1 /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
3 Copyright (c) 2001, 2002 by D-Link Corporation
4 Written by Edward Peng.<edward_peng@dlink.com.tw>
5 Created 03-May-2001, base on Linux' sundance.c.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
13 #define DRV_NAME "DL2000/TC902x-based linux driver"
14 #define DRV_VERSION "v1.19"
15 #define DRV_RELDATE "2007/08/12"
17 #include <linux/dma-mapping.h>
19 static char version
[] __devinitdata
=
20 KERN_INFO DRV_NAME
" " DRV_VERSION
" " DRV_RELDATE
"\n";
22 static int mtu
[MAX_UNITS
];
23 static int vlan
[MAX_UNITS
];
24 static int jumbo
[MAX_UNITS
];
25 static char *media
[MAX_UNITS
];
26 static int tx_flow
=-1;
27 static int rx_flow
=-1;
28 static int copy_thresh
;
29 static int rx_coalesce
=10; /* Rx frame count each interrupt */
30 static int rx_timeout
=200; /* Rx DMA wait time in 640ns increments */
31 static int tx_coalesce
=16; /* HW xmit count each TxDMAComplete */
34 MODULE_AUTHOR ("Edward Peng");
35 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
36 MODULE_LICENSE("GPL");
37 module_param_array(mtu
, int, NULL
, 0);
38 module_param_array(media
, charp
, NULL
, 0);
39 module_param_array(vlan
, int, NULL
, 0);
40 module_param_array(jumbo
, int, NULL
, 0);
41 module_param(tx_flow
, int, 0);
42 module_param(rx_flow
, int, 0);
43 module_param(copy_thresh
, int, 0);
44 module_param(rx_coalesce
, int, 0); /* Rx frame count each interrupt */
45 module_param(rx_timeout
, int, 0); /* Rx DMA wait time in 64ns increments */
46 module_param(tx_coalesce
, int, 0); /* HW xmit count each TxDMAComplete */
49 /* Enable the default interrupts */
50 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
51 UpdateStats | LinkEvent)
53 writew(DEFAULT_INTR, ioaddr + IntEnable)
55 static const int max_intrloop
= 50;
56 static const int multicast_filter_limit
= 0x40;
58 static int rio_open (struct net_device
*dev
);
59 static void rio_timer (unsigned long data
);
60 static void rio_tx_timeout (struct net_device
*dev
);
61 static void alloc_list (struct net_device
*dev
);
62 static int start_xmit (struct sk_buff
*skb
, struct net_device
*dev
);
63 static irqreturn_t
rio_interrupt (int irq
, void *dev_instance
);
64 static void rio_free_tx (struct net_device
*dev
, int irq
);
65 static void tx_error (struct net_device
*dev
, int tx_status
);
66 static int receive_packet (struct net_device
*dev
);
67 static void rio_error (struct net_device
*dev
, int int_status
);
68 static int change_mtu (struct net_device
*dev
, int new_mtu
);
69 static void set_multicast (struct net_device
*dev
);
70 static struct net_device_stats
*get_stats (struct net_device
*dev
);
71 static int clear_stats (struct net_device
*dev
);
72 static int rio_ioctl (struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
73 static int rio_close (struct net_device
*dev
);
74 static int find_miiphy (struct net_device
*dev
);
75 static int parse_eeprom (struct net_device
*dev
);
76 static int read_eeprom (long ioaddr
, int eep_addr
);
77 static int mii_wait_link (struct net_device
*dev
, int wait
);
78 static int mii_set_media (struct net_device
*dev
);
79 static int mii_get_media (struct net_device
*dev
);
80 static int mii_set_media_pcs (struct net_device
*dev
);
81 static int mii_get_media_pcs (struct net_device
*dev
);
82 static int mii_read (struct net_device
*dev
, int phy_addr
, int reg_num
);
83 static int mii_write (struct net_device
*dev
, int phy_addr
, int reg_num
,
86 static const struct ethtool_ops ethtool_ops
;
89 rio_probe1 (struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
91 struct net_device
*dev
;
92 struct netdev_private
*np
;
94 int chip_idx
= ent
->driver_data
;
97 static int version_printed
;
100 DECLARE_MAC_BUF(mac
);
102 if (!version_printed
++)
103 printk ("%s", version
);
105 err
= pci_enable_device (pdev
);
110 err
= pci_request_regions (pdev
, "dl2k");
112 goto err_out_disable
;
114 pci_set_master (pdev
);
115 dev
= alloc_etherdev (sizeof (*np
));
120 SET_NETDEV_DEV(dev
, &pdev
->dev
);
123 ioaddr
= pci_resource_start (pdev
, 1);
124 ioaddr
= (long) ioremap (ioaddr
, RIO_IO_SIZE
);
130 ioaddr
= pci_resource_start (pdev
, 0);
132 dev
->base_addr
= ioaddr
;
134 np
= netdev_priv(dev
);
135 np
->chip_id
= chip_idx
;
137 spin_lock_init (&np
->tx_lock
);
138 spin_lock_init (&np
->rx_lock
);
140 /* Parse manual configuration */
143 if (card_idx
< MAX_UNITS
) {
144 if (media
[card_idx
] != NULL
) {
146 if (strcmp (media
[card_idx
], "auto") == 0 ||
147 strcmp (media
[card_idx
], "autosense") == 0 ||
148 strcmp (media
[card_idx
], "0") == 0 ) {
150 } else if (strcmp (media
[card_idx
], "100mbps_fd") == 0 ||
151 strcmp (media
[card_idx
], "4") == 0) {
154 } else if (strcmp (media
[card_idx
], "100mbps_hd") == 0
155 || strcmp (media
[card_idx
], "3") == 0) {
158 } else if (strcmp (media
[card_idx
], "10mbps_fd") == 0 ||
159 strcmp (media
[card_idx
], "2") == 0) {
162 } else if (strcmp (media
[card_idx
], "10mbps_hd") == 0 ||
163 strcmp (media
[card_idx
], "1") == 0) {
166 } else if (strcmp (media
[card_idx
], "1000mbps_fd") == 0 ||
167 strcmp (media
[card_idx
], "6") == 0) {
170 } else if (strcmp (media
[card_idx
], "1000mbps_hd") == 0 ||
171 strcmp (media
[card_idx
], "5") == 0) {
178 if (jumbo
[card_idx
] != 0) {
180 dev
->mtu
= MAX_JUMBO
;
183 if (mtu
[card_idx
] > 0 && mtu
[card_idx
] < PACKET_SIZE
)
184 dev
->mtu
= mtu
[card_idx
];
186 np
->vlan
= (vlan
[card_idx
] > 0 && vlan
[card_idx
] < 4096) ?
188 if (rx_coalesce
> 0 && rx_timeout
> 0) {
189 np
->rx_coalesce
= rx_coalesce
;
190 np
->rx_timeout
= rx_timeout
;
193 np
->tx_flow
= (tx_flow
== 0) ? 0 : 1;
194 np
->rx_flow
= (rx_flow
== 0) ? 0 : 1;
198 else if (tx_coalesce
> TX_RING_SIZE
-1)
199 tx_coalesce
= TX_RING_SIZE
- 1;
201 dev
->open
= &rio_open
;
202 dev
->hard_start_xmit
= &start_xmit
;
203 dev
->stop
= &rio_close
;
204 dev
->get_stats
= &get_stats
;
205 dev
->set_multicast_list
= &set_multicast
;
206 dev
->do_ioctl
= &rio_ioctl
;
207 dev
->tx_timeout
= &rio_tx_timeout
;
208 dev
->watchdog_timeo
= TX_TIMEOUT
;
209 dev
->change_mtu
= &change_mtu
;
210 SET_ETHTOOL_OPS(dev
, ðtool_ops
);
212 dev
->features
= NETIF_F_IP_CSUM
;
214 pci_set_drvdata (pdev
, dev
);
216 ring_space
= pci_alloc_consistent (pdev
, TX_TOTAL_SIZE
, &ring_dma
);
218 goto err_out_iounmap
;
219 np
->tx_ring
= (struct netdev_desc
*) ring_space
;
220 np
->tx_ring_dma
= ring_dma
;
222 ring_space
= pci_alloc_consistent (pdev
, RX_TOTAL_SIZE
, &ring_dma
);
224 goto err_out_unmap_tx
;
225 np
->rx_ring
= (struct netdev_desc
*) ring_space
;
226 np
->rx_ring_dma
= ring_dma
;
228 /* Parse eeprom data */
231 /* Find PHY address */
232 err
= find_miiphy (dev
);
234 goto err_out_unmap_rx
;
237 np
->phy_media
= (readw(ioaddr
+ ASICCtrl
) & PhyMedia
) ? 1 : 0;
239 /* Set media and reset PHY */
241 /* default Auto-Negotiation for fiber deivices */
242 if (np
->an_enable
== 2) {
245 mii_set_media_pcs (dev
);
247 /* Auto-Negotiation is mandatory for 1000BASE-T,
248 IEEE 802.3ab Annex 28D page 14 */
249 if (np
->speed
== 1000)
254 err
= register_netdev (dev
);
256 goto err_out_unmap_rx
;
260 printk (KERN_INFO
"%s: %s, %s, IRQ %d\n",
261 dev
->name
, np
->name
, print_mac(mac
, dev
->dev_addr
), irq
);
263 printk(KERN_INFO
"tx_coalesce:\t%d packets\n",
266 printk(KERN_INFO
"rx_coalesce:\t%d packets\n"
267 KERN_INFO
"rx_timeout: \t%d ns\n",
268 np
->rx_coalesce
, np
->rx_timeout
*640);
270 printk(KERN_INFO
"vlan(id):\t%d\n", np
->vlan
);
274 pci_free_consistent (pdev
, RX_TOTAL_SIZE
, np
->rx_ring
, np
->rx_ring_dma
);
276 pci_free_consistent (pdev
, TX_TOTAL_SIZE
, np
->tx_ring
, np
->tx_ring_dma
);
279 iounmap ((void *) ioaddr
);
286 pci_release_regions (pdev
);
289 pci_disable_device (pdev
);
294 find_miiphy (struct net_device
*dev
)
296 int i
, phy_found
= 0;
297 struct netdev_private
*np
;
299 np
= netdev_priv(dev
);
300 ioaddr
= dev
->base_addr
;
303 for (i
= 31; i
>= 0; i
--) {
304 int mii_status
= mii_read (dev
, i
, 1);
305 if (mii_status
!= 0xffff && mii_status
!= 0x0000) {
311 printk (KERN_ERR
"%s: No MII PHY found!\n", dev
->name
);
318 parse_eeprom (struct net_device
*dev
)
321 long ioaddr
= dev
->base_addr
;
325 PSROM_t psrom
= (PSROM_t
) sromdata
;
326 struct netdev_private
*np
= netdev_priv(dev
);
331 ioaddr
= pci_resource_start (np
->pdev
, 0);
334 for (i
= 0; i
< 128; i
++) {
335 ((u16
*) sromdata
)[i
] = le16_to_cpu (read_eeprom (ioaddr
, i
));
338 ioaddr
= dev
->base_addr
;
340 if (np
->pdev
->vendor
== PCI_VENDOR_ID_DLINK
) { /* D-Link Only */
342 crc
= ~ether_crc_le (256 - 4, sromdata
);
343 if (psrom
->crc
!= crc
) {
344 printk (KERN_ERR
"%s: EEPROM data CRC error.\n",
350 /* Set MAC address */
351 for (i
= 0; i
< 6; i
++)
352 dev
->dev_addr
[i
] = psrom
->mac_addr
[i
];
354 if (np
->pdev
->vendor
!= PCI_VENDOR_ID_DLINK
) {
358 /* Parse Software Information Block */
360 psib
= (u8
*) sromdata
;
364 if ((cid
== 0 && next
== 0) || (cid
== 0xff && next
== 0xff)) {
365 printk (KERN_ERR
"Cell data error\n");
369 case 0: /* Format version */
371 case 1: /* End of cell */
373 case 2: /* Duplex Polarity */
374 np
->duplex_polarity
= psib
[i
];
375 writeb (readb (ioaddr
+ PhyCtrl
) | psib
[i
],
378 case 3: /* Wake Polarity */
379 np
->wake_polarity
= psib
[i
];
381 case 9: /* Adapter description */
382 j
= (next
- i
> 255) ? 255 : next
- i
;
383 memcpy (np
->name
, &(psib
[i
]), j
);
389 case 8: /* Reversed */
391 default: /* Unknown cell */
401 rio_open (struct net_device
*dev
)
403 struct netdev_private
*np
= netdev_priv(dev
);
404 long ioaddr
= dev
->base_addr
;
408 i
= request_irq (dev
->irq
, &rio_interrupt
, IRQF_SHARED
, dev
->name
, dev
);
412 /* Reset all logic functions */
413 writew (GlobalReset
| DMAReset
| FIFOReset
| NetworkReset
| HostReset
,
414 ioaddr
+ ASICCtrl
+ 2);
417 /* DebugCtrl bit 4, 5, 9 must set */
418 writel (readl (ioaddr
+ DebugCtrl
) | 0x0230, ioaddr
+ DebugCtrl
);
422 writew (MAX_JUMBO
+14, ioaddr
+ MaxFrameSize
);
426 /* Get station address */
427 for (i
= 0; i
< 6; i
++)
428 writeb (dev
->dev_addr
[i
], ioaddr
+ StationAddr0
+ i
);
432 writel (np
->rx_coalesce
| np
->rx_timeout
<< 16,
433 ioaddr
+ RxDMAIntCtrl
);
435 /* Set RIO to poll every N*320nsec. */
436 writeb (0x20, ioaddr
+ RxDMAPollPeriod
);
437 writeb (0xff, ioaddr
+ TxDMAPollPeriod
);
438 writeb (0x30, ioaddr
+ RxDMABurstThresh
);
439 writeb (0x30, ioaddr
+ RxDMAUrgentThresh
);
440 writel (0x0007ffff, ioaddr
+ RmonStatMask
);
441 /* clear statistics */
446 /* priority field in RxDMAIntCtrl */
447 writel (readl(ioaddr
+ RxDMAIntCtrl
) | 0x7 << 10,
448 ioaddr
+ RxDMAIntCtrl
);
450 writew (np
->vlan
, ioaddr
+ VLANId
);
451 /* Length/Type should be 0x8100 */
452 writel (0x8100 << 16 | np
->vlan
, ioaddr
+ VLANTag
);
453 /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
454 VLAN information tagged by TFC' VID, CFI fields. */
455 writel (readl (ioaddr
+ MACCtrl
) | AutoVLANuntagging
,
459 init_timer (&np
->timer
);
460 np
->timer
.expires
= jiffies
+ 1*HZ
;
461 np
->timer
.data
= (unsigned long) dev
;
462 np
->timer
.function
= &rio_timer
;
463 add_timer (&np
->timer
);
466 writel (readl (ioaddr
+ MACCtrl
) | StatsEnable
| RxEnable
| TxEnable
,
470 macctrl
|= (np
->vlan
) ? AutoVLANuntagging
: 0;
471 macctrl
|= (np
->full_duplex
) ? DuplexSelect
: 0;
472 macctrl
|= (np
->tx_flow
) ? TxFlowControlEnable
: 0;
473 macctrl
|= (np
->rx_flow
) ? RxFlowControlEnable
: 0;
474 writew(macctrl
, ioaddr
+ MACCtrl
);
476 netif_start_queue (dev
);
478 /* Enable default interrupts */
484 rio_timer (unsigned long data
)
486 struct net_device
*dev
= (struct net_device
*)data
;
487 struct netdev_private
*np
= netdev_priv(dev
);
489 int next_tick
= 1*HZ
;
492 spin_lock_irqsave(&np
->rx_lock
, flags
);
493 /* Recover rx ring exhausted error */
494 if (np
->cur_rx
- np
->old_rx
>= RX_RING_SIZE
) {
495 printk(KERN_INFO
"Try to recover rx ring exhausted...\n");
496 /* Re-allocate skbuffs to fill the descriptor ring */
497 for (; np
->cur_rx
- np
->old_rx
> 0; np
->old_rx
++) {
499 entry
= np
->old_rx
% RX_RING_SIZE
;
500 /* Dropped packets don't need to re-allocate */
501 if (np
->rx_skbuff
[entry
] == NULL
) {
502 skb
= dev_alloc_skb (np
->rx_buf_sz
);
504 np
->rx_ring
[entry
].fraginfo
= 0;
506 "%s: Still unable to re-allocate Rx skbuff.#%d\n",
510 np
->rx_skbuff
[entry
] = skb
;
511 /* 16 byte align the IP header */
512 skb_reserve (skb
, 2);
513 np
->rx_ring
[entry
].fraginfo
=
514 cpu_to_le64 (pci_map_single
515 (np
->pdev
, skb
->data
, np
->rx_buf_sz
,
516 PCI_DMA_FROMDEVICE
));
518 np
->rx_ring
[entry
].fraginfo
|=
519 cpu_to_le64 (np
->rx_buf_sz
) << 48;
520 np
->rx_ring
[entry
].status
= 0;
523 spin_unlock_irqrestore (&np
->rx_lock
, flags
);
524 np
->timer
.expires
= jiffies
+ next_tick
;
525 add_timer(&np
->timer
);
529 rio_tx_timeout (struct net_device
*dev
)
531 long ioaddr
= dev
->base_addr
;
533 printk (KERN_INFO
"%s: Tx timed out (%4.4x), is buffer full?\n",
534 dev
->name
, readl (ioaddr
+ TxStatus
));
537 dev
->trans_start
= jiffies
;
540 /* allocate and initialize Tx and Rx descriptors */
542 alloc_list (struct net_device
*dev
)
544 struct netdev_private
*np
= netdev_priv(dev
);
547 np
->cur_rx
= np
->cur_tx
= 0;
548 np
->old_rx
= np
->old_tx
= 0;
549 np
->rx_buf_sz
= (dev
->mtu
<= 1500 ? PACKET_SIZE
: dev
->mtu
+ 32);
551 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
552 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
553 np
->tx_skbuff
[i
] = NULL
;
554 np
->tx_ring
[i
].status
= cpu_to_le64 (TFDDone
);
555 np
->tx_ring
[i
].next_desc
= cpu_to_le64 (np
->tx_ring_dma
+
556 ((i
+1)%TX_RING_SIZE
) *
557 sizeof (struct netdev_desc
));
560 /* Initialize Rx descriptors */
561 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
562 np
->rx_ring
[i
].next_desc
= cpu_to_le64 (np
->rx_ring_dma
+
563 ((i
+ 1) % RX_RING_SIZE
) *
564 sizeof (struct netdev_desc
));
565 np
->rx_ring
[i
].status
= 0;
566 np
->rx_ring
[i
].fraginfo
= 0;
567 np
->rx_skbuff
[i
] = NULL
;
570 /* Allocate the rx buffers */
571 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
572 /* Allocated fixed size of skbuff */
573 struct sk_buff
*skb
= dev_alloc_skb (np
->rx_buf_sz
);
574 np
->rx_skbuff
[i
] = skb
;
577 "%s: alloc_list: allocate Rx buffer error! ",
581 skb_reserve (skb
, 2); /* 16 byte align the IP header. */
582 /* Rubicon now supports 40 bits of addressing space. */
583 np
->rx_ring
[i
].fraginfo
=
584 cpu_to_le64 ( pci_map_single (
585 np
->pdev
, skb
->data
, np
->rx_buf_sz
,
586 PCI_DMA_FROMDEVICE
));
587 np
->rx_ring
[i
].fraginfo
|= cpu_to_le64 (np
->rx_buf_sz
) << 48;
591 writel (cpu_to_le32 (np
->rx_ring_dma
), dev
->base_addr
+ RFDListPtr0
);
592 writel (0, dev
->base_addr
+ RFDListPtr1
);
598 start_xmit (struct sk_buff
*skb
, struct net_device
*dev
)
600 struct netdev_private
*np
= netdev_priv(dev
);
601 struct netdev_desc
*txdesc
;
604 u64 tfc_vlan_tag
= 0;
606 if (np
->link_status
== 0) { /* Link Down */
610 ioaddr
= dev
->base_addr
;
611 entry
= np
->cur_tx
% TX_RING_SIZE
;
612 np
->tx_skbuff
[entry
] = skb
;
613 txdesc
= &np
->tx_ring
[entry
];
616 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
618 cpu_to_le64 (TCPChecksumEnable
| UDPChecksumEnable
|
624 cpu_to_le64 (VLANTagInsert
) |
625 (cpu_to_le64 (np
->vlan
) << 32) |
626 (cpu_to_le64 (skb
->priority
) << 45);
628 txdesc
->fraginfo
= cpu_to_le64 (pci_map_single (np
->pdev
, skb
->data
,
631 txdesc
->fraginfo
|= cpu_to_le64 (skb
->len
) << 48;
633 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
634 * Work around: Always use 1 descriptor in 10Mbps mode */
635 if (entry
% np
->tx_coalesce
== 0 || np
->speed
== 10)
636 txdesc
->status
= cpu_to_le64 (entry
| tfc_vlan_tag
|
639 (1 << FragCountShift
));
641 txdesc
->status
= cpu_to_le64 (entry
| tfc_vlan_tag
|
643 (1 << FragCountShift
));
646 writel (readl (ioaddr
+ DMACtrl
) | 0x00001000, ioaddr
+ DMACtrl
);
648 writel(10000, ioaddr
+ CountDown
);
649 np
->cur_tx
= (np
->cur_tx
+ 1) % TX_RING_SIZE
;
650 if ((np
->cur_tx
- np
->old_tx
+ TX_RING_SIZE
) % TX_RING_SIZE
651 < TX_QUEUE_LEN
- 1 && np
->speed
!= 10) {
653 } else if (!netif_queue_stopped(dev
)) {
654 netif_stop_queue (dev
);
657 /* The first TFDListPtr */
658 if (readl (dev
->base_addr
+ TFDListPtr0
) == 0) {
659 writel (np
->tx_ring_dma
+ entry
* sizeof (struct netdev_desc
),
660 dev
->base_addr
+ TFDListPtr0
);
661 writel (0, dev
->base_addr
+ TFDListPtr1
);
664 /* NETDEV WATCHDOG timer */
665 dev
->trans_start
= jiffies
;
670 rio_interrupt (int irq
, void *dev_instance
)
672 struct net_device
*dev
= dev_instance
;
673 struct netdev_private
*np
;
676 int cnt
= max_intrloop
;
679 ioaddr
= dev
->base_addr
;
680 np
= netdev_priv(dev
);
682 int_status
= readw (ioaddr
+ IntStatus
);
683 writew (int_status
, ioaddr
+ IntStatus
);
684 int_status
&= DEFAULT_INTR
;
685 if (int_status
== 0 || --cnt
< 0)
688 /* Processing received packets */
689 if (int_status
& RxDMAComplete
)
690 receive_packet (dev
);
691 /* TxDMAComplete interrupt */
692 if ((int_status
& (TxDMAComplete
|IntRequested
))) {
694 tx_status
= readl (ioaddr
+ TxStatus
);
695 if (tx_status
& 0x01)
696 tx_error (dev
, tx_status
);
697 /* Free used tx skbuffs */
698 rio_free_tx (dev
, 1);
701 /* Handle uncommon events */
703 (HostError
| LinkEvent
| UpdateStats
))
704 rio_error (dev
, int_status
);
706 if (np
->cur_tx
!= np
->old_tx
)
707 writel (100, ioaddr
+ CountDown
);
708 return IRQ_RETVAL(handled
);
712 rio_free_tx (struct net_device
*dev
, int irq
)
714 struct netdev_private
*np
= netdev_priv(dev
);
715 int entry
= np
->old_tx
% TX_RING_SIZE
;
717 unsigned long flag
= 0;
720 spin_lock(&np
->tx_lock
);
722 spin_lock_irqsave(&np
->tx_lock
, flag
);
724 /* Free used tx skbuffs */
725 while (entry
!= np
->cur_tx
) {
728 if (!(np
->tx_ring
[entry
].status
& TFDDone
))
730 skb
= np
->tx_skbuff
[entry
];
731 pci_unmap_single (np
->pdev
,
732 np
->tx_ring
[entry
].fraginfo
& DMA_48BIT_MASK
,
733 skb
->len
, PCI_DMA_TODEVICE
);
735 dev_kfree_skb_irq (skb
);
739 np
->tx_skbuff
[entry
] = NULL
;
740 entry
= (entry
+ 1) % TX_RING_SIZE
;
744 spin_unlock(&np
->tx_lock
);
746 spin_unlock_irqrestore(&np
->tx_lock
, flag
);
749 /* If the ring is no longer full, clear tx_full and
750 call netif_wake_queue() */
752 if (netif_queue_stopped(dev
) &&
753 ((np
->cur_tx
- np
->old_tx
+ TX_RING_SIZE
) % TX_RING_SIZE
754 < TX_QUEUE_LEN
- 1 || np
->speed
== 10)) {
755 netif_wake_queue (dev
);
760 tx_error (struct net_device
*dev
, int tx_status
)
762 struct netdev_private
*np
;
763 long ioaddr
= dev
->base_addr
;
767 np
= netdev_priv(dev
);
769 frame_id
= (tx_status
& 0xffff0000);
770 printk (KERN_ERR
"%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
771 dev
->name
, tx_status
, frame_id
);
772 np
->stats
.tx_errors
++;
773 /* Ttransmit Underrun */
774 if (tx_status
& 0x10) {
775 np
->stats
.tx_fifo_errors
++;
776 writew (readw (ioaddr
+ TxStartThresh
) + 0x10,
777 ioaddr
+ TxStartThresh
);
778 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
779 writew (TxReset
| DMAReset
| FIFOReset
| NetworkReset
,
780 ioaddr
+ ASICCtrl
+ 2);
781 /* Wait for ResetBusy bit clear */
782 for (i
= 50; i
> 0; i
--) {
783 if ((readw (ioaddr
+ ASICCtrl
+ 2) & ResetBusy
) == 0)
787 rio_free_tx (dev
, 1);
788 /* Reset TFDListPtr */
789 writel (np
->tx_ring_dma
+
790 np
->old_tx
* sizeof (struct netdev_desc
),
791 dev
->base_addr
+ TFDListPtr0
);
792 writel (0, dev
->base_addr
+ TFDListPtr1
);
794 /* Let TxStartThresh stay default value */
797 if (tx_status
& 0x04) {
798 np
->stats
.tx_fifo_errors
++;
799 /* TxReset and clear FIFO */
800 writew (TxReset
| FIFOReset
, ioaddr
+ ASICCtrl
+ 2);
801 /* Wait reset done */
802 for (i
= 50; i
> 0; i
--) {
803 if ((readw (ioaddr
+ ASICCtrl
+ 2) & ResetBusy
) == 0)
807 /* Let TxStartThresh stay default value */
809 /* Maximum Collisions */
811 if (tx_status
& 0x08)
812 np
->stats
.collisions16
++;
814 if (tx_status
& 0x08)
815 np
->stats
.collisions
++;
818 writel (readw (dev
->base_addr
+ MACCtrl
) | TxEnable
, ioaddr
+ MACCtrl
);
822 receive_packet (struct net_device
*dev
)
824 struct netdev_private
*np
= netdev_priv(dev
);
825 int entry
= np
->cur_rx
% RX_RING_SIZE
;
828 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
830 struct netdev_desc
*desc
= &np
->rx_ring
[entry
];
834 if (!(desc
->status
& RFDDone
) ||
835 !(desc
->status
& FrameStart
) || !(desc
->status
& FrameEnd
))
838 /* Chip omits the CRC. */
839 pkt_len
= le64_to_cpu (desc
->status
& 0xffff);
840 frame_status
= le64_to_cpu (desc
->status
);
843 /* Update rx error statistics, drop packet. */
844 if (frame_status
& RFS_Errors
) {
845 np
->stats
.rx_errors
++;
846 if (frame_status
& (RxRuntFrame
| RxLengthError
))
847 np
->stats
.rx_length_errors
++;
848 if (frame_status
& RxFCSError
)
849 np
->stats
.rx_crc_errors
++;
850 if (frame_status
& RxAlignmentError
&& np
->speed
!= 1000)
851 np
->stats
.rx_frame_errors
++;
852 if (frame_status
& RxFIFOOverrun
)
853 np
->stats
.rx_fifo_errors
++;
857 /* Small skbuffs for short packets */
858 if (pkt_len
> copy_thresh
) {
859 pci_unmap_single (np
->pdev
,
860 desc
->fraginfo
& DMA_48BIT_MASK
,
863 skb_put (skb
= np
->rx_skbuff
[entry
], pkt_len
);
864 np
->rx_skbuff
[entry
] = NULL
;
865 } else if ((skb
= dev_alloc_skb (pkt_len
+ 2)) != NULL
) {
866 pci_dma_sync_single_for_cpu(np
->pdev
,
871 /* 16 byte align the IP header */
872 skb_reserve (skb
, 2);
873 skb_copy_to_linear_data (skb
,
874 np
->rx_skbuff
[entry
]->data
,
876 skb_put (skb
, pkt_len
);
877 pci_dma_sync_single_for_device(np
->pdev
,
883 skb
->protocol
= eth_type_trans (skb
, dev
);
885 /* Checksum done by hw, but csum value unavailable. */
886 if (np
->pdev
->pci_rev_id
>= 0x0c &&
887 !(frame_status
& (TCPError
| UDPError
| IPError
))) {
888 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
892 dev
->last_rx
= jiffies
;
894 entry
= (entry
+ 1) % RX_RING_SIZE
;
896 spin_lock(&np
->rx_lock
);
898 /* Re-allocate skbuffs to fill the descriptor ring */
900 while (entry
!= np
->cur_rx
) {
902 /* Dropped packets don't need to re-allocate */
903 if (np
->rx_skbuff
[entry
] == NULL
) {
904 skb
= dev_alloc_skb (np
->rx_buf_sz
);
906 np
->rx_ring
[entry
].fraginfo
= 0;
908 "%s: receive_packet: "
909 "Unable to re-allocate Rx skbuff.#%d\n",
913 np
->rx_skbuff
[entry
] = skb
;
914 /* 16 byte align the IP header */
915 skb_reserve (skb
, 2);
916 np
->rx_ring
[entry
].fraginfo
=
917 cpu_to_le64 (pci_map_single
918 (np
->pdev
, skb
->data
, np
->rx_buf_sz
,
919 PCI_DMA_FROMDEVICE
));
921 np
->rx_ring
[entry
].fraginfo
|=
922 cpu_to_le64 (np
->rx_buf_sz
) << 48;
923 np
->rx_ring
[entry
].status
= 0;
924 entry
= (entry
+ 1) % RX_RING_SIZE
;
927 spin_unlock(&np
->rx_lock
);
932 rio_error (struct net_device
*dev
, int int_status
)
934 long ioaddr
= dev
->base_addr
;
935 struct netdev_private
*np
= netdev_priv(dev
);
938 /* Link change event */
939 if (int_status
& LinkEvent
) {
940 if (mii_wait_link (dev
, 10) == 0) {
941 printk (KERN_INFO
"%s: Link up\n", dev
->name
);
943 mii_get_media_pcs (dev
);
946 if (np
->speed
== 1000)
947 np
->tx_coalesce
= tx_coalesce
;
951 macctrl
|= (np
->vlan
) ? AutoVLANuntagging
: 0;
952 macctrl
|= (np
->full_duplex
) ? DuplexSelect
: 0;
953 macctrl
|= (np
->tx_flow
) ?
954 TxFlowControlEnable
: 0;
955 macctrl
|= (np
->rx_flow
) ?
956 RxFlowControlEnable
: 0;
957 writew(macctrl
, ioaddr
+ MACCtrl
);
959 netif_carrier_on(dev
);
961 printk (KERN_INFO
"%s: Link off\n", dev
->name
);
963 netif_carrier_off(dev
);
967 /* UpdateStats statistics registers */
968 if (int_status
& UpdateStats
) {
972 /* PCI Error, a catastronphic error related to the bus interface
973 occurs, set GlobalReset and HostReset to reset. */
974 if (int_status
& HostError
) {
975 printk (KERN_ERR
"%s: HostError! IntStatus %4.4x.\n",
976 dev
->name
, int_status
);
977 writew (GlobalReset
| HostReset
, ioaddr
+ ASICCtrl
+ 2);
982 static struct net_device_stats
*
983 get_stats (struct net_device
*dev
)
985 long ioaddr
= dev
->base_addr
;
986 struct netdev_private
*np
= netdev_priv(dev
);
990 unsigned int stat_reg
;
992 /* All statistics registers need to be acknowledged,
993 else statistic overflow could cause problems */
995 np
->stats
.rx_packets
+= readl (ioaddr
+ FramesRcvOk
);
996 np
->stats
.tx_packets
+= readl (ioaddr
+ FramesXmtOk
);
997 np
->stats
.rx_bytes
+= readl (ioaddr
+ OctetRcvOk
);
998 np
->stats
.tx_bytes
+= readl (ioaddr
+ OctetXmtOk
);
1000 np
->stats
.multicast
= readl (ioaddr
+ McstFramesRcvdOk
);
1001 np
->stats
.collisions
+= readl (ioaddr
+ SingleColFrames
)
1002 + readl (ioaddr
+ MultiColFrames
);
1004 /* detailed tx errors */
1005 stat_reg
= readw (ioaddr
+ FramesAbortXSColls
);
1006 np
->stats
.tx_aborted_errors
+= stat_reg
;
1007 np
->stats
.tx_errors
+= stat_reg
;
1009 stat_reg
= readw (ioaddr
+ CarrierSenseErrors
);
1010 np
->stats
.tx_carrier_errors
+= stat_reg
;
1011 np
->stats
.tx_errors
+= stat_reg
;
1013 /* Clear all other statistic register. */
1014 readl (ioaddr
+ McstOctetXmtOk
);
1015 readw (ioaddr
+ BcstFramesXmtdOk
);
1016 readl (ioaddr
+ McstFramesXmtdOk
);
1017 readw (ioaddr
+ BcstFramesRcvdOk
);
1018 readw (ioaddr
+ MacControlFramesRcvd
);
1019 readw (ioaddr
+ FrameTooLongErrors
);
1020 readw (ioaddr
+ InRangeLengthErrors
);
1021 readw (ioaddr
+ FramesCheckSeqErrors
);
1022 readw (ioaddr
+ FramesLostRxErrors
);
1023 readl (ioaddr
+ McstOctetXmtOk
);
1024 readl (ioaddr
+ BcstOctetXmtOk
);
1025 readl (ioaddr
+ McstFramesXmtdOk
);
1026 readl (ioaddr
+ FramesWDeferredXmt
);
1027 readl (ioaddr
+ LateCollisions
);
1028 readw (ioaddr
+ BcstFramesXmtdOk
);
1029 readw (ioaddr
+ MacControlFramesXmtd
);
1030 readw (ioaddr
+ FramesWEXDeferal
);
1033 for (i
= 0x100; i
<= 0x150; i
+= 4)
1036 readw (ioaddr
+ TxJumboFrames
);
1037 readw (ioaddr
+ RxJumboFrames
);
1038 readw (ioaddr
+ TCPCheckSumErrors
);
1039 readw (ioaddr
+ UDPCheckSumErrors
);
1040 readw (ioaddr
+ IPCheckSumErrors
);
1045 clear_stats (struct net_device
*dev
)
1047 long ioaddr
= dev
->base_addr
;
1052 /* All statistics registers need to be acknowledged,
1053 else statistic overflow could cause problems */
1054 readl (ioaddr
+ FramesRcvOk
);
1055 readl (ioaddr
+ FramesXmtOk
);
1056 readl (ioaddr
+ OctetRcvOk
);
1057 readl (ioaddr
+ OctetXmtOk
);
1059 readl (ioaddr
+ McstFramesRcvdOk
);
1060 readl (ioaddr
+ SingleColFrames
);
1061 readl (ioaddr
+ MultiColFrames
);
1062 readl (ioaddr
+ LateCollisions
);
1063 /* detailed rx errors */
1064 readw (ioaddr
+ FrameTooLongErrors
);
1065 readw (ioaddr
+ InRangeLengthErrors
);
1066 readw (ioaddr
+ FramesCheckSeqErrors
);
1067 readw (ioaddr
+ FramesLostRxErrors
);
1069 /* detailed tx errors */
1070 readw (ioaddr
+ FramesAbortXSColls
);
1071 readw (ioaddr
+ CarrierSenseErrors
);
1073 /* Clear all other statistic register. */
1074 readl (ioaddr
+ McstOctetXmtOk
);
1075 readw (ioaddr
+ BcstFramesXmtdOk
);
1076 readl (ioaddr
+ McstFramesXmtdOk
);
1077 readw (ioaddr
+ BcstFramesRcvdOk
);
1078 readw (ioaddr
+ MacControlFramesRcvd
);
1079 readl (ioaddr
+ McstOctetXmtOk
);
1080 readl (ioaddr
+ BcstOctetXmtOk
);
1081 readl (ioaddr
+ McstFramesXmtdOk
);
1082 readl (ioaddr
+ FramesWDeferredXmt
);
1083 readw (ioaddr
+ BcstFramesXmtdOk
);
1084 readw (ioaddr
+ MacControlFramesXmtd
);
1085 readw (ioaddr
+ FramesWEXDeferal
);
1087 for (i
= 0x100; i
<= 0x150; i
+= 4)
1090 readw (ioaddr
+ TxJumboFrames
);
1091 readw (ioaddr
+ RxJumboFrames
);
1092 readw (ioaddr
+ TCPCheckSumErrors
);
1093 readw (ioaddr
+ UDPCheckSumErrors
);
1094 readw (ioaddr
+ IPCheckSumErrors
);
1100 change_mtu (struct net_device
*dev
, int new_mtu
)
1102 struct netdev_private
*np
= netdev_priv(dev
);
1103 int max
= (np
->jumbo
) ? MAX_JUMBO
: 1536;
1105 if ((new_mtu
< 68) || (new_mtu
> max
)) {
1115 set_multicast (struct net_device
*dev
)
1117 long ioaddr
= dev
->base_addr
;
1120 struct netdev_private
*np
= netdev_priv(dev
);
1122 hash_table
[0] = hash_table
[1] = 0;
1123 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1124 hash_table
[1] |= cpu_to_le32(0x02000000);
1125 if (dev
->flags
& IFF_PROMISC
) {
1126 /* Receive all frames promiscuously. */
1127 rx_mode
= ReceiveAllFrames
;
1128 } else if ((dev
->flags
& IFF_ALLMULTI
) ||
1129 (dev
->mc_count
> multicast_filter_limit
)) {
1130 /* Receive broadcast and multicast frames */
1131 rx_mode
= ReceiveBroadcast
| ReceiveMulticast
| ReceiveUnicast
;
1132 } else if (dev
->mc_count
> 0) {
1134 struct dev_mc_list
*mclist
;
1135 /* Receive broadcast frames and multicast frames filtering
1138 ReceiveBroadcast
| ReceiveMulticastHash
| ReceiveUnicast
;
1139 for (i
=0, mclist
= dev
->mc_list
; mclist
&& i
< dev
->mc_count
;
1140 i
++, mclist
=mclist
->next
)
1143 int crc
= ether_crc_le (ETH_ALEN
, mclist
->dmi_addr
);
1144 /* The inverted high significant 6 bits of CRC are
1145 used as an index to hashtable */
1146 for (bit
= 0; bit
< 6; bit
++)
1147 if (crc
& (1 << (31 - bit
)))
1148 index
|= (1 << bit
);
1149 hash_table
[index
/ 32] |= (1 << (index
% 32));
1152 rx_mode
= ReceiveBroadcast
| ReceiveUnicast
;
1155 /* ReceiveVLANMatch field in ReceiveMode */
1156 rx_mode
|= ReceiveVLANMatch
;
1159 writel (hash_table
[0], ioaddr
+ HashTable0
);
1160 writel (hash_table
[1], ioaddr
+ HashTable1
);
1161 writew (rx_mode
, ioaddr
+ ReceiveMode
);
1164 static void rio_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
1166 struct netdev_private
*np
= netdev_priv(dev
);
1167 strcpy(info
->driver
, "dl2k");
1168 strcpy(info
->version
, DRV_VERSION
);
1169 strcpy(info
->bus_info
, pci_name(np
->pdev
));
1172 static int rio_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1174 struct netdev_private
*np
= netdev_priv(dev
);
1175 if (np
->phy_media
) {
1177 cmd
->supported
= SUPPORTED_Autoneg
| SUPPORTED_FIBRE
;
1178 cmd
->advertising
= ADVERTISED_Autoneg
| ADVERTISED_FIBRE
;
1179 cmd
->port
= PORT_FIBRE
;
1180 cmd
->transceiver
= XCVR_INTERNAL
;
1183 cmd
->supported
= SUPPORTED_10baseT_Half
|
1184 SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
1185 | SUPPORTED_100baseT_Full
| SUPPORTED_1000baseT_Full
|
1186 SUPPORTED_Autoneg
| SUPPORTED_MII
;
1187 cmd
->advertising
= ADVERTISED_10baseT_Half
|
1188 ADVERTISED_10baseT_Full
| ADVERTISED_100baseT_Half
|
1189 ADVERTISED_100baseT_Full
| ADVERTISED_1000baseT_Full
|
1190 ADVERTISED_Autoneg
| ADVERTISED_MII
;
1191 cmd
->port
= PORT_MII
;
1192 cmd
->transceiver
= XCVR_INTERNAL
;
1194 if ( np
->link_status
) {
1195 cmd
->speed
= np
->speed
;
1196 cmd
->duplex
= np
->full_duplex
? DUPLEX_FULL
: DUPLEX_HALF
;
1202 cmd
->autoneg
= AUTONEG_ENABLE
;
1204 cmd
->autoneg
= AUTONEG_DISABLE
;
1206 cmd
->phy_address
= np
->phy_addr
;
1210 static int rio_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1212 struct netdev_private
*np
= netdev_priv(dev
);
1213 netif_carrier_off(dev
);
1214 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
1224 if (np
->speed
== 1000) {
1225 cmd
->speed
= SPEED_100
;
1226 cmd
->duplex
= DUPLEX_FULL
;
1227 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1229 switch(cmd
->speed
+ cmd
->duplex
) {
1231 case SPEED_10
+ DUPLEX_HALF
:
1233 np
->full_duplex
= 0;
1236 case SPEED_10
+ DUPLEX_FULL
:
1238 np
->full_duplex
= 1;
1240 case SPEED_100
+ DUPLEX_HALF
:
1242 np
->full_duplex
= 0;
1244 case SPEED_100
+ DUPLEX_FULL
:
1246 np
->full_duplex
= 1;
1248 case SPEED_1000
+ DUPLEX_HALF
:/* not supported */
1249 case SPEED_1000
+ DUPLEX_FULL
:/* not supported */
1258 static u32
rio_get_link(struct net_device
*dev
)
1260 struct netdev_private
*np
= netdev_priv(dev
);
1261 return np
->link_status
;
1264 static const struct ethtool_ops ethtool_ops
= {
1265 .get_drvinfo
= rio_get_drvinfo
,
1266 .get_settings
= rio_get_settings
,
1267 .set_settings
= rio_set_settings
,
1268 .get_link
= rio_get_link
,
1272 rio_ioctl (struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1275 struct netdev_private
*np
= netdev_priv(dev
);
1276 struct mii_data
*miidata
= (struct mii_data
*) &rq
->ifr_ifru
;
1278 struct netdev_desc
*desc
;
1281 phy_addr
= np
->phy_addr
;
1283 case SIOCDEVPRIVATE
:
1286 case SIOCDEVPRIVATE
+ 1:
1287 miidata
->out_value
= mii_read (dev
, phy_addr
, miidata
->reg_num
);
1289 case SIOCDEVPRIVATE
+ 2:
1290 mii_write (dev
, phy_addr
, miidata
->reg_num
, miidata
->in_value
);
1292 case SIOCDEVPRIVATE
+ 3:
1294 case SIOCDEVPRIVATE
+ 4:
1296 case SIOCDEVPRIVATE
+ 5:
1297 netif_stop_queue (dev
);
1299 case SIOCDEVPRIVATE
+ 6:
1300 netif_wake_queue (dev
);
1302 case SIOCDEVPRIVATE
+ 7:
1304 ("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n",
1305 netif_queue_stopped(dev
), np
->cur_tx
, np
->old_tx
, np
->cur_rx
,
1308 case SIOCDEVPRIVATE
+ 8:
1309 printk("TX ring:\n");
1310 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1311 desc
= &np
->tx_ring
[i
];
1313 ("%02x:cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x",
1315 (u32
) (np
->tx_ring_dma
+ i
* sizeof (*desc
)),
1316 (u32
) desc
->next_desc
,
1317 (u32
) desc
->status
, (u32
) (desc
->fraginfo
>> 32),
1318 (u32
) desc
->fraginfo
);
1330 #define EEP_READ 0x0200
1331 #define EEP_BUSY 0x8000
1332 /* Read the EEPROM word */
1333 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1335 read_eeprom (long ioaddr
, int eep_addr
)
1338 outw (EEP_READ
| (eep_addr
& 0xff), ioaddr
+ EepromCtrl
);
1340 if (!(inw (ioaddr
+ EepromCtrl
) & EEP_BUSY
)) {
1341 return inw (ioaddr
+ EepromData
);
1347 enum phy_ctrl_bits
{
1348 MII_READ
= 0x00, MII_CLK
= 0x01, MII_DATA1
= 0x02, MII_WRITE
= 0x04,
1352 #define mii_delay() readb(ioaddr)
1354 mii_sendbit (struct net_device
*dev
, u32 data
)
1356 long ioaddr
= dev
->base_addr
+ PhyCtrl
;
1357 data
= (data
) ? MII_DATA1
: 0;
1359 data
|= (readb (ioaddr
) & 0xf8) | MII_WRITE
;
1360 writeb (data
, ioaddr
);
1362 writeb (data
| MII_CLK
, ioaddr
);
1367 mii_getbit (struct net_device
*dev
)
1369 long ioaddr
= dev
->base_addr
+ PhyCtrl
;
1372 data
= (readb (ioaddr
) & 0xf8) | MII_READ
;
1373 writeb (data
, ioaddr
);
1375 writeb (data
| MII_CLK
, ioaddr
);
1377 return ((readb (ioaddr
) >> 1) & 1);
1381 mii_send_bits (struct net_device
*dev
, u32 data
, int len
)
1384 for (i
= len
- 1; i
>= 0; i
--) {
1385 mii_sendbit (dev
, data
& (1 << i
));
1390 mii_read (struct net_device
*dev
, int phy_addr
, int reg_num
)
1397 mii_send_bits (dev
, 0xffffffff, 32);
1398 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1399 /* ST,OP = 0110'b for read operation */
1400 cmd
= (0x06 << 10 | phy_addr
<< 5 | reg_num
);
1401 mii_send_bits (dev
, cmd
, 14);
1403 if (mii_getbit (dev
))
1406 for (i
= 0; i
< 16; i
++) {
1407 retval
|= mii_getbit (dev
);
1412 return (retval
>> 1) & 0xffff;
1418 mii_write (struct net_device
*dev
, int phy_addr
, int reg_num
, u16 data
)
1423 mii_send_bits (dev
, 0xffffffff, 32);
1424 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1425 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1426 cmd
= (0x5002 << 16) | (phy_addr
<< 23) | (reg_num
<< 18) | data
;
1427 mii_send_bits (dev
, cmd
, 32);
1433 mii_wait_link (struct net_device
*dev
, int wait
)
1437 struct netdev_private
*np
;
1439 np
= netdev_priv(dev
);
1440 phy_addr
= np
->phy_addr
;
1443 bmsr
.image
= mii_read (dev
, phy_addr
, MII_BMSR
);
1444 if (bmsr
.bits
.link_status
)
1447 } while (--wait
> 0);
1451 mii_get_media (struct net_device
*dev
)
1459 struct netdev_private
*np
;
1461 np
= netdev_priv(dev
);
1462 phy_addr
= np
->phy_addr
;
1464 bmsr
.image
= mii_read (dev
, phy_addr
, MII_BMSR
);
1465 if (np
->an_enable
) {
1466 if (!bmsr
.bits
.an_complete
) {
1467 /* Auto-Negotiation not completed */
1470 negotiate
.image
= mii_read (dev
, phy_addr
, MII_ANAR
) &
1471 mii_read (dev
, phy_addr
, MII_ANLPAR
);
1472 mscr
.image
= mii_read (dev
, phy_addr
, MII_MSCR
);
1473 mssr
.image
= mii_read (dev
, phy_addr
, MII_MSSR
);
1474 if (mscr
.bits
.media_1000BT_FD
& mssr
.bits
.lp_1000BT_FD
) {
1476 np
->full_duplex
= 1;
1477 printk (KERN_INFO
"Auto 1000 Mbps, Full duplex\n");
1478 } else if (mscr
.bits
.media_1000BT_HD
& mssr
.bits
.lp_1000BT_HD
) {
1480 np
->full_duplex
= 0;
1481 printk (KERN_INFO
"Auto 1000 Mbps, Half duplex\n");
1482 } else if (negotiate
.bits
.media_100BX_FD
) {
1484 np
->full_duplex
= 1;
1485 printk (KERN_INFO
"Auto 100 Mbps, Full duplex\n");
1486 } else if (negotiate
.bits
.media_100BX_HD
) {
1488 np
->full_duplex
= 0;
1489 printk (KERN_INFO
"Auto 100 Mbps, Half duplex\n");
1490 } else if (negotiate
.bits
.media_10BT_FD
) {
1492 np
->full_duplex
= 1;
1493 printk (KERN_INFO
"Auto 10 Mbps, Full duplex\n");
1494 } else if (negotiate
.bits
.media_10BT_HD
) {
1496 np
->full_duplex
= 0;
1497 printk (KERN_INFO
"Auto 10 Mbps, Half duplex\n");
1499 if (negotiate
.bits
.pause
) {
1502 } else if (negotiate
.bits
.asymmetric
) {
1506 /* else tx_flow, rx_flow = user select */
1508 bmcr
.image
= mii_read (dev
, phy_addr
, MII_BMCR
);
1509 if (bmcr
.bits
.speed100
== 1 && bmcr
.bits
.speed1000
== 0) {
1510 printk (KERN_INFO
"Operating at 100 Mbps, ");
1511 } else if (bmcr
.bits
.speed100
== 0 && bmcr
.bits
.speed1000
== 0) {
1512 printk (KERN_INFO
"Operating at 10 Mbps, ");
1513 } else if (bmcr
.bits
.speed100
== 0 && bmcr
.bits
.speed1000
== 1) {
1514 printk (KERN_INFO
"Operating at 1000 Mbps, ");
1516 if (bmcr
.bits
.duplex_mode
) {
1517 printk ("Full duplex\n");
1519 printk ("Half duplex\n");
1523 printk(KERN_INFO
"Enable Tx Flow Control\n");
1525 printk(KERN_INFO
"Disable Tx Flow Control\n");
1527 printk(KERN_INFO
"Enable Rx Flow Control\n");
1529 printk(KERN_INFO
"Disable Rx Flow Control\n");
1535 mii_set_media (struct net_device
*dev
)
1542 struct netdev_private
*np
;
1543 np
= netdev_priv(dev
);
1544 phy_addr
= np
->phy_addr
;
1546 /* Does user set speed? */
1547 if (np
->an_enable
) {
1548 /* Advertise capabilities */
1549 bmsr
.image
= mii_read (dev
, phy_addr
, MII_BMSR
);
1550 anar
.image
= mii_read (dev
, phy_addr
, MII_ANAR
);
1551 anar
.bits
.media_100BX_FD
= bmsr
.bits
.media_100BX_FD
;
1552 anar
.bits
.media_100BX_HD
= bmsr
.bits
.media_100BX_HD
;
1553 anar
.bits
.media_100BT4
= bmsr
.bits
.media_100BT4
;
1554 anar
.bits
.media_10BT_FD
= bmsr
.bits
.media_10BT_FD
;
1555 anar
.bits
.media_10BT_HD
= bmsr
.bits
.media_10BT_HD
;
1556 anar
.bits
.pause
= 1;
1557 anar
.bits
.asymmetric
= 1;
1558 mii_write (dev
, phy_addr
, MII_ANAR
, anar
.image
);
1560 /* Enable Auto crossover */
1561 pscr
.image
= mii_read (dev
, phy_addr
, MII_PHY_SCR
);
1562 pscr
.bits
.mdi_crossover_mode
= 3; /* 11'b */
1563 mii_write (dev
, phy_addr
, MII_PHY_SCR
, pscr
.image
);
1565 /* Soft reset PHY */
1566 mii_write (dev
, phy_addr
, MII_BMCR
, MII_BMCR_RESET
);
1568 bmcr
.bits
.an_enable
= 1;
1569 bmcr
.bits
.restart_an
= 1;
1570 bmcr
.bits
.reset
= 1;
1571 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
.image
);
1574 /* Force speed setting */
1575 /* 1) Disable Auto crossover */
1576 pscr
.image
= mii_read (dev
, phy_addr
, MII_PHY_SCR
);
1577 pscr
.bits
.mdi_crossover_mode
= 0;
1578 mii_write (dev
, phy_addr
, MII_PHY_SCR
, pscr
.image
);
1581 bmcr
.image
= mii_read (dev
, phy_addr
, MII_BMCR
);
1582 bmcr
.bits
.reset
= 1;
1583 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
.image
);
1586 bmcr
.image
= 0x1940; /* must be 0x1940 */
1587 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
.image
);
1588 mdelay (100); /* wait a certain time */
1590 /* 4) Advertise nothing */
1591 mii_write (dev
, phy_addr
, MII_ANAR
, 0);
1593 /* 5) Set media and Power Up */
1595 bmcr
.bits
.power_down
= 1;
1596 if (np
->speed
== 100) {
1597 bmcr
.bits
.speed100
= 1;
1598 bmcr
.bits
.speed1000
= 0;
1599 printk (KERN_INFO
"Manual 100 Mbps, ");
1600 } else if (np
->speed
== 10) {
1601 bmcr
.bits
.speed100
= 0;
1602 bmcr
.bits
.speed1000
= 0;
1603 printk (KERN_INFO
"Manual 10 Mbps, ");
1605 if (np
->full_duplex
) {
1606 bmcr
.bits
.duplex_mode
= 1;
1607 printk ("Full duplex\n");
1609 bmcr
.bits
.duplex_mode
= 0;
1610 printk ("Half duplex\n");
1613 /* Set 1000BaseT Master/Slave setting */
1614 mscr
.image
= mii_read (dev
, phy_addr
, MII_MSCR
);
1615 mscr
.bits
.cfg_enable
= 1;
1616 mscr
.bits
.cfg_value
= 0;
1618 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
.image
);
1625 mii_get_media_pcs (struct net_device
*dev
)
1627 ANAR_PCS_t negotiate
;
1631 struct netdev_private
*np
;
1633 np
= netdev_priv(dev
);
1634 phy_addr
= np
->phy_addr
;
1636 bmsr
.image
= mii_read (dev
, phy_addr
, PCS_BMSR
);
1637 if (np
->an_enable
) {
1638 if (!bmsr
.bits
.an_complete
) {
1639 /* Auto-Negotiation not completed */
1642 negotiate
.image
= mii_read (dev
, phy_addr
, PCS_ANAR
) &
1643 mii_read (dev
, phy_addr
, PCS_ANLPAR
);
1645 if (negotiate
.bits
.full_duplex
) {
1646 printk (KERN_INFO
"Auto 1000 Mbps, Full duplex\n");
1647 np
->full_duplex
= 1;
1649 printk (KERN_INFO
"Auto 1000 Mbps, half duplex\n");
1650 np
->full_duplex
= 0;
1652 if (negotiate
.bits
.pause
) {
1655 } else if (negotiate
.bits
.asymmetric
) {
1659 /* else tx_flow, rx_flow = user select */
1661 bmcr
.image
= mii_read (dev
, phy_addr
, PCS_BMCR
);
1662 printk (KERN_INFO
"Operating at 1000 Mbps, ");
1663 if (bmcr
.bits
.duplex_mode
) {
1664 printk ("Full duplex\n");
1666 printk ("Half duplex\n");
1670 printk(KERN_INFO
"Enable Tx Flow Control\n");
1672 printk(KERN_INFO
"Disable Tx Flow Control\n");
1674 printk(KERN_INFO
"Enable Rx Flow Control\n");
1676 printk(KERN_INFO
"Disable Rx Flow Control\n");
1682 mii_set_media_pcs (struct net_device
*dev
)
1688 struct netdev_private
*np
;
1689 np
= netdev_priv(dev
);
1690 phy_addr
= np
->phy_addr
;
1692 /* Auto-Negotiation? */
1693 if (np
->an_enable
) {
1694 /* Advertise capabilities */
1695 esr
.image
= mii_read (dev
, phy_addr
, PCS_ESR
);
1696 anar
.image
= mii_read (dev
, phy_addr
, MII_ANAR
);
1697 anar
.bits
.half_duplex
=
1698 esr
.bits
.media_1000BT_HD
| esr
.bits
.media_1000BX_HD
;
1699 anar
.bits
.full_duplex
=
1700 esr
.bits
.media_1000BT_FD
| esr
.bits
.media_1000BX_FD
;
1701 anar
.bits
.pause
= 1;
1702 anar
.bits
.asymmetric
= 1;
1703 mii_write (dev
, phy_addr
, MII_ANAR
, anar
.image
);
1705 /* Soft reset PHY */
1706 mii_write (dev
, phy_addr
, MII_BMCR
, MII_BMCR_RESET
);
1708 bmcr
.bits
.an_enable
= 1;
1709 bmcr
.bits
.restart_an
= 1;
1710 bmcr
.bits
.reset
= 1;
1711 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
.image
);
1714 /* Force speed setting */
1717 bmcr
.bits
.reset
= 1;
1718 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
.image
);
1721 bmcr
.bits
.an_enable
= 0;
1722 if (np
->full_duplex
) {
1723 bmcr
.bits
.duplex_mode
= 1;
1724 printk (KERN_INFO
"Manual full duplex\n");
1726 bmcr
.bits
.duplex_mode
= 0;
1727 printk (KERN_INFO
"Manual half duplex\n");
1729 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
.image
);
1732 /* Advertise nothing */
1733 mii_write (dev
, phy_addr
, MII_ANAR
, 0);
1740 rio_close (struct net_device
*dev
)
1742 long ioaddr
= dev
->base_addr
;
1743 struct netdev_private
*np
= netdev_priv(dev
);
1744 struct sk_buff
*skb
;
1747 netif_stop_queue (dev
);
1749 /* Disable interrupts */
1750 writew (0, ioaddr
+ IntEnable
);
1752 /* Stop Tx and Rx logics */
1753 writel (TxDisable
| RxDisable
| StatsDisable
, ioaddr
+ MACCtrl
);
1754 synchronize_irq (dev
->irq
);
1755 free_irq (dev
->irq
, dev
);
1756 del_timer_sync (&np
->timer
);
1758 /* Free all the skbuffs in the queue. */
1759 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1760 np
->rx_ring
[i
].status
= 0;
1761 np
->rx_ring
[i
].fraginfo
= 0;
1762 skb
= np
->rx_skbuff
[i
];
1764 pci_unmap_single(np
->pdev
,
1765 np
->rx_ring
[i
].fraginfo
& DMA_48BIT_MASK
,
1766 skb
->len
, PCI_DMA_FROMDEVICE
);
1767 dev_kfree_skb (skb
);
1768 np
->rx_skbuff
[i
] = NULL
;
1771 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1772 skb
= np
->tx_skbuff
[i
];
1774 pci_unmap_single(np
->pdev
,
1775 np
->tx_ring
[i
].fraginfo
& DMA_48BIT_MASK
,
1776 skb
->len
, PCI_DMA_TODEVICE
);
1777 dev_kfree_skb (skb
);
1778 np
->tx_skbuff
[i
] = NULL
;
1785 static void __devexit
1786 rio_remove1 (struct pci_dev
*pdev
)
1788 struct net_device
*dev
= pci_get_drvdata (pdev
);
1791 struct netdev_private
*np
= netdev_priv(dev
);
1793 unregister_netdev (dev
);
1794 pci_free_consistent (pdev
, RX_TOTAL_SIZE
, np
->rx_ring
,
1796 pci_free_consistent (pdev
, TX_TOTAL_SIZE
, np
->tx_ring
,
1799 iounmap ((char *) (dev
->base_addr
));
1802 pci_release_regions (pdev
);
1803 pci_disable_device (pdev
);
1805 pci_set_drvdata (pdev
, NULL
);
1808 static struct pci_driver rio_driver
= {
1810 .id_table
= rio_pci_tbl
,
1811 .probe
= rio_probe1
,
1812 .remove
= __devexit_p(rio_remove1
),
1818 return pci_register_driver(&rio_driver
);
1824 pci_unregister_driver (&rio_driver
);
1827 module_init (rio_init
);
1828 module_exit (rio_exit
);
1834 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1836 Read Documentation/networking/dl2k.txt for details.