2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h" /* audit_signal_info() */
37 * SLAB caches for signal bits.
40 static struct kmem_cache
*sigqueue_cachep
;
43 static int sig_ignored(struct task_struct
*t
, int sig
)
45 void __user
* handler
;
48 * Tracers always want to know about signals..
50 if (t
->ptrace
& PT_PTRACED
)
54 * Blocked signals are never ignored, since the
55 * signal handler may change by the time it is
58 if (sigismember(&t
->blocked
, sig
) || sigismember(&t
->real_blocked
, sig
))
61 /* Is it explicitly or implicitly ignored? */
62 handler
= t
->sighand
->action
[sig
-1].sa
.sa_handler
;
63 return handler
== SIG_IGN
||
64 (handler
== SIG_DFL
&& sig_kernel_ignore(sig
));
68 * Re-calculate pending state from the set of locally pending
69 * signals, globally pending signals, and blocked signals.
71 static inline int has_pending_signals(sigset_t
*signal
, sigset_t
*blocked
)
76 switch (_NSIG_WORDS
) {
78 for (i
= _NSIG_WORDS
, ready
= 0; --i
>= 0 ;)
79 ready
|= signal
->sig
[i
] &~ blocked
->sig
[i
];
82 case 4: ready
= signal
->sig
[3] &~ blocked
->sig
[3];
83 ready
|= signal
->sig
[2] &~ blocked
->sig
[2];
84 ready
|= signal
->sig
[1] &~ blocked
->sig
[1];
85 ready
|= signal
->sig
[0] &~ blocked
->sig
[0];
88 case 2: ready
= signal
->sig
[1] &~ blocked
->sig
[1];
89 ready
|= signal
->sig
[0] &~ blocked
->sig
[0];
92 case 1: ready
= signal
->sig
[0] &~ blocked
->sig
[0];
97 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
99 static int recalc_sigpending_tsk(struct task_struct
*t
)
101 if (t
->signal
->group_stop_count
> 0 ||
102 PENDING(&t
->pending
, &t
->blocked
) ||
103 PENDING(&t
->signal
->shared_pending
, &t
->blocked
)) {
104 set_tsk_thread_flag(t
, TIF_SIGPENDING
);
108 * We must never clear the flag in another thread, or in current
109 * when it's possible the current syscall is returning -ERESTART*.
110 * So we don't clear it here, and only callers who know they should do.
116 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
117 * This is superfluous when called on current, the wakeup is a harmless no-op.
119 void recalc_sigpending_and_wake(struct task_struct
*t
)
121 if (recalc_sigpending_tsk(t
))
122 signal_wake_up(t
, 0);
125 void recalc_sigpending(void)
127 if (!recalc_sigpending_tsk(current
) && !freezing(current
))
128 clear_thread_flag(TIF_SIGPENDING
);
132 /* Given the mask, find the first available signal that should be serviced. */
134 int next_signal(struct sigpending
*pending
, sigset_t
*mask
)
136 unsigned long i
, *s
, *m
, x
;
139 s
= pending
->signal
.sig
;
141 switch (_NSIG_WORDS
) {
143 for (i
= 0; i
< _NSIG_WORDS
; ++i
, ++s
, ++m
)
144 if ((x
= *s
&~ *m
) != 0) {
145 sig
= ffz(~x
) + i
*_NSIG_BPW
+ 1;
150 case 2: if ((x
= s
[0] &~ m
[0]) != 0)
152 else if ((x
= s
[1] &~ m
[1]) != 0)
159 case 1: if ((x
= *s
&~ *m
) != 0)
167 static struct sigqueue
*__sigqueue_alloc(struct task_struct
*t
, gfp_t flags
,
170 struct sigqueue
*q
= NULL
;
171 struct user_struct
*user
;
174 * In order to avoid problems with "switch_user()", we want to make
175 * sure that the compiler doesn't re-load "t->user"
179 atomic_inc(&user
->sigpending
);
180 if (override_rlimit
||
181 atomic_read(&user
->sigpending
) <=
182 t
->signal
->rlim
[RLIMIT_SIGPENDING
].rlim_cur
)
183 q
= kmem_cache_alloc(sigqueue_cachep
, flags
);
184 if (unlikely(q
== NULL
)) {
185 atomic_dec(&user
->sigpending
);
187 INIT_LIST_HEAD(&q
->list
);
189 q
->user
= get_uid(user
);
194 static void __sigqueue_free(struct sigqueue
*q
)
196 if (q
->flags
& SIGQUEUE_PREALLOC
)
198 atomic_dec(&q
->user
->sigpending
);
200 kmem_cache_free(sigqueue_cachep
, q
);
203 void flush_sigqueue(struct sigpending
*queue
)
207 sigemptyset(&queue
->signal
);
208 while (!list_empty(&queue
->list
)) {
209 q
= list_entry(queue
->list
.next
, struct sigqueue
, list
);
210 list_del_init(&q
->list
);
216 * Flush all pending signals for a task.
218 void flush_signals(struct task_struct
*t
)
222 spin_lock_irqsave(&t
->sighand
->siglock
, flags
);
223 clear_tsk_thread_flag(t
, TIF_SIGPENDING
);
224 flush_sigqueue(&t
->pending
);
225 flush_sigqueue(&t
->signal
->shared_pending
);
226 spin_unlock_irqrestore(&t
->sighand
->siglock
, flags
);
229 void ignore_signals(struct task_struct
*t
)
233 for (i
= 0; i
< _NSIG
; ++i
)
234 t
->sighand
->action
[i
].sa
.sa_handler
= SIG_IGN
;
240 * Flush all handlers for a task.
244 flush_signal_handlers(struct task_struct
*t
, int force_default
)
247 struct k_sigaction
*ka
= &t
->sighand
->action
[0];
248 for (i
= _NSIG
; i
!= 0 ; i
--) {
249 if (force_default
|| ka
->sa
.sa_handler
!= SIG_IGN
)
250 ka
->sa
.sa_handler
= SIG_DFL
;
252 sigemptyset(&ka
->sa
.sa_mask
);
257 int unhandled_signal(struct task_struct
*tsk
, int sig
)
259 if (is_global_init(tsk
))
261 if (tsk
->ptrace
& PT_PTRACED
)
263 return (tsk
->sighand
->action
[sig
-1].sa
.sa_handler
== SIG_IGN
) ||
264 (tsk
->sighand
->action
[sig
-1].sa
.sa_handler
== SIG_DFL
);
268 /* Notify the system that a driver wants to block all signals for this
269 * process, and wants to be notified if any signals at all were to be
270 * sent/acted upon. If the notifier routine returns non-zero, then the
271 * signal will be acted upon after all. If the notifier routine returns 0,
272 * then then signal will be blocked. Only one block per process is
273 * allowed. priv is a pointer to private data that the notifier routine
274 * can use to determine if the signal should be blocked or not. */
277 block_all_signals(int (*notifier
)(void *priv
), void *priv
, sigset_t
*mask
)
281 spin_lock_irqsave(¤t
->sighand
->siglock
, flags
);
282 current
->notifier_mask
= mask
;
283 current
->notifier_data
= priv
;
284 current
->notifier
= notifier
;
285 spin_unlock_irqrestore(¤t
->sighand
->siglock
, flags
);
288 /* Notify the system that blocking has ended. */
291 unblock_all_signals(void)
295 spin_lock_irqsave(¤t
->sighand
->siglock
, flags
);
296 current
->notifier
= NULL
;
297 current
->notifier_data
= NULL
;
299 spin_unlock_irqrestore(¤t
->sighand
->siglock
, flags
);
302 static int collect_signal(int sig
, struct sigpending
*list
, siginfo_t
*info
)
304 struct sigqueue
*q
, *first
= NULL
;
305 int still_pending
= 0;
307 if (unlikely(!sigismember(&list
->signal
, sig
)))
311 * Collect the siginfo appropriate to this signal. Check if
312 * there is another siginfo for the same signal.
314 list_for_each_entry(q
, &list
->list
, list
) {
315 if (q
->info
.si_signo
== sig
) {
324 list_del_init(&first
->list
);
325 copy_siginfo(info
, &first
->info
);
326 __sigqueue_free(first
);
328 sigdelset(&list
->signal
, sig
);
331 /* Ok, it wasn't in the queue. This must be
332 a fast-pathed signal or we must have been
333 out of queue space. So zero out the info.
335 sigdelset(&list
->signal
, sig
);
336 info
->si_signo
= sig
;
345 static int __dequeue_signal(struct sigpending
*pending
, sigset_t
*mask
,
348 int sig
= next_signal(pending
, mask
);
351 if (current
->notifier
) {
352 if (sigismember(current
->notifier_mask
, sig
)) {
353 if (!(current
->notifier
)(current
->notifier_data
)) {
354 clear_thread_flag(TIF_SIGPENDING
);
360 if (!collect_signal(sig
, pending
, info
))
368 * Dequeue a signal and return the element to the caller, which is
369 * expected to free it.
371 * All callers have to hold the siglock.
373 int dequeue_signal(struct task_struct
*tsk
, sigset_t
*mask
, siginfo_t
*info
)
377 /* We only dequeue private signals from ourselves, we don't let
378 * signalfd steal them
380 signr
= __dequeue_signal(&tsk
->pending
, mask
, info
);
382 signr
= __dequeue_signal(&tsk
->signal
->shared_pending
,
387 * itimers are process shared and we restart periodic
388 * itimers in the signal delivery path to prevent DoS
389 * attacks in the high resolution timer case. This is
390 * compliant with the old way of self restarting
391 * itimers, as the SIGALRM is a legacy signal and only
392 * queued once. Changing the restart behaviour to
393 * restart the timer in the signal dequeue path is
394 * reducing the timer noise on heavy loaded !highres
397 if (unlikely(signr
== SIGALRM
)) {
398 struct hrtimer
*tmr
= &tsk
->signal
->real_timer
;
400 if (!hrtimer_is_queued(tmr
) &&
401 tsk
->signal
->it_real_incr
.tv64
!= 0) {
402 hrtimer_forward(tmr
, tmr
->base
->get_time(),
403 tsk
->signal
->it_real_incr
);
404 hrtimer_restart(tmr
);
409 if (signr
&& unlikely(sig_kernel_stop(signr
))) {
411 * Set a marker that we have dequeued a stop signal. Our
412 * caller might release the siglock and then the pending
413 * stop signal it is about to process is no longer in the
414 * pending bitmasks, but must still be cleared by a SIGCONT
415 * (and overruled by a SIGKILL). So those cases clear this
416 * shared flag after we've set it. Note that this flag may
417 * remain set after the signal we return is ignored or
418 * handled. That doesn't matter because its only purpose
419 * is to alert stop-signal processing code when another
420 * processor has come along and cleared the flag.
422 if (!(tsk
->signal
->flags
& SIGNAL_GROUP_EXIT
))
423 tsk
->signal
->flags
|= SIGNAL_STOP_DEQUEUED
;
426 ((info
->si_code
& __SI_MASK
) == __SI_TIMER
) &&
427 info
->si_sys_private
) {
429 * Release the siglock to ensure proper locking order
430 * of timer locks outside of siglocks. Note, we leave
431 * irqs disabled here, since the posix-timers code is
432 * about to disable them again anyway.
434 spin_unlock(&tsk
->sighand
->siglock
);
435 do_schedule_next_timer(info
);
436 spin_lock(&tsk
->sighand
->siglock
);
442 * Tell a process that it has a new active signal..
444 * NOTE! we rely on the previous spin_lock to
445 * lock interrupts for us! We can only be called with
446 * "siglock" held, and the local interrupt must
447 * have been disabled when that got acquired!
449 * No need to set need_resched since signal event passing
450 * goes through ->blocked
452 void signal_wake_up(struct task_struct
*t
, int resume
)
456 set_tsk_thread_flag(t
, TIF_SIGPENDING
);
459 * For SIGKILL, we want to wake it up in the stopped/traced/killable
460 * case. We don't check t->state here because there is a race with it
461 * executing another processor and just now entering stopped state.
462 * By using wake_up_state, we ensure the process will wake up and
463 * handle its death signal.
465 mask
= TASK_INTERRUPTIBLE
;
467 mask
|= TASK_WAKEKILL
;
468 if (!wake_up_state(t
, mask
))
473 * Remove signals in mask from the pending set and queue.
474 * Returns 1 if any signals were found.
476 * All callers must be holding the siglock.
478 * This version takes a sigset mask and looks at all signals,
479 * not just those in the first mask word.
481 static int rm_from_queue_full(sigset_t
*mask
, struct sigpending
*s
)
483 struct sigqueue
*q
, *n
;
486 sigandsets(&m
, mask
, &s
->signal
);
487 if (sigisemptyset(&m
))
490 signandsets(&s
->signal
, &s
->signal
, mask
);
491 list_for_each_entry_safe(q
, n
, &s
->list
, list
) {
492 if (sigismember(mask
, q
->info
.si_signo
)) {
493 list_del_init(&q
->list
);
500 * Remove signals in mask from the pending set and queue.
501 * Returns 1 if any signals were found.
503 * All callers must be holding the siglock.
505 static int rm_from_queue(unsigned long mask
, struct sigpending
*s
)
507 struct sigqueue
*q
, *n
;
509 if (!sigtestsetmask(&s
->signal
, mask
))
512 sigdelsetmask(&s
->signal
, mask
);
513 list_for_each_entry_safe(q
, n
, &s
->list
, list
) {
514 if (q
->info
.si_signo
< SIGRTMIN
&&
515 (mask
& sigmask(q
->info
.si_signo
))) {
516 list_del_init(&q
->list
);
524 * Bad permissions for sending the signal
526 static int check_kill_permission(int sig
, struct siginfo
*info
,
527 struct task_struct
*t
)
530 if (!valid_signal(sig
))
533 if (info
== SEND_SIG_NOINFO
|| (!is_si_special(info
) && SI_FROMUSER(info
))) {
534 error
= audit_signal_info(sig
, t
); /* Let audit system see the signal */
538 if (((sig
!= SIGCONT
) ||
539 (task_session_nr(current
) != task_session_nr(t
)))
540 && (current
->euid
^ t
->suid
) && (current
->euid
^ t
->uid
)
541 && (current
->uid
^ t
->suid
) && (current
->uid
^ t
->uid
)
542 && !capable(CAP_KILL
))
546 return security_task_kill(t
, info
, sig
, 0);
550 static void do_notify_parent_cldstop(struct task_struct
*tsk
, int why
);
553 * Handle magic process-wide effects of stop/continue signals.
554 * Unlike the signal actions, these happen immediately at signal-generation
555 * time regardless of blocking, ignoring, or handling. This does the
556 * actual continuing for SIGCONT, but not the actual stopping for stop
557 * signals. The process stop is done as a signal action for SIG_DFL.
559 static void handle_stop_signal(int sig
, struct task_struct
*p
)
561 struct task_struct
*t
;
563 if (p
->signal
->flags
& SIGNAL_GROUP_EXIT
)
565 * The process is in the middle of dying already.
569 if (sig_kernel_stop(sig
)) {
571 * This is a stop signal. Remove SIGCONT from all queues.
573 rm_from_queue(sigmask(SIGCONT
), &p
->signal
->shared_pending
);
576 rm_from_queue(sigmask(SIGCONT
), &t
->pending
);
579 } else if (sig
== SIGCONT
) {
581 * Remove all stop signals from all queues,
582 * and wake all threads.
584 if (unlikely(p
->signal
->group_stop_count
> 0)) {
586 * There was a group stop in progress. We'll
587 * pretend it finished before we got here. We are
588 * obliged to report it to the parent: if the
589 * SIGSTOP happened "after" this SIGCONT, then it
590 * would have cleared this pending SIGCONT. If it
591 * happened "before" this SIGCONT, then the parent
592 * got the SIGCHLD about the stop finishing before
593 * the continue happened. We do the notification
594 * now, and it's as if the stop had finished and
595 * the SIGCHLD was pending on entry to this kill.
597 p
->signal
->group_stop_count
= 0;
598 p
->signal
->flags
= SIGNAL_STOP_CONTINUED
;
599 spin_unlock(&p
->sighand
->siglock
);
600 do_notify_parent_cldstop(p
, CLD_STOPPED
);
601 spin_lock(&p
->sighand
->siglock
);
603 rm_from_queue(SIG_KERNEL_STOP_MASK
, &p
->signal
->shared_pending
);
607 rm_from_queue(SIG_KERNEL_STOP_MASK
, &t
->pending
);
610 * If there is a handler for SIGCONT, we must make
611 * sure that no thread returns to user mode before
612 * we post the signal, in case it was the only
613 * thread eligible to run the signal handler--then
614 * it must not do anything between resuming and
615 * running the handler. With the TIF_SIGPENDING
616 * flag set, the thread will pause and acquire the
617 * siglock that we hold now and until we've queued
618 * the pending signal.
620 * Wake up the stopped thread _after_ setting
623 state
= __TASK_STOPPED
;
624 if (sig_user_defined(t
, SIGCONT
) && !sigismember(&t
->blocked
, SIGCONT
)) {
625 set_tsk_thread_flag(t
, TIF_SIGPENDING
);
626 state
|= TASK_INTERRUPTIBLE
;
628 wake_up_state(t
, state
);
633 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
) {
635 * We were in fact stopped, and are now continued.
636 * Notify the parent with CLD_CONTINUED.
638 p
->signal
->flags
= SIGNAL_STOP_CONTINUED
;
639 p
->signal
->group_exit_code
= 0;
640 spin_unlock(&p
->sighand
->siglock
);
641 do_notify_parent_cldstop(p
, CLD_CONTINUED
);
642 spin_lock(&p
->sighand
->siglock
);
645 * We are not stopped, but there could be a stop
646 * signal in the middle of being processed after
647 * being removed from the queue. Clear that too.
649 p
->signal
->flags
= 0;
651 } else if (sig
== SIGKILL
) {
653 * Make sure that any pending stop signal already dequeued
654 * is undone by the wakeup for SIGKILL.
656 p
->signal
->flags
= 0;
660 static int send_signal(int sig
, struct siginfo
*info
, struct task_struct
*t
,
661 struct sigpending
*signals
)
663 struct sigqueue
* q
= NULL
;
667 * Deliver the signal to listening signalfds. This must be called
668 * with the sighand lock held.
670 signalfd_notify(t
, sig
);
673 * fast-pathed signals for kernel-internal things like SIGSTOP
676 if (info
== SEND_SIG_FORCED
)
679 /* Real-time signals must be queued if sent by sigqueue, or
680 some other real-time mechanism. It is implementation
681 defined whether kill() does so. We attempt to do so, on
682 the principle of least surprise, but since kill is not
683 allowed to fail with EAGAIN when low on memory we just
684 make sure at least one signal gets delivered and don't
685 pass on the info struct. */
687 q
= __sigqueue_alloc(t
, GFP_ATOMIC
, (sig
< SIGRTMIN
&&
688 (is_si_special(info
) ||
689 info
->si_code
>= 0)));
691 list_add_tail(&q
->list
, &signals
->list
);
692 switch ((unsigned long) info
) {
693 case (unsigned long) SEND_SIG_NOINFO
:
694 q
->info
.si_signo
= sig
;
695 q
->info
.si_errno
= 0;
696 q
->info
.si_code
= SI_USER
;
697 q
->info
.si_pid
= task_pid_vnr(current
);
698 q
->info
.si_uid
= current
->uid
;
700 case (unsigned long) SEND_SIG_PRIV
:
701 q
->info
.si_signo
= sig
;
702 q
->info
.si_errno
= 0;
703 q
->info
.si_code
= SI_KERNEL
;
708 copy_siginfo(&q
->info
, info
);
711 } else if (!is_si_special(info
)) {
712 if (sig
>= SIGRTMIN
&& info
->si_code
!= SI_USER
)
714 * Queue overflow, abort. We may abort if the signal was rt
715 * and sent by user using something other than kill().
721 sigaddset(&signals
->signal
, sig
);
725 #define LEGACY_QUEUE(sigptr, sig) \
726 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
728 int print_fatal_signals
;
730 static void print_fatal_signal(struct pt_regs
*regs
, int signr
)
732 printk("%s/%d: potentially unexpected fatal signal %d.\n",
733 current
->comm
, task_pid_nr(current
), signr
);
735 #if defined(__i386__) && !defined(__arch_um__)
736 printk("code at %08lx: ", regs
->ip
);
739 for (i
= 0; i
< 16; i
++) {
742 __get_user(insn
, (unsigned char *)(regs
->ip
+ i
));
743 printk("%02x ", insn
);
751 static int __init
setup_print_fatal_signals(char *str
)
753 get_option (&str
, &print_fatal_signals
);
758 __setup("print-fatal-signals=", setup_print_fatal_signals
);
761 specific_send_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*t
)
765 BUG_ON(!irqs_disabled());
766 assert_spin_locked(&t
->sighand
->siglock
);
768 /* Short-circuit ignored signals. */
769 if (sig_ignored(t
, sig
))
772 /* Support queueing exactly one non-rt signal, so that we
773 can get more detailed information about the cause of
775 if (LEGACY_QUEUE(&t
->pending
, sig
))
778 ret
= send_signal(sig
, info
, t
, &t
->pending
);
779 if (!ret
&& !sigismember(&t
->blocked
, sig
))
780 signal_wake_up(t
, sig
== SIGKILL
);
786 * Force a signal that the process can't ignore: if necessary
787 * we unblock the signal and change any SIG_IGN to SIG_DFL.
789 * Note: If we unblock the signal, we always reset it to SIG_DFL,
790 * since we do not want to have a signal handler that was blocked
791 * be invoked when user space had explicitly blocked it.
793 * We don't want to have recursive SIGSEGV's etc, for example.
796 force_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*t
)
798 unsigned long int flags
;
799 int ret
, blocked
, ignored
;
800 struct k_sigaction
*action
;
802 spin_lock_irqsave(&t
->sighand
->siglock
, flags
);
803 action
= &t
->sighand
->action
[sig
-1];
804 ignored
= action
->sa
.sa_handler
== SIG_IGN
;
805 blocked
= sigismember(&t
->blocked
, sig
);
806 if (blocked
|| ignored
) {
807 action
->sa
.sa_handler
= SIG_DFL
;
809 sigdelset(&t
->blocked
, sig
);
810 recalc_sigpending_and_wake(t
);
813 ret
= specific_send_sig_info(sig
, info
, t
);
814 spin_unlock_irqrestore(&t
->sighand
->siglock
, flags
);
820 force_sig_specific(int sig
, struct task_struct
*t
)
822 force_sig_info(sig
, SEND_SIG_FORCED
, t
);
826 * Test if P wants to take SIG. After we've checked all threads with this,
827 * it's equivalent to finding no threads not blocking SIG. Any threads not
828 * blocking SIG were ruled out because they are not running and already
829 * have pending signals. Such threads will dequeue from the shared queue
830 * as soon as they're available, so putting the signal on the shared queue
831 * will be equivalent to sending it to one such thread.
833 static inline int wants_signal(int sig
, struct task_struct
*p
)
835 if (sigismember(&p
->blocked
, sig
))
837 if (p
->flags
& PF_EXITING
)
841 if (task_is_stopped_or_traced(p
))
843 return task_curr(p
) || !signal_pending(p
);
847 __group_complete_signal(int sig
, struct task_struct
*p
)
849 struct task_struct
*t
;
852 * Now find a thread we can wake up to take the signal off the queue.
854 * If the main thread wants the signal, it gets first crack.
855 * Probably the least surprising to the average bear.
857 if (wants_signal(sig
, p
))
859 else if (thread_group_empty(p
))
861 * There is just one thread and it does not need to be woken.
862 * It will dequeue unblocked signals before it runs again.
867 * Otherwise try to find a suitable thread.
869 t
= p
->signal
->curr_target
;
871 /* restart balancing at this thread */
872 t
= p
->signal
->curr_target
= p
;
874 while (!wants_signal(sig
, t
)) {
876 if (t
== p
->signal
->curr_target
)
878 * No thread needs to be woken.
879 * Any eligible threads will see
880 * the signal in the queue soon.
884 p
->signal
->curr_target
= t
;
888 * Found a killable thread. If the signal will be fatal,
889 * then start taking the whole group down immediately.
891 if (sig_fatal(p
, sig
) && !(p
->signal
->flags
& SIGNAL_GROUP_EXIT
) &&
892 !sigismember(&t
->real_blocked
, sig
) &&
893 (sig
== SIGKILL
|| !(t
->ptrace
& PT_PTRACED
))) {
895 * This signal will be fatal to the whole group.
897 if (!sig_kernel_coredump(sig
)) {
899 * Start a group exit and wake everybody up.
900 * This way we don't have other threads
901 * running and doing things after a slower
902 * thread has the fatal signal pending.
904 p
->signal
->flags
= SIGNAL_GROUP_EXIT
;
905 p
->signal
->group_exit_code
= sig
;
906 p
->signal
->group_stop_count
= 0;
909 sigaddset(&t
->pending
.signal
, SIGKILL
);
910 signal_wake_up(t
, 1);
911 } while_each_thread(p
, t
);
917 * The signal is already in the shared-pending queue.
918 * Tell the chosen thread to wake up and dequeue it.
920 signal_wake_up(t
, sig
== SIGKILL
);
925 __group_send_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*p
)
929 assert_spin_locked(&p
->sighand
->siglock
);
930 handle_stop_signal(sig
, p
);
932 /* Short-circuit ignored signals. */
933 if (sig_ignored(p
, sig
))
936 if (LEGACY_QUEUE(&p
->signal
->shared_pending
, sig
))
937 /* This is a non-RT signal and we already have one queued. */
941 * Put this signal on the shared-pending queue, or fail with EAGAIN.
942 * We always use the shared queue for process-wide signals,
943 * to avoid several races.
945 ret
= send_signal(sig
, info
, p
, &p
->signal
->shared_pending
);
949 __group_complete_signal(sig
, p
);
954 * Nuke all other threads in the group.
956 void zap_other_threads(struct task_struct
*p
)
958 struct task_struct
*t
;
960 p
->signal
->group_stop_count
= 0;
962 for (t
= next_thread(p
); t
!= p
; t
= next_thread(t
)) {
964 * Don't bother with already dead threads
969 /* SIGKILL will be handled before any pending SIGSTOP */
970 sigaddset(&t
->pending
.signal
, SIGKILL
);
971 signal_wake_up(t
, 1);
975 int __fatal_signal_pending(struct task_struct
*tsk
)
977 return sigismember(&tsk
->pending
.signal
, SIGKILL
);
979 EXPORT_SYMBOL(__fatal_signal_pending
);
982 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
984 struct sighand_struct
*lock_task_sighand(struct task_struct
*tsk
, unsigned long *flags
)
986 struct sighand_struct
*sighand
;
989 sighand
= rcu_dereference(tsk
->sighand
);
990 if (unlikely(sighand
== NULL
))
993 spin_lock_irqsave(&sighand
->siglock
, *flags
);
994 if (likely(sighand
== tsk
->sighand
))
996 spin_unlock_irqrestore(&sighand
->siglock
, *flags
);
1002 int group_send_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*p
)
1004 unsigned long flags
;
1007 ret
= check_kill_permission(sig
, info
, p
);
1011 if (lock_task_sighand(p
, &flags
)) {
1012 ret
= __group_send_sig_info(sig
, info
, p
);
1013 unlock_task_sighand(p
, &flags
);
1021 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1022 * control characters do (^C, ^Z etc)
1025 int __kill_pgrp_info(int sig
, struct siginfo
*info
, struct pid
*pgrp
)
1027 struct task_struct
*p
= NULL
;
1028 int retval
, success
;
1032 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
1033 int err
= group_send_sig_info(sig
, info
, p
);
1036 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
1037 return success
? 0 : retval
;
1040 int kill_pid_info(int sig
, struct siginfo
*info
, struct pid
*pid
)
1043 struct task_struct
*p
;
1046 if (unlikely(sig_needs_tasklist(sig
)))
1047 read_lock(&tasklist_lock
);
1050 p
= pid_task(pid
, PIDTYPE_PID
);
1052 error
= group_send_sig_info(sig
, info
, p
);
1053 if (unlikely(error
== -ESRCH
))
1055 * The task was unhashed in between, try again.
1056 * If it is dead, pid_task() will return NULL,
1057 * if we race with de_thread() it will find the
1063 if (unlikely(sig_needs_tasklist(sig
)))
1064 read_unlock(&tasklist_lock
);
1070 kill_proc_info(int sig
, struct siginfo
*info
, pid_t pid
)
1074 error
= kill_pid_info(sig
, info
, find_vpid(pid
));
1079 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1080 int kill_pid_info_as_uid(int sig
, struct siginfo
*info
, struct pid
*pid
,
1081 uid_t uid
, uid_t euid
, u32 secid
)
1084 struct task_struct
*p
;
1086 if (!valid_signal(sig
))
1089 read_lock(&tasklist_lock
);
1090 p
= pid_task(pid
, PIDTYPE_PID
);
1095 if ((info
== SEND_SIG_NOINFO
|| (!is_si_special(info
) && SI_FROMUSER(info
)))
1096 && (euid
!= p
->suid
) && (euid
!= p
->uid
)
1097 && (uid
!= p
->suid
) && (uid
!= p
->uid
)) {
1101 ret
= security_task_kill(p
, info
, sig
, secid
);
1104 if (sig
&& p
->sighand
) {
1105 unsigned long flags
;
1106 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
1107 ret
= __group_send_sig_info(sig
, info
, p
);
1108 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
1111 read_unlock(&tasklist_lock
);
1114 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid
);
1117 * kill_something_info() interprets pid in interesting ways just like kill(2).
1119 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1120 * is probably wrong. Should make it like BSD or SYSV.
1123 static int kill_something_info(int sig
, struct siginfo
*info
, int pid
)
1129 ret
= kill_pid_info(sig
, info
, find_vpid(pid
));
1134 read_lock(&tasklist_lock
);
1136 ret
= __kill_pgrp_info(sig
, info
,
1137 pid
? find_vpid(-pid
) : task_pgrp(current
));
1139 int retval
= 0, count
= 0;
1140 struct task_struct
* p
;
1142 for_each_process(p
) {
1143 if (p
->pid
> 1 && !same_thread_group(p
, current
)) {
1144 int err
= group_send_sig_info(sig
, info
, p
);
1150 ret
= count
? retval
: -ESRCH
;
1152 read_unlock(&tasklist_lock
);
1158 * These are for backward compatibility with the rest of the kernel source.
1162 * These two are the most common entry points. They send a signal
1163 * just to the specific thread.
1166 send_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*p
)
1169 unsigned long flags
;
1172 * Make sure legacy kernel users don't send in bad values
1173 * (normal paths check this in check_kill_permission).
1175 if (!valid_signal(sig
))
1179 * We need the tasklist lock even for the specific
1180 * thread case (when we don't need to follow the group
1181 * lists) in order to avoid races with "p->sighand"
1182 * going away or changing from under us.
1184 read_lock(&tasklist_lock
);
1185 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
1186 ret
= specific_send_sig_info(sig
, info
, p
);
1187 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
1188 read_unlock(&tasklist_lock
);
1192 #define __si_special(priv) \
1193 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1196 send_sig(int sig
, struct task_struct
*p
, int priv
)
1198 return send_sig_info(sig
, __si_special(priv
), p
);
1202 force_sig(int sig
, struct task_struct
*p
)
1204 force_sig_info(sig
, SEND_SIG_PRIV
, p
);
1208 * When things go south during signal handling, we
1209 * will force a SIGSEGV. And if the signal that caused
1210 * the problem was already a SIGSEGV, we'll want to
1211 * make sure we don't even try to deliver the signal..
1214 force_sigsegv(int sig
, struct task_struct
*p
)
1216 if (sig
== SIGSEGV
) {
1217 unsigned long flags
;
1218 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
1219 p
->sighand
->action
[sig
- 1].sa
.sa_handler
= SIG_DFL
;
1220 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
1222 force_sig(SIGSEGV
, p
);
1226 int kill_pgrp(struct pid
*pid
, int sig
, int priv
)
1230 read_lock(&tasklist_lock
);
1231 ret
= __kill_pgrp_info(sig
, __si_special(priv
), pid
);
1232 read_unlock(&tasklist_lock
);
1236 EXPORT_SYMBOL(kill_pgrp
);
1238 int kill_pid(struct pid
*pid
, int sig
, int priv
)
1240 return kill_pid_info(sig
, __si_special(priv
), pid
);
1242 EXPORT_SYMBOL(kill_pid
);
1245 kill_proc(pid_t pid
, int sig
, int priv
)
1250 ret
= kill_pid_info(sig
, __si_special(priv
), find_pid(pid
));
1256 * These functions support sending signals using preallocated sigqueue
1257 * structures. This is needed "because realtime applications cannot
1258 * afford to lose notifications of asynchronous events, like timer
1259 * expirations or I/O completions". In the case of Posix Timers
1260 * we allocate the sigqueue structure from the timer_create. If this
1261 * allocation fails we are able to report the failure to the application
1262 * with an EAGAIN error.
1265 struct sigqueue
*sigqueue_alloc(void)
1269 if ((q
= __sigqueue_alloc(current
, GFP_KERNEL
, 0)))
1270 q
->flags
|= SIGQUEUE_PREALLOC
;
1274 void sigqueue_free(struct sigqueue
*q
)
1276 unsigned long flags
;
1277 spinlock_t
*lock
= ¤t
->sighand
->siglock
;
1279 BUG_ON(!(q
->flags
& SIGQUEUE_PREALLOC
));
1281 * If the signal is still pending remove it from the
1282 * pending queue. We must hold ->siglock while testing
1283 * q->list to serialize with collect_signal().
1285 spin_lock_irqsave(lock
, flags
);
1286 if (!list_empty(&q
->list
))
1287 list_del_init(&q
->list
);
1288 spin_unlock_irqrestore(lock
, flags
);
1290 q
->flags
&= ~SIGQUEUE_PREALLOC
;
1294 int send_sigqueue(int sig
, struct sigqueue
*q
, struct task_struct
*p
)
1296 unsigned long flags
;
1299 BUG_ON(!(q
->flags
& SIGQUEUE_PREALLOC
));
1302 * The rcu based delayed sighand destroy makes it possible to
1303 * run this without tasklist lock held. The task struct itself
1304 * cannot go away as create_timer did get_task_struct().
1306 * We return -1, when the task is marked exiting, so
1307 * posix_timer_event can redirect it to the group leader
1311 if (!likely(lock_task_sighand(p
, &flags
))) {
1316 if (unlikely(!list_empty(&q
->list
))) {
1318 * If an SI_TIMER entry is already queue just increment
1319 * the overrun count.
1321 BUG_ON(q
->info
.si_code
!= SI_TIMER
);
1322 q
->info
.si_overrun
++;
1325 /* Short-circuit ignored signals. */
1326 if (sig_ignored(p
, sig
)) {
1331 * Deliver the signal to listening signalfds. This must be called
1332 * with the sighand lock held.
1334 signalfd_notify(p
, sig
);
1336 list_add_tail(&q
->list
, &p
->pending
.list
);
1337 sigaddset(&p
->pending
.signal
, sig
);
1338 if (!sigismember(&p
->blocked
, sig
))
1339 signal_wake_up(p
, sig
== SIGKILL
);
1342 unlock_task_sighand(p
, &flags
);
1350 send_group_sigqueue(int sig
, struct sigqueue
*q
, struct task_struct
*p
)
1352 unsigned long flags
;
1355 BUG_ON(!(q
->flags
& SIGQUEUE_PREALLOC
));
1357 read_lock(&tasklist_lock
);
1358 /* Since it_lock is held, p->sighand cannot be NULL. */
1359 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
1360 handle_stop_signal(sig
, p
);
1362 /* Short-circuit ignored signals. */
1363 if (sig_ignored(p
, sig
)) {
1368 if (unlikely(!list_empty(&q
->list
))) {
1370 * If an SI_TIMER entry is already queue just increment
1371 * the overrun count. Other uses should not try to
1372 * send the signal multiple times.
1374 BUG_ON(q
->info
.si_code
!= SI_TIMER
);
1375 q
->info
.si_overrun
++;
1379 * Deliver the signal to listening signalfds. This must be called
1380 * with the sighand lock held.
1382 signalfd_notify(p
, sig
);
1385 * Put this signal on the shared-pending queue.
1386 * We always use the shared queue for process-wide signals,
1387 * to avoid several races.
1389 list_add_tail(&q
->list
, &p
->signal
->shared_pending
.list
);
1390 sigaddset(&p
->signal
->shared_pending
.signal
, sig
);
1392 __group_complete_signal(sig
, p
);
1394 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
1395 read_unlock(&tasklist_lock
);
1400 * Wake up any threads in the parent blocked in wait* syscalls.
1402 static inline void __wake_up_parent(struct task_struct
*p
,
1403 struct task_struct
*parent
)
1405 wake_up_interruptible_sync(&parent
->signal
->wait_chldexit
);
1409 * Let a parent know about the death of a child.
1410 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1413 void do_notify_parent(struct task_struct
*tsk
, int sig
)
1415 struct siginfo info
;
1416 unsigned long flags
;
1417 struct sighand_struct
*psig
;
1421 /* do_notify_parent_cldstop should have been called instead. */
1422 BUG_ON(task_is_stopped_or_traced(tsk
));
1424 BUG_ON(!tsk
->ptrace
&&
1425 (tsk
->group_leader
!= tsk
|| !thread_group_empty(tsk
)));
1427 info
.si_signo
= sig
;
1430 * we are under tasklist_lock here so our parent is tied to
1431 * us and cannot exit and release its namespace.
1433 * the only it can is to switch its nsproxy with sys_unshare,
1434 * bu uncharing pid namespaces is not allowed, so we'll always
1435 * see relevant namespace
1437 * write_lock() currently calls preempt_disable() which is the
1438 * same as rcu_read_lock(), but according to Oleg, this is not
1439 * correct to rely on this
1442 info
.si_pid
= task_pid_nr_ns(tsk
, tsk
->parent
->nsproxy
->pid_ns
);
1445 info
.si_uid
= tsk
->uid
;
1447 /* FIXME: find out whether or not this is supposed to be c*time. */
1448 info
.si_utime
= cputime_to_jiffies(cputime_add(tsk
->utime
,
1449 tsk
->signal
->utime
));
1450 info
.si_stime
= cputime_to_jiffies(cputime_add(tsk
->stime
,
1451 tsk
->signal
->stime
));
1453 info
.si_status
= tsk
->exit_code
& 0x7f;
1454 if (tsk
->exit_code
& 0x80)
1455 info
.si_code
= CLD_DUMPED
;
1456 else if (tsk
->exit_code
& 0x7f)
1457 info
.si_code
= CLD_KILLED
;
1459 info
.si_code
= CLD_EXITED
;
1460 info
.si_status
= tsk
->exit_code
>> 8;
1463 psig
= tsk
->parent
->sighand
;
1464 spin_lock_irqsave(&psig
->siglock
, flags
);
1465 if (!tsk
->ptrace
&& sig
== SIGCHLD
&&
1466 (psig
->action
[SIGCHLD
-1].sa
.sa_handler
== SIG_IGN
||
1467 (psig
->action
[SIGCHLD
-1].sa
.sa_flags
& SA_NOCLDWAIT
))) {
1469 * We are exiting and our parent doesn't care. POSIX.1
1470 * defines special semantics for setting SIGCHLD to SIG_IGN
1471 * or setting the SA_NOCLDWAIT flag: we should be reaped
1472 * automatically and not left for our parent's wait4 call.
1473 * Rather than having the parent do it as a magic kind of
1474 * signal handler, we just set this to tell do_exit that we
1475 * can be cleaned up without becoming a zombie. Note that
1476 * we still call __wake_up_parent in this case, because a
1477 * blocked sys_wait4 might now return -ECHILD.
1479 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1480 * is implementation-defined: we do (if you don't want
1481 * it, just use SIG_IGN instead).
1483 tsk
->exit_signal
= -1;
1484 if (psig
->action
[SIGCHLD
-1].sa
.sa_handler
== SIG_IGN
)
1487 if (valid_signal(sig
) && sig
> 0)
1488 __group_send_sig_info(sig
, &info
, tsk
->parent
);
1489 __wake_up_parent(tsk
, tsk
->parent
);
1490 spin_unlock_irqrestore(&psig
->siglock
, flags
);
1493 static void do_notify_parent_cldstop(struct task_struct
*tsk
, int why
)
1495 struct siginfo info
;
1496 unsigned long flags
;
1497 struct task_struct
*parent
;
1498 struct sighand_struct
*sighand
;
1500 if (tsk
->ptrace
& PT_PTRACED
)
1501 parent
= tsk
->parent
;
1503 tsk
= tsk
->group_leader
;
1504 parent
= tsk
->real_parent
;
1507 info
.si_signo
= SIGCHLD
;
1510 * see comment in do_notify_parent() abot the following 3 lines
1513 info
.si_pid
= task_pid_nr_ns(tsk
, tsk
->parent
->nsproxy
->pid_ns
);
1516 info
.si_uid
= tsk
->uid
;
1518 /* FIXME: find out whether or not this is supposed to be c*time. */
1519 info
.si_utime
= cputime_to_jiffies(tsk
->utime
);
1520 info
.si_stime
= cputime_to_jiffies(tsk
->stime
);
1525 info
.si_status
= SIGCONT
;
1528 info
.si_status
= tsk
->signal
->group_exit_code
& 0x7f;
1531 info
.si_status
= tsk
->exit_code
& 0x7f;
1537 sighand
= parent
->sighand
;
1538 spin_lock_irqsave(&sighand
->siglock
, flags
);
1539 if (sighand
->action
[SIGCHLD
-1].sa
.sa_handler
!= SIG_IGN
&&
1540 !(sighand
->action
[SIGCHLD
-1].sa
.sa_flags
& SA_NOCLDSTOP
))
1541 __group_send_sig_info(SIGCHLD
, &info
, parent
);
1543 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1545 __wake_up_parent(tsk
, parent
);
1546 spin_unlock_irqrestore(&sighand
->siglock
, flags
);
1549 static inline int may_ptrace_stop(void)
1551 if (!likely(current
->ptrace
& PT_PTRACED
))
1554 * Are we in the middle of do_coredump?
1555 * If so and our tracer is also part of the coredump stopping
1556 * is a deadlock situation, and pointless because our tracer
1557 * is dead so don't allow us to stop.
1558 * If SIGKILL was already sent before the caller unlocked
1559 * ->siglock we must see ->core_waiters != 0. Otherwise it
1560 * is safe to enter schedule().
1562 if (unlikely(current
->mm
->core_waiters
) &&
1563 unlikely(current
->mm
== current
->parent
->mm
))
1570 * Return nonzero if there is a SIGKILL that should be waking us up.
1571 * Called with the siglock held.
1573 static int sigkill_pending(struct task_struct
*tsk
)
1575 return ((sigismember(&tsk
->pending
.signal
, SIGKILL
) ||
1576 sigismember(&tsk
->signal
->shared_pending
.signal
, SIGKILL
)) &&
1577 !unlikely(sigismember(&tsk
->blocked
, SIGKILL
)));
1581 * This must be called with current->sighand->siglock held.
1583 * This should be the path for all ptrace stops.
1584 * We always set current->last_siginfo while stopped here.
1585 * That makes it a way to test a stopped process for
1586 * being ptrace-stopped vs being job-control-stopped.
1588 * If we actually decide not to stop at all because the tracer
1589 * is gone, we keep current->exit_code unless clear_code.
1591 static void ptrace_stop(int exit_code
, int clear_code
, siginfo_t
*info
)
1595 if (arch_ptrace_stop_needed(exit_code
, info
)) {
1597 * The arch code has something special to do before a
1598 * ptrace stop. This is allowed to block, e.g. for faults
1599 * on user stack pages. We can't keep the siglock while
1600 * calling arch_ptrace_stop, so we must release it now.
1601 * To preserve proper semantics, we must do this before
1602 * any signal bookkeeping like checking group_stop_count.
1603 * Meanwhile, a SIGKILL could come in before we retake the
1604 * siglock. That must prevent us from sleeping in TASK_TRACED.
1605 * So after regaining the lock, we must check for SIGKILL.
1607 spin_unlock_irq(¤t
->sighand
->siglock
);
1608 arch_ptrace_stop(exit_code
, info
);
1609 spin_lock_irq(¤t
->sighand
->siglock
);
1610 killed
= sigkill_pending(current
);
1614 * If there is a group stop in progress,
1615 * we must participate in the bookkeeping.
1617 if (current
->signal
->group_stop_count
> 0)
1618 --current
->signal
->group_stop_count
;
1620 current
->last_siginfo
= info
;
1621 current
->exit_code
= exit_code
;
1623 /* Let the debugger run. */
1624 __set_current_state(TASK_TRACED
);
1625 spin_unlock_irq(¤t
->sighand
->siglock
);
1626 read_lock(&tasklist_lock
);
1627 if (!unlikely(killed
) && may_ptrace_stop()) {
1628 do_notify_parent_cldstop(current
, CLD_TRAPPED
);
1629 read_unlock(&tasklist_lock
);
1633 * By the time we got the lock, our tracer went away.
1634 * Don't drop the lock yet, another tracer may come.
1636 __set_current_state(TASK_RUNNING
);
1638 current
->exit_code
= 0;
1639 read_unlock(&tasklist_lock
);
1643 * While in TASK_TRACED, we were considered "frozen enough".
1644 * Now that we woke up, it's crucial if we're supposed to be
1645 * frozen that we freeze now before running anything substantial.
1650 * We are back. Now reacquire the siglock before touching
1651 * last_siginfo, so that we are sure to have synchronized with
1652 * any signal-sending on another CPU that wants to examine it.
1654 spin_lock_irq(¤t
->sighand
->siglock
);
1655 current
->last_siginfo
= NULL
;
1658 * Queued signals ignored us while we were stopped for tracing.
1659 * So check for any that we should take before resuming user mode.
1660 * This sets TIF_SIGPENDING, but never clears it.
1662 recalc_sigpending_tsk(current
);
1665 void ptrace_notify(int exit_code
)
1669 BUG_ON((exit_code
& (0x7f | ~0xffff)) != SIGTRAP
);
1671 memset(&info
, 0, sizeof info
);
1672 info
.si_signo
= SIGTRAP
;
1673 info
.si_code
= exit_code
;
1674 info
.si_pid
= task_pid_vnr(current
);
1675 info
.si_uid
= current
->uid
;
1677 /* Let the debugger run. */
1678 spin_lock_irq(¤t
->sighand
->siglock
);
1679 ptrace_stop(exit_code
, 1, &info
);
1680 spin_unlock_irq(¤t
->sighand
->siglock
);
1684 finish_stop(int stop_count
)
1687 * If there are no other threads in the group, or if there is
1688 * a group stop in progress and we are the last to stop,
1689 * report to the parent. When ptraced, every thread reports itself.
1691 if (stop_count
== 0 || (current
->ptrace
& PT_PTRACED
)) {
1692 read_lock(&tasklist_lock
);
1693 do_notify_parent_cldstop(current
, CLD_STOPPED
);
1694 read_unlock(&tasklist_lock
);
1699 } while (try_to_freeze());
1701 * Now we don't run again until continued.
1703 current
->exit_code
= 0;
1707 * This performs the stopping for SIGSTOP and other stop signals.
1708 * We have to stop all threads in the thread group.
1709 * Returns nonzero if we've actually stopped and released the siglock.
1710 * Returns zero if we didn't stop and still hold the siglock.
1712 static int do_signal_stop(int signr
)
1714 struct signal_struct
*sig
= current
->signal
;
1717 if (sig
->group_stop_count
> 0) {
1719 * There is a group stop in progress. We don't need to
1720 * start another one.
1722 stop_count
= --sig
->group_stop_count
;
1724 struct task_struct
*t
;
1726 if (!likely(sig
->flags
& SIGNAL_STOP_DEQUEUED
) ||
1727 unlikely(sig
->group_exit_task
))
1730 * There is no group stop already in progress.
1731 * We must initiate one now.
1733 sig
->group_exit_code
= signr
;
1736 for (t
= next_thread(current
); t
!= current
; t
= next_thread(t
))
1738 * Setting state to TASK_STOPPED for a group
1739 * stop is always done with the siglock held,
1740 * so this check has no races.
1742 if (!(t
->flags
& PF_EXITING
) &&
1743 !task_is_stopped_or_traced(t
)) {
1745 signal_wake_up(t
, 0);
1747 sig
->group_stop_count
= stop_count
;
1750 if (stop_count
== 0)
1751 sig
->flags
= SIGNAL_STOP_STOPPED
;
1752 current
->exit_code
= sig
->group_exit_code
;
1753 __set_current_state(TASK_STOPPED
);
1755 spin_unlock_irq(¤t
->sighand
->siglock
);
1756 finish_stop(stop_count
);
1760 static int ptrace_signal(int signr
, siginfo_t
*info
,
1761 struct pt_regs
*regs
, void *cookie
)
1763 if (!(current
->ptrace
& PT_PTRACED
))
1766 ptrace_signal_deliver(regs
, cookie
);
1768 /* Let the debugger run. */
1769 ptrace_stop(signr
, 0, info
);
1771 /* We're back. Did the debugger cancel the sig? */
1772 signr
= current
->exit_code
;
1776 current
->exit_code
= 0;
1778 /* Update the siginfo structure if the signal has
1779 changed. If the debugger wanted something
1780 specific in the siginfo structure then it should
1781 have updated *info via PTRACE_SETSIGINFO. */
1782 if (signr
!= info
->si_signo
) {
1783 info
->si_signo
= signr
;
1785 info
->si_code
= SI_USER
;
1786 info
->si_pid
= task_pid_vnr(current
->parent
);
1787 info
->si_uid
= current
->parent
->uid
;
1790 /* If the (new) signal is now blocked, requeue it. */
1791 if (sigismember(¤t
->blocked
, signr
)) {
1792 specific_send_sig_info(signr
, info
, current
);
1799 int get_signal_to_deliver(siginfo_t
*info
, struct k_sigaction
*return_ka
,
1800 struct pt_regs
*regs
, void *cookie
)
1802 sigset_t
*mask
= ¤t
->blocked
;
1807 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1808 * While in TASK_STOPPED, we were considered "frozen enough".
1809 * Now that we woke up, it's crucial if we're supposed to be
1810 * frozen that we freeze now before running anything substantial.
1814 spin_lock_irq(¤t
->sighand
->siglock
);
1816 struct k_sigaction
*ka
;
1818 if (unlikely(current
->signal
->group_stop_count
> 0) &&
1822 signr
= dequeue_signal(current
, mask
, info
);
1825 break; /* will return 0 */
1827 if (signr
!= SIGKILL
) {
1828 signr
= ptrace_signal(signr
, info
, regs
, cookie
);
1833 ka
= ¤t
->sighand
->action
[signr
-1];
1834 if (ka
->sa
.sa_handler
== SIG_IGN
) /* Do nothing. */
1836 if (ka
->sa
.sa_handler
!= SIG_DFL
) {
1837 /* Run the handler. */
1840 if (ka
->sa
.sa_flags
& SA_ONESHOT
)
1841 ka
->sa
.sa_handler
= SIG_DFL
;
1843 break; /* will return non-zero "signr" value */
1847 * Now we are doing the default action for this signal.
1849 if (sig_kernel_ignore(signr
)) /* Default is nothing. */
1853 * Global init gets no signals it doesn't want.
1855 if (is_global_init(current
))
1858 if (sig_kernel_stop(signr
)) {
1860 * The default action is to stop all threads in
1861 * the thread group. The job control signals
1862 * do nothing in an orphaned pgrp, but SIGSTOP
1863 * always works. Note that siglock needs to be
1864 * dropped during the call to is_orphaned_pgrp()
1865 * because of lock ordering with tasklist_lock.
1866 * This allows an intervening SIGCONT to be posted.
1867 * We need to check for that and bail out if necessary.
1869 if (signr
!= SIGSTOP
) {
1870 spin_unlock_irq(¤t
->sighand
->siglock
);
1872 /* signals can be posted during this window */
1874 if (is_current_pgrp_orphaned())
1877 spin_lock_irq(¤t
->sighand
->siglock
);
1880 if (likely(do_signal_stop(signr
))) {
1881 /* It released the siglock. */
1886 * We didn't actually stop, due to a race
1887 * with SIGCONT or something like that.
1892 spin_unlock_irq(¤t
->sighand
->siglock
);
1895 * Anything else is fatal, maybe with a core dump.
1897 current
->flags
|= PF_SIGNALED
;
1898 if ((signr
!= SIGKILL
) && print_fatal_signals
)
1899 print_fatal_signal(regs
, signr
);
1900 if (sig_kernel_coredump(signr
)) {
1902 * If it was able to dump core, this kills all
1903 * other threads in the group and synchronizes with
1904 * their demise. If we lost the race with another
1905 * thread getting here, it set group_exit_code
1906 * first and our do_group_exit call below will use
1907 * that value and ignore the one we pass it.
1909 do_coredump((long)signr
, signr
, regs
);
1913 * Death signals, no core dump.
1915 do_group_exit(signr
);
1918 spin_unlock_irq(¤t
->sighand
->siglock
);
1922 void exit_signals(struct task_struct
*tsk
)
1925 struct task_struct
*t
;
1927 if (thread_group_empty(tsk
) || signal_group_exit(tsk
->signal
)) {
1928 tsk
->flags
|= PF_EXITING
;
1932 spin_lock_irq(&tsk
->sighand
->siglock
);
1934 * From now this task is not visible for group-wide signals,
1935 * see wants_signal(), do_signal_stop().
1937 tsk
->flags
|= PF_EXITING
;
1938 if (!signal_pending(tsk
))
1941 /* It could be that __group_complete_signal() choose us to
1942 * notify about group-wide signal. Another thread should be
1943 * woken now to take the signal since we will not.
1945 for (t
= tsk
; (t
= next_thread(t
)) != tsk
; )
1946 if (!signal_pending(t
) && !(t
->flags
& PF_EXITING
))
1947 recalc_sigpending_and_wake(t
);
1949 if (unlikely(tsk
->signal
->group_stop_count
) &&
1950 !--tsk
->signal
->group_stop_count
) {
1951 tsk
->signal
->flags
= SIGNAL_STOP_STOPPED
;
1955 spin_unlock_irq(&tsk
->sighand
->siglock
);
1957 if (unlikely(group_stop
)) {
1958 read_lock(&tasklist_lock
);
1959 do_notify_parent_cldstop(tsk
, CLD_STOPPED
);
1960 read_unlock(&tasklist_lock
);
1964 EXPORT_SYMBOL(recalc_sigpending
);
1965 EXPORT_SYMBOL_GPL(dequeue_signal
);
1966 EXPORT_SYMBOL(flush_signals
);
1967 EXPORT_SYMBOL(force_sig
);
1968 EXPORT_SYMBOL(kill_proc
);
1969 EXPORT_SYMBOL(ptrace_notify
);
1970 EXPORT_SYMBOL(send_sig
);
1971 EXPORT_SYMBOL(send_sig_info
);
1972 EXPORT_SYMBOL(sigprocmask
);
1973 EXPORT_SYMBOL(block_all_signals
);
1974 EXPORT_SYMBOL(unblock_all_signals
);
1978 * System call entry points.
1981 asmlinkage
long sys_restart_syscall(void)
1983 struct restart_block
*restart
= ¤t_thread_info()->restart_block
;
1984 return restart
->fn(restart
);
1987 long do_no_restart_syscall(struct restart_block
*param
)
1993 * We don't need to get the kernel lock - this is all local to this
1994 * particular thread.. (and that's good, because this is _heavily_
1995 * used by various programs)
1999 * This is also useful for kernel threads that want to temporarily
2000 * (or permanently) block certain signals.
2002 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2003 * interface happily blocks "unblockable" signals like SIGKILL
2006 int sigprocmask(int how
, sigset_t
*set
, sigset_t
*oldset
)
2010 spin_lock_irq(¤t
->sighand
->siglock
);
2012 *oldset
= current
->blocked
;
2017 sigorsets(¤t
->blocked
, ¤t
->blocked
, set
);
2020 signandsets(¤t
->blocked
, ¤t
->blocked
, set
);
2023 current
->blocked
= *set
;
2028 recalc_sigpending();
2029 spin_unlock_irq(¤t
->sighand
->siglock
);
2035 sys_rt_sigprocmask(int how
, sigset_t __user
*set
, sigset_t __user
*oset
, size_t sigsetsize
)
2037 int error
= -EINVAL
;
2038 sigset_t old_set
, new_set
;
2040 /* XXX: Don't preclude handling different sized sigset_t's. */
2041 if (sigsetsize
!= sizeof(sigset_t
))
2046 if (copy_from_user(&new_set
, set
, sizeof(*set
)))
2048 sigdelsetmask(&new_set
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
2050 error
= sigprocmask(how
, &new_set
, &old_set
);
2056 spin_lock_irq(¤t
->sighand
->siglock
);
2057 old_set
= current
->blocked
;
2058 spin_unlock_irq(¤t
->sighand
->siglock
);
2062 if (copy_to_user(oset
, &old_set
, sizeof(*oset
)))
2070 long do_sigpending(void __user
*set
, unsigned long sigsetsize
)
2072 long error
= -EINVAL
;
2075 if (sigsetsize
> sizeof(sigset_t
))
2078 spin_lock_irq(¤t
->sighand
->siglock
);
2079 sigorsets(&pending
, ¤t
->pending
.signal
,
2080 ¤t
->signal
->shared_pending
.signal
);
2081 spin_unlock_irq(¤t
->sighand
->siglock
);
2083 /* Outside the lock because only this thread touches it. */
2084 sigandsets(&pending
, ¤t
->blocked
, &pending
);
2087 if (!copy_to_user(set
, &pending
, sigsetsize
))
2095 sys_rt_sigpending(sigset_t __user
*set
, size_t sigsetsize
)
2097 return do_sigpending(set
, sigsetsize
);
2100 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2102 int copy_siginfo_to_user(siginfo_t __user
*to
, siginfo_t
*from
)
2106 if (!access_ok (VERIFY_WRITE
, to
, sizeof(siginfo_t
)))
2108 if (from
->si_code
< 0)
2109 return __copy_to_user(to
, from
, sizeof(siginfo_t
))
2112 * If you change siginfo_t structure, please be sure
2113 * this code is fixed accordingly.
2114 * Please remember to update the signalfd_copyinfo() function
2115 * inside fs/signalfd.c too, in case siginfo_t changes.
2116 * It should never copy any pad contained in the structure
2117 * to avoid security leaks, but must copy the generic
2118 * 3 ints plus the relevant union member.
2120 err
= __put_user(from
->si_signo
, &to
->si_signo
);
2121 err
|= __put_user(from
->si_errno
, &to
->si_errno
);
2122 err
|= __put_user((short)from
->si_code
, &to
->si_code
);
2123 switch (from
->si_code
& __SI_MASK
) {
2125 err
|= __put_user(from
->si_pid
, &to
->si_pid
);
2126 err
|= __put_user(from
->si_uid
, &to
->si_uid
);
2129 err
|= __put_user(from
->si_tid
, &to
->si_tid
);
2130 err
|= __put_user(from
->si_overrun
, &to
->si_overrun
);
2131 err
|= __put_user(from
->si_ptr
, &to
->si_ptr
);
2134 err
|= __put_user(from
->si_band
, &to
->si_band
);
2135 err
|= __put_user(from
->si_fd
, &to
->si_fd
);
2138 err
|= __put_user(from
->si_addr
, &to
->si_addr
);
2139 #ifdef __ARCH_SI_TRAPNO
2140 err
|= __put_user(from
->si_trapno
, &to
->si_trapno
);
2144 err
|= __put_user(from
->si_pid
, &to
->si_pid
);
2145 err
|= __put_user(from
->si_uid
, &to
->si_uid
);
2146 err
|= __put_user(from
->si_status
, &to
->si_status
);
2147 err
|= __put_user(from
->si_utime
, &to
->si_utime
);
2148 err
|= __put_user(from
->si_stime
, &to
->si_stime
);
2150 case __SI_RT
: /* This is not generated by the kernel as of now. */
2151 case __SI_MESGQ
: /* But this is */
2152 err
|= __put_user(from
->si_pid
, &to
->si_pid
);
2153 err
|= __put_user(from
->si_uid
, &to
->si_uid
);
2154 err
|= __put_user(from
->si_ptr
, &to
->si_ptr
);
2156 default: /* this is just in case for now ... */
2157 err
|= __put_user(from
->si_pid
, &to
->si_pid
);
2158 err
|= __put_user(from
->si_uid
, &to
->si_uid
);
2167 sys_rt_sigtimedwait(const sigset_t __user
*uthese
,
2168 siginfo_t __user
*uinfo
,
2169 const struct timespec __user
*uts
,
2178 /* XXX: Don't preclude handling different sized sigset_t's. */
2179 if (sigsetsize
!= sizeof(sigset_t
))
2182 if (copy_from_user(&these
, uthese
, sizeof(these
)))
2186 * Invert the set of allowed signals to get those we
2189 sigdelsetmask(&these
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
2193 if (copy_from_user(&ts
, uts
, sizeof(ts
)))
2195 if (ts
.tv_nsec
>= 1000000000L || ts
.tv_nsec
< 0
2200 spin_lock_irq(¤t
->sighand
->siglock
);
2201 sig
= dequeue_signal(current
, &these
, &info
);
2203 timeout
= MAX_SCHEDULE_TIMEOUT
;
2205 timeout
= (timespec_to_jiffies(&ts
)
2206 + (ts
.tv_sec
|| ts
.tv_nsec
));
2209 /* None ready -- temporarily unblock those we're
2210 * interested while we are sleeping in so that we'll
2211 * be awakened when they arrive. */
2212 current
->real_blocked
= current
->blocked
;
2213 sigandsets(¤t
->blocked
, ¤t
->blocked
, &these
);
2214 recalc_sigpending();
2215 spin_unlock_irq(¤t
->sighand
->siglock
);
2217 timeout
= schedule_timeout_interruptible(timeout
);
2219 spin_lock_irq(¤t
->sighand
->siglock
);
2220 sig
= dequeue_signal(current
, &these
, &info
);
2221 current
->blocked
= current
->real_blocked
;
2222 siginitset(¤t
->real_blocked
, 0);
2223 recalc_sigpending();
2226 spin_unlock_irq(¤t
->sighand
->siglock
);
2231 if (copy_siginfo_to_user(uinfo
, &info
))
2244 sys_kill(int pid
, int sig
)
2246 struct siginfo info
;
2248 info
.si_signo
= sig
;
2250 info
.si_code
= SI_USER
;
2251 info
.si_pid
= task_tgid_vnr(current
);
2252 info
.si_uid
= current
->uid
;
2254 return kill_something_info(sig
, &info
, pid
);
2257 static int do_tkill(int tgid
, int pid
, int sig
)
2260 struct siginfo info
;
2261 struct task_struct
*p
;
2264 info
.si_signo
= sig
;
2266 info
.si_code
= SI_TKILL
;
2267 info
.si_pid
= task_tgid_vnr(current
);
2268 info
.si_uid
= current
->uid
;
2270 read_lock(&tasklist_lock
);
2271 p
= find_task_by_vpid(pid
);
2272 if (p
&& (tgid
<= 0 || task_tgid_vnr(p
) == tgid
)) {
2273 error
= check_kill_permission(sig
, &info
, p
);
2275 * The null signal is a permissions and process existence
2276 * probe. No signal is actually delivered.
2278 if (!error
&& sig
&& p
->sighand
) {
2279 spin_lock_irq(&p
->sighand
->siglock
);
2280 handle_stop_signal(sig
, p
);
2281 error
= specific_send_sig_info(sig
, &info
, p
);
2282 spin_unlock_irq(&p
->sighand
->siglock
);
2285 read_unlock(&tasklist_lock
);
2291 * sys_tgkill - send signal to one specific thread
2292 * @tgid: the thread group ID of the thread
2293 * @pid: the PID of the thread
2294 * @sig: signal to be sent
2296 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2297 * exists but it's not belonging to the target process anymore. This
2298 * method solves the problem of threads exiting and PIDs getting reused.
2300 asmlinkage
long sys_tgkill(int tgid
, int pid
, int sig
)
2302 /* This is only valid for single tasks */
2303 if (pid
<= 0 || tgid
<= 0)
2306 return do_tkill(tgid
, pid
, sig
);
2310 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2313 sys_tkill(int pid
, int sig
)
2315 /* This is only valid for single tasks */
2319 return do_tkill(0, pid
, sig
);
2323 sys_rt_sigqueueinfo(int pid
, int sig
, siginfo_t __user
*uinfo
)
2327 if (copy_from_user(&info
, uinfo
, sizeof(siginfo_t
)))
2330 /* Not even root can pretend to send signals from the kernel.
2331 Nor can they impersonate a kill(), which adds source info. */
2332 if (info
.si_code
>= 0)
2334 info
.si_signo
= sig
;
2336 /* POSIX.1b doesn't mention process groups. */
2337 return kill_proc_info(sig
, &info
, pid
);
2340 int do_sigaction(int sig
, struct k_sigaction
*act
, struct k_sigaction
*oact
)
2342 struct k_sigaction
*k
;
2345 if (!valid_signal(sig
) || sig
< 1 || (act
&& sig_kernel_only(sig
)))
2348 k
= ¤t
->sighand
->action
[sig
-1];
2350 spin_lock_irq(¤t
->sighand
->siglock
);
2355 sigdelsetmask(&act
->sa
.sa_mask
,
2356 sigmask(SIGKILL
) | sigmask(SIGSTOP
));
2360 * "Setting a signal action to SIG_IGN for a signal that is
2361 * pending shall cause the pending signal to be discarded,
2362 * whether or not it is blocked."
2364 * "Setting a signal action to SIG_DFL for a signal that is
2365 * pending and whose default action is to ignore the signal
2366 * (for example, SIGCHLD), shall cause the pending signal to
2367 * be discarded, whether or not it is blocked"
2369 if (act
->sa
.sa_handler
== SIG_IGN
||
2370 (act
->sa
.sa_handler
== SIG_DFL
&& sig_kernel_ignore(sig
))) {
2371 struct task_struct
*t
= current
;
2373 sigaddset(&mask
, sig
);
2374 rm_from_queue_full(&mask
, &t
->signal
->shared_pending
);
2376 rm_from_queue_full(&mask
, &t
->pending
);
2378 } while (t
!= current
);
2382 spin_unlock_irq(¤t
->sighand
->siglock
);
2387 do_sigaltstack (const stack_t __user
*uss
, stack_t __user
*uoss
, unsigned long sp
)
2393 oss
.ss_sp
= (void __user
*) current
->sas_ss_sp
;
2394 oss
.ss_size
= current
->sas_ss_size
;
2395 oss
.ss_flags
= sas_ss_flags(sp
);
2404 if (!access_ok(VERIFY_READ
, uss
, sizeof(*uss
))
2405 || __get_user(ss_sp
, &uss
->ss_sp
)
2406 || __get_user(ss_flags
, &uss
->ss_flags
)
2407 || __get_user(ss_size
, &uss
->ss_size
))
2411 if (on_sig_stack(sp
))
2417 * Note - this code used to test ss_flags incorrectly
2418 * old code may have been written using ss_flags==0
2419 * to mean ss_flags==SS_ONSTACK (as this was the only
2420 * way that worked) - this fix preserves that older
2423 if (ss_flags
!= SS_DISABLE
&& ss_flags
!= SS_ONSTACK
&& ss_flags
!= 0)
2426 if (ss_flags
== SS_DISABLE
) {
2431 if (ss_size
< MINSIGSTKSZ
)
2435 current
->sas_ss_sp
= (unsigned long) ss_sp
;
2436 current
->sas_ss_size
= ss_size
;
2441 if (copy_to_user(uoss
, &oss
, sizeof(oss
)))
2450 #ifdef __ARCH_WANT_SYS_SIGPENDING
2453 sys_sigpending(old_sigset_t __user
*set
)
2455 return do_sigpending(set
, sizeof(*set
));
2460 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2461 /* Some platforms have their own version with special arguments others
2462 support only sys_rt_sigprocmask. */
2465 sys_sigprocmask(int how
, old_sigset_t __user
*set
, old_sigset_t __user
*oset
)
2468 old_sigset_t old_set
, new_set
;
2472 if (copy_from_user(&new_set
, set
, sizeof(*set
)))
2474 new_set
&= ~(sigmask(SIGKILL
) | sigmask(SIGSTOP
));
2476 spin_lock_irq(¤t
->sighand
->siglock
);
2477 old_set
= current
->blocked
.sig
[0];
2485 sigaddsetmask(¤t
->blocked
, new_set
);
2488 sigdelsetmask(¤t
->blocked
, new_set
);
2491 current
->blocked
.sig
[0] = new_set
;
2495 recalc_sigpending();
2496 spin_unlock_irq(¤t
->sighand
->siglock
);
2502 old_set
= current
->blocked
.sig
[0];
2505 if (copy_to_user(oset
, &old_set
, sizeof(*oset
)))
2512 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2514 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2516 sys_rt_sigaction(int sig
,
2517 const struct sigaction __user
*act
,
2518 struct sigaction __user
*oact
,
2521 struct k_sigaction new_sa
, old_sa
;
2524 /* XXX: Don't preclude handling different sized sigset_t's. */
2525 if (sigsetsize
!= sizeof(sigset_t
))
2529 if (copy_from_user(&new_sa
.sa
, act
, sizeof(new_sa
.sa
)))
2533 ret
= do_sigaction(sig
, act
? &new_sa
: NULL
, oact
? &old_sa
: NULL
);
2536 if (copy_to_user(oact
, &old_sa
.sa
, sizeof(old_sa
.sa
)))
2542 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2544 #ifdef __ARCH_WANT_SYS_SGETMASK
2547 * For backwards compatibility. Functionality superseded by sigprocmask.
2553 return current
->blocked
.sig
[0];
2557 sys_ssetmask(int newmask
)
2561 spin_lock_irq(¤t
->sighand
->siglock
);
2562 old
= current
->blocked
.sig
[0];
2564 siginitset(¤t
->blocked
, newmask
& ~(sigmask(SIGKILL
)|
2566 recalc_sigpending();
2567 spin_unlock_irq(¤t
->sighand
->siglock
);
2571 #endif /* __ARCH_WANT_SGETMASK */
2573 #ifdef __ARCH_WANT_SYS_SIGNAL
2575 * For backwards compatibility. Functionality superseded by sigaction.
2577 asmlinkage
unsigned long
2578 sys_signal(int sig
, __sighandler_t handler
)
2580 struct k_sigaction new_sa
, old_sa
;
2583 new_sa
.sa
.sa_handler
= handler
;
2584 new_sa
.sa
.sa_flags
= SA_ONESHOT
| SA_NOMASK
;
2585 sigemptyset(&new_sa
.sa
.sa_mask
);
2587 ret
= do_sigaction(sig
, &new_sa
, &old_sa
);
2589 return ret
? ret
: (unsigned long)old_sa
.sa
.sa_handler
;
2591 #endif /* __ARCH_WANT_SYS_SIGNAL */
2593 #ifdef __ARCH_WANT_SYS_PAUSE
2598 current
->state
= TASK_INTERRUPTIBLE
;
2600 return -ERESTARTNOHAND
;
2605 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2606 asmlinkage
long sys_rt_sigsuspend(sigset_t __user
*unewset
, size_t sigsetsize
)
2610 /* XXX: Don't preclude handling different sized sigset_t's. */
2611 if (sigsetsize
!= sizeof(sigset_t
))
2614 if (copy_from_user(&newset
, unewset
, sizeof(newset
)))
2616 sigdelsetmask(&newset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
2618 spin_lock_irq(¤t
->sighand
->siglock
);
2619 current
->saved_sigmask
= current
->blocked
;
2620 current
->blocked
= newset
;
2621 recalc_sigpending();
2622 spin_unlock_irq(¤t
->sighand
->siglock
);
2624 current
->state
= TASK_INTERRUPTIBLE
;
2626 set_thread_flag(TIF_RESTORE_SIGMASK
);
2627 return -ERESTARTNOHAND
;
2629 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2631 __attribute__((weak
)) const char *arch_vma_name(struct vm_area_struct
*vma
)
2636 void __init
signals_init(void)
2638 sigqueue_cachep
= KMEM_CACHE(sigqueue
, SLAB_PANIC
);