USB: make usb_release_interface static
[linux-2.6/kmemtrace.git] / fs / jffs2 / gc.c
blob2d99e06ab223407a400cb31f3eeefae5f0d5bf7e
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright © 2001-2007 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
12 #include <linux/kernel.h>
13 #include <linux/mtd/mtd.h>
14 #include <linux/slab.h>
15 #include <linux/pagemap.h>
16 #include <linux/crc32.h>
17 #include <linux/compiler.h>
18 #include <linux/stat.h>
19 #include "nodelist.h"
20 #include "compr.h"
22 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
23 struct jffs2_inode_cache *ic,
24 struct jffs2_raw_node_ref *raw);
25 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
26 struct jffs2_inode_info *f, struct jffs2_full_dnode *fd);
27 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
28 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
29 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
30 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
31 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
32 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
33 uint32_t start, uint32_t end);
34 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
35 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
36 uint32_t start, uint32_t end);
37 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
38 struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f);
40 /* Called with erase_completion_lock held */
41 static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
43 struct jffs2_eraseblock *ret;
44 struct list_head *nextlist = NULL;
45 int n = jiffies % 128;
47 /* Pick an eraseblock to garbage collect next. This is where we'll
48 put the clever wear-levelling algorithms. Eventually. */
49 /* We possibly want to favour the dirtier blocks more when the
50 number of free blocks is low. */
51 again:
52 if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
53 D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n"));
54 nextlist = &c->bad_used_list;
55 } else if (n < 50 && !list_empty(&c->erasable_list)) {
56 /* Note that most of them will have gone directly to be erased.
57 So don't favour the erasable_list _too_ much. */
58 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n"));
59 nextlist = &c->erasable_list;
60 } else if (n < 110 && !list_empty(&c->very_dirty_list)) {
61 /* Most of the time, pick one off the very_dirty list */
62 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n"));
63 nextlist = &c->very_dirty_list;
64 } else if (n < 126 && !list_empty(&c->dirty_list)) {
65 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n"));
66 nextlist = &c->dirty_list;
67 } else if (!list_empty(&c->clean_list)) {
68 D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n"));
69 nextlist = &c->clean_list;
70 } else if (!list_empty(&c->dirty_list)) {
71 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n"));
73 nextlist = &c->dirty_list;
74 } else if (!list_empty(&c->very_dirty_list)) {
75 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n"));
76 nextlist = &c->very_dirty_list;
77 } else if (!list_empty(&c->erasable_list)) {
78 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n"));
80 nextlist = &c->erasable_list;
81 } else if (!list_empty(&c->erasable_pending_wbuf_list)) {
82 /* There are blocks are wating for the wbuf sync */
83 D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n"));
84 spin_unlock(&c->erase_completion_lock);
85 jffs2_flush_wbuf_pad(c);
86 spin_lock(&c->erase_completion_lock);
87 goto again;
88 } else {
89 /* Eep. All were empty */
90 D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n"));
91 return NULL;
94 ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
95 list_del(&ret->list);
96 c->gcblock = ret;
97 ret->gc_node = ret->first_node;
98 if (!ret->gc_node) {
99 printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset);
100 BUG();
103 /* Have we accidentally picked a clean block with wasted space ? */
104 if (ret->wasted_size) {
105 D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size));
106 ret->dirty_size += ret->wasted_size;
107 c->wasted_size -= ret->wasted_size;
108 c->dirty_size += ret->wasted_size;
109 ret->wasted_size = 0;
112 return ret;
115 /* jffs2_garbage_collect_pass
116 * Make a single attempt to progress GC. Move one node, and possibly
117 * start erasing one eraseblock.
119 int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
121 struct jffs2_inode_info *f;
122 struct jffs2_inode_cache *ic;
123 struct jffs2_eraseblock *jeb;
124 struct jffs2_raw_node_ref *raw;
125 int ret = 0, inum, nlink;
126 int xattr = 0;
128 if (down_interruptible(&c->alloc_sem))
129 return -EINTR;
131 for (;;) {
132 spin_lock(&c->erase_completion_lock);
133 if (!c->unchecked_size)
134 break;
136 /* We can't start doing GC yet. We haven't finished checking
137 the node CRCs etc. Do it now. */
139 /* checked_ino is protected by the alloc_sem */
140 if (c->checked_ino > c->highest_ino && xattr) {
141 printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n",
142 c->unchecked_size);
143 jffs2_dbg_dump_block_lists_nolock(c);
144 spin_unlock(&c->erase_completion_lock);
145 up(&c->alloc_sem);
146 return -ENOSPC;
149 spin_unlock(&c->erase_completion_lock);
151 if (!xattr)
152 xattr = jffs2_verify_xattr(c);
154 spin_lock(&c->inocache_lock);
156 ic = jffs2_get_ino_cache(c, c->checked_ino++);
158 if (!ic) {
159 spin_unlock(&c->inocache_lock);
160 continue;
163 if (!ic->nlink) {
164 D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink zero\n",
165 ic->ino));
166 spin_unlock(&c->inocache_lock);
167 jffs2_xattr_delete_inode(c, ic);
168 continue;
170 switch(ic->state) {
171 case INO_STATE_CHECKEDABSENT:
172 case INO_STATE_PRESENT:
173 D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino));
174 spin_unlock(&c->inocache_lock);
175 continue;
177 case INO_STATE_GC:
178 case INO_STATE_CHECKING:
179 printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state);
180 spin_unlock(&c->inocache_lock);
181 BUG();
183 case INO_STATE_READING:
184 /* We need to wait for it to finish, lest we move on
185 and trigger the BUG() above while we haven't yet
186 finished checking all its nodes */
187 D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino));
188 /* We need to come back again for the _same_ inode. We've
189 made no progress in this case, but that should be OK */
190 c->checked_ino--;
192 up(&c->alloc_sem);
193 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
194 return 0;
196 default:
197 BUG();
199 case INO_STATE_UNCHECKED:
202 ic->state = INO_STATE_CHECKING;
203 spin_unlock(&c->inocache_lock);
205 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino));
207 ret = jffs2_do_crccheck_inode(c, ic);
208 if (ret)
209 printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino);
211 jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
212 up(&c->alloc_sem);
213 return ret;
216 /* First, work out which block we're garbage-collecting */
217 jeb = c->gcblock;
219 if (!jeb)
220 jeb = jffs2_find_gc_block(c);
222 if (!jeb) {
223 D1 (printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n"));
224 spin_unlock(&c->erase_completion_lock);
225 up(&c->alloc_sem);
226 return -EIO;
229 D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size));
230 D1(if (c->nextblock)
231 printk(KERN_DEBUG "Nextblock at %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
233 if (!jeb->used_size) {
234 up(&c->alloc_sem);
235 goto eraseit;
238 raw = jeb->gc_node;
240 while(ref_obsolete(raw)) {
241 D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw)));
242 raw = ref_next(raw);
243 if (unlikely(!raw)) {
244 printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n");
245 printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
246 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size);
247 jeb->gc_node = raw;
248 spin_unlock(&c->erase_completion_lock);
249 up(&c->alloc_sem);
250 BUG();
253 jeb->gc_node = raw;
255 D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw)));
257 if (!raw->next_in_ino) {
258 /* Inode-less node. Clean marker, snapshot or something like that */
259 spin_unlock(&c->erase_completion_lock);
260 if (ref_flags(raw) == REF_PRISTINE) {
261 /* It's an unknown node with JFFS2_FEATURE_RWCOMPAT_COPY */
262 jffs2_garbage_collect_pristine(c, NULL, raw);
263 } else {
264 /* Just mark it obsolete */
265 jffs2_mark_node_obsolete(c, raw);
267 up(&c->alloc_sem);
268 goto eraseit_lock;
271 ic = jffs2_raw_ref_to_ic(raw);
273 #ifdef CONFIG_JFFS2_FS_XATTR
274 /* When 'ic' refers xattr_datum/xattr_ref, this node is GCed as xattr.
275 * We can decide whether this node is inode or xattr by ic->class. */
276 if (ic->class == RAWNODE_CLASS_XATTR_DATUM
277 || ic->class == RAWNODE_CLASS_XATTR_REF) {
278 spin_unlock(&c->erase_completion_lock);
280 if (ic->class == RAWNODE_CLASS_XATTR_DATUM) {
281 ret = jffs2_garbage_collect_xattr_datum(c, (struct jffs2_xattr_datum *)ic, raw);
282 } else {
283 ret = jffs2_garbage_collect_xattr_ref(c, (struct jffs2_xattr_ref *)ic, raw);
285 goto release_sem;
287 #endif
289 /* We need to hold the inocache. Either the erase_completion_lock or
290 the inocache_lock are sufficient; we trade down since the inocache_lock
291 causes less contention. */
292 spin_lock(&c->inocache_lock);
294 spin_unlock(&c->erase_completion_lock);
296 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino));
298 /* Three possibilities:
299 1. Inode is already in-core. We must iget it and do proper
300 updating to its fragtree, etc.
301 2. Inode is not in-core, node is REF_PRISTINE. We lock the
302 inocache to prevent a read_inode(), copy the node intact.
303 3. Inode is not in-core, node is not pristine. We must iget()
304 and take the slow path.
307 switch(ic->state) {
308 case INO_STATE_CHECKEDABSENT:
309 /* It's been checked, but it's not currently in-core.
310 We can just copy any pristine nodes, but have
311 to prevent anyone else from doing read_inode() while
312 we're at it, so we set the state accordingly */
313 if (ref_flags(raw) == REF_PRISTINE)
314 ic->state = INO_STATE_GC;
315 else {
316 D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
317 ic->ino));
319 break;
321 case INO_STATE_PRESENT:
322 /* It's in-core. GC must iget() it. */
323 break;
325 case INO_STATE_UNCHECKED:
326 case INO_STATE_CHECKING:
327 case INO_STATE_GC:
328 /* Should never happen. We should have finished checking
329 by the time we actually start doing any GC, and since
330 we're holding the alloc_sem, no other garbage collection
331 can happen.
333 printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
334 ic->ino, ic->state);
335 up(&c->alloc_sem);
336 spin_unlock(&c->inocache_lock);
337 BUG();
339 case INO_STATE_READING:
340 /* Someone's currently trying to read it. We must wait for
341 them to finish and then go through the full iget() route
342 to do the GC. However, sometimes read_inode() needs to get
343 the alloc_sem() (for marking nodes invalid) so we must
344 drop the alloc_sem before sleeping. */
346 up(&c->alloc_sem);
347 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n",
348 ic->ino, ic->state));
349 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
350 /* And because we dropped the alloc_sem we must start again from the
351 beginning. Ponder chance of livelock here -- we're returning success
352 without actually making any progress.
354 Q: What are the chances that the inode is back in INO_STATE_READING
355 again by the time we next enter this function? And that this happens
356 enough times to cause a real delay?
358 A: Small enough that I don't care :)
360 return 0;
363 /* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
364 node intact, and we don't have to muck about with the fragtree etc.
365 because we know it's not in-core. If it _was_ in-core, we go through
366 all the iget() crap anyway */
368 if (ic->state == INO_STATE_GC) {
369 spin_unlock(&c->inocache_lock);
371 ret = jffs2_garbage_collect_pristine(c, ic, raw);
373 spin_lock(&c->inocache_lock);
374 ic->state = INO_STATE_CHECKEDABSENT;
375 wake_up(&c->inocache_wq);
377 if (ret != -EBADFD) {
378 spin_unlock(&c->inocache_lock);
379 goto release_sem;
382 /* Fall through if it wanted us to, with inocache_lock held */
385 /* Prevent the fairly unlikely race where the gcblock is
386 entirely obsoleted by the final close of a file which had
387 the only valid nodes in the block, followed by erasure,
388 followed by freeing of the ic because the erased block(s)
389 held _all_ the nodes of that inode.... never been seen but
390 it's vaguely possible. */
392 inum = ic->ino;
393 nlink = ic->nlink;
394 spin_unlock(&c->inocache_lock);
396 f = jffs2_gc_fetch_inode(c, inum, nlink);
397 if (IS_ERR(f)) {
398 ret = PTR_ERR(f);
399 goto release_sem;
401 if (!f) {
402 ret = 0;
403 goto release_sem;
406 ret = jffs2_garbage_collect_live(c, jeb, raw, f);
408 jffs2_gc_release_inode(c, f);
410 release_sem:
411 up(&c->alloc_sem);
413 eraseit_lock:
414 /* If we've finished this block, start it erasing */
415 spin_lock(&c->erase_completion_lock);
417 eraseit:
418 if (c->gcblock && !c->gcblock->used_size) {
419 D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset));
420 /* We're GC'ing an empty block? */
421 list_add_tail(&c->gcblock->list, &c->erase_pending_list);
422 c->gcblock = NULL;
423 c->nr_erasing_blocks++;
424 jffs2_erase_pending_trigger(c);
426 spin_unlock(&c->erase_completion_lock);
428 return ret;
431 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
432 struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f)
434 struct jffs2_node_frag *frag;
435 struct jffs2_full_dnode *fn = NULL;
436 struct jffs2_full_dirent *fd;
437 uint32_t start = 0, end = 0, nrfrags = 0;
438 int ret = 0;
440 down(&f->sem);
442 /* Now we have the lock for this inode. Check that it's still the one at the head
443 of the list. */
445 spin_lock(&c->erase_completion_lock);
447 if (c->gcblock != jeb) {
448 spin_unlock(&c->erase_completion_lock);
449 D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n"));
450 goto upnout;
452 if (ref_obsolete(raw)) {
453 spin_unlock(&c->erase_completion_lock);
454 D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n"));
455 /* They'll call again */
456 goto upnout;
458 spin_unlock(&c->erase_completion_lock);
460 /* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
461 if (f->metadata && f->metadata->raw == raw) {
462 fn = f->metadata;
463 ret = jffs2_garbage_collect_metadata(c, jeb, f, fn);
464 goto upnout;
467 /* FIXME. Read node and do lookup? */
468 for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
469 if (frag->node && frag->node->raw == raw) {
470 fn = frag->node;
471 end = frag->ofs + frag->size;
472 if (!nrfrags++)
473 start = frag->ofs;
474 if (nrfrags == frag->node->frags)
475 break; /* We've found them all */
478 if (fn) {
479 if (ref_flags(raw) == REF_PRISTINE) {
480 ret = jffs2_garbage_collect_pristine(c, f->inocache, raw);
481 if (!ret) {
482 /* Urgh. Return it sensibly. */
483 frag->node->raw = f->inocache->nodes;
485 if (ret != -EBADFD)
486 goto upnout;
488 /* We found a datanode. Do the GC */
489 if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) {
490 /* It crosses a page boundary. Therefore, it must be a hole. */
491 ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end);
492 } else {
493 /* It could still be a hole. But we GC the page this way anyway */
494 ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end);
496 goto upnout;
499 /* Wasn't a dnode. Try dirent */
500 for (fd = f->dents; fd; fd=fd->next) {
501 if (fd->raw == raw)
502 break;
505 if (fd && fd->ino) {
506 ret = jffs2_garbage_collect_dirent(c, jeb, f, fd);
507 } else if (fd) {
508 ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
509 } else {
510 printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n",
511 ref_offset(raw), f->inocache->ino);
512 if (ref_obsolete(raw)) {
513 printk(KERN_WARNING "But it's obsolete so we don't mind too much\n");
514 } else {
515 jffs2_dbg_dump_node(c, ref_offset(raw));
516 BUG();
519 upnout:
520 up(&f->sem);
522 return ret;
525 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
526 struct jffs2_inode_cache *ic,
527 struct jffs2_raw_node_ref *raw)
529 union jffs2_node_union *node;
530 size_t retlen;
531 int ret;
532 uint32_t phys_ofs, alloclen;
533 uint32_t crc, rawlen;
534 int retried = 0;
536 D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw)));
538 alloclen = rawlen = ref_totlen(c, c->gcblock, raw);
540 /* Ask for a small amount of space (or the totlen if smaller) because we
541 don't want to force wastage of the end of a block if splitting would
542 work. */
543 if (ic && alloclen > sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN)
544 alloclen = sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN;
546 ret = jffs2_reserve_space_gc(c, alloclen, &alloclen, rawlen);
547 /* 'rawlen' is not the exact summary size; it is only an upper estimation */
549 if (ret)
550 return ret;
552 if (alloclen < rawlen) {
553 /* Doesn't fit untouched. We'll go the old route and split it */
554 return -EBADFD;
557 node = kmalloc(rawlen, GFP_KERNEL);
558 if (!node)
559 return -ENOMEM;
561 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node);
562 if (!ret && retlen != rawlen)
563 ret = -EIO;
564 if (ret)
565 goto out_node;
567 crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
568 if (je32_to_cpu(node->u.hdr_crc) != crc) {
569 printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
570 ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
571 goto bail;
574 switch(je16_to_cpu(node->u.nodetype)) {
575 case JFFS2_NODETYPE_INODE:
576 crc = crc32(0, node, sizeof(node->i)-8);
577 if (je32_to_cpu(node->i.node_crc) != crc) {
578 printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
579 ref_offset(raw), je32_to_cpu(node->i.node_crc), crc);
580 goto bail;
583 if (je32_to_cpu(node->i.dsize)) {
584 crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
585 if (je32_to_cpu(node->i.data_crc) != crc) {
586 printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
587 ref_offset(raw), je32_to_cpu(node->i.data_crc), crc);
588 goto bail;
591 break;
593 case JFFS2_NODETYPE_DIRENT:
594 crc = crc32(0, node, sizeof(node->d)-8);
595 if (je32_to_cpu(node->d.node_crc) != crc) {
596 printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
597 ref_offset(raw), je32_to_cpu(node->d.node_crc), crc);
598 goto bail;
601 if (node->d.nsize) {
602 crc = crc32(0, node->d.name, node->d.nsize);
603 if (je32_to_cpu(node->d.name_crc) != crc) {
604 printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent ode at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
605 ref_offset(raw), je32_to_cpu(node->d.name_crc), crc);
606 goto bail;
609 break;
610 default:
611 /* If it's inode-less, we don't _know_ what it is. Just copy it intact */
612 if (ic) {
613 printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
614 ref_offset(raw), je16_to_cpu(node->u.nodetype));
615 goto bail;
619 /* OK, all the CRCs are good; this node can just be copied as-is. */
620 retry:
621 phys_ofs = write_ofs(c);
623 ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
625 if (ret || (retlen != rawlen)) {
626 printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
627 rawlen, phys_ofs, ret, retlen);
628 if (retlen) {
629 jffs2_add_physical_node_ref(c, phys_ofs | REF_OBSOLETE, rawlen, NULL);
630 } else {
631 printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", phys_ofs);
633 if (!retried) {
634 /* Try to reallocate space and retry */
635 uint32_t dummy;
636 struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size];
638 retried = 1;
640 D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n"));
642 jffs2_dbg_acct_sanity_check(c,jeb);
643 jffs2_dbg_acct_paranoia_check(c, jeb);
645 ret = jffs2_reserve_space_gc(c, rawlen, &dummy, rawlen);
646 /* this is not the exact summary size of it,
647 it is only an upper estimation */
649 if (!ret) {
650 D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs));
652 jffs2_dbg_acct_sanity_check(c,jeb);
653 jffs2_dbg_acct_paranoia_check(c, jeb);
655 goto retry;
657 D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret));
660 if (!ret)
661 ret = -EIO;
662 goto out_node;
664 jffs2_add_physical_node_ref(c, phys_ofs | REF_PRISTINE, rawlen, ic);
666 jffs2_mark_node_obsolete(c, raw);
667 D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw)));
669 out_node:
670 kfree(node);
671 return ret;
672 bail:
673 ret = -EBADFD;
674 goto out_node;
677 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
678 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
680 struct jffs2_full_dnode *new_fn;
681 struct jffs2_raw_inode ri;
682 struct jffs2_node_frag *last_frag;
683 union jffs2_device_node dev;
684 char *mdata = NULL, mdatalen = 0;
685 uint32_t alloclen, ilen;
686 int ret;
688 if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
689 S_ISCHR(JFFS2_F_I_MODE(f)) ) {
690 /* For these, we don't actually need to read the old node */
691 mdatalen = jffs2_encode_dev(&dev, JFFS2_F_I_RDEV(f));
692 mdata = (char *)&dev;
693 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen));
694 } else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
695 mdatalen = fn->size;
696 mdata = kmalloc(fn->size, GFP_KERNEL);
697 if (!mdata) {
698 printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
699 return -ENOMEM;
701 ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
702 if (ret) {
703 printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret);
704 kfree(mdata);
705 return ret;
707 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen));
711 ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &alloclen,
712 JFFS2_SUMMARY_INODE_SIZE);
713 if (ret) {
714 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
715 sizeof(ri)+ mdatalen, ret);
716 goto out;
719 last_frag = frag_last(&f->fragtree);
720 if (last_frag)
721 /* Fetch the inode length from the fragtree rather then
722 * from i_size since i_size may have not been updated yet */
723 ilen = last_frag->ofs + last_frag->size;
724 else
725 ilen = JFFS2_F_I_SIZE(f);
727 memset(&ri, 0, sizeof(ri));
728 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
729 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
730 ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen);
731 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
733 ri.ino = cpu_to_je32(f->inocache->ino);
734 ri.version = cpu_to_je32(++f->highest_version);
735 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
736 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
737 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
738 ri.isize = cpu_to_je32(ilen);
739 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
740 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
741 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
742 ri.offset = cpu_to_je32(0);
743 ri.csize = cpu_to_je32(mdatalen);
744 ri.dsize = cpu_to_je32(mdatalen);
745 ri.compr = JFFS2_COMPR_NONE;
746 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
747 ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
749 new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, ALLOC_GC);
751 if (IS_ERR(new_fn)) {
752 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
753 ret = PTR_ERR(new_fn);
754 goto out;
756 jffs2_mark_node_obsolete(c, fn->raw);
757 jffs2_free_full_dnode(fn);
758 f->metadata = new_fn;
759 out:
760 if (S_ISLNK(JFFS2_F_I_MODE(f)))
761 kfree(mdata);
762 return ret;
765 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
766 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
768 struct jffs2_full_dirent *new_fd;
769 struct jffs2_raw_dirent rd;
770 uint32_t alloclen;
771 int ret;
773 rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
774 rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
775 rd.nsize = strlen(fd->name);
776 rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize);
777 rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4));
779 rd.pino = cpu_to_je32(f->inocache->ino);
780 rd.version = cpu_to_je32(++f->highest_version);
781 rd.ino = cpu_to_je32(fd->ino);
782 /* If the times on this inode were set by explicit utime() they can be different,
783 so refrain from splatting them. */
784 if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f))
785 rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f));
786 else
787 rd.mctime = cpu_to_je32(0);
788 rd.type = fd->type;
789 rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8));
790 rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize));
792 ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &alloclen,
793 JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize));
794 if (ret) {
795 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
796 sizeof(rd)+rd.nsize, ret);
797 return ret;
799 new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, ALLOC_GC);
801 if (IS_ERR(new_fd)) {
802 printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd));
803 return PTR_ERR(new_fd);
805 jffs2_add_fd_to_list(c, new_fd, &f->dents);
806 return 0;
809 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
810 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
812 struct jffs2_full_dirent **fdp = &f->dents;
813 int found = 0;
815 /* On a medium where we can't actually mark nodes obsolete
816 pernamently, such as NAND flash, we need to work out
817 whether this deletion dirent is still needed to actively
818 delete a 'real' dirent with the same name that's still
819 somewhere else on the flash. */
820 if (!jffs2_can_mark_obsolete(c)) {
821 struct jffs2_raw_dirent *rd;
822 struct jffs2_raw_node_ref *raw;
823 int ret;
824 size_t retlen;
825 int name_len = strlen(fd->name);
826 uint32_t name_crc = crc32(0, fd->name, name_len);
827 uint32_t rawlen = ref_totlen(c, jeb, fd->raw);
829 rd = kmalloc(rawlen, GFP_KERNEL);
830 if (!rd)
831 return -ENOMEM;
833 /* Prevent the erase code from nicking the obsolete node refs while
834 we're looking at them. I really don't like this extra lock but
835 can't see any alternative. Suggestions on a postcard to... */
836 down(&c->erase_free_sem);
838 for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) {
840 cond_resched();
842 /* We only care about obsolete ones */
843 if (!(ref_obsolete(raw)))
844 continue;
846 /* Any dirent with the same name is going to have the same length... */
847 if (ref_totlen(c, NULL, raw) != rawlen)
848 continue;
850 /* Doesn't matter if there's one in the same erase block. We're going to
851 delete it too at the same time. */
852 if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
853 continue;
855 D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw)));
857 /* This is an obsolete node belonging to the same directory, and it's of the right
858 length. We need to take a closer look...*/
859 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd);
860 if (ret) {
861 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw));
862 /* If we can't read it, we don't need to continue to obsolete it. Continue */
863 continue;
865 if (retlen != rawlen) {
866 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
867 retlen, rawlen, ref_offset(raw));
868 continue;
871 if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT)
872 continue;
874 /* If the name CRC doesn't match, skip */
875 if (je32_to_cpu(rd->name_crc) != name_crc)
876 continue;
878 /* If the name length doesn't match, or it's another deletion dirent, skip */
879 if (rd->nsize != name_len || !je32_to_cpu(rd->ino))
880 continue;
882 /* OK, check the actual name now */
883 if (memcmp(rd->name, fd->name, name_len))
884 continue;
886 /* OK. The name really does match. There really is still an older node on
887 the flash which our deletion dirent obsoletes. So we have to write out
888 a new deletion dirent to replace it */
889 up(&c->erase_free_sem);
891 D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
892 ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino)));
893 kfree(rd);
895 return jffs2_garbage_collect_dirent(c, jeb, f, fd);
898 up(&c->erase_free_sem);
899 kfree(rd);
902 /* FIXME: If we're deleting a dirent which contains the current mtime and ctime,
903 we should update the metadata node with those times accordingly */
905 /* No need for it any more. Just mark it obsolete and remove it from the list */
906 while (*fdp) {
907 if ((*fdp) == fd) {
908 found = 1;
909 *fdp = fd->next;
910 break;
912 fdp = &(*fdp)->next;
914 if (!found) {
915 printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino);
917 jffs2_mark_node_obsolete(c, fd->raw);
918 jffs2_free_full_dirent(fd);
919 return 0;
922 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
923 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
924 uint32_t start, uint32_t end)
926 struct jffs2_raw_inode ri;
927 struct jffs2_node_frag *frag;
928 struct jffs2_full_dnode *new_fn;
929 uint32_t alloclen, ilen;
930 int ret;
932 D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
933 f->inocache->ino, start, end));
935 memset(&ri, 0, sizeof(ri));
937 if(fn->frags > 1) {
938 size_t readlen;
939 uint32_t crc;
940 /* It's partially obsoleted by a later write. So we have to
941 write it out again with the _same_ version as before */
942 ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
943 if (readlen != sizeof(ri) || ret) {
944 printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen);
945 goto fill;
947 if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
948 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
949 ref_offset(fn->raw),
950 je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
951 return -EIO;
953 if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
954 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
955 ref_offset(fn->raw),
956 je32_to_cpu(ri.totlen), sizeof(ri));
957 return -EIO;
959 crc = crc32(0, &ri, sizeof(ri)-8);
960 if (crc != je32_to_cpu(ri.node_crc)) {
961 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
962 ref_offset(fn->raw),
963 je32_to_cpu(ri.node_crc), crc);
964 /* FIXME: We could possibly deal with this by writing new holes for each frag */
965 printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
966 start, end, f->inocache->ino);
967 goto fill;
969 if (ri.compr != JFFS2_COMPR_ZERO) {
970 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw));
971 printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
972 start, end, f->inocache->ino);
973 goto fill;
975 } else {
976 fill:
977 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
978 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
979 ri.totlen = cpu_to_je32(sizeof(ri));
980 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
982 ri.ino = cpu_to_je32(f->inocache->ino);
983 ri.version = cpu_to_je32(++f->highest_version);
984 ri.offset = cpu_to_je32(start);
985 ri.dsize = cpu_to_je32(end - start);
986 ri.csize = cpu_to_je32(0);
987 ri.compr = JFFS2_COMPR_ZERO;
990 frag = frag_last(&f->fragtree);
991 if (frag)
992 /* Fetch the inode length from the fragtree rather then
993 * from i_size since i_size may have not been updated yet */
994 ilen = frag->ofs + frag->size;
995 else
996 ilen = JFFS2_F_I_SIZE(f);
998 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
999 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1000 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1001 ri.isize = cpu_to_je32(ilen);
1002 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1003 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1004 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1005 ri.data_crc = cpu_to_je32(0);
1006 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1008 ret = jffs2_reserve_space_gc(c, sizeof(ri), &alloclen,
1009 JFFS2_SUMMARY_INODE_SIZE);
1010 if (ret) {
1011 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
1012 sizeof(ri), ret);
1013 return ret;
1015 new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_GC);
1017 if (IS_ERR(new_fn)) {
1018 printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn));
1019 return PTR_ERR(new_fn);
1021 if (je32_to_cpu(ri.version) == f->highest_version) {
1022 jffs2_add_full_dnode_to_inode(c, f, new_fn);
1023 if (f->metadata) {
1024 jffs2_mark_node_obsolete(c, f->metadata->raw);
1025 jffs2_free_full_dnode(f->metadata);
1026 f->metadata = NULL;
1028 return 0;
1032 * We should only get here in the case where the node we are
1033 * replacing had more than one frag, so we kept the same version
1034 * number as before. (Except in case of error -- see 'goto fill;'
1035 * above.)
1037 D1(if(unlikely(fn->frags <= 1)) {
1038 printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
1039 fn->frags, je32_to_cpu(ri.version), f->highest_version,
1040 je32_to_cpu(ri.ino));
1043 /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
1044 mark_ref_normal(new_fn->raw);
1046 for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs);
1047 frag; frag = frag_next(frag)) {
1048 if (frag->ofs > fn->size + fn->ofs)
1049 break;
1050 if (frag->node == fn) {
1051 frag->node = new_fn;
1052 new_fn->frags++;
1053 fn->frags--;
1056 if (fn->frags) {
1057 printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n");
1058 BUG();
1060 if (!new_fn->frags) {
1061 printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n");
1062 BUG();
1065 jffs2_mark_node_obsolete(c, fn->raw);
1066 jffs2_free_full_dnode(fn);
1068 return 0;
1071 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1072 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
1073 uint32_t start, uint32_t end)
1075 struct jffs2_full_dnode *new_fn;
1076 struct jffs2_raw_inode ri;
1077 uint32_t alloclen, offset, orig_end, orig_start;
1078 int ret = 0;
1079 unsigned char *comprbuf = NULL, *writebuf;
1080 unsigned long pg;
1081 unsigned char *pg_ptr;
1083 memset(&ri, 0, sizeof(ri));
1085 D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
1086 f->inocache->ino, start, end));
1088 orig_end = end;
1089 orig_start = start;
1091 if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) {
1092 /* Attempt to do some merging. But only expand to cover logically
1093 adjacent frags if the block containing them is already considered
1094 to be dirty. Otherwise we end up with GC just going round in
1095 circles dirtying the nodes it already wrote out, especially
1096 on NAND where we have small eraseblocks and hence a much higher
1097 chance of nodes having to be split to cross boundaries. */
1099 struct jffs2_node_frag *frag;
1100 uint32_t min, max;
1102 min = start & ~(PAGE_CACHE_SIZE-1);
1103 max = min + PAGE_CACHE_SIZE;
1105 frag = jffs2_lookup_node_frag(&f->fragtree, start);
1107 /* BUG_ON(!frag) but that'll happen anyway... */
1109 BUG_ON(frag->ofs != start);
1111 /* First grow down... */
1112 while((frag = frag_prev(frag)) && frag->ofs >= min) {
1114 /* If the previous frag doesn't even reach the beginning, there's
1115 excessive fragmentation. Just merge. */
1116 if (frag->ofs > min) {
1117 D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n",
1118 frag->ofs, frag->ofs+frag->size));
1119 start = frag->ofs;
1120 continue;
1122 /* OK. This frag holds the first byte of the page. */
1123 if (!frag->node || !frag->node->raw) {
1124 D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
1125 frag->ofs, frag->ofs+frag->size));
1126 break;
1127 } else {
1129 /* OK, it's a frag which extends to the beginning of the page. Does it live
1130 in a block which is still considered clean? If so, don't obsolete it.
1131 If not, cover it anyway. */
1133 struct jffs2_raw_node_ref *raw = frag->node->raw;
1134 struct jffs2_eraseblock *jeb;
1136 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1138 if (jeb == c->gcblock) {
1139 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1140 frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1141 start = frag->ofs;
1142 break;
1144 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1145 D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
1146 frag->ofs, frag->ofs+frag->size, jeb->offset));
1147 break;
1150 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
1151 frag->ofs, frag->ofs+frag->size, jeb->offset));
1152 start = frag->ofs;
1153 break;
1157 /* ... then up */
1159 /* Find last frag which is actually part of the node we're to GC. */
1160 frag = jffs2_lookup_node_frag(&f->fragtree, end-1);
1162 while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) {
1164 /* If the previous frag doesn't even reach the beginning, there's lots
1165 of fragmentation. Just merge. */
1166 if (frag->ofs+frag->size < max) {
1167 D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n",
1168 frag->ofs, frag->ofs+frag->size));
1169 end = frag->ofs + frag->size;
1170 continue;
1173 if (!frag->node || !frag->node->raw) {
1174 D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
1175 frag->ofs, frag->ofs+frag->size));
1176 break;
1177 } else {
1179 /* OK, it's a frag which extends to the beginning of the page. Does it live
1180 in a block which is still considered clean? If so, don't obsolete it.
1181 If not, cover it anyway. */
1183 struct jffs2_raw_node_ref *raw = frag->node->raw;
1184 struct jffs2_eraseblock *jeb;
1186 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1188 if (jeb == c->gcblock) {
1189 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1190 frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1191 end = frag->ofs + frag->size;
1192 break;
1194 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1195 D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
1196 frag->ofs, frag->ofs+frag->size, jeb->offset));
1197 break;
1200 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
1201 frag->ofs, frag->ofs+frag->size, jeb->offset));
1202 end = frag->ofs + frag->size;
1203 break;
1206 D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
1207 orig_start, orig_end, start, end));
1209 D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size));
1210 BUG_ON(end < orig_end);
1211 BUG_ON(start > orig_start);
1214 /* First, use readpage() to read the appropriate page into the page cache */
1215 /* Q: What happens if we actually try to GC the _same_ page for which commit_write()
1216 * triggered garbage collection in the first place?
1217 * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the
1218 * page OK. We'll actually write it out again in commit_write, which is a little
1219 * suboptimal, but at least we're correct.
1221 pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg);
1223 if (IS_ERR(pg_ptr)) {
1224 printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr));
1225 return PTR_ERR(pg_ptr);
1228 offset = start;
1229 while(offset < orig_end) {
1230 uint32_t datalen;
1231 uint32_t cdatalen;
1232 uint16_t comprtype = JFFS2_COMPR_NONE;
1234 ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN,
1235 &alloclen, JFFS2_SUMMARY_INODE_SIZE);
1237 if (ret) {
1238 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
1239 sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret);
1240 break;
1242 cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
1243 datalen = end - offset;
1245 writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1));
1247 comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen);
1249 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1250 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1251 ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen);
1252 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1254 ri.ino = cpu_to_je32(f->inocache->ino);
1255 ri.version = cpu_to_je32(++f->highest_version);
1256 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1257 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1258 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1259 ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
1260 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1261 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1262 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1263 ri.offset = cpu_to_je32(offset);
1264 ri.csize = cpu_to_je32(cdatalen);
1265 ri.dsize = cpu_to_je32(datalen);
1266 ri.compr = comprtype & 0xff;
1267 ri.usercompr = (comprtype >> 8) & 0xff;
1268 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1269 ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen));
1271 new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, ALLOC_GC);
1273 jffs2_free_comprbuf(comprbuf, writebuf);
1275 if (IS_ERR(new_fn)) {
1276 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
1277 ret = PTR_ERR(new_fn);
1278 break;
1280 ret = jffs2_add_full_dnode_to_inode(c, f, new_fn);
1281 offset += datalen;
1282 if (f->metadata) {
1283 jffs2_mark_node_obsolete(c, f->metadata->raw);
1284 jffs2_free_full_dnode(f->metadata);
1285 f->metadata = NULL;
1289 jffs2_gc_release_page(c, pg_ptr, &pg);
1290 return ret;