2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/mempool.h>
27 #include <linux/workqueue.h>
28 #include <linux/blktrace_api.h>
29 #include <scsi/sg.h> /* for struct sg_iovec */
31 #define BIO_POOL_SIZE 2
33 static struct kmem_cache
*bio_slab __read_mostly
;
35 #define BIOVEC_NR_POOLS 6
38 * a small number of entries is fine, not going to be performance critical.
39 * basically we just need to survive
41 #define BIO_SPLIT_ENTRIES 2
42 mempool_t
*bio_split_pool __read_mostly
;
47 struct kmem_cache
*slab
;
51 * if you change this list, also change bvec_alloc or things will
52 * break badly! cannot be bigger than what you can fit into an
56 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
57 static struct biovec_slab bvec_slabs
[BIOVEC_NR_POOLS
] __read_mostly
= {
58 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES
),
63 * bio_set is used to allow other portions of the IO system to
64 * allocate their own private memory pools for bio and iovec structures.
65 * These memory pools in turn all allocate from the bio_slab
66 * and the bvec_slabs[].
70 mempool_t
*bvec_pools
[BIOVEC_NR_POOLS
];
74 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
75 * IO code that does not need private memory pools.
77 static struct bio_set
*fs_bio_set
;
79 static inline struct bio_vec
*bvec_alloc_bs(gfp_t gfp_mask
, int nr
, unsigned long *idx
, struct bio_set
*bs
)
84 * see comment near bvec_array define!
87 case 1 : *idx
= 0; break;
88 case 2 ... 4: *idx
= 1; break;
89 case 5 ... 16: *idx
= 2; break;
90 case 17 ... 64: *idx
= 3; break;
91 case 65 ... 128: *idx
= 4; break;
92 case 129 ... BIO_MAX_PAGES
: *idx
= 5; break;
97 * idx now points to the pool we want to allocate from
100 bvl
= mempool_alloc(bs
->bvec_pools
[*idx
], gfp_mask
);
102 struct biovec_slab
*bp
= bvec_slabs
+ *idx
;
104 memset(bvl
, 0, bp
->nr_vecs
* sizeof(struct bio_vec
));
110 void bio_free(struct bio
*bio
, struct bio_set
*bio_set
)
112 if (bio
->bi_io_vec
) {
113 const int pool_idx
= BIO_POOL_IDX(bio
);
115 BIO_BUG_ON(pool_idx
>= BIOVEC_NR_POOLS
);
117 mempool_free(bio
->bi_io_vec
, bio_set
->bvec_pools
[pool_idx
]);
120 mempool_free(bio
, bio_set
->bio_pool
);
124 * default destructor for a bio allocated with bio_alloc_bioset()
126 static void bio_fs_destructor(struct bio
*bio
)
128 bio_free(bio
, fs_bio_set
);
131 void bio_init(struct bio
*bio
)
133 memset(bio
, 0, sizeof(*bio
));
134 bio
->bi_flags
= 1 << BIO_UPTODATE
;
135 atomic_set(&bio
->bi_cnt
, 1);
139 * bio_alloc_bioset - allocate a bio for I/O
140 * @gfp_mask: the GFP_ mask given to the slab allocator
141 * @nr_iovecs: number of iovecs to pre-allocate
142 * @bs: the bio_set to allocate from
145 * bio_alloc_bioset will first try it's on mempool to satisfy the allocation.
146 * If %__GFP_WAIT is set then we will block on the internal pool waiting
147 * for a &struct bio to become free.
149 * allocate bio and iovecs from the memory pools specified by the
152 struct bio
*bio_alloc_bioset(gfp_t gfp_mask
, int nr_iovecs
, struct bio_set
*bs
)
154 struct bio
*bio
= mempool_alloc(bs
->bio_pool
, gfp_mask
);
157 struct bio_vec
*bvl
= NULL
;
160 if (likely(nr_iovecs
)) {
161 unsigned long idx
= 0; /* shut up gcc */
163 bvl
= bvec_alloc_bs(gfp_mask
, nr_iovecs
, &idx
, bs
);
164 if (unlikely(!bvl
)) {
165 mempool_free(bio
, bs
->bio_pool
);
169 bio
->bi_flags
|= idx
<< BIO_POOL_OFFSET
;
170 bio
->bi_max_vecs
= bvec_slabs
[idx
].nr_vecs
;
172 bio
->bi_io_vec
= bvl
;
178 struct bio
*bio_alloc(gfp_t gfp_mask
, int nr_iovecs
)
180 struct bio
*bio
= bio_alloc_bioset(gfp_mask
, nr_iovecs
, fs_bio_set
);
183 bio
->bi_destructor
= bio_fs_destructor
;
188 void zero_fill_bio(struct bio
*bio
)
194 bio_for_each_segment(bv
, bio
, i
) {
195 char *data
= bvec_kmap_irq(bv
, &flags
);
196 memset(data
, 0, bv
->bv_len
);
197 flush_dcache_page(bv
->bv_page
);
198 bvec_kunmap_irq(data
, &flags
);
201 EXPORT_SYMBOL(zero_fill_bio
);
204 * bio_put - release a reference to a bio
205 * @bio: bio to release reference to
208 * Put a reference to a &struct bio, either one you have gotten with
209 * bio_alloc or bio_get. The last put of a bio will free it.
211 void bio_put(struct bio
*bio
)
213 BIO_BUG_ON(!atomic_read(&bio
->bi_cnt
));
218 if (atomic_dec_and_test(&bio
->bi_cnt
)) {
220 bio
->bi_destructor(bio
);
224 inline int bio_phys_segments(struct request_queue
*q
, struct bio
*bio
)
226 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
227 blk_recount_segments(q
, bio
);
229 return bio
->bi_phys_segments
;
232 inline int bio_hw_segments(struct request_queue
*q
, struct bio
*bio
)
234 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
235 blk_recount_segments(q
, bio
);
237 return bio
->bi_hw_segments
;
241 * __bio_clone - clone a bio
242 * @bio: destination bio
243 * @bio_src: bio to clone
245 * Clone a &bio. Caller will own the returned bio, but not
246 * the actual data it points to. Reference count of returned
249 void __bio_clone(struct bio
*bio
, struct bio
*bio_src
)
251 memcpy(bio
->bi_io_vec
, bio_src
->bi_io_vec
,
252 bio_src
->bi_max_vecs
* sizeof(struct bio_vec
));
255 * most users will be overriding ->bi_bdev with a new target,
256 * so we don't set nor calculate new physical/hw segment counts here
258 bio
->bi_sector
= bio_src
->bi_sector
;
259 bio
->bi_bdev
= bio_src
->bi_bdev
;
260 bio
->bi_flags
|= 1 << BIO_CLONED
;
261 bio
->bi_rw
= bio_src
->bi_rw
;
262 bio
->bi_vcnt
= bio_src
->bi_vcnt
;
263 bio
->bi_size
= bio_src
->bi_size
;
264 bio
->bi_idx
= bio_src
->bi_idx
;
268 * bio_clone - clone a bio
270 * @gfp_mask: allocation priority
272 * Like __bio_clone, only also allocates the returned bio
274 struct bio
*bio_clone(struct bio
*bio
, gfp_t gfp_mask
)
276 struct bio
*b
= bio_alloc_bioset(gfp_mask
, bio
->bi_max_vecs
, fs_bio_set
);
279 b
->bi_destructor
= bio_fs_destructor
;
287 * bio_get_nr_vecs - return approx number of vecs
290 * Return the approximate number of pages we can send to this target.
291 * There's no guarantee that you will be able to fit this number of pages
292 * into a bio, it does not account for dynamic restrictions that vary
295 int bio_get_nr_vecs(struct block_device
*bdev
)
297 struct request_queue
*q
= bdev_get_queue(bdev
);
300 nr_pages
= ((q
->max_sectors
<< 9) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
301 if (nr_pages
> q
->max_phys_segments
)
302 nr_pages
= q
->max_phys_segments
;
303 if (nr_pages
> q
->max_hw_segments
)
304 nr_pages
= q
->max_hw_segments
;
309 static int __bio_add_page(struct request_queue
*q
, struct bio
*bio
, struct page
310 *page
, unsigned int len
, unsigned int offset
,
311 unsigned short max_sectors
)
313 int retried_segments
= 0;
314 struct bio_vec
*bvec
;
317 * cloned bio must not modify vec list
319 if (unlikely(bio_flagged(bio
, BIO_CLONED
)))
322 if (((bio
->bi_size
+ len
) >> 9) > max_sectors
)
326 * For filesystems with a blocksize smaller than the pagesize
327 * we will often be called with the same page as last time and
328 * a consecutive offset. Optimize this special case.
330 if (bio
->bi_vcnt
> 0) {
331 struct bio_vec
*prev
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
333 if (page
== prev
->bv_page
&&
334 offset
== prev
->bv_offset
+ prev
->bv_len
) {
336 if (q
->merge_bvec_fn
&&
337 q
->merge_bvec_fn(q
, bio
, prev
) < len
) {
346 if (bio
->bi_vcnt
>= bio
->bi_max_vecs
)
350 * we might lose a segment or two here, but rather that than
351 * make this too complex.
354 while (bio
->bi_phys_segments
>= q
->max_phys_segments
355 || bio
->bi_hw_segments
>= q
->max_hw_segments
356 || BIOVEC_VIRT_OVERSIZE(bio
->bi_size
)) {
358 if (retried_segments
)
361 retried_segments
= 1;
362 blk_recount_segments(q
, bio
);
366 * setup the new entry, we might clear it again later if we
367 * cannot add the page
369 bvec
= &bio
->bi_io_vec
[bio
->bi_vcnt
];
370 bvec
->bv_page
= page
;
372 bvec
->bv_offset
= offset
;
375 * if queue has other restrictions (eg varying max sector size
376 * depending on offset), it can specify a merge_bvec_fn in the
377 * queue to get further control
379 if (q
->merge_bvec_fn
) {
381 * merge_bvec_fn() returns number of bytes it can accept
384 if (q
->merge_bvec_fn(q
, bio
, bvec
) < len
) {
385 bvec
->bv_page
= NULL
;
392 /* If we may be able to merge these biovecs, force a recount */
393 if (bio
->bi_vcnt
&& (BIOVEC_PHYS_MERGEABLE(bvec
-1, bvec
) ||
394 BIOVEC_VIRT_MERGEABLE(bvec
-1, bvec
)))
395 bio
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
398 bio
->bi_phys_segments
++;
399 bio
->bi_hw_segments
++;
406 * bio_add_pc_page - attempt to add page to bio
407 * @q: the target queue
408 * @bio: destination bio
410 * @len: vec entry length
411 * @offset: vec entry offset
413 * Attempt to add a page to the bio_vec maplist. This can fail for a
414 * number of reasons, such as the bio being full or target block
415 * device limitations. The target block device must allow bio's
416 * smaller than PAGE_SIZE, so it is always possible to add a single
417 * page to an empty bio. This should only be used by REQ_PC bios.
419 int bio_add_pc_page(struct request_queue
*q
, struct bio
*bio
, struct page
*page
,
420 unsigned int len
, unsigned int offset
)
422 return __bio_add_page(q
, bio
, page
, len
, offset
, q
->max_hw_sectors
);
426 * bio_add_page - attempt to add page to bio
427 * @bio: destination bio
429 * @len: vec entry length
430 * @offset: vec entry offset
432 * Attempt to add a page to the bio_vec maplist. This can fail for a
433 * number of reasons, such as the bio being full or target block
434 * device limitations. The target block device must allow bio's
435 * smaller than PAGE_SIZE, so it is always possible to add a single
436 * page to an empty bio.
438 int bio_add_page(struct bio
*bio
, struct page
*page
, unsigned int len
,
441 struct request_queue
*q
= bdev_get_queue(bio
->bi_bdev
);
442 return __bio_add_page(q
, bio
, page
, len
, offset
, q
->max_sectors
);
445 struct bio_map_data
{
446 struct bio_vec
*iovecs
;
448 struct sg_iovec
*sgvecs
;
451 static void bio_set_map_data(struct bio_map_data
*bmd
, struct bio
*bio
,
452 struct sg_iovec
*iov
, int iov_count
)
454 memcpy(bmd
->iovecs
, bio
->bi_io_vec
, sizeof(struct bio_vec
) * bio
->bi_vcnt
);
455 memcpy(bmd
->sgvecs
, iov
, sizeof(struct sg_iovec
) * iov_count
);
456 bmd
->nr_sgvecs
= iov_count
;
457 bio
->bi_private
= bmd
;
460 static void bio_free_map_data(struct bio_map_data
*bmd
)
467 static struct bio_map_data
*bio_alloc_map_data(int nr_segs
, int iov_count
)
469 struct bio_map_data
*bmd
= kmalloc(sizeof(*bmd
), GFP_KERNEL
);
474 bmd
->iovecs
= kmalloc(sizeof(struct bio_vec
) * nr_segs
, GFP_KERNEL
);
480 bmd
->sgvecs
= kmalloc(sizeof(struct sg_iovec
) * iov_count
, GFP_KERNEL
);
489 static int __bio_copy_iov(struct bio
*bio
, struct sg_iovec
*iov
, int iov_count
,
493 struct bio_vec
*bvec
;
495 unsigned int iov_off
= 0;
496 int read
= bio_data_dir(bio
) == READ
;
498 __bio_for_each_segment(bvec
, bio
, i
, 0) {
499 char *bv_addr
= page_address(bvec
->bv_page
);
500 unsigned int bv_len
= bvec
->bv_len
;
502 while (bv_len
&& iov_idx
< iov_count
) {
506 bytes
= min_t(unsigned int,
507 iov
[iov_idx
].iov_len
- iov_off
, bv_len
);
508 iov_addr
= iov
[iov_idx
].iov_base
+ iov_off
;
511 if (!read
&& !uncopy
)
512 ret
= copy_from_user(bv_addr
, iov_addr
,
515 ret
= copy_to_user(iov_addr
, bv_addr
,
527 if (iov
[iov_idx
].iov_len
== iov_off
) {
534 __free_page(bvec
->bv_page
);
541 * bio_uncopy_user - finish previously mapped bio
542 * @bio: bio being terminated
544 * Free pages allocated from bio_copy_user() and write back data
545 * to user space in case of a read.
547 int bio_uncopy_user(struct bio
*bio
)
549 struct bio_map_data
*bmd
= bio
->bi_private
;
552 ret
= __bio_copy_iov(bio
, bmd
->sgvecs
, bmd
->nr_sgvecs
, 1);
554 bio_free_map_data(bmd
);
560 * bio_copy_user_iov - copy user data to bio
561 * @q: destination block queue
563 * @iov_count: number of elements in the iovec
564 * @write_to_vm: bool indicating writing to pages or not
566 * Prepares and returns a bio for indirect user io, bouncing data
567 * to/from kernel pages as necessary. Must be paired with
568 * call bio_uncopy_user() on io completion.
570 struct bio
*bio_copy_user_iov(struct request_queue
*q
, struct sg_iovec
*iov
,
571 int iov_count
, int write_to_vm
)
573 struct bio_map_data
*bmd
;
574 struct bio_vec
*bvec
;
579 unsigned int len
= 0;
581 for (i
= 0; i
< iov_count
; i
++) {
586 uaddr
= (unsigned long)iov
[i
].iov_base
;
587 end
= (uaddr
+ iov
[i
].iov_len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
588 start
= uaddr
>> PAGE_SHIFT
;
590 nr_pages
+= end
- start
;
591 len
+= iov
[i
].iov_len
;
594 bmd
= bio_alloc_map_data(nr_pages
, iov_count
);
596 return ERR_PTR(-ENOMEM
);
599 bio
= bio_alloc(GFP_KERNEL
, nr_pages
);
603 bio
->bi_rw
|= (!write_to_vm
<< BIO_RW
);
607 unsigned int bytes
= PAGE_SIZE
;
612 page
= alloc_page(q
->bounce_gfp
| GFP_KERNEL
);
618 if (bio_add_pc_page(q
, bio
, page
, bytes
, 0) < bytes
)
631 ret
= __bio_copy_iov(bio
, iov
, iov_count
, 0);
636 bio_set_map_data(bmd
, bio
, iov
, iov_count
);
639 bio_for_each_segment(bvec
, bio
, i
)
640 __free_page(bvec
->bv_page
);
644 bio_free_map_data(bmd
);
649 * bio_copy_user - copy user data to bio
650 * @q: destination block queue
651 * @uaddr: start of user address
652 * @len: length in bytes
653 * @write_to_vm: bool indicating writing to pages or not
655 * Prepares and returns a bio for indirect user io, bouncing data
656 * to/from kernel pages as necessary. Must be paired with
657 * call bio_uncopy_user() on io completion.
659 struct bio
*bio_copy_user(struct request_queue
*q
, unsigned long uaddr
,
660 unsigned int len
, int write_to_vm
)
664 iov
.iov_base
= (void __user
*)uaddr
;
667 return bio_copy_user_iov(q
, &iov
, 1, write_to_vm
);
670 static struct bio
*__bio_map_user_iov(struct request_queue
*q
,
671 struct block_device
*bdev
,
672 struct sg_iovec
*iov
, int iov_count
,
682 for (i
= 0; i
< iov_count
; i
++) {
683 unsigned long uaddr
= (unsigned long)iov
[i
].iov_base
;
684 unsigned long len
= iov
[i
].iov_len
;
685 unsigned long end
= (uaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
686 unsigned long start
= uaddr
>> PAGE_SHIFT
;
688 nr_pages
+= end
- start
;
690 * buffer must be aligned to at least hardsector size for now
692 if (uaddr
& queue_dma_alignment(q
))
693 return ERR_PTR(-EINVAL
);
697 return ERR_PTR(-EINVAL
);
699 bio
= bio_alloc(GFP_KERNEL
, nr_pages
);
701 return ERR_PTR(-ENOMEM
);
704 pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_KERNEL
);
708 for (i
= 0; i
< iov_count
; i
++) {
709 unsigned long uaddr
= (unsigned long)iov
[i
].iov_base
;
710 unsigned long len
= iov
[i
].iov_len
;
711 unsigned long end
= (uaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
712 unsigned long start
= uaddr
>> PAGE_SHIFT
;
713 const int local_nr_pages
= end
- start
;
714 const int page_limit
= cur_page
+ local_nr_pages
;
716 down_read(¤t
->mm
->mmap_sem
);
717 ret
= get_user_pages(current
, current
->mm
, uaddr
,
719 write_to_vm
, 0, &pages
[cur_page
], NULL
);
720 up_read(¤t
->mm
->mmap_sem
);
722 if (ret
< local_nr_pages
) {
727 offset
= uaddr
& ~PAGE_MASK
;
728 for (j
= cur_page
; j
< page_limit
; j
++) {
729 unsigned int bytes
= PAGE_SIZE
- offset
;
740 if (bio_add_pc_page(q
, bio
, pages
[j
], bytes
, offset
) <
750 * release the pages we didn't map into the bio, if any
752 while (j
< page_limit
)
753 page_cache_release(pages
[j
++]);
759 * set data direction, and check if mapped pages need bouncing
762 bio
->bi_rw
|= (1 << BIO_RW
);
765 bio
->bi_flags
|= (1 << BIO_USER_MAPPED
);
769 for (i
= 0; i
< nr_pages
; i
++) {
772 page_cache_release(pages
[i
]);
781 * bio_map_user - map user address into bio
782 * @q: the struct request_queue for the bio
783 * @bdev: destination block device
784 * @uaddr: start of user address
785 * @len: length in bytes
786 * @write_to_vm: bool indicating writing to pages or not
788 * Map the user space address into a bio suitable for io to a block
789 * device. Returns an error pointer in case of error.
791 struct bio
*bio_map_user(struct request_queue
*q
, struct block_device
*bdev
,
792 unsigned long uaddr
, unsigned int len
, int write_to_vm
)
796 iov
.iov_base
= (void __user
*)uaddr
;
799 return bio_map_user_iov(q
, bdev
, &iov
, 1, write_to_vm
);
803 * bio_map_user_iov - map user sg_iovec table into bio
804 * @q: the struct request_queue for the bio
805 * @bdev: destination block device
807 * @iov_count: number of elements in the iovec
808 * @write_to_vm: bool indicating writing to pages or not
810 * Map the user space address into a bio suitable for io to a block
811 * device. Returns an error pointer in case of error.
813 struct bio
*bio_map_user_iov(struct request_queue
*q
, struct block_device
*bdev
,
814 struct sg_iovec
*iov
, int iov_count
,
819 bio
= __bio_map_user_iov(q
, bdev
, iov
, iov_count
, write_to_vm
);
825 * subtle -- if __bio_map_user() ended up bouncing a bio,
826 * it would normally disappear when its bi_end_io is run.
827 * however, we need it for the unmap, so grab an extra
835 static void __bio_unmap_user(struct bio
*bio
)
837 struct bio_vec
*bvec
;
841 * make sure we dirty pages we wrote to
843 __bio_for_each_segment(bvec
, bio
, i
, 0) {
844 if (bio_data_dir(bio
) == READ
)
845 set_page_dirty_lock(bvec
->bv_page
);
847 page_cache_release(bvec
->bv_page
);
854 * bio_unmap_user - unmap a bio
855 * @bio: the bio being unmapped
857 * Unmap a bio previously mapped by bio_map_user(). Must be called with
860 * bio_unmap_user() may sleep.
862 void bio_unmap_user(struct bio
*bio
)
864 __bio_unmap_user(bio
);
868 static void bio_map_kern_endio(struct bio
*bio
, int err
)
874 static struct bio
*__bio_map_kern(struct request_queue
*q
, void *data
,
875 unsigned int len
, gfp_t gfp_mask
)
877 unsigned long kaddr
= (unsigned long)data
;
878 unsigned long end
= (kaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
879 unsigned long start
= kaddr
>> PAGE_SHIFT
;
880 const int nr_pages
= end
- start
;
884 bio
= bio_alloc(gfp_mask
, nr_pages
);
886 return ERR_PTR(-ENOMEM
);
888 offset
= offset_in_page(kaddr
);
889 for (i
= 0; i
< nr_pages
; i
++) {
890 unsigned int bytes
= PAGE_SIZE
- offset
;
898 if (bio_add_pc_page(q
, bio
, virt_to_page(data
), bytes
,
907 bio
->bi_end_io
= bio_map_kern_endio
;
912 * bio_map_kern - map kernel address into bio
913 * @q: the struct request_queue for the bio
914 * @data: pointer to buffer to map
915 * @len: length in bytes
916 * @gfp_mask: allocation flags for bio allocation
918 * Map the kernel address into a bio suitable for io to a block
919 * device. Returns an error pointer in case of error.
921 struct bio
*bio_map_kern(struct request_queue
*q
, void *data
, unsigned int len
,
926 bio
= __bio_map_kern(q
, data
, len
, gfp_mask
);
930 if (bio
->bi_size
== len
)
934 * Don't support partial mappings.
937 return ERR_PTR(-EINVAL
);
941 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
942 * for performing direct-IO in BIOs.
944 * The problem is that we cannot run set_page_dirty() from interrupt context
945 * because the required locks are not interrupt-safe. So what we can do is to
946 * mark the pages dirty _before_ performing IO. And in interrupt context,
947 * check that the pages are still dirty. If so, fine. If not, redirty them
948 * in process context.
950 * We special-case compound pages here: normally this means reads into hugetlb
951 * pages. The logic in here doesn't really work right for compound pages
952 * because the VM does not uniformly chase down the head page in all cases.
953 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
954 * handle them at all. So we skip compound pages here at an early stage.
956 * Note that this code is very hard to test under normal circumstances because
957 * direct-io pins the pages with get_user_pages(). This makes
958 * is_page_cache_freeable return false, and the VM will not clean the pages.
959 * But other code (eg, pdflush) could clean the pages if they are mapped
962 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
963 * deferred bio dirtying paths.
967 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
969 void bio_set_pages_dirty(struct bio
*bio
)
971 struct bio_vec
*bvec
= bio
->bi_io_vec
;
974 for (i
= 0; i
< bio
->bi_vcnt
; i
++) {
975 struct page
*page
= bvec
[i
].bv_page
;
977 if (page
&& !PageCompound(page
))
978 set_page_dirty_lock(page
);
982 static void bio_release_pages(struct bio
*bio
)
984 struct bio_vec
*bvec
= bio
->bi_io_vec
;
987 for (i
= 0; i
< bio
->bi_vcnt
; i
++) {
988 struct page
*page
= bvec
[i
].bv_page
;
996 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
997 * If they are, then fine. If, however, some pages are clean then they must
998 * have been written out during the direct-IO read. So we take another ref on
999 * the BIO and the offending pages and re-dirty the pages in process context.
1001 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1002 * here on. It will run one page_cache_release() against each page and will
1003 * run one bio_put() against the BIO.
1006 static void bio_dirty_fn(struct work_struct
*work
);
1008 static DECLARE_WORK(bio_dirty_work
, bio_dirty_fn
);
1009 static DEFINE_SPINLOCK(bio_dirty_lock
);
1010 static struct bio
*bio_dirty_list
;
1013 * This runs in process context
1015 static void bio_dirty_fn(struct work_struct
*work
)
1017 unsigned long flags
;
1020 spin_lock_irqsave(&bio_dirty_lock
, flags
);
1021 bio
= bio_dirty_list
;
1022 bio_dirty_list
= NULL
;
1023 spin_unlock_irqrestore(&bio_dirty_lock
, flags
);
1026 struct bio
*next
= bio
->bi_private
;
1028 bio_set_pages_dirty(bio
);
1029 bio_release_pages(bio
);
1035 void bio_check_pages_dirty(struct bio
*bio
)
1037 struct bio_vec
*bvec
= bio
->bi_io_vec
;
1038 int nr_clean_pages
= 0;
1041 for (i
= 0; i
< bio
->bi_vcnt
; i
++) {
1042 struct page
*page
= bvec
[i
].bv_page
;
1044 if (PageDirty(page
) || PageCompound(page
)) {
1045 page_cache_release(page
);
1046 bvec
[i
].bv_page
= NULL
;
1052 if (nr_clean_pages
) {
1053 unsigned long flags
;
1055 spin_lock_irqsave(&bio_dirty_lock
, flags
);
1056 bio
->bi_private
= bio_dirty_list
;
1057 bio_dirty_list
= bio
;
1058 spin_unlock_irqrestore(&bio_dirty_lock
, flags
);
1059 schedule_work(&bio_dirty_work
);
1066 * bio_endio - end I/O on a bio
1068 * @error: error, if any
1071 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1072 * preferred way to end I/O on a bio, it takes care of clearing
1073 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1074 * established -Exxxx (-EIO, for instance) error values in case
1075 * something went wrong. Noone should call bi_end_io() directly on a
1076 * bio unless they own it and thus know that it has an end_io
1079 void bio_endio(struct bio
*bio
, int error
)
1082 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1083 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1087 bio
->bi_end_io(bio
, error
);
1090 void bio_pair_release(struct bio_pair
*bp
)
1092 if (atomic_dec_and_test(&bp
->cnt
)) {
1093 struct bio
*master
= bp
->bio1
.bi_private
;
1095 bio_endio(master
, bp
->error
);
1096 mempool_free(bp
, bp
->bio2
.bi_private
);
1100 static void bio_pair_end_1(struct bio
*bi
, int err
)
1102 struct bio_pair
*bp
= container_of(bi
, struct bio_pair
, bio1
);
1107 bio_pair_release(bp
);
1110 static void bio_pair_end_2(struct bio
*bi
, int err
)
1112 struct bio_pair
*bp
= container_of(bi
, struct bio_pair
, bio2
);
1117 bio_pair_release(bp
);
1121 * split a bio - only worry about a bio with a single page
1124 struct bio_pair
*bio_split(struct bio
*bi
, mempool_t
*pool
, int first_sectors
)
1126 struct bio_pair
*bp
= mempool_alloc(pool
, GFP_NOIO
);
1131 blk_add_trace_pdu_int(bdev_get_queue(bi
->bi_bdev
), BLK_TA_SPLIT
, bi
,
1132 bi
->bi_sector
+ first_sectors
);
1134 BUG_ON(bi
->bi_vcnt
!= 1);
1135 BUG_ON(bi
->bi_idx
!= 0);
1136 atomic_set(&bp
->cnt
, 3);
1140 bp
->bio2
.bi_sector
+= first_sectors
;
1141 bp
->bio2
.bi_size
-= first_sectors
<< 9;
1142 bp
->bio1
.bi_size
= first_sectors
<< 9;
1144 bp
->bv1
= bi
->bi_io_vec
[0];
1145 bp
->bv2
= bi
->bi_io_vec
[0];
1146 bp
->bv2
.bv_offset
+= first_sectors
<< 9;
1147 bp
->bv2
.bv_len
-= first_sectors
<< 9;
1148 bp
->bv1
.bv_len
= first_sectors
<< 9;
1150 bp
->bio1
.bi_io_vec
= &bp
->bv1
;
1151 bp
->bio2
.bi_io_vec
= &bp
->bv2
;
1153 bp
->bio1
.bi_max_vecs
= 1;
1154 bp
->bio2
.bi_max_vecs
= 1;
1156 bp
->bio1
.bi_end_io
= bio_pair_end_1
;
1157 bp
->bio2
.bi_end_io
= bio_pair_end_2
;
1159 bp
->bio1
.bi_private
= bi
;
1160 bp
->bio2
.bi_private
= pool
;
1167 * create memory pools for biovec's in a bio_set.
1168 * use the global biovec slabs created for general use.
1170 static int biovec_create_pools(struct bio_set
*bs
, int pool_entries
)
1174 for (i
= 0; i
< BIOVEC_NR_POOLS
; i
++) {
1175 struct biovec_slab
*bp
= bvec_slabs
+ i
;
1176 mempool_t
**bvp
= bs
->bvec_pools
+ i
;
1178 *bvp
= mempool_create_slab_pool(pool_entries
, bp
->slab
);
1185 static void biovec_free_pools(struct bio_set
*bs
)
1189 for (i
= 0; i
< BIOVEC_NR_POOLS
; i
++) {
1190 mempool_t
*bvp
= bs
->bvec_pools
[i
];
1193 mempool_destroy(bvp
);
1198 void bioset_free(struct bio_set
*bs
)
1201 mempool_destroy(bs
->bio_pool
);
1203 biovec_free_pools(bs
);
1208 struct bio_set
*bioset_create(int bio_pool_size
, int bvec_pool_size
)
1210 struct bio_set
*bs
= kzalloc(sizeof(*bs
), GFP_KERNEL
);
1215 bs
->bio_pool
= mempool_create_slab_pool(bio_pool_size
, bio_slab
);
1219 if (!biovec_create_pools(bs
, bvec_pool_size
))
1227 static void __init
biovec_init_slabs(void)
1231 for (i
= 0; i
< BIOVEC_NR_POOLS
; i
++) {
1233 struct biovec_slab
*bvs
= bvec_slabs
+ i
;
1235 size
= bvs
->nr_vecs
* sizeof(struct bio_vec
);
1236 bvs
->slab
= kmem_cache_create(bvs
->name
, size
, 0,
1237 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
1241 static int __init
init_bio(void)
1243 bio_slab
= KMEM_CACHE(bio
, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
1245 biovec_init_slabs();
1247 fs_bio_set
= bioset_create(BIO_POOL_SIZE
, 2);
1249 panic("bio: can't allocate bios\n");
1251 bio_split_pool
= mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES
,
1252 sizeof(struct bio_pair
));
1253 if (!bio_split_pool
)
1254 panic("bio: can't create split pool\n");
1259 subsys_initcall(init_bio
);
1261 EXPORT_SYMBOL(bio_alloc
);
1262 EXPORT_SYMBOL(bio_put
);
1263 EXPORT_SYMBOL(bio_free
);
1264 EXPORT_SYMBOL(bio_endio
);
1265 EXPORT_SYMBOL(bio_init
);
1266 EXPORT_SYMBOL(__bio_clone
);
1267 EXPORT_SYMBOL(bio_clone
);
1268 EXPORT_SYMBOL(bio_phys_segments
);
1269 EXPORT_SYMBOL(bio_hw_segments
);
1270 EXPORT_SYMBOL(bio_add_page
);
1271 EXPORT_SYMBOL(bio_add_pc_page
);
1272 EXPORT_SYMBOL(bio_get_nr_vecs
);
1273 EXPORT_SYMBOL(bio_map_user
);
1274 EXPORT_SYMBOL(bio_unmap_user
);
1275 EXPORT_SYMBOL(bio_map_kern
);
1276 EXPORT_SYMBOL(bio_pair_release
);
1277 EXPORT_SYMBOL(bio_split
);
1278 EXPORT_SYMBOL(bio_split_pool
);
1279 EXPORT_SYMBOL(bio_copy_user
);
1280 EXPORT_SYMBOL(bio_uncopy_user
);
1281 EXPORT_SYMBOL(bioset_create
);
1282 EXPORT_SYMBOL(bioset_free
);
1283 EXPORT_SYMBOL(bio_alloc_bioset
);