605fa6f8a27dd2c346bedcb78caa09fdf8e81
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
9 * Fixes:
10 * Alan Cox : Fixed the worst of the load
11 * balancer bugs.
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
25 * NOTE:
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
38 * The functions in this file will not compile correctly with gcc 2.4.x
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/netdevice.h>
50 #ifdef CONFIG_NET_CLS_ACT
51 #include <net/pkt_sched.h>
52 #endif
53 #include <linux/string.h>
54 #include <linux/skbuff.h>
55 #include <linux/splice.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/scatterlist.h>
61 #include <net/protocol.h>
62 #include <net/dst.h>
63 #include <net/sock.h>
64 #include <net/checksum.h>
65 #include <net/xfrm.h>
67 #include <asm/uaccess.h>
68 #include <asm/system.h>
70 #include "kmap_skb.h"
72 static struct kmem_cache *skbuff_head_cache __read_mostly;
73 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
75 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
76 struct pipe_buffer *buf)
78 struct sk_buff *skb = (struct sk_buff *) buf->private;
80 kfree_skb(skb);
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 struct pipe_buffer *buf)
86 struct sk_buff *skb = (struct sk_buff *) buf->private;
88 skb_get(skb);
91 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
92 struct pipe_buffer *buf)
94 return 1;
98 /* Pipe buffer operations for a socket. */
99 static struct pipe_buf_operations sock_pipe_buf_ops = {
100 .can_merge = 0,
101 .map = generic_pipe_buf_map,
102 .unmap = generic_pipe_buf_unmap,
103 .confirm = generic_pipe_buf_confirm,
104 .release = sock_pipe_buf_release,
105 .steal = sock_pipe_buf_steal,
106 .get = sock_pipe_buf_get,
110 * Keep out-of-line to prevent kernel bloat.
111 * __builtin_return_address is not used because it is not always
112 * reliable.
116 * skb_over_panic - private function
117 * @skb: buffer
118 * @sz: size
119 * @here: address
121 * Out of line support code for skb_put(). Not user callable.
123 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
125 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
126 "data:%p tail:%#lx end:%#lx dev:%s\n",
127 here, skb->len, sz, skb->head, skb->data,
128 (unsigned long)skb->tail, (unsigned long)skb->end,
129 skb->dev ? skb->dev->name : "<NULL>");
130 BUG();
134 * skb_under_panic - private function
135 * @skb: buffer
136 * @sz: size
137 * @here: address
139 * Out of line support code for skb_push(). Not user callable.
142 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
144 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
145 "data:%p tail:%#lx end:%#lx dev:%s\n",
146 here, skb->len, sz, skb->head, skb->data,
147 (unsigned long)skb->tail, (unsigned long)skb->end,
148 skb->dev ? skb->dev->name : "<NULL>");
149 BUG();
152 void skb_truesize_bug(struct sk_buff *skb)
154 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
155 "len=%u, sizeof(sk_buff)=%Zd\n",
156 skb->truesize, skb->len, sizeof(struct sk_buff));
158 EXPORT_SYMBOL(skb_truesize_bug);
160 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
161 * 'private' fields and also do memory statistics to find all the
162 * [BEEP] leaks.
167 * __alloc_skb - allocate a network buffer
168 * @size: size to allocate
169 * @gfp_mask: allocation mask
170 * @fclone: allocate from fclone cache instead of head cache
171 * and allocate a cloned (child) skb
172 * @node: numa node to allocate memory on
174 * Allocate a new &sk_buff. The returned buffer has no headroom and a
175 * tail room of size bytes. The object has a reference count of one.
176 * The return is the buffer. On a failure the return is %NULL.
178 * Buffers may only be allocated from interrupts using a @gfp_mask of
179 * %GFP_ATOMIC.
181 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
182 int fclone, int node)
184 struct kmem_cache *cache;
185 struct skb_shared_info *shinfo;
186 struct sk_buff *skb;
187 u8 *data;
189 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
191 /* Get the HEAD */
192 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
193 if (!skb)
194 goto out;
196 size = SKB_DATA_ALIGN(size);
197 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
198 gfp_mask, node);
199 if (!data)
200 goto nodata;
203 * See comment in sk_buff definition, just before the 'tail' member
205 memset(skb, 0, offsetof(struct sk_buff, tail));
206 skb->truesize = size + sizeof(struct sk_buff);
207 atomic_set(&skb->users, 1);
208 skb->head = data;
209 skb->data = data;
210 skb_reset_tail_pointer(skb);
211 skb->end = skb->tail + size;
212 /* make sure we initialize shinfo sequentially */
213 shinfo = skb_shinfo(skb);
214 atomic_set(&shinfo->dataref, 1);
215 shinfo->nr_frags = 0;
216 shinfo->gso_size = 0;
217 shinfo->gso_segs = 0;
218 shinfo->gso_type = 0;
219 shinfo->ip6_frag_id = 0;
220 shinfo->frag_list = NULL;
222 if (fclone) {
223 struct sk_buff *child = skb + 1;
224 atomic_t *fclone_ref = (atomic_t *) (child + 1);
226 skb->fclone = SKB_FCLONE_ORIG;
227 atomic_set(fclone_ref, 1);
229 child->fclone = SKB_FCLONE_UNAVAILABLE;
231 out:
232 return skb;
233 nodata:
234 kmem_cache_free(cache, skb);
235 skb = NULL;
236 goto out;
240 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
241 * @dev: network device to receive on
242 * @length: length to allocate
243 * @gfp_mask: get_free_pages mask, passed to alloc_skb
245 * Allocate a new &sk_buff and assign it a usage count of one. The
246 * buffer has unspecified headroom built in. Users should allocate
247 * the headroom they think they need without accounting for the
248 * built in space. The built in space is used for optimisations.
250 * %NULL is returned if there is no free memory.
252 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
253 unsigned int length, gfp_t gfp_mask)
255 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
256 struct sk_buff *skb;
258 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
259 if (likely(skb)) {
260 skb_reserve(skb, NET_SKB_PAD);
261 skb->dev = dev;
263 return skb;
267 * dev_alloc_skb - allocate an skbuff for receiving
268 * @length: length to allocate
270 * Allocate a new &sk_buff and assign it a usage count of one. The
271 * buffer has unspecified headroom built in. Users should allocate
272 * the headroom they think they need without accounting for the
273 * built in space. The built in space is used for optimisations.
275 * %NULL is returned if there is no free memory. Although this function
276 * allocates memory it can be called from an interrupt.
278 struct sk_buff *dev_alloc_skb(unsigned int length)
281 * There is more code here than it seems:
282 * __dev_alloc_skb is an inline
284 return __dev_alloc_skb(length, GFP_ATOMIC);
286 EXPORT_SYMBOL(dev_alloc_skb);
288 static void skb_drop_list(struct sk_buff **listp)
290 struct sk_buff *list = *listp;
292 *listp = NULL;
294 do {
295 struct sk_buff *this = list;
296 list = list->next;
297 kfree_skb(this);
298 } while (list);
301 static inline void skb_drop_fraglist(struct sk_buff *skb)
303 skb_drop_list(&skb_shinfo(skb)->frag_list);
306 static void skb_clone_fraglist(struct sk_buff *skb)
308 struct sk_buff *list;
310 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
311 skb_get(list);
314 static void skb_release_data(struct sk_buff *skb)
316 if (!skb->cloned ||
317 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
318 &skb_shinfo(skb)->dataref)) {
319 if (skb_shinfo(skb)->nr_frags) {
320 int i;
321 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
322 put_page(skb_shinfo(skb)->frags[i].page);
325 if (skb_shinfo(skb)->frag_list)
326 skb_drop_fraglist(skb);
328 kfree(skb->head);
333 * Free an skbuff by memory without cleaning the state.
335 static void kfree_skbmem(struct sk_buff *skb)
337 struct sk_buff *other;
338 atomic_t *fclone_ref;
340 switch (skb->fclone) {
341 case SKB_FCLONE_UNAVAILABLE:
342 kmem_cache_free(skbuff_head_cache, skb);
343 break;
345 case SKB_FCLONE_ORIG:
346 fclone_ref = (atomic_t *) (skb + 2);
347 if (atomic_dec_and_test(fclone_ref))
348 kmem_cache_free(skbuff_fclone_cache, skb);
349 break;
351 case SKB_FCLONE_CLONE:
352 fclone_ref = (atomic_t *) (skb + 1);
353 other = skb - 1;
355 /* The clone portion is available for
356 * fast-cloning again.
358 skb->fclone = SKB_FCLONE_UNAVAILABLE;
360 if (atomic_dec_and_test(fclone_ref))
361 kmem_cache_free(skbuff_fclone_cache, other);
362 break;
366 /* Free everything but the sk_buff shell. */
367 static void skb_release_all(struct sk_buff *skb)
369 dst_release(skb->dst);
370 #ifdef CONFIG_XFRM
371 secpath_put(skb->sp);
372 #endif
373 if (skb->destructor) {
374 WARN_ON(in_irq());
375 skb->destructor(skb);
377 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
378 nf_conntrack_put(skb->nfct);
379 nf_conntrack_put_reasm(skb->nfct_reasm);
380 #endif
381 #ifdef CONFIG_BRIDGE_NETFILTER
382 nf_bridge_put(skb->nf_bridge);
383 #endif
384 /* XXX: IS this still necessary? - JHS */
385 #ifdef CONFIG_NET_SCHED
386 skb->tc_index = 0;
387 #ifdef CONFIG_NET_CLS_ACT
388 skb->tc_verd = 0;
389 #endif
390 #endif
391 skb_release_data(skb);
395 * __kfree_skb - private function
396 * @skb: buffer
398 * Free an sk_buff. Release anything attached to the buffer.
399 * Clean the state. This is an internal helper function. Users should
400 * always call kfree_skb
403 void __kfree_skb(struct sk_buff *skb)
405 skb_release_all(skb);
406 kfree_skbmem(skb);
410 * kfree_skb - free an sk_buff
411 * @skb: buffer to free
413 * Drop a reference to the buffer and free it if the usage count has
414 * hit zero.
416 void kfree_skb(struct sk_buff *skb)
418 if (unlikely(!skb))
419 return;
420 if (likely(atomic_read(&skb->users) == 1))
421 smp_rmb();
422 else if (likely(!atomic_dec_and_test(&skb->users)))
423 return;
424 __kfree_skb(skb);
427 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
429 new->tstamp = old->tstamp;
430 new->dev = old->dev;
431 new->transport_header = old->transport_header;
432 new->network_header = old->network_header;
433 new->mac_header = old->mac_header;
434 new->dst = dst_clone(old->dst);
435 #ifdef CONFIG_INET
436 new->sp = secpath_get(old->sp);
437 #endif
438 memcpy(new->cb, old->cb, sizeof(old->cb));
439 new->csum_start = old->csum_start;
440 new->csum_offset = old->csum_offset;
441 new->local_df = old->local_df;
442 new->pkt_type = old->pkt_type;
443 new->ip_summed = old->ip_summed;
444 skb_copy_queue_mapping(new, old);
445 new->priority = old->priority;
446 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
447 new->ipvs_property = old->ipvs_property;
448 #endif
449 new->protocol = old->protocol;
450 new->mark = old->mark;
451 __nf_copy(new, old);
452 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
453 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
454 new->nf_trace = old->nf_trace;
455 #endif
456 #ifdef CONFIG_NET_SCHED
457 new->tc_index = old->tc_index;
458 #ifdef CONFIG_NET_CLS_ACT
459 new->tc_verd = old->tc_verd;
460 #endif
461 #endif
462 skb_copy_secmark(new, old);
465 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
467 #define C(x) n->x = skb->x
469 n->next = n->prev = NULL;
470 n->sk = NULL;
471 __copy_skb_header(n, skb);
473 C(len);
474 C(data_len);
475 C(mac_len);
476 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
477 n->cloned = 1;
478 n->nohdr = 0;
479 n->destructor = NULL;
480 C(iif);
481 C(tail);
482 C(end);
483 C(head);
484 C(data);
485 C(truesize);
486 atomic_set(&n->users, 1);
488 atomic_inc(&(skb_shinfo(skb)->dataref));
489 skb->cloned = 1;
491 return n;
492 #undef C
496 * skb_morph - morph one skb into another
497 * @dst: the skb to receive the contents
498 * @src: the skb to supply the contents
500 * This is identical to skb_clone except that the target skb is
501 * supplied by the user.
503 * The target skb is returned upon exit.
505 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
507 skb_release_all(dst);
508 return __skb_clone(dst, src);
510 EXPORT_SYMBOL_GPL(skb_morph);
513 * skb_clone - duplicate an sk_buff
514 * @skb: buffer to clone
515 * @gfp_mask: allocation priority
517 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
518 * copies share the same packet data but not structure. The new
519 * buffer has a reference count of 1. If the allocation fails the
520 * function returns %NULL otherwise the new buffer is returned.
522 * If this function is called from an interrupt gfp_mask() must be
523 * %GFP_ATOMIC.
526 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
528 struct sk_buff *n;
530 n = skb + 1;
531 if (skb->fclone == SKB_FCLONE_ORIG &&
532 n->fclone == SKB_FCLONE_UNAVAILABLE) {
533 atomic_t *fclone_ref = (atomic_t *) (n + 1);
534 n->fclone = SKB_FCLONE_CLONE;
535 atomic_inc(fclone_ref);
536 } else {
537 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
538 if (!n)
539 return NULL;
540 n->fclone = SKB_FCLONE_UNAVAILABLE;
543 return __skb_clone(n, skb);
546 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
548 #ifndef NET_SKBUFF_DATA_USES_OFFSET
550 * Shift between the two data areas in bytes
552 unsigned long offset = new->data - old->data;
553 #endif
555 __copy_skb_header(new, old);
557 #ifndef NET_SKBUFF_DATA_USES_OFFSET
558 /* {transport,network,mac}_header are relative to skb->head */
559 new->transport_header += offset;
560 new->network_header += offset;
561 new->mac_header += offset;
562 #endif
563 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
564 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
565 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
569 * skb_copy - create private copy of an sk_buff
570 * @skb: buffer to copy
571 * @gfp_mask: allocation priority
573 * Make a copy of both an &sk_buff and its data. This is used when the
574 * caller wishes to modify the data and needs a private copy of the
575 * data to alter. Returns %NULL on failure or the pointer to the buffer
576 * on success. The returned buffer has a reference count of 1.
578 * As by-product this function converts non-linear &sk_buff to linear
579 * one, so that &sk_buff becomes completely private and caller is allowed
580 * to modify all the data of returned buffer. This means that this
581 * function is not recommended for use in circumstances when only
582 * header is going to be modified. Use pskb_copy() instead.
585 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
587 int headerlen = skb->data - skb->head;
589 * Allocate the copy buffer
591 struct sk_buff *n;
592 #ifdef NET_SKBUFF_DATA_USES_OFFSET
593 n = alloc_skb(skb->end + skb->data_len, gfp_mask);
594 #else
595 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
596 #endif
597 if (!n)
598 return NULL;
600 /* Set the data pointer */
601 skb_reserve(n, headerlen);
602 /* Set the tail pointer and length */
603 skb_put(n, skb->len);
605 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
606 BUG();
608 copy_skb_header(n, skb);
609 return n;
614 * pskb_copy - create copy of an sk_buff with private head.
615 * @skb: buffer to copy
616 * @gfp_mask: allocation priority
618 * Make a copy of both an &sk_buff and part of its data, located
619 * in header. Fragmented data remain shared. This is used when
620 * the caller wishes to modify only header of &sk_buff and needs
621 * private copy of the header to alter. Returns %NULL on failure
622 * or the pointer to the buffer on success.
623 * The returned buffer has a reference count of 1.
626 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
629 * Allocate the copy buffer
631 struct sk_buff *n;
632 #ifdef NET_SKBUFF_DATA_USES_OFFSET
633 n = alloc_skb(skb->end, gfp_mask);
634 #else
635 n = alloc_skb(skb->end - skb->head, gfp_mask);
636 #endif
637 if (!n)
638 goto out;
640 /* Set the data pointer */
641 skb_reserve(n, skb->data - skb->head);
642 /* Set the tail pointer and length */
643 skb_put(n, skb_headlen(skb));
644 /* Copy the bytes */
645 skb_copy_from_linear_data(skb, n->data, n->len);
647 n->truesize += skb->data_len;
648 n->data_len = skb->data_len;
649 n->len = skb->len;
651 if (skb_shinfo(skb)->nr_frags) {
652 int i;
654 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
655 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
656 get_page(skb_shinfo(n)->frags[i].page);
658 skb_shinfo(n)->nr_frags = i;
661 if (skb_shinfo(skb)->frag_list) {
662 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
663 skb_clone_fraglist(n);
666 copy_skb_header(n, skb);
667 out:
668 return n;
672 * pskb_expand_head - reallocate header of &sk_buff
673 * @skb: buffer to reallocate
674 * @nhead: room to add at head
675 * @ntail: room to add at tail
676 * @gfp_mask: allocation priority
678 * Expands (or creates identical copy, if &nhead and &ntail are zero)
679 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
680 * reference count of 1. Returns zero in the case of success or error,
681 * if expansion failed. In the last case, &sk_buff is not changed.
683 * All the pointers pointing into skb header may change and must be
684 * reloaded after call to this function.
687 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
688 gfp_t gfp_mask)
690 int i;
691 u8 *data;
692 #ifdef NET_SKBUFF_DATA_USES_OFFSET
693 int size = nhead + skb->end + ntail;
694 #else
695 int size = nhead + (skb->end - skb->head) + ntail;
696 #endif
697 long off;
699 if (skb_shared(skb))
700 BUG();
702 size = SKB_DATA_ALIGN(size);
704 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
705 if (!data)
706 goto nodata;
708 /* Copy only real data... and, alas, header. This should be
709 * optimized for the cases when header is void. */
710 #ifdef NET_SKBUFF_DATA_USES_OFFSET
711 memcpy(data + nhead, skb->head, skb->tail);
712 #else
713 memcpy(data + nhead, skb->head, skb->tail - skb->head);
714 #endif
715 memcpy(data + size, skb_end_pointer(skb),
716 sizeof(struct skb_shared_info));
718 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
719 get_page(skb_shinfo(skb)->frags[i].page);
721 if (skb_shinfo(skb)->frag_list)
722 skb_clone_fraglist(skb);
724 skb_release_data(skb);
726 off = (data + nhead) - skb->head;
728 skb->head = data;
729 skb->data += off;
730 #ifdef NET_SKBUFF_DATA_USES_OFFSET
731 skb->end = size;
732 off = nhead;
733 #else
734 skb->end = skb->head + size;
735 #endif
736 /* {transport,network,mac}_header and tail are relative to skb->head */
737 skb->tail += off;
738 skb->transport_header += off;
739 skb->network_header += off;
740 skb->mac_header += off;
741 skb->csum_start += nhead;
742 skb->cloned = 0;
743 skb->hdr_len = 0;
744 skb->nohdr = 0;
745 atomic_set(&skb_shinfo(skb)->dataref, 1);
746 return 0;
748 nodata:
749 return -ENOMEM;
752 /* Make private copy of skb with writable head and some headroom */
754 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
756 struct sk_buff *skb2;
757 int delta = headroom - skb_headroom(skb);
759 if (delta <= 0)
760 skb2 = pskb_copy(skb, GFP_ATOMIC);
761 else {
762 skb2 = skb_clone(skb, GFP_ATOMIC);
763 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
764 GFP_ATOMIC)) {
765 kfree_skb(skb2);
766 skb2 = NULL;
769 return skb2;
774 * skb_copy_expand - copy and expand sk_buff
775 * @skb: buffer to copy
776 * @newheadroom: new free bytes at head
777 * @newtailroom: new free bytes at tail
778 * @gfp_mask: allocation priority
780 * Make a copy of both an &sk_buff and its data and while doing so
781 * allocate additional space.
783 * This is used when the caller wishes to modify the data and needs a
784 * private copy of the data to alter as well as more space for new fields.
785 * Returns %NULL on failure or the pointer to the buffer
786 * on success. The returned buffer has a reference count of 1.
788 * You must pass %GFP_ATOMIC as the allocation priority if this function
789 * is called from an interrupt.
791 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
792 int newheadroom, int newtailroom,
793 gfp_t gfp_mask)
796 * Allocate the copy buffer
798 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
799 gfp_mask);
800 int oldheadroom = skb_headroom(skb);
801 int head_copy_len, head_copy_off;
802 int off;
804 if (!n)
805 return NULL;
807 skb_reserve(n, newheadroom);
809 /* Set the tail pointer and length */
810 skb_put(n, skb->len);
812 head_copy_len = oldheadroom;
813 head_copy_off = 0;
814 if (newheadroom <= head_copy_len)
815 head_copy_len = newheadroom;
816 else
817 head_copy_off = newheadroom - head_copy_len;
819 /* Copy the linear header and data. */
820 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
821 skb->len + head_copy_len))
822 BUG();
824 copy_skb_header(n, skb);
826 off = newheadroom - oldheadroom;
827 n->csum_start += off;
828 #ifdef NET_SKBUFF_DATA_USES_OFFSET
829 n->transport_header += off;
830 n->network_header += off;
831 n->mac_header += off;
832 #endif
834 return n;
838 * skb_pad - zero pad the tail of an skb
839 * @skb: buffer to pad
840 * @pad: space to pad
842 * Ensure that a buffer is followed by a padding area that is zero
843 * filled. Used by network drivers which may DMA or transfer data
844 * beyond the buffer end onto the wire.
846 * May return error in out of memory cases. The skb is freed on error.
849 int skb_pad(struct sk_buff *skb, int pad)
851 int err;
852 int ntail;
854 /* If the skbuff is non linear tailroom is always zero.. */
855 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
856 memset(skb->data+skb->len, 0, pad);
857 return 0;
860 ntail = skb->data_len + pad - (skb->end - skb->tail);
861 if (likely(skb_cloned(skb) || ntail > 0)) {
862 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
863 if (unlikely(err))
864 goto free_skb;
867 /* FIXME: The use of this function with non-linear skb's really needs
868 * to be audited.
870 err = skb_linearize(skb);
871 if (unlikely(err))
872 goto free_skb;
874 memset(skb->data + skb->len, 0, pad);
875 return 0;
877 free_skb:
878 kfree_skb(skb);
879 return err;
883 * skb_put - add data to a buffer
884 * @skb: buffer to use
885 * @len: amount of data to add
887 * This function extends the used data area of the buffer. If this would
888 * exceed the total buffer size the kernel will panic. A pointer to the
889 * first byte of the extra data is returned.
891 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
893 unsigned char *tmp = skb_tail_pointer(skb);
894 SKB_LINEAR_ASSERT(skb);
895 skb->tail += len;
896 skb->len += len;
897 if (unlikely(skb->tail > skb->end))
898 skb_over_panic(skb, len, __builtin_return_address(0));
899 return tmp;
901 EXPORT_SYMBOL(skb_put);
904 * skb_push - add data to the start of a buffer
905 * @skb: buffer to use
906 * @len: amount of data to add
908 * This function extends the used data area of the buffer at the buffer
909 * start. If this would exceed the total buffer headroom the kernel will
910 * panic. A pointer to the first byte of the extra data is returned.
912 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
914 skb->data -= len;
915 skb->len += len;
916 if (unlikely(skb->data<skb->head))
917 skb_under_panic(skb, len, __builtin_return_address(0));
918 return skb->data;
920 EXPORT_SYMBOL(skb_push);
923 * skb_pull - remove data from the start of a buffer
924 * @skb: buffer to use
925 * @len: amount of data to remove
927 * This function removes data from the start of a buffer, returning
928 * the memory to the headroom. A pointer to the next data in the buffer
929 * is returned. Once the data has been pulled future pushes will overwrite
930 * the old data.
932 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
934 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
936 EXPORT_SYMBOL(skb_pull);
939 * skb_trim - remove end from a buffer
940 * @skb: buffer to alter
941 * @len: new length
943 * Cut the length of a buffer down by removing data from the tail. If
944 * the buffer is already under the length specified it is not modified.
945 * The skb must be linear.
947 void skb_trim(struct sk_buff *skb, unsigned int len)
949 if (skb->len > len)
950 __skb_trim(skb, len);
952 EXPORT_SYMBOL(skb_trim);
954 /* Trims skb to length len. It can change skb pointers.
957 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
959 struct sk_buff **fragp;
960 struct sk_buff *frag;
961 int offset = skb_headlen(skb);
962 int nfrags = skb_shinfo(skb)->nr_frags;
963 int i;
964 int err;
966 if (skb_cloned(skb) &&
967 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
968 return err;
970 i = 0;
971 if (offset >= len)
972 goto drop_pages;
974 for (; i < nfrags; i++) {
975 int end = offset + skb_shinfo(skb)->frags[i].size;
977 if (end < len) {
978 offset = end;
979 continue;
982 skb_shinfo(skb)->frags[i++].size = len - offset;
984 drop_pages:
985 skb_shinfo(skb)->nr_frags = i;
987 for (; i < nfrags; i++)
988 put_page(skb_shinfo(skb)->frags[i].page);
990 if (skb_shinfo(skb)->frag_list)
991 skb_drop_fraglist(skb);
992 goto done;
995 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
996 fragp = &frag->next) {
997 int end = offset + frag->len;
999 if (skb_shared(frag)) {
1000 struct sk_buff *nfrag;
1002 nfrag = skb_clone(frag, GFP_ATOMIC);
1003 if (unlikely(!nfrag))
1004 return -ENOMEM;
1006 nfrag->next = frag->next;
1007 kfree_skb(frag);
1008 frag = nfrag;
1009 *fragp = frag;
1012 if (end < len) {
1013 offset = end;
1014 continue;
1017 if (end > len &&
1018 unlikely((err = pskb_trim(frag, len - offset))))
1019 return err;
1021 if (frag->next)
1022 skb_drop_list(&frag->next);
1023 break;
1026 done:
1027 if (len > skb_headlen(skb)) {
1028 skb->data_len -= skb->len - len;
1029 skb->len = len;
1030 } else {
1031 skb->len = len;
1032 skb->data_len = 0;
1033 skb_set_tail_pointer(skb, len);
1036 return 0;
1040 * __pskb_pull_tail - advance tail of skb header
1041 * @skb: buffer to reallocate
1042 * @delta: number of bytes to advance tail
1044 * The function makes a sense only on a fragmented &sk_buff,
1045 * it expands header moving its tail forward and copying necessary
1046 * data from fragmented part.
1048 * &sk_buff MUST have reference count of 1.
1050 * Returns %NULL (and &sk_buff does not change) if pull failed
1051 * or value of new tail of skb in the case of success.
1053 * All the pointers pointing into skb header may change and must be
1054 * reloaded after call to this function.
1057 /* Moves tail of skb head forward, copying data from fragmented part,
1058 * when it is necessary.
1059 * 1. It may fail due to malloc failure.
1060 * 2. It may change skb pointers.
1062 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1064 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1066 /* If skb has not enough free space at tail, get new one
1067 * plus 128 bytes for future expansions. If we have enough
1068 * room at tail, reallocate without expansion only if skb is cloned.
1070 int i, k, eat = (skb->tail + delta) - skb->end;
1072 if (eat > 0 || skb_cloned(skb)) {
1073 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1074 GFP_ATOMIC))
1075 return NULL;
1078 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1079 BUG();
1081 /* Optimization: no fragments, no reasons to preestimate
1082 * size of pulled pages. Superb.
1084 if (!skb_shinfo(skb)->frag_list)
1085 goto pull_pages;
1087 /* Estimate size of pulled pages. */
1088 eat = delta;
1089 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1090 if (skb_shinfo(skb)->frags[i].size >= eat)
1091 goto pull_pages;
1092 eat -= skb_shinfo(skb)->frags[i].size;
1095 /* If we need update frag list, we are in troubles.
1096 * Certainly, it possible to add an offset to skb data,
1097 * but taking into account that pulling is expected to
1098 * be very rare operation, it is worth to fight against
1099 * further bloating skb head and crucify ourselves here instead.
1100 * Pure masohism, indeed. 8)8)
1102 if (eat) {
1103 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1104 struct sk_buff *clone = NULL;
1105 struct sk_buff *insp = NULL;
1107 do {
1108 BUG_ON(!list);
1110 if (list->len <= eat) {
1111 /* Eaten as whole. */
1112 eat -= list->len;
1113 list = list->next;
1114 insp = list;
1115 } else {
1116 /* Eaten partially. */
1118 if (skb_shared(list)) {
1119 /* Sucks! We need to fork list. :-( */
1120 clone = skb_clone(list, GFP_ATOMIC);
1121 if (!clone)
1122 return NULL;
1123 insp = list->next;
1124 list = clone;
1125 } else {
1126 /* This may be pulled without
1127 * problems. */
1128 insp = list;
1130 if (!pskb_pull(list, eat)) {
1131 if (clone)
1132 kfree_skb(clone);
1133 return NULL;
1135 break;
1137 } while (eat);
1139 /* Free pulled out fragments. */
1140 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1141 skb_shinfo(skb)->frag_list = list->next;
1142 kfree_skb(list);
1144 /* And insert new clone at head. */
1145 if (clone) {
1146 clone->next = list;
1147 skb_shinfo(skb)->frag_list = clone;
1150 /* Success! Now we may commit changes to skb data. */
1152 pull_pages:
1153 eat = delta;
1154 k = 0;
1155 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1156 if (skb_shinfo(skb)->frags[i].size <= eat) {
1157 put_page(skb_shinfo(skb)->frags[i].page);
1158 eat -= skb_shinfo(skb)->frags[i].size;
1159 } else {
1160 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1161 if (eat) {
1162 skb_shinfo(skb)->frags[k].page_offset += eat;
1163 skb_shinfo(skb)->frags[k].size -= eat;
1164 eat = 0;
1166 k++;
1169 skb_shinfo(skb)->nr_frags = k;
1171 skb->tail += delta;
1172 skb->data_len -= delta;
1174 return skb_tail_pointer(skb);
1177 /* Copy some data bits from skb to kernel buffer. */
1179 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1181 int i, copy;
1182 int start = skb_headlen(skb);
1184 if (offset > (int)skb->len - len)
1185 goto fault;
1187 /* Copy header. */
1188 if ((copy = start - offset) > 0) {
1189 if (copy > len)
1190 copy = len;
1191 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1192 if ((len -= copy) == 0)
1193 return 0;
1194 offset += copy;
1195 to += copy;
1198 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1199 int end;
1201 BUG_TRAP(start <= offset + len);
1203 end = start + skb_shinfo(skb)->frags[i].size;
1204 if ((copy = end - offset) > 0) {
1205 u8 *vaddr;
1207 if (copy > len)
1208 copy = len;
1210 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1211 memcpy(to,
1212 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1213 offset - start, copy);
1214 kunmap_skb_frag(vaddr);
1216 if ((len -= copy) == 0)
1217 return 0;
1218 offset += copy;
1219 to += copy;
1221 start = end;
1224 if (skb_shinfo(skb)->frag_list) {
1225 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1227 for (; list; list = list->next) {
1228 int end;
1230 BUG_TRAP(start <= offset + len);
1232 end = start + list->len;
1233 if ((copy = end - offset) > 0) {
1234 if (copy > len)
1235 copy = len;
1236 if (skb_copy_bits(list, offset - start,
1237 to, copy))
1238 goto fault;
1239 if ((len -= copy) == 0)
1240 return 0;
1241 offset += copy;
1242 to += copy;
1244 start = end;
1247 if (!len)
1248 return 0;
1250 fault:
1251 return -EFAULT;
1255 * Callback from splice_to_pipe(), if we need to release some pages
1256 * at the end of the spd in case we error'ed out in filling the pipe.
1258 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1260 struct sk_buff *skb = (struct sk_buff *) spd->partial[i].private;
1262 kfree_skb(skb);
1266 * Fill page/offset/length into spd, if it can hold more pages.
1268 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
1269 unsigned int len, unsigned int offset,
1270 struct sk_buff *skb)
1272 if (unlikely(spd->nr_pages == PIPE_BUFFERS))
1273 return 1;
1275 spd->pages[spd->nr_pages] = page;
1276 spd->partial[spd->nr_pages].len = len;
1277 spd->partial[spd->nr_pages].offset = offset;
1278 spd->partial[spd->nr_pages].private = (unsigned long) skb_get(skb);
1279 spd->nr_pages++;
1280 return 0;
1284 * Map linear and fragment data from the skb to spd. Returns number of
1285 * pages mapped.
1287 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset,
1288 unsigned int *total_len,
1289 struct splice_pipe_desc *spd)
1291 unsigned int nr_pages = spd->nr_pages;
1292 unsigned int poff, plen, len, toff, tlen;
1293 int headlen, seg;
1295 toff = *offset;
1296 tlen = *total_len;
1297 if (!tlen)
1298 goto err;
1301 * if the offset is greater than the linear part, go directly to
1302 * the fragments.
1304 headlen = skb_headlen(skb);
1305 if (toff >= headlen) {
1306 toff -= headlen;
1307 goto map_frag;
1311 * first map the linear region into the pages/partial map, skipping
1312 * any potential initial offset.
1314 len = 0;
1315 while (len < headlen) {
1316 void *p = skb->data + len;
1318 poff = (unsigned long) p & (PAGE_SIZE - 1);
1319 plen = min_t(unsigned int, headlen - len, PAGE_SIZE - poff);
1320 len += plen;
1322 if (toff) {
1323 if (plen <= toff) {
1324 toff -= plen;
1325 continue;
1327 plen -= toff;
1328 poff += toff;
1329 toff = 0;
1332 plen = min(plen, tlen);
1333 if (!plen)
1334 break;
1337 * just jump directly to update and return, no point
1338 * in going over fragments when the output is full.
1340 if (spd_fill_page(spd, virt_to_page(p), plen, poff, skb))
1341 goto done;
1343 tlen -= plen;
1347 * then map the fragments
1349 map_frag:
1350 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1351 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1353 plen = f->size;
1354 poff = f->page_offset;
1356 if (toff) {
1357 if (plen <= toff) {
1358 toff -= plen;
1359 continue;
1361 plen -= toff;
1362 poff += toff;
1363 toff = 0;
1366 plen = min(plen, tlen);
1367 if (!plen)
1368 break;
1370 if (spd_fill_page(spd, f->page, plen, poff, skb))
1371 break;
1373 tlen -= plen;
1376 done:
1377 if (spd->nr_pages - nr_pages) {
1378 *offset = 0;
1379 *total_len = tlen;
1380 return 0;
1382 err:
1383 return 1;
1387 * Map data from the skb to a pipe. Should handle both the linear part,
1388 * the fragments, and the frag list. It does NOT handle frag lists within
1389 * the frag list, if such a thing exists. We'd probably need to recurse to
1390 * handle that cleanly.
1392 int skb_splice_bits(struct sk_buff *__skb, unsigned int offset,
1393 struct pipe_inode_info *pipe, unsigned int tlen,
1394 unsigned int flags)
1396 struct partial_page partial[PIPE_BUFFERS];
1397 struct page *pages[PIPE_BUFFERS];
1398 struct splice_pipe_desc spd = {
1399 .pages = pages,
1400 .partial = partial,
1401 .flags = flags,
1402 .ops = &sock_pipe_buf_ops,
1403 .spd_release = sock_spd_release,
1405 struct sk_buff *skb;
1408 * I'd love to avoid the clone here, but tcp_read_sock()
1409 * ignores reference counts and unconditonally kills the sk_buff
1410 * on return from the actor.
1412 skb = skb_clone(__skb, GFP_KERNEL);
1413 if (unlikely(!skb))
1414 return -ENOMEM;
1417 * __skb_splice_bits() only fails if the output has no room left,
1418 * so no point in going over the frag_list for the error case.
1420 if (__skb_splice_bits(skb, &offset, &tlen, &spd))
1421 goto done;
1422 else if (!tlen)
1423 goto done;
1426 * now see if we have a frag_list to map
1428 if (skb_shinfo(skb)->frag_list) {
1429 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1431 for (; list && tlen; list = list->next) {
1432 if (__skb_splice_bits(list, &offset, &tlen, &spd))
1433 break;
1437 done:
1439 * drop our reference to the clone, the pipe consumption will
1440 * drop the rest.
1442 kfree_skb(skb);
1444 if (spd.nr_pages) {
1445 int ret;
1448 * Drop the socket lock, otherwise we have reverse
1449 * locking dependencies between sk_lock and i_mutex
1450 * here as compared to sendfile(). We enter here
1451 * with the socket lock held, and splice_to_pipe() will
1452 * grab the pipe inode lock. For sendfile() emulation,
1453 * we call into ->sendpage() with the i_mutex lock held
1454 * and networking will grab the socket lock.
1456 release_sock(__skb->sk);
1457 ret = splice_to_pipe(pipe, &spd);
1458 lock_sock(__skb->sk);
1459 return ret;
1462 return 0;
1466 * skb_store_bits - store bits from kernel buffer to skb
1467 * @skb: destination buffer
1468 * @offset: offset in destination
1469 * @from: source buffer
1470 * @len: number of bytes to copy
1472 * Copy the specified number of bytes from the source buffer to the
1473 * destination skb. This function handles all the messy bits of
1474 * traversing fragment lists and such.
1477 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1479 int i, copy;
1480 int start = skb_headlen(skb);
1482 if (offset > (int)skb->len - len)
1483 goto fault;
1485 if ((copy = start - offset) > 0) {
1486 if (copy > len)
1487 copy = len;
1488 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1489 if ((len -= copy) == 0)
1490 return 0;
1491 offset += copy;
1492 from += copy;
1495 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1496 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1497 int end;
1499 BUG_TRAP(start <= offset + len);
1501 end = start + frag->size;
1502 if ((copy = end - offset) > 0) {
1503 u8 *vaddr;
1505 if (copy > len)
1506 copy = len;
1508 vaddr = kmap_skb_frag(frag);
1509 memcpy(vaddr + frag->page_offset + offset - start,
1510 from, copy);
1511 kunmap_skb_frag(vaddr);
1513 if ((len -= copy) == 0)
1514 return 0;
1515 offset += copy;
1516 from += copy;
1518 start = end;
1521 if (skb_shinfo(skb)->frag_list) {
1522 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1524 for (; list; list = list->next) {
1525 int end;
1527 BUG_TRAP(start <= offset + len);
1529 end = start + list->len;
1530 if ((copy = end - offset) > 0) {
1531 if (copy > len)
1532 copy = len;
1533 if (skb_store_bits(list, offset - start,
1534 from, copy))
1535 goto fault;
1536 if ((len -= copy) == 0)
1537 return 0;
1538 offset += copy;
1539 from += copy;
1541 start = end;
1544 if (!len)
1545 return 0;
1547 fault:
1548 return -EFAULT;
1551 EXPORT_SYMBOL(skb_store_bits);
1553 /* Checksum skb data. */
1555 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1556 int len, __wsum csum)
1558 int start = skb_headlen(skb);
1559 int i, copy = start - offset;
1560 int pos = 0;
1562 /* Checksum header. */
1563 if (copy > 0) {
1564 if (copy > len)
1565 copy = len;
1566 csum = csum_partial(skb->data + offset, copy, csum);
1567 if ((len -= copy) == 0)
1568 return csum;
1569 offset += copy;
1570 pos = copy;
1573 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1574 int end;
1576 BUG_TRAP(start <= offset + len);
1578 end = start + skb_shinfo(skb)->frags[i].size;
1579 if ((copy = end - offset) > 0) {
1580 __wsum csum2;
1581 u8 *vaddr;
1582 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1584 if (copy > len)
1585 copy = len;
1586 vaddr = kmap_skb_frag(frag);
1587 csum2 = csum_partial(vaddr + frag->page_offset +
1588 offset - start, copy, 0);
1589 kunmap_skb_frag(vaddr);
1590 csum = csum_block_add(csum, csum2, pos);
1591 if (!(len -= copy))
1592 return csum;
1593 offset += copy;
1594 pos += copy;
1596 start = end;
1599 if (skb_shinfo(skb)->frag_list) {
1600 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1602 for (; list; list = list->next) {
1603 int end;
1605 BUG_TRAP(start <= offset + len);
1607 end = start + list->len;
1608 if ((copy = end - offset) > 0) {
1609 __wsum csum2;
1610 if (copy > len)
1611 copy = len;
1612 csum2 = skb_checksum(list, offset - start,
1613 copy, 0);
1614 csum = csum_block_add(csum, csum2, pos);
1615 if ((len -= copy) == 0)
1616 return csum;
1617 offset += copy;
1618 pos += copy;
1620 start = end;
1623 BUG_ON(len);
1625 return csum;
1628 /* Both of above in one bottle. */
1630 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1631 u8 *to, int len, __wsum csum)
1633 int start = skb_headlen(skb);
1634 int i, copy = start - offset;
1635 int pos = 0;
1637 /* Copy header. */
1638 if (copy > 0) {
1639 if (copy > len)
1640 copy = len;
1641 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1642 copy, csum);
1643 if ((len -= copy) == 0)
1644 return csum;
1645 offset += copy;
1646 to += copy;
1647 pos = copy;
1650 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1651 int end;
1653 BUG_TRAP(start <= offset + len);
1655 end = start + skb_shinfo(skb)->frags[i].size;
1656 if ((copy = end - offset) > 0) {
1657 __wsum csum2;
1658 u8 *vaddr;
1659 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1661 if (copy > len)
1662 copy = len;
1663 vaddr = kmap_skb_frag(frag);
1664 csum2 = csum_partial_copy_nocheck(vaddr +
1665 frag->page_offset +
1666 offset - start, to,
1667 copy, 0);
1668 kunmap_skb_frag(vaddr);
1669 csum = csum_block_add(csum, csum2, pos);
1670 if (!(len -= copy))
1671 return csum;
1672 offset += copy;
1673 to += copy;
1674 pos += copy;
1676 start = end;
1679 if (skb_shinfo(skb)->frag_list) {
1680 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1682 for (; list; list = list->next) {
1683 __wsum csum2;
1684 int end;
1686 BUG_TRAP(start <= offset + len);
1688 end = start + list->len;
1689 if ((copy = end - offset) > 0) {
1690 if (copy > len)
1691 copy = len;
1692 csum2 = skb_copy_and_csum_bits(list,
1693 offset - start,
1694 to, copy, 0);
1695 csum = csum_block_add(csum, csum2, pos);
1696 if ((len -= copy) == 0)
1697 return csum;
1698 offset += copy;
1699 to += copy;
1700 pos += copy;
1702 start = end;
1705 BUG_ON(len);
1706 return csum;
1709 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1711 __wsum csum;
1712 long csstart;
1714 if (skb->ip_summed == CHECKSUM_PARTIAL)
1715 csstart = skb->csum_start - skb_headroom(skb);
1716 else
1717 csstart = skb_headlen(skb);
1719 BUG_ON(csstart > skb_headlen(skb));
1721 skb_copy_from_linear_data(skb, to, csstart);
1723 csum = 0;
1724 if (csstart != skb->len)
1725 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1726 skb->len - csstart, 0);
1728 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1729 long csstuff = csstart + skb->csum_offset;
1731 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1736 * skb_dequeue - remove from the head of the queue
1737 * @list: list to dequeue from
1739 * Remove the head of the list. The list lock is taken so the function
1740 * may be used safely with other locking list functions. The head item is
1741 * returned or %NULL if the list is empty.
1744 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1746 unsigned long flags;
1747 struct sk_buff *result;
1749 spin_lock_irqsave(&list->lock, flags);
1750 result = __skb_dequeue(list);
1751 spin_unlock_irqrestore(&list->lock, flags);
1752 return result;
1756 * skb_dequeue_tail - remove from the tail of the queue
1757 * @list: list to dequeue from
1759 * Remove the tail of the list. The list lock is taken so the function
1760 * may be used safely with other locking list functions. The tail item is
1761 * returned or %NULL if the list is empty.
1763 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1765 unsigned long flags;
1766 struct sk_buff *result;
1768 spin_lock_irqsave(&list->lock, flags);
1769 result = __skb_dequeue_tail(list);
1770 spin_unlock_irqrestore(&list->lock, flags);
1771 return result;
1775 * skb_queue_purge - empty a list
1776 * @list: list to empty
1778 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1779 * the list and one reference dropped. This function takes the list
1780 * lock and is atomic with respect to other list locking functions.
1782 void skb_queue_purge(struct sk_buff_head *list)
1784 struct sk_buff *skb;
1785 while ((skb = skb_dequeue(list)) != NULL)
1786 kfree_skb(skb);
1790 * skb_queue_head - queue a buffer at the list head
1791 * @list: list to use
1792 * @newsk: buffer to queue
1794 * Queue a buffer at the start of the list. This function takes the
1795 * list lock and can be used safely with other locking &sk_buff functions
1796 * safely.
1798 * A buffer cannot be placed on two lists at the same time.
1800 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1802 unsigned long flags;
1804 spin_lock_irqsave(&list->lock, flags);
1805 __skb_queue_head(list, newsk);
1806 spin_unlock_irqrestore(&list->lock, flags);
1810 * skb_queue_tail - queue a buffer at the list tail
1811 * @list: list to use
1812 * @newsk: buffer to queue
1814 * Queue a buffer at the tail of the list. This function takes the
1815 * list lock and can be used safely with other locking &sk_buff functions
1816 * safely.
1818 * A buffer cannot be placed on two lists at the same time.
1820 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1822 unsigned long flags;
1824 spin_lock_irqsave(&list->lock, flags);
1825 __skb_queue_tail(list, newsk);
1826 spin_unlock_irqrestore(&list->lock, flags);
1830 * skb_unlink - remove a buffer from a list
1831 * @skb: buffer to remove
1832 * @list: list to use
1834 * Remove a packet from a list. The list locks are taken and this
1835 * function is atomic with respect to other list locked calls
1837 * You must know what list the SKB is on.
1839 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1841 unsigned long flags;
1843 spin_lock_irqsave(&list->lock, flags);
1844 __skb_unlink(skb, list);
1845 spin_unlock_irqrestore(&list->lock, flags);
1849 * skb_append - append a buffer
1850 * @old: buffer to insert after
1851 * @newsk: buffer to insert
1852 * @list: list to use
1854 * Place a packet after a given packet in a list. The list locks are taken
1855 * and this function is atomic with respect to other list locked calls.
1856 * A buffer cannot be placed on two lists at the same time.
1858 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1860 unsigned long flags;
1862 spin_lock_irqsave(&list->lock, flags);
1863 __skb_queue_after(list, old, newsk);
1864 spin_unlock_irqrestore(&list->lock, flags);
1869 * skb_insert - insert a buffer
1870 * @old: buffer to insert before
1871 * @newsk: buffer to insert
1872 * @list: list to use
1874 * Place a packet before a given packet in a list. The list locks are
1875 * taken and this function is atomic with respect to other list locked
1876 * calls.
1878 * A buffer cannot be placed on two lists at the same time.
1880 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1882 unsigned long flags;
1884 spin_lock_irqsave(&list->lock, flags);
1885 __skb_insert(newsk, old->prev, old, list);
1886 spin_unlock_irqrestore(&list->lock, flags);
1889 static inline void skb_split_inside_header(struct sk_buff *skb,
1890 struct sk_buff* skb1,
1891 const u32 len, const int pos)
1893 int i;
1895 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
1896 pos - len);
1897 /* And move data appendix as is. */
1898 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1899 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1901 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1902 skb_shinfo(skb)->nr_frags = 0;
1903 skb1->data_len = skb->data_len;
1904 skb1->len += skb1->data_len;
1905 skb->data_len = 0;
1906 skb->len = len;
1907 skb_set_tail_pointer(skb, len);
1910 static inline void skb_split_no_header(struct sk_buff *skb,
1911 struct sk_buff* skb1,
1912 const u32 len, int pos)
1914 int i, k = 0;
1915 const int nfrags = skb_shinfo(skb)->nr_frags;
1917 skb_shinfo(skb)->nr_frags = 0;
1918 skb1->len = skb1->data_len = skb->len - len;
1919 skb->len = len;
1920 skb->data_len = len - pos;
1922 for (i = 0; i < nfrags; i++) {
1923 int size = skb_shinfo(skb)->frags[i].size;
1925 if (pos + size > len) {
1926 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1928 if (pos < len) {
1929 /* Split frag.
1930 * We have two variants in this case:
1931 * 1. Move all the frag to the second
1932 * part, if it is possible. F.e.
1933 * this approach is mandatory for TUX,
1934 * where splitting is expensive.
1935 * 2. Split is accurately. We make this.
1937 get_page(skb_shinfo(skb)->frags[i].page);
1938 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1939 skb_shinfo(skb1)->frags[0].size -= len - pos;
1940 skb_shinfo(skb)->frags[i].size = len - pos;
1941 skb_shinfo(skb)->nr_frags++;
1943 k++;
1944 } else
1945 skb_shinfo(skb)->nr_frags++;
1946 pos += size;
1948 skb_shinfo(skb1)->nr_frags = k;
1952 * skb_split - Split fragmented skb to two parts at length len.
1953 * @skb: the buffer to split
1954 * @skb1: the buffer to receive the second part
1955 * @len: new length for skb
1957 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1959 int pos = skb_headlen(skb);
1961 if (len < pos) /* Split line is inside header. */
1962 skb_split_inside_header(skb, skb1, len, pos);
1963 else /* Second chunk has no header, nothing to copy. */
1964 skb_split_no_header(skb, skb1, len, pos);
1968 * skb_prepare_seq_read - Prepare a sequential read of skb data
1969 * @skb: the buffer to read
1970 * @from: lower offset of data to be read
1971 * @to: upper offset of data to be read
1972 * @st: state variable
1974 * Initializes the specified state variable. Must be called before
1975 * invoking skb_seq_read() for the first time.
1977 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1978 unsigned int to, struct skb_seq_state *st)
1980 st->lower_offset = from;
1981 st->upper_offset = to;
1982 st->root_skb = st->cur_skb = skb;
1983 st->frag_idx = st->stepped_offset = 0;
1984 st->frag_data = NULL;
1988 * skb_seq_read - Sequentially read skb data
1989 * @consumed: number of bytes consumed by the caller so far
1990 * @data: destination pointer for data to be returned
1991 * @st: state variable
1993 * Reads a block of skb data at &consumed relative to the
1994 * lower offset specified to skb_prepare_seq_read(). Assigns
1995 * the head of the data block to &data and returns the length
1996 * of the block or 0 if the end of the skb data or the upper
1997 * offset has been reached.
1999 * The caller is not required to consume all of the data
2000 * returned, i.e. &consumed is typically set to the number
2001 * of bytes already consumed and the next call to
2002 * skb_seq_read() will return the remaining part of the block.
2004 * Note 1: The size of each block of data returned can be arbitary,
2005 * this limitation is the cost for zerocopy seqeuental
2006 * reads of potentially non linear data.
2008 * Note 2: Fragment lists within fragments are not implemented
2009 * at the moment, state->root_skb could be replaced with
2010 * a stack for this purpose.
2012 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2013 struct skb_seq_state *st)
2015 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2016 skb_frag_t *frag;
2018 if (unlikely(abs_offset >= st->upper_offset))
2019 return 0;
2021 next_skb:
2022 block_limit = skb_headlen(st->cur_skb);
2024 if (abs_offset < block_limit) {
2025 *data = st->cur_skb->data + abs_offset;
2026 return block_limit - abs_offset;
2029 if (st->frag_idx == 0 && !st->frag_data)
2030 st->stepped_offset += skb_headlen(st->cur_skb);
2032 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2033 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2034 block_limit = frag->size + st->stepped_offset;
2036 if (abs_offset < block_limit) {
2037 if (!st->frag_data)
2038 st->frag_data = kmap_skb_frag(frag);
2040 *data = (u8 *) st->frag_data + frag->page_offset +
2041 (abs_offset - st->stepped_offset);
2043 return block_limit - abs_offset;
2046 if (st->frag_data) {
2047 kunmap_skb_frag(st->frag_data);
2048 st->frag_data = NULL;
2051 st->frag_idx++;
2052 st->stepped_offset += frag->size;
2055 if (st->frag_data) {
2056 kunmap_skb_frag(st->frag_data);
2057 st->frag_data = NULL;
2060 if (st->cur_skb->next) {
2061 st->cur_skb = st->cur_skb->next;
2062 st->frag_idx = 0;
2063 goto next_skb;
2064 } else if (st->root_skb == st->cur_skb &&
2065 skb_shinfo(st->root_skb)->frag_list) {
2066 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2067 goto next_skb;
2070 return 0;
2074 * skb_abort_seq_read - Abort a sequential read of skb data
2075 * @st: state variable
2077 * Must be called if skb_seq_read() was not called until it
2078 * returned 0.
2080 void skb_abort_seq_read(struct skb_seq_state *st)
2082 if (st->frag_data)
2083 kunmap_skb_frag(st->frag_data);
2086 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2088 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2089 struct ts_config *conf,
2090 struct ts_state *state)
2092 return skb_seq_read(offset, text, TS_SKB_CB(state));
2095 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2097 skb_abort_seq_read(TS_SKB_CB(state));
2101 * skb_find_text - Find a text pattern in skb data
2102 * @skb: the buffer to look in
2103 * @from: search offset
2104 * @to: search limit
2105 * @config: textsearch configuration
2106 * @state: uninitialized textsearch state variable
2108 * Finds a pattern in the skb data according to the specified
2109 * textsearch configuration. Use textsearch_next() to retrieve
2110 * subsequent occurrences of the pattern. Returns the offset
2111 * to the first occurrence or UINT_MAX if no match was found.
2113 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2114 unsigned int to, struct ts_config *config,
2115 struct ts_state *state)
2117 unsigned int ret;
2119 config->get_next_block = skb_ts_get_next_block;
2120 config->finish = skb_ts_finish;
2122 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2124 ret = textsearch_find(config, state);
2125 return (ret <= to - from ? ret : UINT_MAX);
2129 * skb_append_datato_frags: - append the user data to a skb
2130 * @sk: sock structure
2131 * @skb: skb structure to be appened with user data.
2132 * @getfrag: call back function to be used for getting the user data
2133 * @from: pointer to user message iov
2134 * @length: length of the iov message
2136 * Description: This procedure append the user data in the fragment part
2137 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2139 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2140 int (*getfrag)(void *from, char *to, int offset,
2141 int len, int odd, struct sk_buff *skb),
2142 void *from, int length)
2144 int frg_cnt = 0;
2145 skb_frag_t *frag = NULL;
2146 struct page *page = NULL;
2147 int copy, left;
2148 int offset = 0;
2149 int ret;
2151 do {
2152 /* Return error if we don't have space for new frag */
2153 frg_cnt = skb_shinfo(skb)->nr_frags;
2154 if (frg_cnt >= MAX_SKB_FRAGS)
2155 return -EFAULT;
2157 /* allocate a new page for next frag */
2158 page = alloc_pages(sk->sk_allocation, 0);
2160 /* If alloc_page fails just return failure and caller will
2161 * free previous allocated pages by doing kfree_skb()
2163 if (page == NULL)
2164 return -ENOMEM;
2166 /* initialize the next frag */
2167 sk->sk_sndmsg_page = page;
2168 sk->sk_sndmsg_off = 0;
2169 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2170 skb->truesize += PAGE_SIZE;
2171 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2173 /* get the new initialized frag */
2174 frg_cnt = skb_shinfo(skb)->nr_frags;
2175 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2177 /* copy the user data to page */
2178 left = PAGE_SIZE - frag->page_offset;
2179 copy = (length > left)? left : length;
2181 ret = getfrag(from, (page_address(frag->page) +
2182 frag->page_offset + frag->size),
2183 offset, copy, 0, skb);
2184 if (ret < 0)
2185 return -EFAULT;
2187 /* copy was successful so update the size parameters */
2188 sk->sk_sndmsg_off += copy;
2189 frag->size += copy;
2190 skb->len += copy;
2191 skb->data_len += copy;
2192 offset += copy;
2193 length -= copy;
2195 } while (length > 0);
2197 return 0;
2201 * skb_pull_rcsum - pull skb and update receive checksum
2202 * @skb: buffer to update
2203 * @len: length of data pulled
2205 * This function performs an skb_pull on the packet and updates
2206 * the CHECKSUM_COMPLETE checksum. It should be used on
2207 * receive path processing instead of skb_pull unless you know
2208 * that the checksum difference is zero (e.g., a valid IP header)
2209 * or you are setting ip_summed to CHECKSUM_NONE.
2211 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2213 BUG_ON(len > skb->len);
2214 skb->len -= len;
2215 BUG_ON(skb->len < skb->data_len);
2216 skb_postpull_rcsum(skb, skb->data, len);
2217 return skb->data += len;
2220 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2223 * skb_segment - Perform protocol segmentation on skb.
2224 * @skb: buffer to segment
2225 * @features: features for the output path (see dev->features)
2227 * This function performs segmentation on the given skb. It returns
2228 * a pointer to the first in a list of new skbs for the segments.
2229 * In case of error it returns ERR_PTR(err).
2231 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2233 struct sk_buff *segs = NULL;
2234 struct sk_buff *tail = NULL;
2235 unsigned int mss = skb_shinfo(skb)->gso_size;
2236 unsigned int doffset = skb->data - skb_mac_header(skb);
2237 unsigned int offset = doffset;
2238 unsigned int headroom;
2239 unsigned int len;
2240 int sg = features & NETIF_F_SG;
2241 int nfrags = skb_shinfo(skb)->nr_frags;
2242 int err = -ENOMEM;
2243 int i = 0;
2244 int pos;
2246 __skb_push(skb, doffset);
2247 headroom = skb_headroom(skb);
2248 pos = skb_headlen(skb);
2250 do {
2251 struct sk_buff *nskb;
2252 skb_frag_t *frag;
2253 int hsize;
2254 int k;
2255 int size;
2257 len = skb->len - offset;
2258 if (len > mss)
2259 len = mss;
2261 hsize = skb_headlen(skb) - offset;
2262 if (hsize < 0)
2263 hsize = 0;
2264 if (hsize > len || !sg)
2265 hsize = len;
2267 nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC);
2268 if (unlikely(!nskb))
2269 goto err;
2271 if (segs)
2272 tail->next = nskb;
2273 else
2274 segs = nskb;
2275 tail = nskb;
2277 nskb->dev = skb->dev;
2278 skb_copy_queue_mapping(nskb, skb);
2279 nskb->priority = skb->priority;
2280 nskb->protocol = skb->protocol;
2281 nskb->dst = dst_clone(skb->dst);
2282 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
2283 nskb->pkt_type = skb->pkt_type;
2284 nskb->mac_len = skb->mac_len;
2286 skb_reserve(nskb, headroom);
2287 skb_reset_mac_header(nskb);
2288 skb_set_network_header(nskb, skb->mac_len);
2289 nskb->transport_header = (nskb->network_header +
2290 skb_network_header_len(skb));
2291 skb_copy_from_linear_data(skb, skb_put(nskb, doffset),
2292 doffset);
2293 if (!sg) {
2294 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2295 skb_put(nskb, len),
2296 len, 0);
2297 continue;
2300 frag = skb_shinfo(nskb)->frags;
2301 k = 0;
2303 nskb->ip_summed = CHECKSUM_PARTIAL;
2304 nskb->csum = skb->csum;
2305 skb_copy_from_linear_data_offset(skb, offset,
2306 skb_put(nskb, hsize), hsize);
2308 while (pos < offset + len) {
2309 BUG_ON(i >= nfrags);
2311 *frag = skb_shinfo(skb)->frags[i];
2312 get_page(frag->page);
2313 size = frag->size;
2315 if (pos < offset) {
2316 frag->page_offset += offset - pos;
2317 frag->size -= offset - pos;
2320 k++;
2322 if (pos + size <= offset + len) {
2323 i++;
2324 pos += size;
2325 } else {
2326 frag->size -= pos + size - (offset + len);
2327 break;
2330 frag++;
2333 skb_shinfo(nskb)->nr_frags = k;
2334 nskb->data_len = len - hsize;
2335 nskb->len += nskb->data_len;
2336 nskb->truesize += nskb->data_len;
2337 } while ((offset += len) < skb->len);
2339 return segs;
2341 err:
2342 while ((skb = segs)) {
2343 segs = skb->next;
2344 kfree_skb(skb);
2346 return ERR_PTR(err);
2349 EXPORT_SYMBOL_GPL(skb_segment);
2351 void __init skb_init(void)
2353 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2354 sizeof(struct sk_buff),
2356 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2357 NULL);
2358 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2359 (2*sizeof(struct sk_buff)) +
2360 sizeof(atomic_t),
2362 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2363 NULL);
2367 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2368 * @skb: Socket buffer containing the buffers to be mapped
2369 * @sg: The scatter-gather list to map into
2370 * @offset: The offset into the buffer's contents to start mapping
2371 * @len: Length of buffer space to be mapped
2373 * Fill the specified scatter-gather list with mappings/pointers into a
2374 * region of the buffer space attached to a socket buffer.
2376 static int
2377 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2379 int start = skb_headlen(skb);
2380 int i, copy = start - offset;
2381 int elt = 0;
2383 if (copy > 0) {
2384 if (copy > len)
2385 copy = len;
2386 sg_set_buf(sg, skb->data + offset, copy);
2387 elt++;
2388 if ((len -= copy) == 0)
2389 return elt;
2390 offset += copy;
2393 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2394 int end;
2396 BUG_TRAP(start <= offset + len);
2398 end = start + skb_shinfo(skb)->frags[i].size;
2399 if ((copy = end - offset) > 0) {
2400 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2402 if (copy > len)
2403 copy = len;
2404 sg_set_page(&sg[elt], frag->page, copy,
2405 frag->page_offset+offset-start);
2406 elt++;
2407 if (!(len -= copy))
2408 return elt;
2409 offset += copy;
2411 start = end;
2414 if (skb_shinfo(skb)->frag_list) {
2415 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2417 for (; list; list = list->next) {
2418 int end;
2420 BUG_TRAP(start <= offset + len);
2422 end = start + list->len;
2423 if ((copy = end - offset) > 0) {
2424 if (copy > len)
2425 copy = len;
2426 elt += __skb_to_sgvec(list, sg+elt, offset - start,
2427 copy);
2428 if ((len -= copy) == 0)
2429 return elt;
2430 offset += copy;
2432 start = end;
2435 BUG_ON(len);
2436 return elt;
2439 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2441 int nsg = __skb_to_sgvec(skb, sg, offset, len);
2443 sg_mark_end(&sg[nsg - 1]);
2445 return nsg;
2449 * skb_cow_data - Check that a socket buffer's data buffers are writable
2450 * @skb: The socket buffer to check.
2451 * @tailbits: Amount of trailing space to be added
2452 * @trailer: Returned pointer to the skb where the @tailbits space begins
2454 * Make sure that the data buffers attached to a socket buffer are
2455 * writable. If they are not, private copies are made of the data buffers
2456 * and the socket buffer is set to use these instead.
2458 * If @tailbits is given, make sure that there is space to write @tailbits
2459 * bytes of data beyond current end of socket buffer. @trailer will be
2460 * set to point to the skb in which this space begins.
2462 * The number of scatterlist elements required to completely map the
2463 * COW'd and extended socket buffer will be returned.
2465 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2467 int copyflag;
2468 int elt;
2469 struct sk_buff *skb1, **skb_p;
2471 /* If skb is cloned or its head is paged, reallocate
2472 * head pulling out all the pages (pages are considered not writable
2473 * at the moment even if they are anonymous).
2475 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2476 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2477 return -ENOMEM;
2479 /* Easy case. Most of packets will go this way. */
2480 if (!skb_shinfo(skb)->frag_list) {
2481 /* A little of trouble, not enough of space for trailer.
2482 * This should not happen, when stack is tuned to generate
2483 * good frames. OK, on miss we reallocate and reserve even more
2484 * space, 128 bytes is fair. */
2486 if (skb_tailroom(skb) < tailbits &&
2487 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2488 return -ENOMEM;
2490 /* Voila! */
2491 *trailer = skb;
2492 return 1;
2495 /* Misery. We are in troubles, going to mincer fragments... */
2497 elt = 1;
2498 skb_p = &skb_shinfo(skb)->frag_list;
2499 copyflag = 0;
2501 while ((skb1 = *skb_p) != NULL) {
2502 int ntail = 0;
2504 /* The fragment is partially pulled by someone,
2505 * this can happen on input. Copy it and everything
2506 * after it. */
2508 if (skb_shared(skb1))
2509 copyflag = 1;
2511 /* If the skb is the last, worry about trailer. */
2513 if (skb1->next == NULL && tailbits) {
2514 if (skb_shinfo(skb1)->nr_frags ||
2515 skb_shinfo(skb1)->frag_list ||
2516 skb_tailroom(skb1) < tailbits)
2517 ntail = tailbits + 128;
2520 if (copyflag ||
2521 skb_cloned(skb1) ||
2522 ntail ||
2523 skb_shinfo(skb1)->nr_frags ||
2524 skb_shinfo(skb1)->frag_list) {
2525 struct sk_buff *skb2;
2527 /* Fuck, we are miserable poor guys... */
2528 if (ntail == 0)
2529 skb2 = skb_copy(skb1, GFP_ATOMIC);
2530 else
2531 skb2 = skb_copy_expand(skb1,
2532 skb_headroom(skb1),
2533 ntail,
2534 GFP_ATOMIC);
2535 if (unlikely(skb2 == NULL))
2536 return -ENOMEM;
2538 if (skb1->sk)
2539 skb_set_owner_w(skb2, skb1->sk);
2541 /* Looking around. Are we still alive?
2542 * OK, link new skb, drop old one */
2544 skb2->next = skb1->next;
2545 *skb_p = skb2;
2546 kfree_skb(skb1);
2547 skb1 = skb2;
2549 elt++;
2550 *trailer = skb1;
2551 skb_p = &skb1->next;
2554 return elt;
2558 * skb_partial_csum_set - set up and verify partial csum values for packet
2559 * @skb: the skb to set
2560 * @start: the number of bytes after skb->data to start checksumming.
2561 * @off: the offset from start to place the checksum.
2563 * For untrusted partially-checksummed packets, we need to make sure the values
2564 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
2566 * This function checks and sets those values and skb->ip_summed: if this
2567 * returns false you should drop the packet.
2569 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
2571 if (unlikely(start > skb->len - 2) ||
2572 unlikely((int)start + off > skb->len - 2)) {
2573 if (net_ratelimit())
2574 printk(KERN_WARNING
2575 "bad partial csum: csum=%u/%u len=%u\n",
2576 start, off, skb->len);
2577 return false;
2579 skb->ip_summed = CHECKSUM_PARTIAL;
2580 skb->csum_start = skb_headroom(skb) + start;
2581 skb->csum_offset = off;
2582 return true;
2585 EXPORT_SYMBOL(___pskb_trim);
2586 EXPORT_SYMBOL(__kfree_skb);
2587 EXPORT_SYMBOL(kfree_skb);
2588 EXPORT_SYMBOL(__pskb_pull_tail);
2589 EXPORT_SYMBOL(__alloc_skb);
2590 EXPORT_SYMBOL(__netdev_alloc_skb);
2591 EXPORT_SYMBOL(pskb_copy);
2592 EXPORT_SYMBOL(pskb_expand_head);
2593 EXPORT_SYMBOL(skb_checksum);
2594 EXPORT_SYMBOL(skb_clone);
2595 EXPORT_SYMBOL(skb_copy);
2596 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2597 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2598 EXPORT_SYMBOL(skb_copy_bits);
2599 EXPORT_SYMBOL(skb_copy_expand);
2600 EXPORT_SYMBOL(skb_over_panic);
2601 EXPORT_SYMBOL(skb_pad);
2602 EXPORT_SYMBOL(skb_realloc_headroom);
2603 EXPORT_SYMBOL(skb_under_panic);
2604 EXPORT_SYMBOL(skb_dequeue);
2605 EXPORT_SYMBOL(skb_dequeue_tail);
2606 EXPORT_SYMBOL(skb_insert);
2607 EXPORT_SYMBOL(skb_queue_purge);
2608 EXPORT_SYMBOL(skb_queue_head);
2609 EXPORT_SYMBOL(skb_queue_tail);
2610 EXPORT_SYMBOL(skb_unlink);
2611 EXPORT_SYMBOL(skb_append);
2612 EXPORT_SYMBOL(skb_split);
2613 EXPORT_SYMBOL(skb_prepare_seq_read);
2614 EXPORT_SYMBOL(skb_seq_read);
2615 EXPORT_SYMBOL(skb_abort_seq_read);
2616 EXPORT_SYMBOL(skb_find_text);
2617 EXPORT_SYMBOL(skb_append_datato_frags);
2619 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2620 EXPORT_SYMBOL_GPL(skb_cow_data);
2621 EXPORT_SYMBOL_GPL(skb_partial_csum_set);