relayfs: fix overwrites
[linux-2.6/kmemtrace.git] / kernel / relay.c
blob95db8c79fe8f3371249029a19e48e817ffc34d12
1 /*
2 * Public API and common code for kernel->userspace relay file support.
4 * See Documentation/filesystems/relayfs.txt for an overview of relayfs.
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * (mathieu.desnoyers@polymtl.ca)
13 * This file is released under the GPL.
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
25 /* list of open channels, for cpu hotplug */
26 static DEFINE_MUTEX(relay_channels_mutex);
27 static LIST_HEAD(relay_channels);
30 * close() vm_op implementation for relay file mapping.
32 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 struct rchan_buf *buf = vma->vm_private_data;
35 buf->chan->cb->buf_unmapped(buf, vma->vm_file);
39 * nopage() vm_op implementation for relay file mapping.
41 static struct page *relay_buf_nopage(struct vm_area_struct *vma,
42 unsigned long address,
43 int *type)
45 struct page *page;
46 struct rchan_buf *buf = vma->vm_private_data;
47 unsigned long offset = address - vma->vm_start;
49 if (address > vma->vm_end)
50 return NOPAGE_SIGBUS; /* Disallow mremap */
51 if (!buf)
52 return NOPAGE_OOM;
54 page = vmalloc_to_page(buf->start + offset);
55 if (!page)
56 return NOPAGE_OOM;
57 get_page(page);
59 if (type)
60 *type = VM_FAULT_MINOR;
62 return page;
66 * vm_ops for relay file mappings.
68 static struct vm_operations_struct relay_file_mmap_ops = {
69 .nopage = relay_buf_nopage,
70 .close = relay_file_mmap_close,
73 /**
74 * relay_mmap_buf: - mmap channel buffer to process address space
75 * @buf: relay channel buffer
76 * @vma: vm_area_struct describing memory to be mapped
78 * Returns 0 if ok, negative on error
80 * Caller should already have grabbed mmap_sem.
82 int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
84 unsigned long length = vma->vm_end - vma->vm_start;
85 struct file *filp = vma->vm_file;
87 if (!buf)
88 return -EBADF;
90 if (length != (unsigned long)buf->chan->alloc_size)
91 return -EINVAL;
93 vma->vm_ops = &relay_file_mmap_ops;
94 vma->vm_private_data = buf;
95 buf->chan->cb->buf_mapped(buf, filp);
97 return 0;
101 * relay_alloc_buf - allocate a channel buffer
102 * @buf: the buffer struct
103 * @size: total size of the buffer
105 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
106 * passed in size will get page aligned, if it isn't already.
108 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
110 void *mem;
111 unsigned int i, j, n_pages;
113 *size = PAGE_ALIGN(*size);
114 n_pages = *size >> PAGE_SHIFT;
116 buf->page_array = kcalloc(n_pages, sizeof(struct page *), GFP_KERNEL);
117 if (!buf->page_array)
118 return NULL;
120 for (i = 0; i < n_pages; i++) {
121 buf->page_array[i] = alloc_page(GFP_KERNEL);
122 if (unlikely(!buf->page_array[i]))
123 goto depopulate;
125 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
126 if (!mem)
127 goto depopulate;
129 memset(mem, 0, *size);
130 buf->page_count = n_pages;
131 return mem;
133 depopulate:
134 for (j = 0; j < i; j++)
135 __free_page(buf->page_array[j]);
136 kfree(buf->page_array);
137 return NULL;
141 * relay_create_buf - allocate and initialize a channel buffer
142 * @chan: the relay channel
144 * Returns channel buffer if successful, %NULL otherwise.
146 struct rchan_buf *relay_create_buf(struct rchan *chan)
148 struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
149 if (!buf)
150 return NULL;
152 buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
153 if (!buf->padding)
154 goto free_buf;
156 buf->start = relay_alloc_buf(buf, &chan->alloc_size);
157 if (!buf->start)
158 goto free_buf;
160 buf->chan = chan;
161 kref_get(&buf->chan->kref);
162 return buf;
164 free_buf:
165 kfree(buf->padding);
166 kfree(buf);
167 return NULL;
171 * relay_destroy_channel - free the channel struct
172 * @kref: target kernel reference that contains the relay channel
174 * Should only be called from kref_put().
176 void relay_destroy_channel(struct kref *kref)
178 struct rchan *chan = container_of(kref, struct rchan, kref);
179 kfree(chan);
183 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
184 * @buf: the buffer struct
186 void relay_destroy_buf(struct rchan_buf *buf)
188 struct rchan *chan = buf->chan;
189 unsigned int i;
191 if (likely(buf->start)) {
192 vunmap(buf->start);
193 for (i = 0; i < buf->page_count; i++)
194 __free_page(buf->page_array[i]);
195 kfree(buf->page_array);
197 chan->buf[buf->cpu] = NULL;
198 kfree(buf->padding);
199 kfree(buf);
200 kref_put(&chan->kref, relay_destroy_channel);
204 * relay_remove_buf - remove a channel buffer
205 * @kref: target kernel reference that contains the relay buffer
207 * Removes the file from the fileystem, which also frees the
208 * rchan_buf_struct and the channel buffer. Should only be called from
209 * kref_put().
211 void relay_remove_buf(struct kref *kref)
213 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
214 buf->chan->cb->remove_buf_file(buf->dentry);
215 relay_destroy_buf(buf);
219 * relay_buf_empty - boolean, is the channel buffer empty?
220 * @buf: channel buffer
222 * Returns 1 if the buffer is empty, 0 otherwise.
224 int relay_buf_empty(struct rchan_buf *buf)
226 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
228 EXPORT_SYMBOL_GPL(relay_buf_empty);
231 * relay_buf_full - boolean, is the channel buffer full?
232 * @buf: channel buffer
234 * Returns 1 if the buffer is full, 0 otherwise.
236 int relay_buf_full(struct rchan_buf *buf)
238 size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
239 return (ready >= buf->chan->n_subbufs) ? 1 : 0;
241 EXPORT_SYMBOL_GPL(relay_buf_full);
244 * High-level relay kernel API and associated functions.
248 * rchan_callback implementations defining default channel behavior. Used
249 * in place of corresponding NULL values in client callback struct.
253 * subbuf_start() default callback. Does nothing.
255 static int subbuf_start_default_callback (struct rchan_buf *buf,
256 void *subbuf,
257 void *prev_subbuf,
258 size_t prev_padding)
260 if (relay_buf_full(buf))
261 return 0;
263 return 1;
267 * buf_mapped() default callback. Does nothing.
269 static void buf_mapped_default_callback(struct rchan_buf *buf,
270 struct file *filp)
275 * buf_unmapped() default callback. Does nothing.
277 static void buf_unmapped_default_callback(struct rchan_buf *buf,
278 struct file *filp)
283 * create_buf_file_create() default callback. Does nothing.
285 static struct dentry *create_buf_file_default_callback(const char *filename,
286 struct dentry *parent,
287 int mode,
288 struct rchan_buf *buf,
289 int *is_global)
291 return NULL;
295 * remove_buf_file() default callback. Does nothing.
297 static int remove_buf_file_default_callback(struct dentry *dentry)
299 return -EINVAL;
302 /* relay channel default callbacks */
303 static struct rchan_callbacks default_channel_callbacks = {
304 .subbuf_start = subbuf_start_default_callback,
305 .buf_mapped = buf_mapped_default_callback,
306 .buf_unmapped = buf_unmapped_default_callback,
307 .create_buf_file = create_buf_file_default_callback,
308 .remove_buf_file = remove_buf_file_default_callback,
312 * wakeup_readers - wake up readers waiting on a channel
313 * @data: contains the channel buffer
315 * This is the timer function used to defer reader waking.
317 static void wakeup_readers(unsigned long data)
319 struct rchan_buf *buf = (struct rchan_buf *)data;
320 wake_up_interruptible(&buf->read_wait);
324 * __relay_reset - reset a channel buffer
325 * @buf: the channel buffer
326 * @init: 1 if this is a first-time initialization
328 * See relay_reset() for description of effect.
330 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
332 size_t i;
334 if (init) {
335 init_waitqueue_head(&buf->read_wait);
336 kref_init(&buf->kref);
337 setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
338 } else
339 del_timer_sync(&buf->timer);
341 buf->subbufs_produced = 0;
342 buf->subbufs_consumed = 0;
343 buf->bytes_consumed = 0;
344 buf->finalized = 0;
345 buf->data = buf->start;
346 buf->offset = 0;
348 for (i = 0; i < buf->chan->n_subbufs; i++)
349 buf->padding[i] = 0;
351 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
355 * relay_reset - reset the channel
356 * @chan: the channel
358 * This has the effect of erasing all data from all channel buffers
359 * and restarting the channel in its initial state. The buffers
360 * are not freed, so any mappings are still in effect.
362 * NOTE. Care should be taken that the channel isn't actually
363 * being used by anything when this call is made.
365 void relay_reset(struct rchan *chan)
367 unsigned int i;
369 if (!chan)
370 return;
372 if (chan->is_global && chan->buf[0]) {
373 __relay_reset(chan->buf[0], 0);
374 return;
377 mutex_lock(&relay_channels_mutex);
378 for_each_online_cpu(i)
379 if (chan->buf[i])
380 __relay_reset(chan->buf[i], 0);
381 mutex_unlock(&relay_channels_mutex);
383 EXPORT_SYMBOL_GPL(relay_reset);
386 * relay_open_buf - create a new relay channel buffer
388 * used by relay_open() and CPU hotplug.
390 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
392 struct rchan_buf *buf = NULL;
393 struct dentry *dentry;
394 char *tmpname;
396 if (chan->is_global)
397 return chan->buf[0];
399 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
400 if (!tmpname)
401 goto end;
402 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
404 buf = relay_create_buf(chan);
405 if (!buf)
406 goto free_name;
408 buf->cpu = cpu;
409 __relay_reset(buf, 1);
411 /* Create file in fs */
412 dentry = chan->cb->create_buf_file(tmpname, chan->parent, S_IRUSR,
413 buf, &chan->is_global);
414 if (!dentry)
415 goto free_buf;
417 buf->dentry = dentry;
419 if(chan->is_global) {
420 chan->buf[0] = buf;
421 buf->cpu = 0;
424 goto free_name;
426 free_buf:
427 relay_destroy_buf(buf);
428 free_name:
429 kfree(tmpname);
430 end:
431 return buf;
435 * relay_close_buf - close a channel buffer
436 * @buf: channel buffer
438 * Marks the buffer finalized and restores the default callbacks.
439 * The channel buffer and channel buffer data structure are then freed
440 * automatically when the last reference is given up.
442 static void relay_close_buf(struct rchan_buf *buf)
444 buf->finalized = 1;
445 del_timer_sync(&buf->timer);
446 kref_put(&buf->kref, relay_remove_buf);
449 static void setup_callbacks(struct rchan *chan,
450 struct rchan_callbacks *cb)
452 if (!cb) {
453 chan->cb = &default_channel_callbacks;
454 return;
457 if (!cb->subbuf_start)
458 cb->subbuf_start = subbuf_start_default_callback;
459 if (!cb->buf_mapped)
460 cb->buf_mapped = buf_mapped_default_callback;
461 if (!cb->buf_unmapped)
462 cb->buf_unmapped = buf_unmapped_default_callback;
463 if (!cb->create_buf_file)
464 cb->create_buf_file = create_buf_file_default_callback;
465 if (!cb->remove_buf_file)
466 cb->remove_buf_file = remove_buf_file_default_callback;
467 chan->cb = cb;
471 * relay_hotcpu_callback - CPU hotplug callback
472 * @nb: notifier block
473 * @action: hotplug action to take
474 * @hcpu: CPU number
476 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
478 static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
479 unsigned long action,
480 void *hcpu)
482 unsigned int hotcpu = (unsigned long)hcpu;
483 struct rchan *chan;
485 switch(action) {
486 case CPU_UP_PREPARE:
487 case CPU_UP_PREPARE_FROZEN:
488 mutex_lock(&relay_channels_mutex);
489 list_for_each_entry(chan, &relay_channels, list) {
490 if (chan->buf[hotcpu])
491 continue;
492 chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
493 if(!chan->buf[hotcpu]) {
494 printk(KERN_ERR
495 "relay_hotcpu_callback: cpu %d buffer "
496 "creation failed\n", hotcpu);
497 mutex_unlock(&relay_channels_mutex);
498 return NOTIFY_BAD;
501 mutex_unlock(&relay_channels_mutex);
502 break;
503 case CPU_DEAD:
504 case CPU_DEAD_FROZEN:
505 /* No need to flush the cpu : will be flushed upon
506 * final relay_flush() call. */
507 break;
509 return NOTIFY_OK;
513 * relay_open - create a new relay channel
514 * @base_filename: base name of files to create
515 * @parent: dentry of parent directory, %NULL for root directory
516 * @subbuf_size: size of sub-buffers
517 * @n_subbufs: number of sub-buffers
518 * @cb: client callback functions
519 * @private_data: user-defined data
521 * Returns channel pointer if successful, %NULL otherwise.
523 * Creates a channel buffer for each cpu using the sizes and
524 * attributes specified. The created channel buffer files
525 * will be named base_filename0...base_filenameN-1. File
526 * permissions will be %S_IRUSR.
528 struct rchan *relay_open(const char *base_filename,
529 struct dentry *parent,
530 size_t subbuf_size,
531 size_t n_subbufs,
532 struct rchan_callbacks *cb,
533 void *private_data)
535 unsigned int i;
536 struct rchan *chan;
537 if (!base_filename)
538 return NULL;
540 if (!(subbuf_size && n_subbufs))
541 return NULL;
543 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
544 if (!chan)
545 return NULL;
547 chan->version = RELAYFS_CHANNEL_VERSION;
548 chan->n_subbufs = n_subbufs;
549 chan->subbuf_size = subbuf_size;
550 chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
551 chan->parent = parent;
552 chan->private_data = private_data;
553 strlcpy(chan->base_filename, base_filename, NAME_MAX);
554 setup_callbacks(chan, cb);
555 kref_init(&chan->kref);
557 mutex_lock(&relay_channels_mutex);
558 for_each_online_cpu(i) {
559 chan->buf[i] = relay_open_buf(chan, i);
560 if (!chan->buf[i])
561 goto free_bufs;
563 list_add(&chan->list, &relay_channels);
564 mutex_unlock(&relay_channels_mutex);
566 return chan;
568 free_bufs:
569 for_each_online_cpu(i) {
570 if (!chan->buf[i])
571 break;
572 relay_close_buf(chan->buf[i]);
575 kref_put(&chan->kref, relay_destroy_channel);
576 mutex_unlock(&relay_channels_mutex);
577 return NULL;
579 EXPORT_SYMBOL_GPL(relay_open);
582 * relay_switch_subbuf - switch to a new sub-buffer
583 * @buf: channel buffer
584 * @length: size of current event
586 * Returns either the length passed in or 0 if full.
588 * Performs sub-buffer-switch tasks such as invoking callbacks,
589 * updating padding counts, waking up readers, etc.
591 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
593 void *old, *new;
594 size_t old_subbuf, new_subbuf;
596 if (unlikely(length > buf->chan->subbuf_size))
597 goto toobig;
599 if (buf->offset != buf->chan->subbuf_size + 1) {
600 buf->prev_padding = buf->chan->subbuf_size - buf->offset;
601 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
602 buf->padding[old_subbuf] = buf->prev_padding;
603 buf->subbufs_produced++;
604 buf->dentry->d_inode->i_size += buf->chan->subbuf_size -
605 buf->padding[old_subbuf];
606 smp_mb();
607 if (waitqueue_active(&buf->read_wait))
609 * Calling wake_up_interruptible() from here
610 * will deadlock if we happen to be logging
611 * from the scheduler (trying to re-grab
612 * rq->lock), so defer it.
614 __mod_timer(&buf->timer, jiffies + 1);
617 old = buf->data;
618 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
619 new = buf->start + new_subbuf * buf->chan->subbuf_size;
620 buf->offset = 0;
621 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
622 buf->offset = buf->chan->subbuf_size + 1;
623 return 0;
625 buf->data = new;
626 buf->padding[new_subbuf] = 0;
628 if (unlikely(length + buf->offset > buf->chan->subbuf_size))
629 goto toobig;
631 return length;
633 toobig:
634 buf->chan->last_toobig = length;
635 return 0;
637 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
640 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
641 * @chan: the channel
642 * @cpu: the cpu associated with the channel buffer to update
643 * @subbufs_consumed: number of sub-buffers to add to current buf's count
645 * Adds to the channel buffer's consumed sub-buffer count.
646 * subbufs_consumed should be the number of sub-buffers newly consumed,
647 * not the total consumed.
649 * NOTE. Kernel clients don't need to call this function if the channel
650 * mode is 'overwrite'.
652 void relay_subbufs_consumed(struct rchan *chan,
653 unsigned int cpu,
654 size_t subbufs_consumed)
656 struct rchan_buf *buf;
658 if (!chan)
659 return;
661 if (cpu >= NR_CPUS || !chan->buf[cpu])
662 return;
664 buf = chan->buf[cpu];
665 buf->subbufs_consumed += subbufs_consumed;
666 if (buf->subbufs_consumed > buf->subbufs_produced)
667 buf->subbufs_consumed = buf->subbufs_produced;
669 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
672 * relay_close - close the channel
673 * @chan: the channel
675 * Closes all channel buffers and frees the channel.
677 void relay_close(struct rchan *chan)
679 unsigned int i;
681 if (!chan)
682 return;
684 mutex_lock(&relay_channels_mutex);
685 if (chan->is_global && chan->buf[0])
686 relay_close_buf(chan->buf[0]);
687 else
688 for_each_possible_cpu(i)
689 if (chan->buf[i])
690 relay_close_buf(chan->buf[i]);
692 if (chan->last_toobig)
693 printk(KERN_WARNING "relay: one or more items not logged "
694 "[item size (%Zd) > sub-buffer size (%Zd)]\n",
695 chan->last_toobig, chan->subbuf_size);
697 list_del(&chan->list);
698 kref_put(&chan->kref, relay_destroy_channel);
699 mutex_unlock(&relay_channels_mutex);
701 EXPORT_SYMBOL_GPL(relay_close);
704 * relay_flush - close the channel
705 * @chan: the channel
707 * Flushes all channel buffers, i.e. forces buffer switch.
709 void relay_flush(struct rchan *chan)
711 unsigned int i;
713 if (!chan)
714 return;
716 if (chan->is_global && chan->buf[0]) {
717 relay_switch_subbuf(chan->buf[0], 0);
718 return;
721 mutex_lock(&relay_channels_mutex);
722 for_each_possible_cpu(i)
723 if (chan->buf[i])
724 relay_switch_subbuf(chan->buf[i], 0);
725 mutex_unlock(&relay_channels_mutex);
727 EXPORT_SYMBOL_GPL(relay_flush);
730 * relay_file_open - open file op for relay files
731 * @inode: the inode
732 * @filp: the file
734 * Increments the channel buffer refcount.
736 static int relay_file_open(struct inode *inode, struct file *filp)
738 struct rchan_buf *buf = inode->i_private;
739 kref_get(&buf->kref);
740 filp->private_data = buf;
742 return 0;
746 * relay_file_mmap - mmap file op for relay files
747 * @filp: the file
748 * @vma: the vma describing what to map
750 * Calls upon relay_mmap_buf() to map the file into user space.
752 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
754 struct rchan_buf *buf = filp->private_data;
755 return relay_mmap_buf(buf, vma);
759 * relay_file_poll - poll file op for relay files
760 * @filp: the file
761 * @wait: poll table
763 * Poll implemention.
765 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
767 unsigned int mask = 0;
768 struct rchan_buf *buf = filp->private_data;
770 if (buf->finalized)
771 return POLLERR;
773 if (filp->f_mode & FMODE_READ) {
774 poll_wait(filp, &buf->read_wait, wait);
775 if (!relay_buf_empty(buf))
776 mask |= POLLIN | POLLRDNORM;
779 return mask;
783 * relay_file_release - release file op for relay files
784 * @inode: the inode
785 * @filp: the file
787 * Decrements the channel refcount, as the filesystem is
788 * no longer using it.
790 static int relay_file_release(struct inode *inode, struct file *filp)
792 struct rchan_buf *buf = filp->private_data;
793 kref_put(&buf->kref, relay_remove_buf);
795 return 0;
799 * relay_file_read_consume - update the consumed count for the buffer
801 static void relay_file_read_consume(struct rchan_buf *buf,
802 size_t read_pos,
803 size_t bytes_consumed)
805 size_t subbuf_size = buf->chan->subbuf_size;
806 size_t n_subbufs = buf->chan->n_subbufs;
807 size_t read_subbuf;
809 if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
810 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
811 buf->bytes_consumed = 0;
814 buf->bytes_consumed += bytes_consumed;
815 if (!read_pos)
816 read_subbuf = buf->subbufs_consumed % n_subbufs;
817 else
818 read_subbuf = read_pos / buf->chan->subbuf_size;
819 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
820 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
821 (buf->offset == subbuf_size))
822 return;
823 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
824 buf->bytes_consumed = 0;
829 * relay_file_read_avail - boolean, are there unconsumed bytes available?
831 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
833 size_t subbuf_size = buf->chan->subbuf_size;
834 size_t n_subbufs = buf->chan->n_subbufs;
835 size_t produced = buf->subbufs_produced;
836 size_t consumed = buf->subbufs_consumed;
838 relay_file_read_consume(buf, read_pos, 0);
840 if (unlikely(buf->offset > subbuf_size)) {
841 if (produced == consumed)
842 return 0;
843 return 1;
846 if (unlikely(produced - consumed >= n_subbufs)) {
847 consumed = produced - n_subbufs + 1;
848 buf->subbufs_consumed = consumed;
849 buf->bytes_consumed = 0;
852 produced = (produced % n_subbufs) * subbuf_size + buf->offset;
853 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
855 if (consumed > produced)
856 produced += n_subbufs * subbuf_size;
858 if (consumed == produced)
859 return 0;
861 return 1;
865 * relay_file_read_subbuf_avail - return bytes available in sub-buffer
866 * @read_pos: file read position
867 * @buf: relay channel buffer
869 static size_t relay_file_read_subbuf_avail(size_t read_pos,
870 struct rchan_buf *buf)
872 size_t padding, avail = 0;
873 size_t read_subbuf, read_offset, write_subbuf, write_offset;
874 size_t subbuf_size = buf->chan->subbuf_size;
876 write_subbuf = (buf->data - buf->start) / subbuf_size;
877 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
878 read_subbuf = read_pos / subbuf_size;
879 read_offset = read_pos % subbuf_size;
880 padding = buf->padding[read_subbuf];
882 if (read_subbuf == write_subbuf) {
883 if (read_offset + padding < write_offset)
884 avail = write_offset - (read_offset + padding);
885 } else
886 avail = (subbuf_size - padding) - read_offset;
888 return avail;
892 * relay_file_read_start_pos - find the first available byte to read
893 * @read_pos: file read position
894 * @buf: relay channel buffer
896 * If the @read_pos is in the middle of padding, return the
897 * position of the first actually available byte, otherwise
898 * return the original value.
900 static size_t relay_file_read_start_pos(size_t read_pos,
901 struct rchan_buf *buf)
903 size_t read_subbuf, padding, padding_start, padding_end;
904 size_t subbuf_size = buf->chan->subbuf_size;
905 size_t n_subbufs = buf->chan->n_subbufs;
906 size_t consumed = buf->subbufs_consumed % n_subbufs;
908 if (!read_pos)
909 read_pos = consumed * subbuf_size + buf->bytes_consumed;
910 read_subbuf = read_pos / subbuf_size;
911 padding = buf->padding[read_subbuf];
912 padding_start = (read_subbuf + 1) * subbuf_size - padding;
913 padding_end = (read_subbuf + 1) * subbuf_size;
914 if (read_pos >= padding_start && read_pos < padding_end) {
915 read_subbuf = (read_subbuf + 1) % n_subbufs;
916 read_pos = read_subbuf * subbuf_size;
919 return read_pos;
923 * relay_file_read_end_pos - return the new read position
924 * @read_pos: file read position
925 * @buf: relay channel buffer
926 * @count: number of bytes to be read
928 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
929 size_t read_pos,
930 size_t count)
932 size_t read_subbuf, padding, end_pos;
933 size_t subbuf_size = buf->chan->subbuf_size;
934 size_t n_subbufs = buf->chan->n_subbufs;
936 read_subbuf = read_pos / subbuf_size;
937 padding = buf->padding[read_subbuf];
938 if (read_pos % subbuf_size + count + padding == subbuf_size)
939 end_pos = (read_subbuf + 1) * subbuf_size;
940 else
941 end_pos = read_pos + count;
942 if (end_pos >= subbuf_size * n_subbufs)
943 end_pos = 0;
945 return end_pos;
949 * subbuf_read_actor - read up to one subbuf's worth of data
951 static int subbuf_read_actor(size_t read_start,
952 struct rchan_buf *buf,
953 size_t avail,
954 read_descriptor_t *desc,
955 read_actor_t actor)
957 void *from;
958 int ret = 0;
960 from = buf->start + read_start;
961 ret = avail;
962 if (copy_to_user(desc->arg.buf, from, avail)) {
963 desc->error = -EFAULT;
964 ret = 0;
966 desc->arg.data += ret;
967 desc->written += ret;
968 desc->count -= ret;
970 return ret;
974 * subbuf_send_actor - send up to one subbuf's worth of data
976 static int subbuf_send_actor(size_t read_start,
977 struct rchan_buf *buf,
978 size_t avail,
979 read_descriptor_t *desc,
980 read_actor_t actor)
982 unsigned long pidx, poff;
983 unsigned int subbuf_pages;
984 int ret = 0;
986 subbuf_pages = buf->chan->alloc_size >> PAGE_SHIFT;
987 pidx = (read_start / PAGE_SIZE) % subbuf_pages;
988 poff = read_start & ~PAGE_MASK;
989 while (avail) {
990 struct page *p = buf->page_array[pidx];
991 unsigned int len;
993 len = PAGE_SIZE - poff;
994 if (len > avail)
995 len = avail;
997 len = actor(desc, p, poff, len);
998 if (desc->error)
999 break;
1001 avail -= len;
1002 ret += len;
1003 poff = 0;
1004 pidx = (pidx + 1) % subbuf_pages;
1007 return ret;
1010 typedef int (*subbuf_actor_t) (size_t read_start,
1011 struct rchan_buf *buf,
1012 size_t avail,
1013 read_descriptor_t *desc,
1014 read_actor_t actor);
1017 * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1019 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1020 subbuf_actor_t subbuf_actor,
1021 read_actor_t actor,
1022 read_descriptor_t *desc)
1024 struct rchan_buf *buf = filp->private_data;
1025 size_t read_start, avail;
1026 int ret;
1028 if (!desc->count)
1029 return 0;
1031 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
1032 do {
1033 if (!relay_file_read_avail(buf, *ppos))
1034 break;
1036 read_start = relay_file_read_start_pos(*ppos, buf);
1037 avail = relay_file_read_subbuf_avail(read_start, buf);
1038 if (!avail)
1039 break;
1041 avail = min(desc->count, avail);
1042 ret = subbuf_actor(read_start, buf, avail, desc, actor);
1043 if (desc->error < 0)
1044 break;
1046 if (ret) {
1047 relay_file_read_consume(buf, read_start, ret);
1048 *ppos = relay_file_read_end_pos(buf, read_start, ret);
1050 } while (desc->count && ret);
1051 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
1053 return desc->written;
1056 static ssize_t relay_file_read(struct file *filp,
1057 char __user *buffer,
1058 size_t count,
1059 loff_t *ppos)
1061 read_descriptor_t desc;
1062 desc.written = 0;
1063 desc.count = count;
1064 desc.arg.buf = buffer;
1065 desc.error = 0;
1066 return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
1067 NULL, &desc);
1070 static ssize_t relay_file_sendfile(struct file *filp,
1071 loff_t *ppos,
1072 size_t count,
1073 read_actor_t actor,
1074 void *target)
1076 read_descriptor_t desc;
1077 desc.written = 0;
1078 desc.count = count;
1079 desc.arg.data = target;
1080 desc.error = 0;
1081 return relay_file_read_subbufs(filp, ppos, subbuf_send_actor,
1082 actor, &desc);
1085 const struct file_operations relay_file_operations = {
1086 .open = relay_file_open,
1087 .poll = relay_file_poll,
1088 .mmap = relay_file_mmap,
1089 .read = relay_file_read,
1090 .llseek = no_llseek,
1091 .release = relay_file_release,
1092 .sendfile = relay_file_sendfile,
1094 EXPORT_SYMBOL_GPL(relay_file_operations);
1096 static __init int relay_init(void)
1099 hotcpu_notifier(relay_hotcpu_callback, 0);
1100 return 0;
1103 module_init(relay_init);