2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
36 static int __make_request(struct request_queue
*q
, struct bio
*bio
);
39 * For the allocated request tables
41 struct kmem_cache
*request_cachep
;
44 * For queue allocation
46 struct kmem_cache
*blk_requestq_cachep
;
49 * Controlling structure to kblockd
51 static struct workqueue_struct
*kblockd_workqueue
;
53 static DEFINE_PER_CPU(struct list_head
, blk_cpu_done
);
55 static void drive_stat_acct(struct request
*rq
, int new_io
)
57 int rw
= rq_data_dir(rq
);
59 if (!blk_fs_request(rq
) || !rq
->rq_disk
)
63 __disk_stat_inc(rq
->rq_disk
, merges
[rw
]);
65 disk_round_stats(rq
->rq_disk
);
66 rq
->rq_disk
->in_flight
++;
70 void blk_queue_congestion_threshold(struct request_queue
*q
)
74 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
75 if (nr
> q
->nr_requests
)
77 q
->nr_congestion_on
= nr
;
79 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
82 q
->nr_congestion_off
= nr
;
86 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
89 * Locates the passed device's request queue and returns the address of its
92 * Will return NULL if the request queue cannot be located.
94 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
96 struct backing_dev_info
*ret
= NULL
;
97 struct request_queue
*q
= bdev_get_queue(bdev
);
100 ret
= &q
->backing_dev_info
;
103 EXPORT_SYMBOL(blk_get_backing_dev_info
);
105 void rq_init(struct request_queue
*q
, struct request
*rq
)
107 INIT_LIST_HEAD(&rq
->queuelist
);
108 INIT_LIST_HEAD(&rq
->donelist
);
111 rq
->bio
= rq
->biotail
= NULL
;
112 INIT_HLIST_NODE(&rq
->hash
);
113 RB_CLEAR_NODE(&rq
->rb_node
);
121 rq
->nr_phys_segments
= 0;
124 rq
->end_io_data
= NULL
;
125 rq
->completion_data
= NULL
;
129 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
130 unsigned int nbytes
, int error
)
132 struct request_queue
*q
= rq
->q
;
134 if (&q
->bar_rq
!= rq
) {
136 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
137 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
140 if (unlikely(nbytes
> bio
->bi_size
)) {
141 printk(KERN_ERR
"%s: want %u bytes done, %u left\n",
142 __FUNCTION__
, nbytes
, bio
->bi_size
);
143 nbytes
= bio
->bi_size
;
146 bio
->bi_size
-= nbytes
;
147 bio
->bi_sector
+= (nbytes
>> 9);
148 if (bio
->bi_size
== 0)
149 bio_endio(bio
, error
);
153 * Okay, this is the barrier request in progress, just
156 if (error
&& !q
->orderr
)
161 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
165 printk(KERN_INFO
"%s: dev %s: type=%x, flags=%x\n", msg
,
166 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
169 printk(KERN_INFO
" sector %llu, nr/cnr %lu/%u\n",
170 (unsigned long long)rq
->sector
,
172 rq
->current_nr_sectors
);
173 printk(KERN_INFO
" bio %p, biotail %p, buffer %p, data %p, len %u\n",
174 rq
->bio
, rq
->biotail
,
175 rq
->buffer
, rq
->data
,
178 if (blk_pc_request(rq
)) {
179 printk(KERN_INFO
" cdb: ");
180 for (bit
= 0; bit
< sizeof(rq
->cmd
); bit
++)
181 printk("%02x ", rq
->cmd
[bit
]);
185 EXPORT_SYMBOL(blk_dump_rq_flags
);
188 * "plug" the device if there are no outstanding requests: this will
189 * force the transfer to start only after we have put all the requests
192 * This is called with interrupts off and no requests on the queue and
193 * with the queue lock held.
195 void blk_plug_device(struct request_queue
*q
)
197 WARN_ON(!irqs_disabled());
200 * don't plug a stopped queue, it must be paired with blk_start_queue()
201 * which will restart the queueing
203 if (blk_queue_stopped(q
))
206 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
)) {
207 mod_timer(&q
->unplug_timer
, jiffies
+ q
->unplug_delay
);
208 blk_add_trace_generic(q
, NULL
, 0, BLK_TA_PLUG
);
211 EXPORT_SYMBOL(blk_plug_device
);
214 * remove the queue from the plugged list, if present. called with
215 * queue lock held and interrupts disabled.
217 int blk_remove_plug(struct request_queue
*q
)
219 WARN_ON(!irqs_disabled());
221 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
))
224 del_timer(&q
->unplug_timer
);
227 EXPORT_SYMBOL(blk_remove_plug
);
230 * remove the plug and let it rip..
232 void __generic_unplug_device(struct request_queue
*q
)
234 if (unlikely(blk_queue_stopped(q
)))
237 if (!blk_remove_plug(q
))
242 EXPORT_SYMBOL(__generic_unplug_device
);
245 * generic_unplug_device - fire a request queue
246 * @q: The &struct request_queue in question
249 * Linux uses plugging to build bigger requests queues before letting
250 * the device have at them. If a queue is plugged, the I/O scheduler
251 * is still adding and merging requests on the queue. Once the queue
252 * gets unplugged, the request_fn defined for the queue is invoked and
255 void generic_unplug_device(struct request_queue
*q
)
257 spin_lock_irq(q
->queue_lock
);
258 __generic_unplug_device(q
);
259 spin_unlock_irq(q
->queue_lock
);
261 EXPORT_SYMBOL(generic_unplug_device
);
263 static void blk_backing_dev_unplug(struct backing_dev_info
*bdi
,
266 struct request_queue
*q
= bdi
->unplug_io_data
;
271 void blk_unplug_work(struct work_struct
*work
)
273 struct request_queue
*q
=
274 container_of(work
, struct request_queue
, unplug_work
);
276 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_IO
, NULL
,
277 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
282 void blk_unplug_timeout(unsigned long data
)
284 struct request_queue
*q
= (struct request_queue
*)data
;
286 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_TIMER
, NULL
,
287 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
289 kblockd_schedule_work(&q
->unplug_work
);
292 void blk_unplug(struct request_queue
*q
)
295 * devices don't necessarily have an ->unplug_fn defined
298 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_IO
, NULL
,
299 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
304 EXPORT_SYMBOL(blk_unplug
);
307 * blk_start_queue - restart a previously stopped queue
308 * @q: The &struct request_queue in question
311 * blk_start_queue() will clear the stop flag on the queue, and call
312 * the request_fn for the queue if it was in a stopped state when
313 * entered. Also see blk_stop_queue(). Queue lock must be held.
315 void blk_start_queue(struct request_queue
*q
)
317 WARN_ON(!irqs_disabled());
319 clear_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
322 * one level of recursion is ok and is much faster than kicking
323 * the unplug handling
325 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
327 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
330 kblockd_schedule_work(&q
->unplug_work
);
333 EXPORT_SYMBOL(blk_start_queue
);
336 * blk_stop_queue - stop a queue
337 * @q: The &struct request_queue in question
340 * The Linux block layer assumes that a block driver will consume all
341 * entries on the request queue when the request_fn strategy is called.
342 * Often this will not happen, because of hardware limitations (queue
343 * depth settings). If a device driver gets a 'queue full' response,
344 * or if it simply chooses not to queue more I/O at one point, it can
345 * call this function to prevent the request_fn from being called until
346 * the driver has signalled it's ready to go again. This happens by calling
347 * blk_start_queue() to restart queue operations. Queue lock must be held.
349 void blk_stop_queue(struct request_queue
*q
)
352 set_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
354 EXPORT_SYMBOL(blk_stop_queue
);
357 * blk_sync_queue - cancel any pending callbacks on a queue
361 * The block layer may perform asynchronous callback activity
362 * on a queue, such as calling the unplug function after a timeout.
363 * A block device may call blk_sync_queue to ensure that any
364 * such activity is cancelled, thus allowing it to release resources
365 * that the callbacks might use. The caller must already have made sure
366 * that its ->make_request_fn will not re-add plugging prior to calling
370 void blk_sync_queue(struct request_queue
*q
)
372 del_timer_sync(&q
->unplug_timer
);
373 kblockd_flush_work(&q
->unplug_work
);
375 EXPORT_SYMBOL(blk_sync_queue
);
378 * blk_run_queue - run a single device queue
379 * @q: The queue to run
381 void blk_run_queue(struct request_queue
*q
)
385 spin_lock_irqsave(q
->queue_lock
, flags
);
389 * Only recurse once to avoid overrunning the stack, let the unplug
390 * handling reinvoke the handler shortly if we already got there.
392 if (!elv_queue_empty(q
)) {
393 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
395 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
398 kblockd_schedule_work(&q
->unplug_work
);
402 spin_unlock_irqrestore(q
->queue_lock
, flags
);
404 EXPORT_SYMBOL(blk_run_queue
);
406 void blk_put_queue(struct request_queue
*q
)
408 kobject_put(&q
->kobj
);
410 EXPORT_SYMBOL(blk_put_queue
);
412 void blk_cleanup_queue(struct request_queue
*q
)
414 mutex_lock(&q
->sysfs_lock
);
415 set_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
);
416 mutex_unlock(&q
->sysfs_lock
);
419 elevator_exit(q
->elevator
);
423 EXPORT_SYMBOL(blk_cleanup_queue
);
425 static int blk_init_free_list(struct request_queue
*q
)
427 struct request_list
*rl
= &q
->rq
;
429 rl
->count
[READ
] = rl
->count
[WRITE
] = 0;
430 rl
->starved
[READ
] = rl
->starved
[WRITE
] = 0;
432 init_waitqueue_head(&rl
->wait
[READ
]);
433 init_waitqueue_head(&rl
->wait
[WRITE
]);
435 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
436 mempool_free_slab
, request_cachep
, q
->node
);
444 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
446 return blk_alloc_queue_node(gfp_mask
, -1);
448 EXPORT_SYMBOL(blk_alloc_queue
);
450 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
452 struct request_queue
*q
;
455 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
456 gfp_mask
| __GFP_ZERO
, node_id
);
460 q
->backing_dev_info
.unplug_io_fn
= blk_backing_dev_unplug
;
461 q
->backing_dev_info
.unplug_io_data
= q
;
462 err
= bdi_init(&q
->backing_dev_info
);
464 kmem_cache_free(blk_requestq_cachep
, q
);
468 init_timer(&q
->unplug_timer
);
470 kobject_init(&q
->kobj
, &blk_queue_ktype
);
472 mutex_init(&q
->sysfs_lock
);
476 EXPORT_SYMBOL(blk_alloc_queue_node
);
479 * blk_init_queue - prepare a request queue for use with a block device
480 * @rfn: The function to be called to process requests that have been
481 * placed on the queue.
482 * @lock: Request queue spin lock
485 * If a block device wishes to use the standard request handling procedures,
486 * which sorts requests and coalesces adjacent requests, then it must
487 * call blk_init_queue(). The function @rfn will be called when there
488 * are requests on the queue that need to be processed. If the device
489 * supports plugging, then @rfn may not be called immediately when requests
490 * are available on the queue, but may be called at some time later instead.
491 * Plugged queues are generally unplugged when a buffer belonging to one
492 * of the requests on the queue is needed, or due to memory pressure.
494 * @rfn is not required, or even expected, to remove all requests off the
495 * queue, but only as many as it can handle at a time. If it does leave
496 * requests on the queue, it is responsible for arranging that the requests
497 * get dealt with eventually.
499 * The queue spin lock must be held while manipulating the requests on the
500 * request queue; this lock will be taken also from interrupt context, so irq
501 * disabling is needed for it.
503 * Function returns a pointer to the initialized request queue, or NULL if
507 * blk_init_queue() must be paired with a blk_cleanup_queue() call
508 * when the block device is deactivated (such as at module unload).
511 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
513 return blk_init_queue_node(rfn
, lock
, -1);
515 EXPORT_SYMBOL(blk_init_queue
);
517 struct request_queue
*
518 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
520 struct request_queue
*q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
526 if (blk_init_free_list(q
)) {
527 kmem_cache_free(blk_requestq_cachep
, q
);
532 * if caller didn't supply a lock, they get per-queue locking with
536 spin_lock_init(&q
->__queue_lock
);
537 lock
= &q
->__queue_lock
;
541 q
->prep_rq_fn
= NULL
;
542 q
->unplug_fn
= generic_unplug_device
;
543 q
->queue_flags
= (1 << QUEUE_FLAG_CLUSTER
);
544 q
->queue_lock
= lock
;
546 blk_queue_segment_boundary(q
, 0xffffffff);
548 blk_queue_make_request(q
, __make_request
);
549 blk_queue_max_segment_size(q
, MAX_SEGMENT_SIZE
);
551 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
552 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
554 q
->sg_reserved_size
= INT_MAX
;
559 if (!elevator_init(q
, NULL
)) {
560 blk_queue_congestion_threshold(q
);
567 EXPORT_SYMBOL(blk_init_queue_node
);
569 int blk_get_queue(struct request_queue
*q
)
571 if (likely(!test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
))) {
572 kobject_get(&q
->kobj
);
578 EXPORT_SYMBOL(blk_get_queue
);
580 static inline void blk_free_request(struct request_queue
*q
, struct request
*rq
)
582 if (rq
->cmd_flags
& REQ_ELVPRIV
)
583 elv_put_request(q
, rq
);
584 mempool_free(rq
, q
->rq
.rq_pool
);
587 static struct request
*
588 blk_alloc_request(struct request_queue
*q
, int rw
, int priv
, gfp_t gfp_mask
)
590 struct request
*rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
596 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
597 * see bio.h and blkdev.h
599 rq
->cmd_flags
= rw
| REQ_ALLOCED
;
602 if (unlikely(elv_set_request(q
, rq
, gfp_mask
))) {
603 mempool_free(rq
, q
->rq
.rq_pool
);
606 rq
->cmd_flags
|= REQ_ELVPRIV
;
613 * ioc_batching returns true if the ioc is a valid batching request and
614 * should be given priority access to a request.
616 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
622 * Make sure the process is able to allocate at least 1 request
623 * even if the batch times out, otherwise we could theoretically
626 return ioc
->nr_batch_requests
== q
->nr_batching
||
627 (ioc
->nr_batch_requests
> 0
628 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
632 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
633 * will cause the process to be a "batcher" on all queues in the system. This
634 * is the behaviour we want though - once it gets a wakeup it should be given
637 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
639 if (!ioc
|| ioc_batching(q
, ioc
))
642 ioc
->nr_batch_requests
= q
->nr_batching
;
643 ioc
->last_waited
= jiffies
;
646 static void __freed_request(struct request_queue
*q
, int rw
)
648 struct request_list
*rl
= &q
->rq
;
650 if (rl
->count
[rw
] < queue_congestion_off_threshold(q
))
651 blk_clear_queue_congested(q
, rw
);
653 if (rl
->count
[rw
] + 1 <= q
->nr_requests
) {
654 if (waitqueue_active(&rl
->wait
[rw
]))
655 wake_up(&rl
->wait
[rw
]);
657 blk_clear_queue_full(q
, rw
);
662 * A request has just been released. Account for it, update the full and
663 * congestion status, wake up any waiters. Called under q->queue_lock.
665 static void freed_request(struct request_queue
*q
, int rw
, int priv
)
667 struct request_list
*rl
= &q
->rq
;
673 __freed_request(q
, rw
);
675 if (unlikely(rl
->starved
[rw
^ 1]))
676 __freed_request(q
, rw
^ 1);
679 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
681 * Get a free request, queue_lock must be held.
682 * Returns NULL on failure, with queue_lock held.
683 * Returns !NULL on success, with queue_lock *not held*.
685 static struct request
*get_request(struct request_queue
*q
, int rw_flags
,
686 struct bio
*bio
, gfp_t gfp_mask
)
688 struct request
*rq
= NULL
;
689 struct request_list
*rl
= &q
->rq
;
690 struct io_context
*ioc
= NULL
;
691 const int rw
= rw_flags
& 0x01;
694 may_queue
= elv_may_queue(q
, rw_flags
);
695 if (may_queue
== ELV_MQUEUE_NO
)
698 if (rl
->count
[rw
]+1 >= queue_congestion_on_threshold(q
)) {
699 if (rl
->count
[rw
]+1 >= q
->nr_requests
) {
700 ioc
= current_io_context(GFP_ATOMIC
, q
->node
);
702 * The queue will fill after this allocation, so set
703 * it as full, and mark this process as "batching".
704 * This process will be allowed to complete a batch of
705 * requests, others will be blocked.
707 if (!blk_queue_full(q
, rw
)) {
708 ioc_set_batching(q
, ioc
);
709 blk_set_queue_full(q
, rw
);
711 if (may_queue
!= ELV_MQUEUE_MUST
712 && !ioc_batching(q
, ioc
)) {
714 * The queue is full and the allocating
715 * process is not a "batcher", and not
716 * exempted by the IO scheduler
722 blk_set_queue_congested(q
, rw
);
726 * Only allow batching queuers to allocate up to 50% over the defined
727 * limit of requests, otherwise we could have thousands of requests
728 * allocated with any setting of ->nr_requests
730 if (rl
->count
[rw
] >= (3 * q
->nr_requests
/ 2))
736 priv
= !test_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
740 spin_unlock_irq(q
->queue_lock
);
742 rq
= blk_alloc_request(q
, rw_flags
, priv
, gfp_mask
);
745 * Allocation failed presumably due to memory. Undo anything
746 * we might have messed up.
748 * Allocating task should really be put onto the front of the
749 * wait queue, but this is pretty rare.
751 spin_lock_irq(q
->queue_lock
);
752 freed_request(q
, rw
, priv
);
755 * in the very unlikely event that allocation failed and no
756 * requests for this direction was pending, mark us starved
757 * so that freeing of a request in the other direction will
758 * notice us. another possible fix would be to split the
759 * rq mempool into READ and WRITE
762 if (unlikely(rl
->count
[rw
] == 0))
769 * ioc may be NULL here, and ioc_batching will be false. That's
770 * OK, if the queue is under the request limit then requests need
771 * not count toward the nr_batch_requests limit. There will always
772 * be some limit enforced by BLK_BATCH_TIME.
774 if (ioc_batching(q
, ioc
))
775 ioc
->nr_batch_requests
--;
779 blk_add_trace_generic(q
, bio
, rw
, BLK_TA_GETRQ
);
785 * No available requests for this queue, unplug the device and wait for some
786 * requests to become available.
788 * Called with q->queue_lock held, and returns with it unlocked.
790 static struct request
*get_request_wait(struct request_queue
*q
, int rw_flags
,
793 const int rw
= rw_flags
& 0x01;
796 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
799 struct request_list
*rl
= &q
->rq
;
801 prepare_to_wait_exclusive(&rl
->wait
[rw
], &wait
,
802 TASK_UNINTERRUPTIBLE
);
804 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
807 struct io_context
*ioc
;
809 blk_add_trace_generic(q
, bio
, rw
, BLK_TA_SLEEPRQ
);
811 __generic_unplug_device(q
);
812 spin_unlock_irq(q
->queue_lock
);
816 * After sleeping, we become a "batching" process and
817 * will be able to allocate at least one request, and
818 * up to a big batch of them for a small period time.
819 * See ioc_batching, ioc_set_batching
821 ioc
= current_io_context(GFP_NOIO
, q
->node
);
822 ioc_set_batching(q
, ioc
);
824 spin_lock_irq(q
->queue_lock
);
826 finish_wait(&rl
->wait
[rw
], &wait
);
832 struct request
*blk_get_request(struct request_queue
*q
, int rw
, gfp_t gfp_mask
)
836 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
838 spin_lock_irq(q
->queue_lock
);
839 if (gfp_mask
& __GFP_WAIT
) {
840 rq
= get_request_wait(q
, rw
, NULL
);
842 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
844 spin_unlock_irq(q
->queue_lock
);
846 /* q->queue_lock is unlocked at this point */
850 EXPORT_SYMBOL(blk_get_request
);
853 * blk_start_queueing - initiate dispatch of requests to device
854 * @q: request queue to kick into gear
856 * This is basically a helper to remove the need to know whether a queue
857 * is plugged or not if someone just wants to initiate dispatch of requests
860 * The queue lock must be held with interrupts disabled.
862 void blk_start_queueing(struct request_queue
*q
)
864 if (!blk_queue_plugged(q
))
867 __generic_unplug_device(q
);
869 EXPORT_SYMBOL(blk_start_queueing
);
872 * blk_requeue_request - put a request back on queue
873 * @q: request queue where request should be inserted
874 * @rq: request to be inserted
877 * Drivers often keep queueing requests until the hardware cannot accept
878 * more, when that condition happens we need to put the request back
879 * on the queue. Must be called with queue lock held.
881 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
883 blk_add_trace_rq(q
, rq
, BLK_TA_REQUEUE
);
885 if (blk_rq_tagged(rq
))
886 blk_queue_end_tag(q
, rq
);
888 elv_requeue_request(q
, rq
);
890 EXPORT_SYMBOL(blk_requeue_request
);
893 * blk_insert_request - insert a special request in to a request queue
894 * @q: request queue where request should be inserted
895 * @rq: request to be inserted
896 * @at_head: insert request at head or tail of queue
897 * @data: private data
900 * Many block devices need to execute commands asynchronously, so they don't
901 * block the whole kernel from preemption during request execution. This is
902 * accomplished normally by inserting aritficial requests tagged as
903 * REQ_SPECIAL in to the corresponding request queue, and letting them be
904 * scheduled for actual execution by the request queue.
906 * We have the option of inserting the head or the tail of the queue.
907 * Typically we use the tail for new ioctls and so forth. We use the head
908 * of the queue for things like a QUEUE_FULL message from a device, or a
909 * host that is unable to accept a particular command.
911 void blk_insert_request(struct request_queue
*q
, struct request
*rq
,
912 int at_head
, void *data
)
914 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
918 * tell I/O scheduler that this isn't a regular read/write (ie it
919 * must not attempt merges on this) and that it acts as a soft
922 rq
->cmd_type
= REQ_TYPE_SPECIAL
;
923 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
927 spin_lock_irqsave(q
->queue_lock
, flags
);
930 * If command is tagged, release the tag
932 if (blk_rq_tagged(rq
))
933 blk_queue_end_tag(q
, rq
);
935 drive_stat_acct(rq
, 1);
936 __elv_add_request(q
, rq
, where
, 0);
937 blk_start_queueing(q
);
938 spin_unlock_irqrestore(q
->queue_lock
, flags
);
940 EXPORT_SYMBOL(blk_insert_request
);
943 * add-request adds a request to the linked list.
944 * queue lock is held and interrupts disabled, as we muck with the
945 * request queue list.
947 static inline void add_request(struct request_queue
*q
, struct request
*req
)
949 drive_stat_acct(req
, 1);
952 * elevator indicated where it wants this request to be
953 * inserted at elevator_merge time
955 __elv_add_request(q
, req
, ELEVATOR_INSERT_SORT
, 0);
959 * disk_round_stats() - Round off the performance stats on a struct
962 * The average IO queue length and utilisation statistics are maintained
963 * by observing the current state of the queue length and the amount of
964 * time it has been in this state for.
966 * Normally, that accounting is done on IO completion, but that can result
967 * in more than a second's worth of IO being accounted for within any one
968 * second, leading to >100% utilisation. To deal with that, we call this
969 * function to do a round-off before returning the results when reading
970 * /proc/diskstats. This accounts immediately for all queue usage up to
971 * the current jiffies and restarts the counters again.
973 void disk_round_stats(struct gendisk
*disk
)
975 unsigned long now
= jiffies
;
977 if (now
== disk
->stamp
)
980 if (disk
->in_flight
) {
981 __disk_stat_add(disk
, time_in_queue
,
982 disk
->in_flight
* (now
- disk
->stamp
));
983 __disk_stat_add(disk
, io_ticks
, (now
- disk
->stamp
));
987 EXPORT_SYMBOL_GPL(disk_round_stats
);
990 * queue lock must be held
992 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
996 if (unlikely(--req
->ref_count
))
999 elv_completed_request(q
, req
);
1002 * Request may not have originated from ll_rw_blk. if not,
1003 * it didn't come out of our reserved rq pools
1005 if (req
->cmd_flags
& REQ_ALLOCED
) {
1006 int rw
= rq_data_dir(req
);
1007 int priv
= req
->cmd_flags
& REQ_ELVPRIV
;
1009 BUG_ON(!list_empty(&req
->queuelist
));
1010 BUG_ON(!hlist_unhashed(&req
->hash
));
1012 blk_free_request(q
, req
);
1013 freed_request(q
, rw
, priv
);
1016 EXPORT_SYMBOL_GPL(__blk_put_request
);
1018 void blk_put_request(struct request
*req
)
1020 unsigned long flags
;
1021 struct request_queue
*q
= req
->q
;
1024 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
1025 * following if (q) test.
1028 spin_lock_irqsave(q
->queue_lock
, flags
);
1029 __blk_put_request(q
, req
);
1030 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1033 EXPORT_SYMBOL(blk_put_request
);
1035 void init_request_from_bio(struct request
*req
, struct bio
*bio
)
1037 req
->cmd_type
= REQ_TYPE_FS
;
1040 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1042 if (bio_rw_ahead(bio
) || bio_failfast(bio
))
1043 req
->cmd_flags
|= REQ_FAILFAST
;
1046 * REQ_BARRIER implies no merging, but lets make it explicit
1048 if (unlikely(bio_barrier(bio
)))
1049 req
->cmd_flags
|= (REQ_HARDBARRIER
| REQ_NOMERGE
);
1052 req
->cmd_flags
|= REQ_RW_SYNC
;
1053 if (bio_rw_meta(bio
))
1054 req
->cmd_flags
|= REQ_RW_META
;
1057 req
->hard_sector
= req
->sector
= bio
->bi_sector
;
1058 req
->ioprio
= bio_prio(bio
);
1059 req
->start_time
= jiffies
;
1060 blk_rq_bio_prep(req
->q
, req
, bio
);
1063 static int __make_request(struct request_queue
*q
, struct bio
*bio
)
1065 struct request
*req
;
1066 int el_ret
, nr_sectors
, barrier
, err
;
1067 const unsigned short prio
= bio_prio(bio
);
1068 const int sync
= bio_sync(bio
);
1071 nr_sectors
= bio_sectors(bio
);
1074 * low level driver can indicate that it wants pages above a
1075 * certain limit bounced to low memory (ie for highmem, or even
1076 * ISA dma in theory)
1078 blk_queue_bounce(q
, &bio
);
1080 barrier
= bio_barrier(bio
);
1081 if (unlikely(barrier
) && (q
->next_ordered
== QUEUE_ORDERED_NONE
)) {
1086 spin_lock_irq(q
->queue_lock
);
1088 if (unlikely(barrier
) || elv_queue_empty(q
))
1091 el_ret
= elv_merge(q
, &req
, bio
);
1093 case ELEVATOR_BACK_MERGE
:
1094 BUG_ON(!rq_mergeable(req
));
1096 if (!ll_back_merge_fn(q
, req
, bio
))
1099 blk_add_trace_bio(q
, bio
, BLK_TA_BACKMERGE
);
1101 req
->biotail
->bi_next
= bio
;
1103 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
1104 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
1105 drive_stat_acct(req
, 0);
1106 if (!attempt_back_merge(q
, req
))
1107 elv_merged_request(q
, req
, el_ret
);
1110 case ELEVATOR_FRONT_MERGE
:
1111 BUG_ON(!rq_mergeable(req
));
1113 if (!ll_front_merge_fn(q
, req
, bio
))
1116 blk_add_trace_bio(q
, bio
, BLK_TA_FRONTMERGE
);
1118 bio
->bi_next
= req
->bio
;
1122 * may not be valid. if the low level driver said
1123 * it didn't need a bounce buffer then it better
1124 * not touch req->buffer either...
1126 req
->buffer
= bio_data(bio
);
1127 req
->current_nr_sectors
= bio_cur_sectors(bio
);
1128 req
->hard_cur_sectors
= req
->current_nr_sectors
;
1129 req
->sector
= req
->hard_sector
= bio
->bi_sector
;
1130 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
1131 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
1132 drive_stat_acct(req
, 0);
1133 if (!attempt_front_merge(q
, req
))
1134 elv_merged_request(q
, req
, el_ret
);
1137 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1144 * This sync check and mask will be re-done in init_request_from_bio(),
1145 * but we need to set it earlier to expose the sync flag to the
1146 * rq allocator and io schedulers.
1148 rw_flags
= bio_data_dir(bio
);
1150 rw_flags
|= REQ_RW_SYNC
;
1153 * Grab a free request. This is might sleep but can not fail.
1154 * Returns with the queue unlocked.
1156 req
= get_request_wait(q
, rw_flags
, bio
);
1159 * After dropping the lock and possibly sleeping here, our request
1160 * may now be mergeable after it had proven unmergeable (above).
1161 * We don't worry about that case for efficiency. It won't happen
1162 * often, and the elevators are able to handle it.
1164 init_request_from_bio(req
, bio
);
1166 spin_lock_irq(q
->queue_lock
);
1167 if (elv_queue_empty(q
))
1169 add_request(q
, req
);
1172 __generic_unplug_device(q
);
1174 spin_unlock_irq(q
->queue_lock
);
1178 bio_endio(bio
, err
);
1183 * If bio->bi_dev is a partition, remap the location
1185 static inline void blk_partition_remap(struct bio
*bio
)
1187 struct block_device
*bdev
= bio
->bi_bdev
;
1189 if (bio_sectors(bio
) && bdev
!= bdev
->bd_contains
) {
1190 struct hd_struct
*p
= bdev
->bd_part
;
1191 const int rw
= bio_data_dir(bio
);
1193 p
->sectors
[rw
] += bio_sectors(bio
);
1196 bio
->bi_sector
+= p
->start_sect
;
1197 bio
->bi_bdev
= bdev
->bd_contains
;
1199 blk_add_trace_remap(bdev_get_queue(bio
->bi_bdev
), bio
,
1200 bdev
->bd_dev
, bio
->bi_sector
,
1201 bio
->bi_sector
- p
->start_sect
);
1205 static void handle_bad_sector(struct bio
*bio
)
1207 char b
[BDEVNAME_SIZE
];
1209 printk(KERN_INFO
"attempt to access beyond end of device\n");
1210 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
1211 bdevname(bio
->bi_bdev
, b
),
1213 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
1214 (long long)(bio
->bi_bdev
->bd_inode
->i_size
>> 9));
1216 set_bit(BIO_EOF
, &bio
->bi_flags
);
1219 #ifdef CONFIG_FAIL_MAKE_REQUEST
1221 static DECLARE_FAULT_ATTR(fail_make_request
);
1223 static int __init
setup_fail_make_request(char *str
)
1225 return setup_fault_attr(&fail_make_request
, str
);
1227 __setup("fail_make_request=", setup_fail_make_request
);
1229 static int should_fail_request(struct bio
*bio
)
1231 if ((bio
->bi_bdev
->bd_disk
->flags
& GENHD_FL_FAIL
) ||
1232 (bio
->bi_bdev
->bd_part
&& bio
->bi_bdev
->bd_part
->make_it_fail
))
1233 return should_fail(&fail_make_request
, bio
->bi_size
);
1238 static int __init
fail_make_request_debugfs(void)
1240 return init_fault_attr_dentries(&fail_make_request
,
1241 "fail_make_request");
1244 late_initcall(fail_make_request_debugfs
);
1246 #else /* CONFIG_FAIL_MAKE_REQUEST */
1248 static inline int should_fail_request(struct bio
*bio
)
1253 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1256 * Check whether this bio extends beyond the end of the device.
1258 static inline int bio_check_eod(struct bio
*bio
, unsigned int nr_sectors
)
1265 /* Test device or partition size, when known. */
1266 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
1268 sector_t sector
= bio
->bi_sector
;
1270 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
1272 * This may well happen - the kernel calls bread()
1273 * without checking the size of the device, e.g., when
1274 * mounting a device.
1276 handle_bad_sector(bio
);
1285 * generic_make_request: hand a buffer to its device driver for I/O
1286 * @bio: The bio describing the location in memory and on the device.
1288 * generic_make_request() is used to make I/O requests of block
1289 * devices. It is passed a &struct bio, which describes the I/O that needs
1292 * generic_make_request() does not return any status. The
1293 * success/failure status of the request, along with notification of
1294 * completion, is delivered asynchronously through the bio->bi_end_io
1295 * function described (one day) else where.
1297 * The caller of generic_make_request must make sure that bi_io_vec
1298 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1299 * set to describe the device address, and the
1300 * bi_end_io and optionally bi_private are set to describe how
1301 * completion notification should be signaled.
1303 * generic_make_request and the drivers it calls may use bi_next if this
1304 * bio happens to be merged with someone else, and may change bi_dev and
1305 * bi_sector for remaps as it sees fit. So the values of these fields
1306 * should NOT be depended on after the call to generic_make_request.
1308 static inline void __generic_make_request(struct bio
*bio
)
1310 struct request_queue
*q
;
1311 sector_t old_sector
;
1312 int ret
, nr_sectors
= bio_sectors(bio
);
1318 if (bio_check_eod(bio
, nr_sectors
))
1322 * Resolve the mapping until finished. (drivers are
1323 * still free to implement/resolve their own stacking
1324 * by explicitly returning 0)
1326 * NOTE: we don't repeat the blk_size check for each new device.
1327 * Stacking drivers are expected to know what they are doing.
1332 char b
[BDEVNAME_SIZE
];
1334 q
= bdev_get_queue(bio
->bi_bdev
);
1337 "generic_make_request: Trying to access "
1338 "nonexistent block-device %s (%Lu)\n",
1339 bdevname(bio
->bi_bdev
, b
),
1340 (long long) bio
->bi_sector
);
1342 bio_endio(bio
, err
);
1346 if (unlikely(nr_sectors
> q
->max_hw_sectors
)) {
1347 printk(KERN_ERR
"bio too big device %s (%u > %u)\n",
1348 bdevname(bio
->bi_bdev
, b
),
1354 if (unlikely(test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)))
1357 if (should_fail_request(bio
))
1361 * If this device has partitions, remap block n
1362 * of partition p to block n+start(p) of the disk.
1364 blk_partition_remap(bio
);
1366 if (old_sector
!= -1)
1367 blk_add_trace_remap(q
, bio
, old_dev
, bio
->bi_sector
,
1370 blk_add_trace_bio(q
, bio
, BLK_TA_QUEUE
);
1372 old_sector
= bio
->bi_sector
;
1373 old_dev
= bio
->bi_bdev
->bd_dev
;
1375 if (bio_check_eod(bio
, nr_sectors
))
1377 if (bio_empty_barrier(bio
) && !q
->prepare_flush_fn
) {
1382 ret
= q
->make_request_fn(q
, bio
);
1387 * We only want one ->make_request_fn to be active at a time,
1388 * else stack usage with stacked devices could be a problem.
1389 * So use current->bio_{list,tail} to keep a list of requests
1390 * submited by a make_request_fn function.
1391 * current->bio_tail is also used as a flag to say if
1392 * generic_make_request is currently active in this task or not.
1393 * If it is NULL, then no make_request is active. If it is non-NULL,
1394 * then a make_request is active, and new requests should be added
1397 void generic_make_request(struct bio
*bio
)
1399 if (current
->bio_tail
) {
1400 /* make_request is active */
1401 *(current
->bio_tail
) = bio
;
1402 bio
->bi_next
= NULL
;
1403 current
->bio_tail
= &bio
->bi_next
;
1406 /* following loop may be a bit non-obvious, and so deserves some
1408 * Before entering the loop, bio->bi_next is NULL (as all callers
1409 * ensure that) so we have a list with a single bio.
1410 * We pretend that we have just taken it off a longer list, so
1411 * we assign bio_list to the next (which is NULL) and bio_tail
1412 * to &bio_list, thus initialising the bio_list of new bios to be
1413 * added. __generic_make_request may indeed add some more bios
1414 * through a recursive call to generic_make_request. If it
1415 * did, we find a non-NULL value in bio_list and re-enter the loop
1416 * from the top. In this case we really did just take the bio
1417 * of the top of the list (no pretending) and so fixup bio_list and
1418 * bio_tail or bi_next, and call into __generic_make_request again.
1420 * The loop was structured like this to make only one call to
1421 * __generic_make_request (which is important as it is large and
1422 * inlined) and to keep the structure simple.
1424 BUG_ON(bio
->bi_next
);
1426 current
->bio_list
= bio
->bi_next
;
1427 if (bio
->bi_next
== NULL
)
1428 current
->bio_tail
= ¤t
->bio_list
;
1430 bio
->bi_next
= NULL
;
1431 __generic_make_request(bio
);
1432 bio
= current
->bio_list
;
1434 current
->bio_tail
= NULL
; /* deactivate */
1436 EXPORT_SYMBOL(generic_make_request
);
1439 * submit_bio: submit a bio to the block device layer for I/O
1440 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1441 * @bio: The &struct bio which describes the I/O
1443 * submit_bio() is very similar in purpose to generic_make_request(), and
1444 * uses that function to do most of the work. Both are fairly rough
1445 * interfaces, @bio must be presetup and ready for I/O.
1448 void submit_bio(int rw
, struct bio
*bio
)
1450 int count
= bio_sectors(bio
);
1455 * If it's a regular read/write or a barrier with data attached,
1456 * go through the normal accounting stuff before submission.
1458 if (!bio_empty_barrier(bio
)) {
1460 BIO_BUG_ON(!bio
->bi_size
);
1461 BIO_BUG_ON(!bio
->bi_io_vec
);
1464 count_vm_events(PGPGOUT
, count
);
1466 task_io_account_read(bio
->bi_size
);
1467 count_vm_events(PGPGIN
, count
);
1470 if (unlikely(block_dump
)) {
1471 char b
[BDEVNAME_SIZE
];
1472 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s\n",
1473 current
->comm
, task_pid_nr(current
),
1474 (rw
& WRITE
) ? "WRITE" : "READ",
1475 (unsigned long long)bio
->bi_sector
,
1476 bdevname(bio
->bi_bdev
, b
));
1480 generic_make_request(bio
);
1482 EXPORT_SYMBOL(submit_bio
);
1485 * __end_that_request_first - end I/O on a request
1486 * @req: the request being processed
1487 * @error: 0 for success, < 0 for error
1488 * @nr_bytes: number of bytes to complete
1491 * Ends I/O on a number of bytes attached to @req, and sets it up
1492 * for the next range of segments (if any) in the cluster.
1495 * 0 - we are done with this request, call end_that_request_last()
1496 * 1 - still buffers pending for this request
1498 static int __end_that_request_first(struct request
*req
, int error
,
1501 int total_bytes
, bio_nbytes
, next_idx
= 0;
1504 blk_add_trace_rq(req
->q
, req
, BLK_TA_COMPLETE
);
1507 * for a REQ_BLOCK_PC request, we want to carry any eventual
1508 * sense key with us all the way through
1510 if (!blk_pc_request(req
))
1513 if (error
&& (blk_fs_request(req
) && !(req
->cmd_flags
& REQ_QUIET
))) {
1514 printk(KERN_ERR
"end_request: I/O error, dev %s, sector %llu\n",
1515 req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
1516 (unsigned long long)req
->sector
);
1519 if (blk_fs_request(req
) && req
->rq_disk
) {
1520 const int rw
= rq_data_dir(req
);
1522 disk_stat_add(req
->rq_disk
, sectors
[rw
], nr_bytes
>> 9);
1525 total_bytes
= bio_nbytes
= 0;
1526 while ((bio
= req
->bio
) != NULL
) {
1530 * For an empty barrier request, the low level driver must
1531 * store a potential error location in ->sector. We pass
1532 * that back up in ->bi_sector.
1534 if (blk_empty_barrier(req
))
1535 bio
->bi_sector
= req
->sector
;
1537 if (nr_bytes
>= bio
->bi_size
) {
1538 req
->bio
= bio
->bi_next
;
1539 nbytes
= bio
->bi_size
;
1540 req_bio_endio(req
, bio
, nbytes
, error
);
1544 int idx
= bio
->bi_idx
+ next_idx
;
1546 if (unlikely(bio
->bi_idx
>= bio
->bi_vcnt
)) {
1547 blk_dump_rq_flags(req
, "__end_that");
1548 printk(KERN_ERR
"%s: bio idx %d >= vcnt %d\n",
1549 __FUNCTION__
, bio
->bi_idx
,
1554 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
1555 BIO_BUG_ON(nbytes
> bio
->bi_size
);
1558 * not a complete bvec done
1560 if (unlikely(nbytes
> nr_bytes
)) {
1561 bio_nbytes
+= nr_bytes
;
1562 total_bytes
+= nr_bytes
;
1567 * advance to the next vector
1570 bio_nbytes
+= nbytes
;
1573 total_bytes
+= nbytes
;
1579 * end more in this run, or just return 'not-done'
1581 if (unlikely(nr_bytes
<= 0))
1593 * if the request wasn't completed, update state
1596 req_bio_endio(req
, bio
, bio_nbytes
, error
);
1597 bio
->bi_idx
+= next_idx
;
1598 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
1599 bio_iovec(bio
)->bv_len
-= nr_bytes
;
1602 blk_recalc_rq_sectors(req
, total_bytes
>> 9);
1603 blk_recalc_rq_segments(req
);
1608 * splice the completion data to a local structure and hand off to
1609 * process_completion_queue() to complete the requests
1611 static void blk_done_softirq(struct softirq_action
*h
)
1613 struct list_head
*cpu_list
, local_list
;
1615 local_irq_disable();
1616 cpu_list
= &__get_cpu_var(blk_cpu_done
);
1617 list_replace_init(cpu_list
, &local_list
);
1620 while (!list_empty(&local_list
)) {
1623 rq
= list_entry(local_list
.next
, struct request
, donelist
);
1624 list_del_init(&rq
->donelist
);
1625 rq
->q
->softirq_done_fn(rq
);
1629 static int __cpuinit
blk_cpu_notify(struct notifier_block
*self
,
1630 unsigned long action
, void *hcpu
)
1633 * If a CPU goes away, splice its entries to the current CPU
1634 * and trigger a run of the softirq
1636 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
1637 int cpu
= (unsigned long) hcpu
;
1639 local_irq_disable();
1640 list_splice_init(&per_cpu(blk_cpu_done
, cpu
),
1641 &__get_cpu_var(blk_cpu_done
));
1642 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
1650 static struct notifier_block blk_cpu_notifier __cpuinitdata
= {
1651 .notifier_call
= blk_cpu_notify
,
1655 * blk_complete_request - end I/O on a request
1656 * @req: the request being processed
1659 * Ends all I/O on a request. It does not handle partial completions,
1660 * unless the driver actually implements this in its completion callback
1661 * through requeueing. The actual completion happens out-of-order,
1662 * through a softirq handler. The user must have registered a completion
1663 * callback through blk_queue_softirq_done().
1666 void blk_complete_request(struct request
*req
)
1668 struct list_head
*cpu_list
;
1669 unsigned long flags
;
1671 BUG_ON(!req
->q
->softirq_done_fn
);
1673 local_irq_save(flags
);
1675 cpu_list
= &__get_cpu_var(blk_cpu_done
);
1676 list_add_tail(&req
->donelist
, cpu_list
);
1677 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
1679 local_irq_restore(flags
);
1681 EXPORT_SYMBOL(blk_complete_request
);
1684 * queue lock must be held
1686 static void end_that_request_last(struct request
*req
, int error
)
1688 struct gendisk
*disk
= req
->rq_disk
;
1690 if (blk_rq_tagged(req
))
1691 blk_queue_end_tag(req
->q
, req
);
1693 if (blk_queued_rq(req
))
1694 blkdev_dequeue_request(req
);
1696 if (unlikely(laptop_mode
) && blk_fs_request(req
))
1697 laptop_io_completion();
1700 * Account IO completion. bar_rq isn't accounted as a normal
1701 * IO on queueing nor completion. Accounting the containing
1702 * request is enough.
1704 if (disk
&& blk_fs_request(req
) && req
!= &req
->q
->bar_rq
) {
1705 unsigned long duration
= jiffies
- req
->start_time
;
1706 const int rw
= rq_data_dir(req
);
1708 __disk_stat_inc(disk
, ios
[rw
]);
1709 __disk_stat_add(disk
, ticks
[rw
], duration
);
1710 disk_round_stats(disk
);
1715 req
->end_io(req
, error
);
1717 if (blk_bidi_rq(req
))
1718 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
1720 __blk_put_request(req
->q
, req
);
1724 static inline void __end_request(struct request
*rq
, int uptodate
,
1725 unsigned int nr_bytes
)
1730 error
= uptodate
? uptodate
: -EIO
;
1732 __blk_end_request(rq
, error
, nr_bytes
);
1736 * blk_rq_bytes - Returns bytes left to complete in the entire request
1738 unsigned int blk_rq_bytes(struct request
*rq
)
1740 if (blk_fs_request(rq
))
1741 return rq
->hard_nr_sectors
<< 9;
1743 return rq
->data_len
;
1745 EXPORT_SYMBOL_GPL(blk_rq_bytes
);
1748 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1750 unsigned int blk_rq_cur_bytes(struct request
*rq
)
1752 if (blk_fs_request(rq
))
1753 return rq
->current_nr_sectors
<< 9;
1756 return rq
->bio
->bi_size
;
1758 return rq
->data_len
;
1760 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes
);
1763 * end_queued_request - end all I/O on a queued request
1764 * @rq: the request being processed
1765 * @uptodate: error value or 0/1 uptodate flag
1768 * Ends all I/O on a request, and removes it from the block layer queues.
1769 * Not suitable for normal IO completion, unless the driver still has
1770 * the request attached to the block layer.
1773 void end_queued_request(struct request
*rq
, int uptodate
)
1775 __end_request(rq
, uptodate
, blk_rq_bytes(rq
));
1777 EXPORT_SYMBOL(end_queued_request
);
1780 * end_dequeued_request - end all I/O on a dequeued request
1781 * @rq: the request being processed
1782 * @uptodate: error value or 0/1 uptodate flag
1785 * Ends all I/O on a request. The request must already have been
1786 * dequeued using blkdev_dequeue_request(), as is normally the case
1790 void end_dequeued_request(struct request
*rq
, int uptodate
)
1792 __end_request(rq
, uptodate
, blk_rq_bytes(rq
));
1794 EXPORT_SYMBOL(end_dequeued_request
);
1798 * end_request - end I/O on the current segment of the request
1799 * @req: the request being processed
1800 * @uptodate: error value or 0/1 uptodate flag
1803 * Ends I/O on the current segment of a request. If that is the only
1804 * remaining segment, the request is also completed and freed.
1806 * This is a remnant of how older block drivers handled IO completions.
1807 * Modern drivers typically end IO on the full request in one go, unless
1808 * they have a residual value to account for. For that case this function
1809 * isn't really useful, unless the residual just happens to be the
1810 * full current segment. In other words, don't use this function in new
1811 * code. Either use end_request_completely(), or the
1812 * end_that_request_chunk() (along with end_that_request_last()) for
1813 * partial completions.
1816 void end_request(struct request
*req
, int uptodate
)
1818 __end_request(req
, uptodate
, req
->hard_cur_sectors
<< 9);
1820 EXPORT_SYMBOL(end_request
);
1823 * blk_end_io - Generic end_io function to complete a request.
1824 * @rq: the request being processed
1825 * @error: 0 for success, < 0 for error
1826 * @nr_bytes: number of bytes to complete @rq
1827 * @bidi_bytes: number of bytes to complete @rq->next_rq
1828 * @drv_callback: function called between completion of bios in the request
1829 * and completion of the request.
1830 * If the callback returns non 0, this helper returns without
1831 * completion of the request.
1834 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1835 * If @rq has leftover, sets it up for the next range of segments.
1838 * 0 - we are done with this request
1839 * 1 - this request is not freed yet, it still has pending buffers.
1841 static int blk_end_io(struct request
*rq
, int error
, unsigned int nr_bytes
,
1842 unsigned int bidi_bytes
,
1843 int (drv_callback
)(struct request
*))
1845 struct request_queue
*q
= rq
->q
;
1846 unsigned long flags
= 0UL;
1848 if (blk_fs_request(rq
) || blk_pc_request(rq
)) {
1849 if (__end_that_request_first(rq
, error
, nr_bytes
))
1852 /* Bidi request must be completed as a whole */
1853 if (blk_bidi_rq(rq
) &&
1854 __end_that_request_first(rq
->next_rq
, error
, bidi_bytes
))
1858 /* Special feature for tricky drivers */
1859 if (drv_callback
&& drv_callback(rq
))
1862 add_disk_randomness(rq
->rq_disk
);
1864 spin_lock_irqsave(q
->queue_lock
, flags
);
1865 end_that_request_last(rq
, error
);
1866 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1872 * blk_end_request - Helper function for drivers to complete the request.
1873 * @rq: the request being processed
1874 * @error: 0 for success, < 0 for error
1875 * @nr_bytes: number of bytes to complete
1878 * Ends I/O on a number of bytes attached to @rq.
1879 * If @rq has leftover, sets it up for the next range of segments.
1882 * 0 - we are done with this request
1883 * 1 - still buffers pending for this request
1885 int blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
1887 return blk_end_io(rq
, error
, nr_bytes
, 0, NULL
);
1889 EXPORT_SYMBOL_GPL(blk_end_request
);
1892 * __blk_end_request - Helper function for drivers to complete the request.
1893 * @rq: the request being processed
1894 * @error: 0 for success, < 0 for error
1895 * @nr_bytes: number of bytes to complete
1898 * Must be called with queue lock held unlike blk_end_request().
1901 * 0 - we are done with this request
1902 * 1 - still buffers pending for this request
1904 int __blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
1906 if (blk_fs_request(rq
) || blk_pc_request(rq
)) {
1907 if (__end_that_request_first(rq
, error
, nr_bytes
))
1911 add_disk_randomness(rq
->rq_disk
);
1913 end_that_request_last(rq
, error
);
1917 EXPORT_SYMBOL_GPL(__blk_end_request
);
1920 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1921 * @rq: the bidi request being processed
1922 * @error: 0 for success, < 0 for error
1923 * @nr_bytes: number of bytes to complete @rq
1924 * @bidi_bytes: number of bytes to complete @rq->next_rq
1927 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1930 * 0 - we are done with this request
1931 * 1 - still buffers pending for this request
1933 int blk_end_bidi_request(struct request
*rq
, int error
, unsigned int nr_bytes
,
1934 unsigned int bidi_bytes
)
1936 return blk_end_io(rq
, error
, nr_bytes
, bidi_bytes
, NULL
);
1938 EXPORT_SYMBOL_GPL(blk_end_bidi_request
);
1941 * blk_end_request_callback - Special helper function for tricky drivers
1942 * @rq: the request being processed
1943 * @error: 0 for success, < 0 for error
1944 * @nr_bytes: number of bytes to complete
1945 * @drv_callback: function called between completion of bios in the request
1946 * and completion of the request.
1947 * If the callback returns non 0, this helper returns without
1948 * completion of the request.
1951 * Ends I/O on a number of bytes attached to @rq.
1952 * If @rq has leftover, sets it up for the next range of segments.
1954 * This special helper function is used only for existing tricky drivers.
1955 * (e.g. cdrom_newpc_intr() of ide-cd)
1956 * This interface will be removed when such drivers are rewritten.
1957 * Don't use this interface in other places anymore.
1960 * 0 - we are done with this request
1961 * 1 - this request is not freed yet.
1962 * this request still has pending buffers or
1963 * the driver doesn't want to finish this request yet.
1965 int blk_end_request_callback(struct request
*rq
, int error
,
1966 unsigned int nr_bytes
,
1967 int (drv_callback
)(struct request
*))
1969 return blk_end_io(rq
, error
, nr_bytes
, 0, drv_callback
);
1971 EXPORT_SYMBOL_GPL(blk_end_request_callback
);
1973 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
1976 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
1977 rq
->cmd_flags
|= (bio
->bi_rw
& 3);
1979 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
1980 rq
->nr_hw_segments
= bio_hw_segments(q
, bio
);
1981 rq
->current_nr_sectors
= bio_cur_sectors(bio
);
1982 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
1983 rq
->hard_nr_sectors
= rq
->nr_sectors
= bio_sectors(bio
);
1984 rq
->buffer
= bio_data(bio
);
1985 rq
->data_len
= bio
->bi_size
;
1987 rq
->bio
= rq
->biotail
= bio
;
1990 rq
->rq_disk
= bio
->bi_bdev
->bd_disk
;
1993 int kblockd_schedule_work(struct work_struct
*work
)
1995 return queue_work(kblockd_workqueue
, work
);
1997 EXPORT_SYMBOL(kblockd_schedule_work
);
1999 void kblockd_flush_work(struct work_struct
*work
)
2001 cancel_work_sync(work
);
2003 EXPORT_SYMBOL(kblockd_flush_work
);
2005 int __init
blk_dev_init(void)
2009 kblockd_workqueue
= create_workqueue("kblockd");
2010 if (!kblockd_workqueue
)
2011 panic("Failed to create kblockd\n");
2013 request_cachep
= kmem_cache_create("blkdev_requests",
2014 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
2016 blk_requestq_cachep
= kmem_cache_create("blkdev_queue",
2017 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);
2019 for_each_possible_cpu(i
)
2020 INIT_LIST_HEAD(&per_cpu(blk_cpu_done
, i
));
2022 open_softirq(BLOCK_SOFTIRQ
, blk_done_softirq
, NULL
);
2023 register_hotcpu_notifier(&blk_cpu_notifier
);