[INET]: Consolidate xxx_find() in fragment management
[linux-2.6/kmemtrace.git] / net / ipv4 / ip_fragment.c
blob928259dbc0f8b89d34e2302eb7cc5bec4cd21e02
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The IP fragmentation functionality.
8 * Version: $Id: ip_fragment.c,v 1.59 2002/01/12 07:54:56 davem Exp $
10 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
11 * Alan Cox <Alan.Cox@linux.org>
13 * Fixes:
14 * Alan Cox : Split from ip.c , see ip_input.c for history.
15 * David S. Miller : Begin massive cleanup...
16 * Andi Kleen : Add sysctls.
17 * xxxx : Overlapfrag bug.
18 * Ultima : ip_expire() kernel panic.
19 * Bill Hawes : Frag accounting and evictor fixes.
20 * John McDonald : 0 length frag bug.
21 * Alexey Kuznetsov: SMP races, threading, cleanup.
22 * Patrick McHardy : LRU queue of frag heads for evictor.
25 #include <linux/compiler.h>
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/mm.h>
29 #include <linux/jiffies.h>
30 #include <linux/skbuff.h>
31 #include <linux/list.h>
32 #include <linux/ip.h>
33 #include <linux/icmp.h>
34 #include <linux/netdevice.h>
35 #include <linux/jhash.h>
36 #include <linux/random.h>
37 #include <net/sock.h>
38 #include <net/ip.h>
39 #include <net/icmp.h>
40 #include <net/checksum.h>
41 #include <net/inetpeer.h>
42 #include <net/inet_frag.h>
43 #include <linux/tcp.h>
44 #include <linux/udp.h>
45 #include <linux/inet.h>
46 #include <linux/netfilter_ipv4.h>
48 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
49 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
50 * as well. Or notify me, at least. --ANK
53 int sysctl_ipfrag_max_dist __read_mostly = 64;
55 struct ipfrag_skb_cb
57 struct inet_skb_parm h;
58 int offset;
61 #define FRAG_CB(skb) ((struct ipfrag_skb_cb*)((skb)->cb))
63 /* Describe an entry in the "incomplete datagrams" queue. */
64 struct ipq {
65 struct inet_frag_queue q;
67 u32 user;
68 __be32 saddr;
69 __be32 daddr;
70 __be16 id;
71 u8 protocol;
72 int iif;
73 unsigned int rid;
74 struct inet_peer *peer;
77 struct inet_frags_ctl ip4_frags_ctl __read_mostly = {
79 * Fragment cache limits. We will commit 256K at one time. Should we
80 * cross that limit we will prune down to 192K. This should cope with
81 * even the most extreme cases without allowing an attacker to
82 * measurably harm machine performance.
84 .high_thresh = 256 * 1024,
85 .low_thresh = 192 * 1024,
88 * Important NOTE! Fragment queue must be destroyed before MSL expires.
89 * RFC791 is wrong proposing to prolongate timer each fragment arrival
90 * by TTL.
92 .timeout = IP_FRAG_TIME,
93 .secret_interval = 10 * 60 * HZ,
96 static struct inet_frags ip4_frags;
98 int ip_frag_nqueues(void)
100 return ip4_frags.nqueues;
103 int ip_frag_mem(void)
105 return atomic_read(&ip4_frags.mem);
108 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
109 struct net_device *dev);
111 struct ip4_create_arg {
112 struct iphdr *iph;
113 u32 user;
116 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
118 return jhash_3words((__force u32)id << 16 | prot,
119 (__force u32)saddr, (__force u32)daddr,
120 ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1);
123 static unsigned int ip4_hashfn(struct inet_frag_queue *q)
125 struct ipq *ipq;
127 ipq = container_of(q, struct ipq, q);
128 return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
131 static int ip4_frag_equal(struct inet_frag_queue *q1,
132 struct inet_frag_queue *q2)
134 struct ipq *qp1, *qp2;
136 qp1 = container_of(q1, struct ipq, q);
137 qp2 = container_of(q2, struct ipq, q);
138 return (qp1->id == qp2->id &&
139 qp1->saddr == qp2->saddr &&
140 qp1->daddr == qp2->daddr &&
141 qp1->protocol == qp2->protocol &&
142 qp1->user == qp2->user);
145 static int ip4_frag_match(struct inet_frag_queue *q, void *a)
147 struct ipq *qp;
148 struct ip4_create_arg *arg = a;
150 qp = container_of(q, struct ipq, q);
151 return (qp->id == arg->iph->id &&
152 qp->saddr == arg->iph->saddr &&
153 qp->daddr == arg->iph->daddr &&
154 qp->protocol == arg->iph->protocol &&
155 qp->user == arg->user);
158 /* Memory Tracking Functions. */
159 static __inline__ void frag_kfree_skb(struct sk_buff *skb, int *work)
161 if (work)
162 *work -= skb->truesize;
163 atomic_sub(skb->truesize, &ip4_frags.mem);
164 kfree_skb(skb);
167 static void ip4_frag_init(struct inet_frag_queue *q, void *a)
169 struct ipq *qp = container_of(q, struct ipq, q);
170 struct ip4_create_arg *arg = a;
172 qp->protocol = arg->iph->protocol;
173 qp->id = arg->iph->id;
174 qp->saddr = arg->iph->saddr;
175 qp->daddr = arg->iph->daddr;
176 qp->user = arg->user;
177 qp->peer = sysctl_ipfrag_max_dist ?
178 inet_getpeer(arg->iph->saddr, 1) : NULL;
181 static __inline__ void ip4_frag_free(struct inet_frag_queue *q)
183 struct ipq *qp;
185 qp = container_of(q, struct ipq, q);
186 if (qp->peer)
187 inet_putpeer(qp->peer);
188 kfree(qp);
192 /* Destruction primitives. */
194 static __inline__ void ipq_put(struct ipq *ipq)
196 inet_frag_put(&ipq->q, &ip4_frags);
199 /* Kill ipq entry. It is not destroyed immediately,
200 * because caller (and someone more) holds reference count.
202 static void ipq_kill(struct ipq *ipq)
204 inet_frag_kill(&ipq->q, &ip4_frags);
207 /* Memory limiting on fragments. Evictor trashes the oldest
208 * fragment queue until we are back under the threshold.
210 static void ip_evictor(void)
212 int evicted;
214 evicted = inet_frag_evictor(&ip4_frags);
215 if (evicted)
216 IP_ADD_STATS_BH(IPSTATS_MIB_REASMFAILS, evicted);
220 * Oops, a fragment queue timed out. Kill it and send an ICMP reply.
222 static void ip_expire(unsigned long arg)
224 struct ipq *qp;
226 qp = container_of((struct inet_frag_queue *) arg, struct ipq, q);
228 spin_lock(&qp->q.lock);
230 if (qp->q.last_in & COMPLETE)
231 goto out;
233 ipq_kill(qp);
235 IP_INC_STATS_BH(IPSTATS_MIB_REASMTIMEOUT);
236 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
238 if ((qp->q.last_in&FIRST_IN) && qp->q.fragments != NULL) {
239 struct sk_buff *head = qp->q.fragments;
240 /* Send an ICMP "Fragment Reassembly Timeout" message. */
241 if ((head->dev = dev_get_by_index(&init_net, qp->iif)) != NULL) {
242 icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
243 dev_put(head->dev);
246 out:
247 spin_unlock(&qp->q.lock);
248 ipq_put(qp);
251 /* Find the correct entry in the "incomplete datagrams" queue for
252 * this IP datagram, and create new one, if nothing is found.
254 static inline struct ipq *ip_find(struct iphdr *iph, u32 user)
256 struct inet_frag_queue *q;
257 struct ip4_create_arg arg;
258 unsigned int hash;
260 arg.iph = iph;
261 arg.user = user;
262 hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol);
264 q = inet_frag_find(&ip4_frags, &arg, hash);
265 if (q == NULL)
266 goto out_nomem;
268 return container_of(q, struct ipq, q);
270 out_nomem:
271 LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n");
272 return NULL;
275 /* Is the fragment too far ahead to be part of ipq? */
276 static inline int ip_frag_too_far(struct ipq *qp)
278 struct inet_peer *peer = qp->peer;
279 unsigned int max = sysctl_ipfrag_max_dist;
280 unsigned int start, end;
282 int rc;
284 if (!peer || !max)
285 return 0;
287 start = qp->rid;
288 end = atomic_inc_return(&peer->rid);
289 qp->rid = end;
291 rc = qp->q.fragments && (end - start) > max;
293 if (rc) {
294 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
297 return rc;
300 static int ip_frag_reinit(struct ipq *qp)
302 struct sk_buff *fp;
304 if (!mod_timer(&qp->q.timer, jiffies + ip4_frags_ctl.timeout)) {
305 atomic_inc(&qp->q.refcnt);
306 return -ETIMEDOUT;
309 fp = qp->q.fragments;
310 do {
311 struct sk_buff *xp = fp->next;
312 frag_kfree_skb(fp, NULL);
313 fp = xp;
314 } while (fp);
316 qp->q.last_in = 0;
317 qp->q.len = 0;
318 qp->q.meat = 0;
319 qp->q.fragments = NULL;
320 qp->iif = 0;
322 return 0;
325 /* Add new segment to existing queue. */
326 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
328 struct sk_buff *prev, *next;
329 struct net_device *dev;
330 int flags, offset;
331 int ihl, end;
332 int err = -ENOENT;
334 if (qp->q.last_in & COMPLETE)
335 goto err;
337 if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
338 unlikely(ip_frag_too_far(qp)) &&
339 unlikely(err = ip_frag_reinit(qp))) {
340 ipq_kill(qp);
341 goto err;
344 offset = ntohs(ip_hdr(skb)->frag_off);
345 flags = offset & ~IP_OFFSET;
346 offset &= IP_OFFSET;
347 offset <<= 3; /* offset is in 8-byte chunks */
348 ihl = ip_hdrlen(skb);
350 /* Determine the position of this fragment. */
351 end = offset + skb->len - ihl;
352 err = -EINVAL;
354 /* Is this the final fragment? */
355 if ((flags & IP_MF) == 0) {
356 /* If we already have some bits beyond end
357 * or have different end, the segment is corrrupted.
359 if (end < qp->q.len ||
360 ((qp->q.last_in & LAST_IN) && end != qp->q.len))
361 goto err;
362 qp->q.last_in |= LAST_IN;
363 qp->q.len = end;
364 } else {
365 if (end&7) {
366 end &= ~7;
367 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
368 skb->ip_summed = CHECKSUM_NONE;
370 if (end > qp->q.len) {
371 /* Some bits beyond end -> corruption. */
372 if (qp->q.last_in & LAST_IN)
373 goto err;
374 qp->q.len = end;
377 if (end == offset)
378 goto err;
380 err = -ENOMEM;
381 if (pskb_pull(skb, ihl) == NULL)
382 goto err;
384 err = pskb_trim_rcsum(skb, end - offset);
385 if (err)
386 goto err;
388 /* Find out which fragments are in front and at the back of us
389 * in the chain of fragments so far. We must know where to put
390 * this fragment, right?
392 prev = NULL;
393 for (next = qp->q.fragments; next != NULL; next = next->next) {
394 if (FRAG_CB(next)->offset >= offset)
395 break; /* bingo! */
396 prev = next;
399 /* We found where to put this one. Check for overlap with
400 * preceding fragment, and, if needed, align things so that
401 * any overlaps are eliminated.
403 if (prev) {
404 int i = (FRAG_CB(prev)->offset + prev->len) - offset;
406 if (i > 0) {
407 offset += i;
408 err = -EINVAL;
409 if (end <= offset)
410 goto err;
411 err = -ENOMEM;
412 if (!pskb_pull(skb, i))
413 goto err;
414 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
415 skb->ip_summed = CHECKSUM_NONE;
419 err = -ENOMEM;
421 while (next && FRAG_CB(next)->offset < end) {
422 int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
424 if (i < next->len) {
425 /* Eat head of the next overlapped fragment
426 * and leave the loop. The next ones cannot overlap.
428 if (!pskb_pull(next, i))
429 goto err;
430 FRAG_CB(next)->offset += i;
431 qp->q.meat -= i;
432 if (next->ip_summed != CHECKSUM_UNNECESSARY)
433 next->ip_summed = CHECKSUM_NONE;
434 break;
435 } else {
436 struct sk_buff *free_it = next;
438 /* Old fragment is completely overridden with
439 * new one drop it.
441 next = next->next;
443 if (prev)
444 prev->next = next;
445 else
446 qp->q.fragments = next;
448 qp->q.meat -= free_it->len;
449 frag_kfree_skb(free_it, NULL);
453 FRAG_CB(skb)->offset = offset;
455 /* Insert this fragment in the chain of fragments. */
456 skb->next = next;
457 if (prev)
458 prev->next = skb;
459 else
460 qp->q.fragments = skb;
462 dev = skb->dev;
463 if (dev) {
464 qp->iif = dev->ifindex;
465 skb->dev = NULL;
467 qp->q.stamp = skb->tstamp;
468 qp->q.meat += skb->len;
469 atomic_add(skb->truesize, &ip4_frags.mem);
470 if (offset == 0)
471 qp->q.last_in |= FIRST_IN;
473 if (qp->q.last_in == (FIRST_IN | LAST_IN) && qp->q.meat == qp->q.len)
474 return ip_frag_reasm(qp, prev, dev);
476 write_lock(&ip4_frags.lock);
477 list_move_tail(&qp->q.lru_list, &ip4_frags.lru_list);
478 write_unlock(&ip4_frags.lock);
479 return -EINPROGRESS;
481 err:
482 kfree_skb(skb);
483 return err;
487 /* Build a new IP datagram from all its fragments. */
489 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
490 struct net_device *dev)
492 struct iphdr *iph;
493 struct sk_buff *fp, *head = qp->q.fragments;
494 int len;
495 int ihlen;
496 int err;
498 ipq_kill(qp);
500 /* Make the one we just received the head. */
501 if (prev) {
502 head = prev->next;
503 fp = skb_clone(head, GFP_ATOMIC);
505 if (!fp)
506 goto out_nomem;
508 fp->next = head->next;
509 prev->next = fp;
511 skb_morph(head, qp->q.fragments);
512 head->next = qp->q.fragments->next;
514 kfree_skb(qp->q.fragments);
515 qp->q.fragments = head;
518 BUG_TRAP(head != NULL);
519 BUG_TRAP(FRAG_CB(head)->offset == 0);
521 /* Allocate a new buffer for the datagram. */
522 ihlen = ip_hdrlen(head);
523 len = ihlen + qp->q.len;
525 err = -E2BIG;
526 if (len > 65535)
527 goto out_oversize;
529 /* Head of list must not be cloned. */
530 err = -ENOMEM;
531 if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
532 goto out_nomem;
534 /* If the first fragment is fragmented itself, we split
535 * it to two chunks: the first with data and paged part
536 * and the second, holding only fragments. */
537 if (skb_shinfo(head)->frag_list) {
538 struct sk_buff *clone;
539 int i, plen = 0;
541 if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
542 goto out_nomem;
543 clone->next = head->next;
544 head->next = clone;
545 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
546 skb_shinfo(head)->frag_list = NULL;
547 for (i=0; i<skb_shinfo(head)->nr_frags; i++)
548 plen += skb_shinfo(head)->frags[i].size;
549 clone->len = clone->data_len = head->data_len - plen;
550 head->data_len -= clone->len;
551 head->len -= clone->len;
552 clone->csum = 0;
553 clone->ip_summed = head->ip_summed;
554 atomic_add(clone->truesize, &ip4_frags.mem);
557 skb_shinfo(head)->frag_list = head->next;
558 skb_push(head, head->data - skb_network_header(head));
559 atomic_sub(head->truesize, &ip4_frags.mem);
561 for (fp=head->next; fp; fp = fp->next) {
562 head->data_len += fp->len;
563 head->len += fp->len;
564 if (head->ip_summed != fp->ip_summed)
565 head->ip_summed = CHECKSUM_NONE;
566 else if (head->ip_summed == CHECKSUM_COMPLETE)
567 head->csum = csum_add(head->csum, fp->csum);
568 head->truesize += fp->truesize;
569 atomic_sub(fp->truesize, &ip4_frags.mem);
572 head->next = NULL;
573 head->dev = dev;
574 head->tstamp = qp->q.stamp;
576 iph = ip_hdr(head);
577 iph->frag_off = 0;
578 iph->tot_len = htons(len);
579 IP_INC_STATS_BH(IPSTATS_MIB_REASMOKS);
580 qp->q.fragments = NULL;
581 return 0;
583 out_nomem:
584 LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing "
585 "queue %p\n", qp);
586 goto out_fail;
587 out_oversize:
588 if (net_ratelimit())
589 printk(KERN_INFO
590 "Oversized IP packet from %d.%d.%d.%d.\n",
591 NIPQUAD(qp->saddr));
592 out_fail:
593 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
594 return err;
597 /* Process an incoming IP datagram fragment. */
598 int ip_defrag(struct sk_buff *skb, u32 user)
600 struct ipq *qp;
602 IP_INC_STATS_BH(IPSTATS_MIB_REASMREQDS);
604 /* Start by cleaning up the memory. */
605 if (atomic_read(&ip4_frags.mem) > ip4_frags_ctl.high_thresh)
606 ip_evictor();
608 /* Lookup (or create) queue header */
609 if ((qp = ip_find(ip_hdr(skb), user)) != NULL) {
610 int ret;
612 spin_lock(&qp->q.lock);
614 ret = ip_frag_queue(qp, skb);
616 spin_unlock(&qp->q.lock);
617 ipq_put(qp);
618 return ret;
621 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
622 kfree_skb(skb);
623 return -ENOMEM;
626 void __init ipfrag_init(void)
628 ip4_frags.ctl = &ip4_frags_ctl;
629 ip4_frags.hashfn = ip4_hashfn;
630 ip4_frags.constructor = ip4_frag_init;
631 ip4_frags.destructor = ip4_frag_free;
632 ip4_frags.skb_free = NULL;
633 ip4_frags.qsize = sizeof(struct ipq);
634 ip4_frags.equal = ip4_frag_equal;
635 ip4_frags.match = ip4_frag_match;
636 ip4_frags.frag_expire = ip_expire;
637 inet_frags_init(&ip4_frags);
640 EXPORT_SYMBOL(ip_defrag);